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Some Remarks on C*-Dynamical Systems
with a Compact Abelian Group

By

Akitaka KIiSHIMOTO* and Hiroshi TAKAT**

Abstract

A C*-dynamical system consisting of a C*-algebra ¥ and an action a« of a compact
abelian group G as a group of automorphisms of U is investigated.

An explicit structure of the C*-crossed product C*(U;a) of A by a is given in terms
of the spectral subspaces %% (p), p=G of I

If ¥ has a strictly positive element and if the closed ideal of the fixed point algebra
U generated by % (p)*¥A=(p) is A itself for any pG, then C*(U;a) is shown to be
stably isomorphic to U*®¥ (L*(G)).

For the Connes-Olesen invariant I'(a), it is shown that p€l (a) if and only if &,)I
= (0) for any non-zero closed ideal I of CG*(U;a) where & is the action of G on G*(U;a)
dual to the action @ on ¥I.

The relative commutant of %* in ¥l is shown to be commutative if G=T" or Z/(p) and
to be of type I if G is finite or the product of 7* with a finite group.

§1. Introduction and Main Results

In the study of C*-dynamical systems, one of the important
tasks is the analysis of the structure of continuous C*-algebra crossed
products. At the moment our knowledge on this problem is very
limited. (See [1], [7] and [9].) In this note we try to add a little
more information on the structure and basic properties of the crossed
product of a C*-algebra by a compact abelian group. As a related
problem we also examine the relative commutant of the fixed point
algebra.

Let (U, G, @) be a C*-dynamical system based on a compact
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abelian group G. Let %*(p) be the spectral subspace of a at p& G.

For a Hilbert space #, # (#) denotes the C*-algebra of all
compact operators on #. We consider the group C*-algebra C*(G)
of G as a C*-subalgebra of #(L*(G)) in the following:

Theorem 1. Let (U, G, «) be a C*-dynamical system based on a
compact abelian group G. Then there is a unitary representation 4
of G in L*(G) such that the C*-crossed product C*(¥;a) is isomor-
phic to the closed span of tensor products A*(p)RC* (G)a} with peG
in AR % (L*(G)).

The % will be defined in section 3.

Following [2], two C*-algebras ¥ and B are called stably
isomorphic if AR # (#) and BR #(#) are isomorphic where H# is
a separable infinite-dimensional Hilbert space.

A positive element z of a C*-algebra U is called strictly positive
if ¢(x) >0 for any state ¢ of .

Theorem 2. Let (U, G, a) be a C*-dynamical system based on
a compact abelian group G. For each peG let I, be the closed ideal
of U==U*(1) generated by N (p)*A=(p). If A has a strictly positive
element and if I,=%U* for all pG, then C* (U ; &) is stably isomorphic
to A Qe (L*(G)).

Let I'(a) be the Connes-Olesen invariant of the C*-dynamical
system (¥, G, @) and let @ be the action of G on C*(¥;a) dual to
the action @ of G.

Theorem 3. Let (U, G, «) be a C*-dynamical system based on
a compact abelian group G. Tnen pI'(a) if and only if &,(DI+
0) jor any non-zero closed two-sided ideal I of C*(U; «).

Theorem 4. Let (U, G, @) be a C*-dynamical system based on
a compact abelian group G. Let AN (U*)’ be the relative commutant
of A= in A. If AN (U=)'# (0), the following statements hold :

1) If G=T"or Z/(p), then AN (U*)’ is commutative ;

(i) If G is finite or the product group of T with a finite group,
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then AN (A is of type L.

In general, AN (A*)’ is not of type I even if G=T"

We shall give the proofs of Theorems 1 to 4 in sections 3 to 6,
respectively.

We would like to express our hearty thanks to Professor M.
Takesaki for enlightening us to study these topics and to Professor
H. Araki for critical reading of the manuscript and for many helpful

suggestions.

§2. Notation and Preliminaries

Let (&, G, a) be a C*-dynamical system based on a compact
abelian group. The C*-crossed product C*(¥ ; a) of ¥ by a is
defined as the enveloping C*-algebra of L.(G; %), the set of all
Bochner integrable -valued functions on G equipped with the

following Banach #-algebra structure :

(23) @ = 2B a3 (h9)dh,
2 (@) =a, (g™,

lalii={ @l de,

where dg is the normalized Haar measure on G.
For a representation p of ¥ on a Hilbert space #,,let Ind p be
a representation of L.(G;¥) on L*(G; #,) such that

(Ind p@)7) (@) =_poez* (2 (m)) n(h='g)

for xeL.(G;¥) and n€Ll*(G;#,). If pis faithful, Ind p can be
extended to a faithful representation of C*(¥;a) ([10]).

