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Some Global Properties of Symmetric
Diffusion Processes1'

By

Kanji ICHIHARA*

Introduction

The principal purpose of this paper is to investigate some global

properties of the diffusion process associated with a second order

elliptic partial differential operator of self adjoint form. More

specifically recurrence, transience and the rate of escape of the process

will be discussed

Let L be an elliptic operator on Rd defined by

L= 2 ---(a.. -!-

where a{j is smooth, symmetric and the coefficients' matrix (&ij(x)')i<ii.jgd

is strictly positive definite on Rd. We denote by (Xt) PJ, x^Rd the

associated diffusion process.

Let <p^ p^>l be the unique solution of the Dirichlet problem:

Lu = Q in 1< \x\<p

and

fl on \x\ = l
u(x) =

10 on x\=p.

The following fact is a special case of the celebrated Dirichlet

principle :

"<pp is the unique solution of the problem minimizing an integral
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< du du d

over all u£=H1>2({x: l<^\x\<^p}) with boundary values 1 and 0 on

\x\ = l and p respectively".

See Proposition 1. 1 for the precise statement.
Hunt [10] made use of the above principle in his investigation on

the existence of the 0-order Green function of the process (Xt9 Px).
We shall further develop this approach and adopt it in a study

of the recurrent and transient properties. In Chapter 1 we shall
treat the diffusion process associated with a strictly elliptic operator
having measurable coefficients and Chapter 2 will be devoted to the
study of a class of degenerate diffusion processes. The main parts
of the proofs in these chapters will be performed in L2-setting.

Our fundamental criterion for recurrence which will be proved
in Chapters 1 and 2 is stated as follows:

"The process is recurrent if and only if

lim
pS+oo J i,j = l

K\x\<P

See Theorems 1. 1 and 2. 1 for the details.

We denote by A(x) the coefficients' matrix (#,-/#)) is,-, ./•£<* and
define

f^^for

£ N-f°r
~" ' ( A~L ( Y\ T T IV^ XA \^ *ls J U, 3 ^ J

and

1(r)= ( E^r^da for r>0E
Sd-l

where A~l(x} is the inverse of the matrix A(x} and da is the normal-
ized uniform measure on Sd~l.

By means of the above criterion for recurrence, we shall prove
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in Chapter 1

Theorem
r°°

A. If \ rl~dE^1(r)dr = +°o3 then the process is recurrent.

Theorem B. If ( rl-dE-l(ra}dr<-\- oo on a subset of Sd~l with

positive uniform measure, then the process is transient.

In Chapter 2 similar results will be obtained for the diffusion

process governed by a hypoelliptic differential operator. See Theo-

rems C and D.

It is to be mentioned that Brown [4] has proved similar results

in case of L= 2 -^—\a(x}-*—) where a(x) is smooth, strictly positive
,- = i OXf \ OXi J

on Rd, but the methods cannot be generalized to either of our cases.

In Chapter 3 we shall give some examples and compare our
main results (Theorems A —D) with those which Friedman [7] and

Hasminskii [8] have proved by the martingale method. It will then

turn out that our test for recurrence contains that of Friedman and

Hasminskii in the self adjoint case.

In the last chapter we shall give the exact escape rates to oo for

the diffusion paths governed by a uniformly elliptic operator; this is
an extension of Dvoretsky and Erdos5 test [6] for the Brownian motion

in space.

The author would like to express sincere thanks to Professor Harry

Kesten for helpful advice and all his inspiration. Gratitude is also

given to Professors Kiyosi ltd, Hiroshi Kunita and S. R. S. Varadhan

for valuable suggestions and helpful criticism.

Notations and Definitions

Let Q be an open domain Rd.
1. C(Q} : The class of real continuous functions in Q.
2. Cl(Q) : The subclass of C(Q] functions having continuous first partial derivatives on Q

which can be extended continuously to Q.
3. C£° (Q) : The class of real, infinitely differentiable functions with compact support in Q.
4. Hl'2(Q} : The completion of Cl(Q} with respect to the norm
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5. H}**e(Q} : The class of real measurable functions which are of the H1'2 (£?') class for every
bounded open Q' with closure in Q.

