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A Mixed Finite Element Method for the
Biharmonic Eigenvalue Problems

of Plate Bending

By

Kazuo ISHIHARA*

Summary

In this paper, we obtain error estimates of a finite element solution by means of the
mixed method for the biharmonic eigenvalue problem of plate bending. Some numerical
examples are also given.

§ 1. Introduction

Let us consider the finite element solution for the biharmonic

eigenvalue problem of plate bending with the homogeneous Dirichlet

boundary condition :

u n ,

u = du/dn = 0 on dQ.

Here Q is a bounded convex domain in the two dimensional Euclid-

ean space R2 with a smooth boundary 3Q, A Laplacian and d/dn

differentiation in the outward normal direction to dQ.

In the finite element method for the static boundary value prob-

lem of plate bending :

AAw=f in Q,

on

several schemes have been studied during the last few years. Here

/ is a given function. Some of these schemes are the compatible

model, the hybrid method, the mixed method, the non-conforming
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method and the discrete Kirchhoff assumption model (see [1], [2],
[4], [6], [7], [9], [12]). However3 neither the hybrid method nor
the mixed method has been applied to the eigenvalue problem (1).

The purpose of this paper is to obtain error estimates for the
finite element solutions of the eigenvalue problem (1), applying the
mixed method with piecewise linear polynomials proposed by Miyoshi
[9].

The plan of the present paper is as follows. In Section 2, we
give some notations and facts about the eigenvalue problem for the
biharmonic operator. In Section 3, we prove that the approximate
eigenvalues and the corresponding eigenfunctions converge with a
certain rate of convergence to the exact ones. Finally, in Section 4,
some numerical results are also given to see the validity of our theory.

Throughout this paper, C, C13 C2 etc. are generic positive con-
stants, independent of h, which are not necessarily the same at differ-
ent places. Here h is a parameter depending on a triangulation of
the domain Q.

§ 2. Preliminaries

We assume that the solution u of (1) is sufficiently smooth. Let

L2 (/?) be the real space of square integrable functions on Q. The
inner product and the norm on L2(Q) are denoted by ( , ) and
| HI? respectively. Let Hn(Q) be the real n-th order Sobolev space
(w=l , 2, • • • ) with the norm given by

where a=(a19 a2) is a multiple index with non-negative integers,

and Da = d

We use the space Hl(Q) which is the completion of the space of all
test functions on Q with respect to the norm of Hn(Q).

The standard variational formulation of the eigenvalue problem
(1) consists of finding a real eigenvalue 1 and a non-zero eigenfunc-
tion u<=Hl(Q} such that
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(3) <u, <?>y = Z(u, ft for each

where

It is well known that all the eigenvalues { -̂} of (3) are arranged as

follows :

The corresponding eigenf unctions are denoted by {u{} with the nor-

malization condition

where du is Krone cker's delta. It is also well known from the Rayleigh

principle that the eigenvalues are characterized by

!= mm -; ' ~= mm

(4) ; - -min <^^ ^> t-A,-— mm —, - r-, i —

In order to introduce another variational formulation, we put (1)

into the following problem :

v = Au in £?,

(5) Av = lu in Q,

= 0 on dQ.

The weak form of the problem (5) consists of finding a real eigen-

value /! and non-zero eigenf unctions u^Ho(Q)} v^Hl(Q) such that

a(u, (j>} + (v, 0)=0 for each

a(v, ft+l(u, ft=Q for each

where

a(w, v )= \
Jo
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Define the space V as follows :

V=[[u, v

for each

Then, the eigenvalues h of (6) are characterized by

^= min ,
(U,V}GV

M^-O

(7) J,= min

§ 3. Finite Element Scheme and Rate of Convergence

For simplicity, it is assumed that the domain Q is a convex polygon.

We decompose the domain Q into m disjoint triangular elements

4(A=1, 2, • • • , m). ByP0 l^^n, (or Pf, w+ l^z^w+J ) , we denote

the nodal points of the triangulation Tfe which belong to Q (or 9-0).