For zL!(G; %) and p=G let a,(x) be an element of L.(G; )
such that @&, (z) (g) =<g, pyx(g). The dual action of G on C*(U;a)
is defined as the unique extension of &, on L.(G; %) to an action on
C* (U ; a) which we also denote by 4,.

For two C*-algebras % and 9B, AKXV denotes the C*-tensor

product of ¥ and B with respect to some C*-(cross) norm. In most
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of cases U or B will be of type I; if this is the case, the C*-norm
1s unique and hence there is no ambiguity about C*-norms.

Let #(#) be the C*-algebra of all compact operators on a
Hilbert space 2. Let 2 be the regular representation of G on L*(G)
and Ad 4 the adjoint action of G on #(L*(G)). Since G is compact
abelian, it follows from [7] that C*(¥;a) is isomorphic to the fixed
point algebra of AR % (L*(G)) under the product action a®Ad 2
of G.

According to [8], let I'(a) =N Sp @® be the Connes invariant of
¥, G, a) where the intersection is taken over all nonz-ero a-inva-
riant hereditary C*-subalgebras Z of %. I'(a) is a (closed) subgroup
of the dual group G of G.

For every p&G and a<¥, let

s@=\ @ ra,@dg

where <{g, p> means the value of p at g. Then ¢ (or simply ¢,) is
a mapping from 2 onto the spectral subspace U*(p) of a at p. For
p=1€G, ¢ is a projection of norm one from ¥ onto the fixed point
algebra *=%A=(1). The family {A<(p); p=G} is total in A and
satisfies that U= (p)UA*(g) CU*(pq).

Let M (%) be the multiplier algebra of the C*-algebra %. The
strict topology of M () is the weakest topology in which the maps
z—za and x—ax from M(Y) into A are continuous for each ac¥.

The bitransposed action a** of a on the second dual U** leaves
M) invariant. Thus a** defines the action of G on M (¥) which

is an extension of @ on U and will be denoted by a.

§3. Structure of C*-Crossed Products

We first make the following observation about the fixed point
algebra of a tensor product. In the case of periodic modular actions,

a prototype of the following proposition is in [6].

Proposition 3.1. Let (U, G, «) and (B, G, B) be C*-dynamical
systems based on a compact abelian group G. Then the fixed point
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algebra (AQRQB)®* of ARV under the product action aRB of G is the
closed span of tensor products A*(p) XV (p~") with peC.

Proof. Since U*(p) and B(g) are total in A and B respectively,
and since &% is of norm 1, the proposition follows from the following
formula for ze%*(p) ®B?(q) :

0 if pg#1

€ (@) = z if pg=1

This formula follows immediately from: a,&B, (x) =<{g, pg>z.
Q. E. D.

Now we consider the C*-dynamical system (% (L*(G)), G, Ad2)

based on a compact abelian group. Let# be a unitary representation
of G on L*(G) such that

@,€) (&) =<g, p>E(g), £€L*(G).
Then Ad 2,(4,) =4,0,4F ={g, p)4,. Further for peG let e, be the

one-dimensional projection onto <+, p> in L*(G), which satisfies
e,=gc<g, PoAdg.
Then d,e,=e,4, and the closed span of {#,e,; p, q=G} is *(L(G)).

Lemma 3.2. ¢ (L*(G))*(p) =C*(G)d,.

Proof. The group C*-algebra C*(G) is the closed span of {e,;
p&G). The lemma follows from the fact: Ad 2, (e,) =e,, Ad A, (@,) =
g P>ty Q: E. D.

Theorem 1 is a consequence of Proposition 3.1 and Lemma 3.2
since C*(¥; a) is isomorphic to (AR % (L*(G)))®*%,

As a corollary we have

Proposition 3.3. Let (A, G, a) be a C*-dynamical system based
on a compact abelian group G. Suppose that M(N)*(p) contains a
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unitary for each pEG‘. Then C*(U ; «) is isomorphic to WX
¢ (L} (G)).