6. H\'2(Q} : The closure of C?(Q} in Hl'2(Q}.
7. Let the matrix A(x) = (fl,-y (^)) i^».y^d be symmetric, positive definite, with real components

Bij(x) > l^i, j<:d locally bounded, measurable in R*. Let the function k ( x ) be strictly
positive, continuous and integrable on Q, Define a quadratic form by

8. HQ'Z(O i k d x } : The completion of C™(Q) with respect to the norm

Chapter 1. Criteria for Recurrence and Transience I.

Strictly elliptic differential operator

Suppose we are given an elliptic operator defined on Rd as

(1 1) L- T d (a d
\. 1. ± J LJ — / i ~ ̂  I U>ij ~n

where au is locally bounded, measurable, symmetric and L is locally

uniformly elliptic, i.e., for each compact subset KdRd, there exists

a constant ^ = ^(J£)>1 such that

in Jr and for all

Let D be a bounded domain in Rd. A function w on D is called

a weak solution of Lu=f for a given /eL2(D) if it has weak deriva-

tives -= — , i=l, . .., <^ which belong to L]OC(D} and

(1-2)

is fulfilled for all v

Let .Ra, a>0 be a family of linear transformations from L°°(D)

to C(D), the set of all continuous functions on Z), satisfying the

resolvent equation

(1.3) £.-£,+ (a-£)£.£, = () for all a,
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and the sub Markov property: O^aRJ^l if 0^/^L If u = Raf

satisfies

(1.4) (a-L)w-/for all f^L°°(D},

Ra is called an L-diffusion resolvent. It is easy to see from (1.4)

that Ra is a one to one linear operator from L°°(D) to C(D). Set

D(A) = {Raf: /<EEL°°(Z))}3 independent of a>0 by (1.3) and define

for u^D(A), Au = (a—R~^u( = Lu). A with the domain D(A) is

called the generator of the resolvent.

The existence of the unique minimal diffusion process associated

with the operator L in an arbitrary bounded domain has been proved

by Kanda [12] and Kunita [14]. Their construction is based on the

Green function constructed by Littman, Stampacchia and Weinberger

[16] and Stampacchia [19] respectively. Note that Kunita treats

the more general case L= 2 ^s — (aa ~n — J+S &»-^ — •& i.Tij dx{ \ oXj / f=i dXi
We shall explain briefly their process. Let D be as above. Littman

et al. [16] and Stampacchia [19] have shown that there exists a unique

Green operator Ga) a^O such that Ga transforms L°°(D) into C(D)

and satisfies (1.3) and (1.4). In particular, if 3D is regular (3D is

of the C^-class, for example). ( G a f ) ( x ) converges to 0 as x^D

approaches a boundary point.

Making use of the above Green operator Ga, Kunita and Kanda

have constructed a unique minimal diffusion process (X?, C,D, Pf),

for which

(1. 5) GJ(x)=Ef[ e-'f(XVdt], for all /e=L°°(Z>) and a^
Jo

where CD is the killing time for the process.

It is to be noted that the process has the communication property

i.e., for each open subset U of D and each x^D, Px\_x?^U for

some £e(0,CD)]> 0, since the 0-order Green function is strictly positive.

See Littman et al. [16], section 7. It is also easy to see from (1. 5)

with a = 0 and /= 1 that the minimal diffusion is transient.

Combining the local existence by Kanda and Kunita with Courrege

and Priouret [5], we will now construct a minimal diffusion process
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in Rd. Let 2f be the open sphere with radius p and the origin

as a center. We then have a class of local diffusions (Xs
t
n, £?*,

Pln\ x^Sn9 n^l. Proposition 2.4 of Kunita [14] asserts that

the stopped process (Zf«+1
5 an

n
+\ Pf»+1), x^In where <+1 =

Q:\xs
t
n+l ^n] is equivalent in law to the process (Xf"3 CS Pfn)?