Here A is the largest side length of all the triangular elements. We

also assume that the triangulation Th satisfies the following conditions

(see [9], [10]) :

(a) 5=UJ,, 4n4 = a (i^j).
k=l

(b) The minimum angle 6 of all the triangles is bounded below

in such a way that #^#0>0.

(c) There exists a closed subregion Qh=\jAk, of Q which is

composed of meshes of side length h, and the number of the

nodal points in Q— (@h)interior is of order O(A"1) as A->0. Each

square in Qh is triangulated by the diagonal of north-east

direction.

Let {&} (i=l, 2, • • • , n+J) be the piecewise linear functions

satisfying the relations

^(P^=diJ9 l^i, j^n+J.

Define finite dimensional spaces Y/l and Yh
Q as follows :
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0 = 0 ; ^ , 0 = on

For a given function /eL2(£)5 Miyoshi [9] proved that the

mixed finite element solution [w, ^J e 7J x FA denned by

a(ze;3 ^) + (w13 ^) =0 for each <j>^Y\

a(^ $) + (/, ^)=0 for each ^GEF53

holds the following error estimate

(8) l l w - t & l l i + l l^-^H

where {w3 Wi = Jw] is the exact solution of (2).
We define the finite element solution [1, u, v] (tfeYJ, ^ey^) of

the consistent mass scheme for the eigenvalue problem (6) by

a(u, & + (v, ^)=0 for each ^e7*,
)=0 for each eFJ.

This scheme is equivalent to a set of the matrix eigenvalue equations

KU+MV=0,
KV+lMU=Q.

Here U=(u(P,)) and V=(^(P,-)) are unknown vectors, and K and
M are the stiffness matrix and the consistent mass matrix given by

K={a($,, 4>i)}, l^i

M={(j,, ^)}, l£i

Let F* be a space defined by

y* = {[u, t)} e Yl X Yk; a (&, ^) + (w, ^) = 0 for each ^ e 1

Then the eigenvalues {^,-}(z = l, 2, • • • , w) are characterized by

} _ • l l ^ l l 2
X l-.mm . M |"

(10)
i= min S-, f = 2, 3,

We can normalize the eigenfunctions u, corresponding to lt by
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(d,, 0,)=a iy and («„ 0

We shall prove the convergence of the approximate solutions for

the first ^(r^n) eigenvalues and eigenf unctions. First we shall give

error estimates for the approximate eigenvalues using the technique,

analogous to the one used by Kikuchi [6, 7] and Strang and Fix

[12]. Some lemmas are prepared.

Lemma 1. Let

For W;= 2 ajUj(=Et, define [uhi, vhi] ^Vh by
j=i

(11) a (Uki, $) + (vki, $) = 0 for each

(12) a(vhi, 0) + (E a,X,ui} $) =0 for each
7 = 1

Then,

(13) Hflu-

Proof. By applying (8), the proof is complete.

Lemma 2. Let 5J fee an arbitrary i- dimensional subspace of Yh
0.

Let uh be an arbitrary non-zero element of S'^l^i^n) such that

(14) (tik, «y)=0, j=\, 2, -, *-l.

When z = l , no constraint is imposed on uh. Define vh^Yh
} \u , v] e V

(15) a(wfc, ^) + (^,l3 ^)=0 /or each

and

(16) a(^3 & + (uh, j i)=0 /or

(17) a(tt', ^) + (ux, ^)=0 /or

and

(18) a(u;, ^) + («A, ^)=0 /or

(19) a(«I, ^) + W, ^)=0 /or



FEM FOR BlHARMONIC EIGENVALUE PROBLEMS 405

respectively. Then, (#', wy .)=03 j=l, 2, • • • , i— 1,

(20) l l^ l l '^^I^I

Proof. From (8), we have

lK-<|

By (17) and (16), we have

||^||2^_a(^3 v') = (Uk, u)^\\uh\\«\\u\\.

Since { -̂, uj9 v-\ is the solution of (6), it holds that

(21) a(ujy ft + (vj9 0)=0 for each

(22) a(t;J? ^)+^(«^ 0)=0 for

Combining (22), (17), (21), (16) and (14), we obtain

Therefore, from (7), we have

^!i«'|!^!
Thus,

\\u'\\

By (19) and (18), we obtain

\\v'h\\
2=~a(u'h, v'h) = (u

This completes the proof.