Proof. Let v, be a unitary in M(A)“(p). Then U (p) =Uv,.
Let U=} ,e6v,&e, with convergence in the strict topology, which is
a unitary in M(AKR ¢ (L*(G))). Then for x&¥U* we have

U(zv,Qenf) U* =vav,05Keif

which implies that U@®*(p)QC*(G)a}) U*=ARC* (G)a}. By
Theorem 1 we have the proposition.

Finally we remark:

Proposition 3.4. Let (A, G, a) be a C*-dynamical system based
on a compact abelian group G. Suppose that a,=Ad u, for a measura-
ble representation u of G into the unitary part of M) equipped
with the strict topology. Then C* (W ;a) is isomorphic to URC*(G).

Proof. Let p be a non-degenerate faithful representation of U
on a Hilbert space #,. Let U be a unitary on L*(G : #,) such that
(U8) (g) =p(u,)E(g) for £ L*(G; #,) where p is the unique extension
of p to a representation of M) on #, For z€L,(G;¥U) and
EeL*(G; #,) we have

[U(Ind p()) U*£1 ()
=0 @) |pea; @ (W) U*E (hg)

=(omyu) o @an.

Since zucsL(G; A) where (zu)(h)=z(h)u,, h=G, we have that
U Ind p(2) U*€pA)KC*(G) on #,QL*(G)=L*(G; #,). Together
with the converse computation we can conclude that Ind p(C* (¥ ; a))
=p(A)QC*(G), which completes the proof. Q. E. D.

Remark. The above proposition holds for a general locally com-
pact amenable group G without any change of the proof. The key
point is that Ind p is faithful when p is faithful (cf. [10]).
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§ 4. Stable Isomorphism of C* (¥ ;a) to YR v (L*(G))

Let 4 be the C*-algebra of compact operators on a separable
infinite-dimensional Hilbert space. For a C*-dynamical system (%,
G, a) we consider (AR A, G, a=a¢) where ¢ is the trivial action
of G on X .

To prove Theorem 2 we first state a key lemma.

Lemma 4.1. Let (U, G, a) be a C*-dynamical system based on
a C*-algebra W including a strictly positive element and a compact
abelian group G. Then the following statements are equivalent :

() I=% for all peG,

G) MQEAQAH)(p) contains a unitary for all p=G.

Theorem 2 is an easy consequence of the above lemma (i)= (ii)
and Proposition 3.3 as follows: C* (U ; a) XA =C* AKX K, &)~ (AR
H)* Q€ (L (G)) =AQRQARD % (L*(G)).

Now we have to prove Lemma 4.1. The proof depends on an
idea of Brown [2] In the following let (%, G, @) be a C*-dynamical
system based on a compact abelian group G.

Lemma 4.2. U has an increasing approximate identity of ele-
ments of Ae.

Proof. If (w,) Is an increasing approximate identity in %, then
so is (a,(#;)) for any g€G. Since G is compact, (& (%)) (CU*) is
an increasing approximate identity.

Lemma 4.3. Suppose that I,=%U*. Then W has an increasing
approximate identity of finite sums ), ara;, a,U*(p).

Proof. By using the argument of [5] we have an increasing
family (#,);e4 of finite sums Y a’a;,, a,eU*(p), with a directed set 4
such that [|(1—u,) (6*b)*||->0 for any b&¥U*(p). Thus ||[(1—u,)z||
tends to zero for any x=56%*b with b&¥U*(p) and hence for any z=U*
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due to the assumption I,=%*. By Lemma 4.2 this implies that
[1(1—u)x||=0 for any z& . Q. E. D.

Lemma 4.4. Suppose that W has a strictly positive element and
that I,=%*. Then there is a sequence {a,;i=1, 2, ---} in U (p) such
that Y vafa;=1 with convergence in the strict topology of M ().

The proof is quite similar to that of Lemma 2.3 in [2] and so

we omit it.
Lemma 4.5. M) is isomorphic to M(U*) by restriction.

Proof. Let xeM(X)". Then xa and ax belong to A for ac¥U-.
If za=0 for any a€¥, then x=0 by Lemma 4.2. Thus we can
assume M) as a subalgebra of M(¥*). An element of M(U%)
can be extended to a multiplier of the closed span of U*AY*, which
is A. Hence M) =M U). Q. E. D.