2n. Consequently by Theorem 2 of Courrege and Priouret [5], we

see that there exists a unique standard diffusion process Xt in Rd

which is locally equivalent to that of Kanda and Kunita. Let o9 =

inf{*^0: \xt\^p}. Note that <7p< + °° a. e. since (Xf'+1, C^+1
3 Pf»+1)5

x^2p+1 is transient. See the above remark. Now define £, = lim(7p.
pS + °°

Then the process (Xt, C3 -P.), x^Rd is a desired minimal diffusion

process in Rd.

What we are concerned with in this chapter is to investigate the

recurrent and transient properties of the process (Xt, Px) constructed

above.

Definition 1. 1. The process will be said to be recurrent if Px\_Xt

e U for some £>0] = 1 for any open subset U of Rd, otherwise it will

be called transient.

Remark 1. 1. From the definition it is obvious that £=+°° a. e.

if the process is recurrent, and transience is equivalent to

(1.6) P,[lim|*f = + oo] = l.
t/'C

(1.6) will be proved in Corollary 1.2 after some preparation.

Our main results in this chapter are Theorems A and B. In order

to prove thenij we introduce the stopping time

and let ap9 p^>\ be as before. Define

From the definition of C3 it is obvious that
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l im < ( x ) = <POO(X),

The following proposition is essentially due to Littman, Stampacchia

and Weinberger [16],

Proposition 1.1. For K^ + oo, (i) <pp<=Hl'2 (Sp} and is a

weak solution of Lu = 0 in 2P — S15 and converges to the boundary values

1 and 0 as |#|\1 and \x\/*p respectively.

(ii) <pp is Holder continuous in J^ — J?13 more precisely, for any

compact subset KdSpQ — S^ p0^>l, there exist positive constants C=

C(K, p0) and a = a(K, pQ") such that

(1.7) \9p(x}-9p(x}\^C\\9p\\LZ(Sir \x-x'\-

for every x} x'^

(iii) (pp — ̂ p^Hl^^p — I^ and <pp minimizes an integral

du du j
— ax/i CA f 4,

(1. 8) \ H a

J i.jii 3. dx{
K\x\<P J

overall u^H]'2(2p — Ii) + {^p}5 where <f>p is any fixed function C™ (2 p

such that (j)p(x} = l on II and HI'2 (Zp- ^) + {$,} =

Remark 1. 2. H1
Q'2(ZP — JO + {0P} is independent of the choice of

<?>p as long as <j>p satisfies the above conditions. It is also to be noted

that Hl'2(Sp — Il}+ {<j)p} is increasing as p/+°° after the trivial

extension of elemets to Se
f.

Proof of Proposition 1.1. We first show that there exists a func-

tion on 2P which satisfies all the above properties and is identically

equal to 1 on J^.

Combining Theorems 2. 1 and 2.3 of Littman et al. [16], we see

that there exists a unique function up on Ip — Il which is a weak

solution of Lu = 0 in Ip — Sly Holder continuous i. e. (1. 7) holds with

up in place of #>„ and Up — ̂ p^Hl^^p — I^. We will prove the

second property of (iii) for up. Since up is a weak solution in Sp—'Sl

and L is uniformly elliptic on IP — I^ a simple limiting procedure
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gives that

E a -^- dx = Q for all

Suppose <p<=Hl'2(Sp — S^ + {&,} and compute

= f f fl 9{»,
J ,-.fii "

du

Since (p — up^Hl>2(Sp~Sl\ the second term is equal to zero as we saw

above. Hence we obtain

f ^-, d<p d(p j ^ f ^-, dup dup j

This shows that up minimizes (1.8).

By Corollary 9. 1 of Littman et al. [16], all the boundary points of

Zp — S]. are regular. This combined with Theorem 3. 1 and Definition

3. 1 of Littman et al. [16] implies that up has the boundary values 1

and 0 on |#| = 1 and p respectively.

Now let us extend the function up by

u f ( x ) on Ip—2l

1 on %i.

We want to prove that up^Hl'2(Sp}. From the fact that up — <f)p^

Ho2(2f — S1), we can choose a sequence wn, n^l ^C~(Rd) with

support in Sp — II such that

Note that a sequence wn + (f>p, n^l ^Hl'2(Ip} and is Cauchy in this

space, hence there exists a unique element of Hl'*(Sf} to which
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wn + <f>p converges to Hl'2(2p). It is also possible to choose a subse-

quence of wn + $p so that it converges to up a. e. on 2P. Combining

all of this, we see that up^Hl'2(2p). Thus we have constructed a

desired function up.