We are now in a position to prove the following theorem.

Theorem 1. Let ^ and 1, be the eigenvalues defined by (6) and

(9), respectively. Then, for sufficiently small h,

Proof. Define two mappings Q:Et-*Yh and J^ : £,->FJ given
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by (12) and (11), respectively, that is,

By (11), (12) and (13), we have

1!*U!2 = -a(flk{, vki) = (L aJjUj, uhi ) |̂!E ajUj\\*\\uh

Thus,

\\RWi\\2 I f l ;

Since Si = jR-E,- is z-dimensional, an application of the min-max

principle ([12]) gives

(23) * . £ m a x l - = m a x J ^ ^ ,

for sufficiently small h.

On the other hand, from (18) and (15), we have

\\uh\\
2=-a(v'h, uh) = (vh, tO^INHKil .

Thus, using Lemma 2 yields

Therefore, we obtain

Thus, for sufficiently small h, using the min-max principle gives

(24) Jl,^^(l-C^A*).

By combining (23) and (24), the proof is complete.

We next give error estimates for the approximate eigenfunctions.

For ut, define {£,-, whi] e 7A by

(25) a(*,, ^) + (t&«, ^)=0 for each <f>^Yh
}

(26) a(te;A,, ^)+^(^-, ^8)=0 for each $^Yl
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Then, from Lemma 15 we have

(27) \\*i-ui\\^ClZih+ = C*h+.

Making use of the fact that {uly uz, • • • , un] are ortho normal in the
norm j j e ! l 5 we expand

(28) 4f= (*„ 60*. + (zt, 606, +#.
4 = 1

For /JeYJ, define #eY* by

(29) aC/T, £> + (£', 0)=0 for each ^eF*.

Then, we obtain the following two lemmas for the estimates of ||/*||

and 1 Sl(*» ^)^ll-
fe = l

Lemma 3. Suppose that ^<^-+1. W'rzte £;,. as (28). Then, for

sufficiently small h,

\\f-\\ ^ cth*.

Proof. Consider the quantity M"\\2-^\\f"\\2. By (28), we have

(so) c/r, <»o=o, i£k£i.
Since {lt, ut, ^*} are the solutions of (9), it holds that

(31) «(flt, ^) + (vk, ^)=0 for each ^eFft,

(32) «(*., ^)+JUa,, $=0 for each 0e 75.

By (29), (32) and (30), we have

(33) (#-, *o = -*(/:, *o=^c
From (28) and (30), we have

(34) (*„ ;o = z (*„ 6.) «»
4 = 1

Combining (25), (28), (31), (29) and (33), we have

(35) (whi, #) = -a(&., g") = - S (*., 60 •«(*„ ^)
4 = 1

= t (*„ AO («„*:) +11^1 11 =11^11'.
4 = 1

Therefore, from (34), (35), (29), (26), we obtain
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= A{ (u% — A£, /'•) ^A{11ui — z

Combining (10), (29) and (30) gives

(s?) iitfii8^,
Thus, from (36) and (37), we have

On the other hand, by Theorem 1 and 4+i>4> we obtain

;u.-4>(4+,-4)/2>o
for sufficiently small h. Therefore, applying (27) yields

for sufficiently small h. This completes the proof.

We now obtain an estimate of || 2 (£,-, uk)uk\\.

Lemma 4. Suppose ^l.>^l_1. Write z{ as (28). Define {/J,
eFA by

(38) /;= L (A.-, w,)^5s=i

(39) a(A ^) + (^;, ^)=0 Jo:

Then, for sufficiently small h,

Proo/. Consider the quantity -|!^H2 + A-il/;!l2. From (39), (38),

(31), (25) and (32), we have

= - Z (&„ a.
k = i

i — i

k = i
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From (39), (38), (31), (39), (38) and (32) we have

11£| |2 = -a(fl} £) = -2 (*„ aOafo, gt) = E (*,, 00 (ft, £)
fc=l *=1

= -2 (*» tf*M/;, ft) = -'i; (*., 6,)a(2(*,, ^-)^, ft)
* = 1 * = 1 ; = 1

= -2 (*«, «*)(*» ti>(tj, ft)*.j=i
= S (*„ 6.)(*,, ^)^(6i} «,)= Z4(^, uky.

k,j=i k = i

Thus,

(40) m\2 =(^, *o.
By (38), we have

(41) (*,-,/;)= Z (*„ a,)'=11/1!I1.