Now we identify M ()« with M (¥U=).
Let {e;;} be a family of matrix units which generate .

Lemma 4.6. Suppose that N has a strictly positive element and
that I,=1,-1=%". Then there is a partial isometry u in M(ARQH")*(p)
such that u*u=1QRe, and uu* is full in M(UQRX).

Proof. By Lemma 4.4 we have sequences {a} and {6} iIn
A«(p) such that Y afa,=1 and 2 bb¥f=1. Let b=14 372, 27'b¥b;
and set d,;,=a;b* and d,;=2""b,b-*. Then ) dfd;,=1 with
convergence in the strict topology.

Now the proof proceeds as in [2, Lemma 2.4]. Let u=} d;Qe;,.
Then w*u=1Qe,;, and wuu*=), d.diQe,, eMUARQH ) =M UARX).
The norm closed ideal of M(A®X) generated by wu* contains
d,d¥*RXe,, in particular b;67'6*Qe,,. Since b7'>27' and )} b;bF=1,
this implies that the closed ideal generated by uu* contains A®XL,
thus by definition uu* is full. Q. E. D.
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Lemma 4.7. With the same hypotheses as in Lemma 4.6, there
exists a unitary in M(UAKA)*(p).

Proof. Let u be a partial isometry given in Lemma 4.6. Since
w*u(=1Qe,) and wuu* are full in MAQ®HA) we have v, v, in
MR RA) such that viv,=vv,=1, v =u*u@1 and v =uu*
®1 (Lemma 2.5 in [2]). Let U=vf(@®1)v,, Then UesM@A
HQA)*(p) with a=nQe®¢ and U is a unitary. Since AKXA XL,
G, @) is isomorphic to (AXHA, G, a) we have a desired unitary.

Q. E. D.

Proof of Lemma 4.1. (i)= (ii) follows from Lemma 4. 7. Suppose
(i) and let # be a unitary in MARQH)*(p). Let u=); u,Qe;;
with u,;eM@)*(p). Then ] uju,=1 implies that [, =~

Q. E. D.

§5. The Invariant /[ (a¢) and the Dual Action 4

We study the relation between I'(a) and the dual action & of
a. Such a relation is studied in [7] for a discrete abelian group G.

Let (U, G, @) be a C*-dynamical system based on a compact
abelian group. Define £ for z&L;(G; %) by

2= & prwds, »=C.

We make the following computation in the algebra L.(G; %)
where a®p denotes the function g€G——<{g, p> acM @) for p=G
and ae M) :

[+ @®p)1(8) = z(hya,(@Rp) (h79))dh
=< )\ B, W@ dh.

By putting a=1 we obtain that z(1Qp) =2 (p)Xp for zcLi(G;A)
and p€G. By putting 2=1®¢ we obtain that (1Qq) @Xp) =¢, . (a)
®p. Hence we have that (1Qq)x(1Qp) =¢, ,(£(»))Xp for any
zeL,(G; %) and any pair p, qe6.
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Lemma 5.1. For z=C*(W;a) there exists a family (x,,),.cc
in A such that z, , €U (qp™") and

(18p)z (18q) =z,,,Kq.

Proof. we have shown the assertion for z&L.(G; ). Since
IR (1R llc» sy =le,, 1 (£(@)) ||« for zEL;(G; UA) we have the
lemma by limiting procedure. Q. E. D.

We remark the following formula which is obtained by easy
computation: For ae%(p), b&¥U*(q) and for f, geL'(G),

@®f) (b®g) =ab® (f-q+g)

where (f:¢) (&) =<g, ©f(2).
Now we begin to prove Theorem 3. Suppose p&I'(a). Then

there exists a non-zero positive element a=¥* such that a ¥(pla=
(0). For be¥U*(q) and feL'(G) we heve

(a®p™) (bRF) @®1) = @Q@p™) (ba®f+1)
= @®p™) (ba®f(1)-1)
=f(Daba@p~q+1
=3, . f(1)aba®1.

Since a¥*(p)a=0, this implies that (@®p™") (bQRS) @®1)=0 for all
beUA(q) with ¢g=G and all f€eL'(G). Since the family {¥(¢)&®
L'(G) ;9= G} is total in L}(G ;%) and hence in C*(¥;a) we obtain
@@p™HC* U a) (@®1)=0. Let I be the closed ideal of C*(¥;a)
generated by a®1l. Then &,(I) is the closed ideal generated by
d,(@®1) =a®p~". Hence we obtain &,(I)I=(0).