We now proceed with the proof of Proposition 1. 1. It suffices

to verify that

9p(x}=up(x) for all x^S.-S,.

Since up is a weak solution of Lu = Q in 2p — Sl} it follows from

Theorem 2. 1 of Kunita [14] that up is 0-harmonic i. e.

(1.9) Ex\up(xrJ~\=up(x}, xtEV

for all sets V such that VdSp — Ils where Tyc is the hitting time for

the set Vc. Now letting V/'SP — 219 we obtain by the continuity of

up and the fact Ps[?i = 0p= +°°] = 0 for every x^£p — £l} see the

remark on page 446, that

(1. 10) ?>,(*) =«,(*) for all x&2,-2i.

This completes the proof. Q,. E. D.

The next proposition is a major step in our proof.

Proposition 1. 2. ^M satisfies (1. 7) with p= + 00 in the inequality,

and

: Rd).

For the proof of this proposition, we shall make use of the Hilbert

space Hlo'2(Rd: kdx), where k(x) is strictly positive, continuous and

integrable on Rd. Before proceeding to the proof, we note that if

u is an element of Hl'*(R': kdx)9 then (i) u and -^-SEL2
loc(R

d),
ox{

*•=!,..., d.

(ii)

Proof of Proposition 1. 2. The first statement is immediate from
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Proposition 1. 1 (ii) and the pointwise convergence of (pp to

By Proposition 1. 1 (iii) and Remark 1. 2, we have that

- \
is non increasing as ^/f + 00. Therefore the limit of D(<pp : Sf) exists

and is non negative.

Using the above fact, we first show that

(1.11) lim D((pp-<pp,: Rd)=Q.
p.p'S + oo

Without loss of generality, we can assume that p<^p. Then

- ( Ta^-^dx-Z
" J ife^'dx, dx, ^

*.-*! Zp'-l

. f ^ 9co / 3cey 7+ \ L aij-^p--?jL-dx.
J ,-. jii So:,- 3ary

^'-^i

On the other hand, the property (iii) of Proposition 1. 1 implies that

f j. ^ 9{^-ft) dx = Q
J i.yll to,- to.-

Xp'-2l

since ^ — ̂ /ejH"5i2(^/ — -TO- Therefore one has that

(1. 11) now follows from the existence of lim D((ppi I^
!»/'+«»

It is now easy to see that

9>,eHi-8(lZ': kdx)

and
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since (pp(x)/J(p00(x) fg 1 for all x^ Rd as p/1 + °o. By the completeness

of the space Hl
0'

2(Rd : kdx), there exists a unique element <p^Hl'2(Rd:

kdx) such that

lim 11^, — ̂ |j 12 d —0*

Since <pp converges to 9^ pointwise in Rd, (p has to be ^oo. Thus we

have shown that

(1. 12) lim 11^ — ̂ 0=1^1,

which gives <p00^Hl'z(Rd: kdx) and

lim D(<pp: 2,)=D(v»: Rd). Q. E. D.
jO/'+OO

Combining Propositions 1. 1 and 1. 2, we obtain

Corollary 1.1. <p^ is a weak solution of Lu = Q in the exterior

domain Rd — S^ which has the boundary value I on \x — 1 and is

strictly positive.

Proof. From Proposition 1.1 (i), we have

\ 2 *<&- ̂ ~ dx = (S for
J i,j=i OX{ OXj
-

Since we can replace the domain SP — S1 in the left hand side of the

above equality by Rd — S1} we obtain from Proposition 1. 2

S aiJ^-j&-dx = Q for every ^(^(R'-SJ.

This implies that (p^ is a weak solution of Lu = 0 in Rd — S1.

The boundary condition on |#| = 1 follows from the fact

<POO(X} as p/* + o° for all x^Rd, and Proposition L 1 (i).

Since the killed process (Xt, 0P, Px), x^Ip has the communication

property i. e.