Combining (40), (41), (39), (26), we obtain

(42) -ii£;ii'+

By the property of the eigenvalue and (38) and (39), we have

(43) ll£||'^-ilL£||'.

Thus, from (42) and (43), we obtain

On the other hand, by Theorem 1 and A-^^-u for sufficiently

small A, we have

*,-*,-*>(*,- 4-0 /2>0.

Therefore, applying (27) yields

for sufficiently small h. The proof is complete.

We now prove the following theorem.
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Theorem 2. Let /!, be an eigenvalue of multiplicity

^-i<C^« — ̂ «+i — "• — h+p^h+p+i) °f (6) and ui} ui+l} • • • , ui+p be the
corresponding ei'genfunctions. Let uk be the approximate eigenfunction

corresponding to lk(k=l, 2, • • - , n). Then, for sufficiently small h,

distfw^ Span[t2,-5 ui+l, • • - , u{

j = i, i+\9 • • • 3 i+p, where

dist{z/3 B} =inf| |w— u\\.

Proof. Define w*eSpan[z2,-3 • • • , tii+p] by

**= i («/, ^)^5 J = i, f+1, -, i+p.k=i

For wJ3 define [£s, wh]] e F" by (25) and (26) (/ = ^ ''+1, •",

Then, from (27)

Write Zj in the form

k=i k=i

Since Zi+p<^Ai+p+1 and since u}- is the eigenfunction corresponding to

Zi+p9 an application of Lemma 3 gives

for sufficiently small A. Similarly, since /l_i</^ and ^, is the eigen-

function corresponding to /^, an application of Lemma 4 gives

for sufficiently small A. Therefore we have

th* = Ch*.

Thus, by the triangle inequality we obtain
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for sufficiently small h. The proof is complete.

We can now prove the following corollary to Theorem 2.

Corollary0 // 1{ is a simple eigenvalue, then, for sufficiently small

Proof. Putting &=(w,, fl,-)^0, define ti* by

di*=j8A.

Then, from the proof of Theorem 2, we have

\\ut—at\\^cji*
for sufficiently small h. Moreover, we have

= !-#•

Using the triangle inequality, for sufficiently small h, we obtain

^Ik-di + l ut-u?\\2^C7h*.

This completes the proof.

Remark. Further, we can propose the generalized mixed mass

scheme with a parameter /3, 0^/3^1 (see [15]) :

where Ml is the diagonal lumped mass matrix. This scheme includes

the consistent mass scheme 08=1) and the lumped mass scheme

08 = 0) as its special cases. We can obtain error estimates of the

generalized mixed mass scheme, similar to those of the consistent mass

scheme.
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§4. Numerical Results

In order to show the validity of our theory, numerical experiments
are performed. We have used the FACOM 230-28 computer at
Ehime University and the FACOM 230-75 computer at Kyushu
University. Let Q be a square domain defined by

O: -7r/2<^<7r/2, -7r/2<X<7r/2.

Example.

AAu = lu in Q.>
u = 3u/dn = Q on dQ.

The above example is the same as the one given by Weinstein and
Stenger ([13]3 p. 194). Although the exact eigenvalues for this prob-
lem are not known, Weinstein and Stenger have shown the lower
and upper bounds for the exact ones by the method of intermediate
problems and the Rayleigh-Ritz method, respectively.

The square domain is divided into uniform mesh with isosceles
triangles as shown in Figure (36, 49, 64 and 81 nodes). The com-
putations were performed for the parameter P = Q, 0.5, 1. Table
shows the results of the finite element solutions for the first four
eigenvalues, compared with the lower and upper bounds for the
exact values. It demonstrates that the approximate eigenvalues con-
verge with the mesh size in good agreement with our theorem.