Conversely let p€G and let I be a non-zero closed ideal of
C* (¥ ; a) such that ¢,(J)I=(0). Let z be a non-zero positive element
of I. Since z*(1Qq)#0 for some ¢g=G, we have a non-zero a=
Z2,, €% such that (1®¢)z-(1Qq) =a®QgeI by Lemma 5. 1. Since
aQp~'g=a,(@Rq) ad,(I), the following holds for all be¥U=(p) :

aba@1= (a®p~q) (ba®q)
= (@®p™'q) (b&®9q) (@®q)
ea,(I)I=(0).
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Thus a¥%*(p)a=(0) which implies p&I'(a). This completes the proof.

§6. The Relative Commutant of Fixed Point Algebra

In this section we determine the algebraic structure of the
relative commutant of the fixed point algebra in a C*-dynamical
system (cf. [3], [9]).

Let # be a C*-algebra and # be a C*-subalgebra of the center
Zg of # such that the closed ideal of # generated by ¢ is £ itself.
Let 2 be the spectrum of # and let I, for each w8 be the maxi-
mal ideal of # consisting of all elements of ce¢ with {¢, w)>=0.
Denote by J, the closed ideal of # generated by I,. Now suppose
J is a primitive ideal of #. Then there is an irreducible representa-
tion 7 such that z7'(0)=J. Since % CZg it holds that n(%¥)C
C-1and hence that 7(¢ ) =C"-1 due to the assumption for ¢ . Therefore
we have an element we&f such that z(c) =<c, w)l for all ce%.
Thus JO1,, which implies that JDJ,. Therefore we have the following
lemma :

Lemma 6.1. N J,=(0).
0ER

Let #,=4%/J, and let b, be the image of b= # by the quotient
map 7, of # onto #/J,. It follows from Lemma 6.1 that Z 1is
commutative if and only if £, is commutative for any w&2. More-
over, let J be a primitive ideal of #. As we saw before, there is an
element we® such that JOJ,. Then 7,(J) is a primitive ideal of
4%, such that #/J is isomorphic to 4,/7,(J). Conversely let osf
and let J be a primitive ideal of #,. Then the inverse image 7,*(J)
of J by 7, i1s a primitive ideal of # such that # /7,"(J) is isomorphic
to #,/J. By this argument we have the following lemma :

Lemma 6.2. (i) Z is commutative if and only if &, is com-

mutative for any w&f.

(i) & is of type 1 if and only if #,1is of type 1 for any weL.
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Remark. In Lemma 6.2 (ii), it is the theorem of Sakai that the

separability assumption for # is removable (cf. [4]).

Let (#, G, ) be a C*-dynamical system based on a compact
abelian group G. Let ¢ =#°. By Lemma 4.1 the closed ideal of
# generated by ¢ is # itself. Now suppose ¢ CZz and let I,, J,
be as before. Since B,(I,) =1,, it holds that 8,(J,) =J, for any g&G
and wef. For each wef we can define an action g° of G on 4%,
such that 82(a,)=(,(@)), for ac #. Then B is ergodic on %,. In
fact let z€ 4, with B2(x) =z for all g&G. If acZ satisfies a,=x,
then (B,(@)).=8,(a.,)=z2. Hence (g(a)),=z. Since ¢ @)=%’=¢,

we have z&€C-1. Thus we have the following lemma :

Lemma 6.3. Let (Z, G, B) be a C*-dynamical system such that
¢ =#'CZg. Then (48, G, B°) is ergodic for each wef2=Spec %.

Now we begin to prove Theorem 4. We take the C*-dynamical
system (Z=UN &), G, B) where we assume % #* (0) and B is the
restriction to # of the action @« on ¥. Then ¥ =%* is the center
of U« and hence ¥ CZgz By the above lemma we have the ergodic
system (4%,, G, 8°) for each wef. Fix u, in 2 (p) with |ju,|/=1
for each peSp f°. Then the ergodicity implies that u, is a unitary
and that #%°(p) =C-u,. In particular Spg° is a subgroup of G.

Case (i). Since SpB® has a generating element ¢ we know that
u, generates #,. Thus %, is commutative. Hence by Lemma 6.2
# is commutative.