Px\_xt<=U for some t<=(0, <7,)

for every open subset U of Sp and every x^£p, it is obvious that
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*M>iO,]>0 for

Since <p«,(x)^<pp(x), x<=Rd, it follows that ^(^)>0,

a E. D.

It should be noted that in the above results the unit sphere

centered at the origin can be replaced by an arbitrary sphere in Rd.

From the corollary and the remark above, we have the following

Lemma 1.1. (Xt9 Px) is recurrent if and only if (p*, = l on Rd.

Proof. It suffices to show that if ^00 = !, then

(1. 13) Px{_xt^U for some *>0]=1

for any ball U in Rd such that

Let &t be the the ff-field generated by X,, s^t. Define

otherwise,

where T0 = mf{t^0: xt^U} . Then it is easy to see that

and so Yt is a martingale. From the martingale convergence theorem,

one has

(1 if
(1.14) lim Yt=

«/•+«• 10 if ra=+°° a. e.

On the other hand, from the continuity of (pv(x

lim y.^lim P,[r&<C]^ inf

since each sample path xt hits the unit sphere infinitely often with

probability 1. This implies that TC must be finite with probability 1.

a E. D.

Corollary 1. 2. // the process is transient, then (p^ cannot attain

the maximum value 1 in the exterior domain Rd — £land (1.6) holds.
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Proof. Suppose <p*> attains the value 1 at xQ^Rd — Sl. Let V be

an open bounded domain such that xQ(=V and VdRd — S1. Define

TVC as before. Then it is easy to see from the strong Markov property

that

Combining this equality with the communication property of the

process xt, t<^rvc and the continuity of (p^ we obtain

<poo(x) = l on V.

Since V is arbitrary, we have ^ = 1 on Rd — Il. However this cannot

happen by Lemma 1.1. This proves the first assertion.

To prove (1.6), we first note that there exist a point x^Rd and

a compact subset K of Rd such that

PSl[xt hits K i.o. as t/* + oo]>Q

if (1.6) is false. We can assume K—2^ without loss of generality.

Define a sequence of stopping times for a fixed

\xt\^p]

: \xt\^p} for n^2.

Note that on
p is finite with probability 1 for al n. Observe that

[xt hits K i.o. as t/ + 00} ^ {r!<C}

for every positive integer n. We want to estimate

(1. 15)

By repeated use of the strong Markov property, the right hand side

is equal to

(1. 16)

Set c— sup ^(^), then c is strictly less than 1 by the first assertion.
\x\=p

From (1.15) and (1.16), we obtain
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as

Hence PSl[xt hits K i.o.as £/*+oo]=0. Thus we have shown (1. 6).

Q.. E. D.

We now prove the following fundamental criterion for recurrence.

Theorem 1.1. (Xt} Px} is recurrent if and only if

(1.17) lim D(<pp: S,)=Q.
pS + eo

Proof, By virtue of Proposition 1. 2 and Lemma 1.1, it suffices

to show that ^ = 1 if and only if

The "only if" part is obvious. The proof of the "if" part is given as

follows. Suppose DC^ooi Rd) =0 i.e.

ij=l
<d

Then by the strict positivity of the matrix A(x), one sees that

(1.18) ^ = 0 a > e < 3 z'=1» • • • * d '

This implies that for a mollifier <pe(x} defined by

where <p^C~(Rd} is non negative, \ $(x)dx=l and such that
Rd

: \x\^l}9 one has that the convolution

<p00*(fie(x)=a constant MB

since <pS<f>.<=C-(R') and = =* ̂ § = 0, f = l , . . . , J8
f/Xj C/.2?,-

Furthermore, since ^oo is bounded and continuous,

lim
«\0

Combining all of this, it follows that £?«, must be identical with
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the constant 1. This compeltes the proof. Q,. E. D.

We shall now prove our main theorems by means of Theorem 1.1.

Proof of Theorem A. First define the following function

for l^\x\^p.

Then it is clear that < P P ( \ x \ ) — $ P ( x ) is absolutely continuous and has

bounded partial derivatives on SP — S13 since L is uniformly elliptic

on the set. Therefore the function <fip — <t>p is an element of Hl>2(2p

— Si). See Agmon [1], Theorem 3. 1. Furthermore <fip — <f>p vanishes

on the boundary d(Sp — Si). Hence we see from Theorem 11.5 of

Lions and Magenes [15] page 68 that <f>f — $f^Ho*(2p — Si).