Figure. Mesh pattern (36 nodes)
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Table. The results of the eignvalues for Example

mesh (node)

36

49

64

81

h

\/27T

5

V2i
6

\/27T

7

\/27T

8

P

0

0.5
•j

0
0.5

1

0
0.5

1

0

0.5
1

lower bound for /?,-*

upper bound for ^,*

eigenvalue (number)

1

9. 7494

12.5516

17.2642

10. 5935
12. 7965
16. 0165

11.1828
12.9371
15.2789

11.6053

13.0252
14. 8062

13.2820

13.3842

2

32. 0009
46. 5794

77. 6260

36. 9346
49. 3474
71.2238

40. 5867

50. 9931
67.1105

43.3194

52. 0410
64. 3767

55. 240
56. 561

3

32.0011
51.2400
98. 6773

36. 9346
53. 0603

84.5717

40. 5867
53. 9416
76. 2634

43. 3195

54. 4127
71. 0464

55. 240

56. 561

4

66. 9656

109.9170

222. 9727

77. 6290
116.5038

197. 3236

85.6151
119.2188
178.7896

91.6870
120. 3749
165. 8120

120. 007
124. 074

* From Weinstein and Stenger [13]

Acknowledgements

The author is grateful to Professor M. Yamaguti of Kyoto Uni-
versity and Professor T. Yamamoto of Ehime University for their
continuous encouragements and helpful suggestions.

References

[ 1 ] Babuska, I. and Zlamal, M., Nonconforming elements in the finite element method
with penalty, SI AM J. Numer. Anal., 10 (1973), 863-875.

[ 2 ] Ciarlet, P. G. and Raviart, P. A., A mixed finite element method for the biharmonic
equation, Proceedings of the symposium on mathematical aspects of finite elements in
partial differential equations, (ed. Carl de Boor) Academic Press, 1974.

[ 3 ] Fix, G., Orders of convergence of the Rayleigh-Ritz and Weinstein-Bazley methods,
Proc. Nat. Acad. Sci. U. S. A., 61 (1968), 1219-1223.

[ 4 ] Johnson, C., On the convergence of a mixed finite element method for plate bending
problems, Numer. Math., 21 (1973), 43-62.

[ 5 ] Kikuchi, F., Notes on the lumped mass approximation for vibration problems, Theoretical
and Applied Mechanics, 22, Univ. of Tokyo Press, (1974), 95-107.

[ 6 ] Kikuchi, F., Convergence of the ACM finite element scheme for plate bending prob-
lems, Publ. RIMS, Kyoto Univ., II (1975), 247-265.

[ 7 ] Kikuchi, F., On a finite element scheme based on the discrete Kirchhoff assumption,
Numer. Math., 24 (1975), 211-231.



414 KAZUO ISHIHARA

[8] Mikhlin, S. G., Variational methods in mathematical physics, Pergamon Press, 1964.
[ 9 ] Miyoshi, T., A finite element method for the solutions of fourth order partial differen-

tial equations, Kumamoto J. Sci. (Math.), 9 (1972), 87-116.
[10] Miyoshi, T., A mixed finite element method for the solution of the von Karman equa-

tions, Numer. Math., 26 (1976), 255-269.
[11] Piece, J. G. and Varga, R. S., Higher order convergence results for the Rayleigh-Ritz

method applied to eigenvalue problems. I: estimates relating Rayleigh-Ritz and Galerkin
approximations to eigenf unctions, SI AM J. Numer. Anal., 9 (1972), 137-151.

[12] Strang, G. and Fix, G., An analysis of the finite element method, Prentice-Hall, 1973.
[13] Weinstein, A. and Stenger, W., Methods of intermediate problems for eigenvalues,

theory and ramifications, Academic Press, 1972.
[14] Wilkinson, J. H., The algebraic eigenvalue problem, Oxford Univ. Press, 1965.
[15] Ishihara, K., Convergence of the finite element method applied to the eigenvalue prob-

lem Au + lu = Q, Publ. RIMS, Kyoto Univ., 13 (1977), 47-60.