Case (i1). If G is finite, then obviously %, is finite-dimensional.
Hence by Lemma 6.2 # is of type I.

Suppose that G is the product group of 7" with a finite group
H. Let N=H*NSpB* where H is considered as a subgroup of G.
We may assume that N is infinite, otherwise Spg® is finite and %, is
of type I. Since N is a cyclic group, the family (%,),ey is commuta-
tive. Let m be the order of H. For any p&Spf* we have that
uyu,=u,u, for any g N since p"N. On the other hand, since °

is ergodic, there exists a A& such that w,u,=uu,. Since uju,=
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"uuy we have 2"=1, which implies that %,uf=uJu,. Since p is
arbitrary we have that (u,),ey, are unitaries in Zg, where N,= {q";
geN}. Let 7 be the restricion of B to the subgroup Ni- which is
finite. Since (%,)" is the C*-algebra generated by (%,),en, we have
(#,)CZg, Therefore the relative commutant #,N (%%)" is equal
to %, and must be of type I by the preceding result for finite
G. Hence by Lemma 6.2 % is of type L

If G=T*, we have an example of an ergodic C*-dynamical system

&, T? a) where U is separable and not of type I.

Example. Let © be a countably infinite dimensional Hilbert
space and let {e.,}. ,c. be a family of matrix units. Let R=9X 9.
We define unitaries %, and w(s) on R by

U= Y sl @1, U= Jhezl®e,s,

and
w(s) =w(s, 5)= Zh-kzezei(klslﬁzsz)eh,k1®ekz,kz

for s=(s, 5;,) €R’. We can consider w(-) as a unitary representation
of 7% on M. Let 0 be a real number such that d/2x is irrational and
set v,=w(0, d)u,, and v,=u,. Let A be the C*-algebra generated
by v, and v, and a the continuous action of 7% on % such that a,=

Ad w(s) for each s€T? In fact, a is well-defined since Ad w(s) (v,)
=e”iv,, Thus we have defined the C*-dynamical system (¥, T?, «).
We assert that a is ergodic on ¥ and the weak closure %" of % on
R is a factor of type IL. Let ¥, be the =-algebra algebraically
generated by v, and v, Then we clearly have ;=<C-1 which
implies A*=C-1 by compactness. To prove that A" is a factor, let
a,=Ad w(s) on ¥ for each s&€T? Then (A)*=@*)"=C-1 and

e, A") =C-vpvpz for all n=(n, n,) €Z2*=T?. Now we compute that
0,0, =1,w (0, 0)u,=e w0, §)u,u,
=e "y, v,
Hence v/'vj2& Zy» unless n,=#n,=0. Thus Zy»= (Zy.)*=C-1. To prove
that A" is of type II, let £ be a unit vector of § such that ¢, £=E&.
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Let ¢ be a vector state of ¥ defined by §X¢&. Since the factor U’
is infinite-dimensional, we can conclude that % is of type II, if we
show that ¢ is a tracial state of 9. Since ¢ is a-invariant, this is

a special case of the following proposition :

Proposition 6.4. Let (U, G, a) be a C*-dynamical system. Let
Z=UN ) and B=walyg If #+(0), any B-invariant state ¢ of &

is tracial.

Proof. We first note the following three points:

(1) Since ¢ is B-invariant, ¢(¢,(#)) =0 for all p#1.

(i) The linear hull of ¢,(#), p=Sps is dense in %.

(i) #°* is the center of U« and hence in the center of Z.
For ace,(#) and bee,(£), ¢([a, b]) =0 for pg+1 due to (i) and
[a,56]=0 for pg=1 due to (iii)) and the lemma below. Hence
o([a, b]) =0 for all a, b # due to (ii). Q. E. D.

Lemma 6.5. If Z is the center of a C*-algebra U and if ac¥,
be¥, abeZ and bacsZ, then ab=ba.

Proof. Let @ be a primary representation of ¥. Then 7(a)z(b) =
¢l and n(b)n(a)=d-1 for some complex numbers ¢ and d. Then

dr(a) ==(a) (z(b)x(a)) = (x(@)x(b))n(a) =cn(a).

Hence c¢=d or n(a) =0. In the latter case c=0=d. Hence =([a, b])

=0 for all primary representations n. Therefore [a, 6]=0.
Q. E. D.
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