Now applying Proposition 1. 1 (iii), one obtains

v a i

> ( Y a .-&- *&- dx= J ,.fiia" dx, dxj ax'

By a simple computation, the left hand side of the above inequality

is equal to
i c<*-i I
'- — ! - \0, as p

by the assumption. This combined with the above inequality implies

that

lim D(<pp: ^)=0
p/' + oo

which completes the proof of Theorem A by Theorem 1.1.

a E. D.

In order to prove Theorem B3 we need the following Lemma.

Lemma 1.2. For every v<=C~(Rd) such that v(x) = l if |^]^1



456 KANJI ICHIHARA

and = 0 if \x\^p, it holds that

(1. 19) D(v: Sp} ;> \ da-f^
,1-1 \ rl~dE^(

Proof. By the Schwarz inequality,

(1.20) (*, ty^(A-l(x)x, x).(A(xK, f)

for every (x,

Using the above inequality, we have

Sd-i

Applying the Schwarz inequality again, we obtain for every

(1.22)

from the assumption on v(x). Combining (1.21) and (1.22)3 we

obtain the desired inequality (1. 19). Q. E. D.

Proof of Theorem B. By virtue of Proposition 1. 1 (iii), one can

choose a sequence wn} n^l eCr(^-~^i) such that wn converges to

(pp — <j)p in HQ2(2p — l!i). Since L is uniformly elliptic on £p, the above

implies that

lim D(
n/' + oo

Applying Lemma. 1. 2 to the function wn + $p, we obtain
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Letting n

D(y>,: 2,) ^
S-dE;l(ra}dr

I^J >0
rl'dE^(ra}dr

by the assumption. Thus we have shown

lim D(p,: I1,) >0.

This together with Theorem 1. 1 completes the proof of Theorem B.
Q..E.D.

Chapter 2. Criteria for Recurrence and Transience II.
Hypoelliptic differential operator

In this chapter we shall study the recurrence and transience prob-
lems of the diffusion process associated with a degenerate elliptic

operator of self adjoint form.

We assume that the self adjoint operator L= 2J ^ i.jii

under consideration is of the form

(2.1) L = -J-
Z, i

on Rd, where

(2. 2) -1

Y= y

and gij9 /-eC°°(^)3 z = l, . . . , rf, j = l, . . . , r. Our fundamental

assumption on the operator L is

(*) rank & (X13 . . . , Xr)f = d,
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where &(Xi9..., Xr) is the minimal Lie algebra generated by Xi9

i= l , . . . , r. See Bony [3], pp. 277—279.

Remark 2. 1. A simple computation shows that Y^&(X19 . . . , Xr)

under the self adjointness of the operator. Therefore the assumption

(*) is equivalent to the weaker one

(**) rank &(X19 . . . , Xr) Y}x = d,

Remark 2.2. Hormander [9], p. 149, has shown that under the

rank condition (**), the second order differential operator (2. 1)

which is not necessarily self adjoint is hypoelliptic i. e. if / is a. e.

equal to a C°° function in an open subset D of Rd, any distribution

solution u of Lu = f in D is a. e. equal to a C°° function in D,

We now construct a minimal diffusion process in the sense of

McKean [17] which is associated with the operator L.

From our definition of L, we have

*, =
A k = i

and define

Let /S«= (/3;)1SiSr be an r-dimensional Brownian motion.

Consider the stochastic differential equation in Rd,

(2.3) Xt = X0

This has a unique continuous solution xt up to the explosion time £

Thus we have obtained the diffusion process (Xt, C, ̂ ), x^.Rd.

Let P,(X ^!y) be the transition probability of the above process

Ito's formula implies that

u(t, x,)-u(Q, x0) = ±\tXiu(s9 x.)dF. + {f(-lr + L)u(s, xs)ds, for
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and u<=C"(R+ X Rd). Since the first term of the right hand side is

a martingale with mean 0, we get

(2.4) ( Pt(x0, dy)u(t, y)-u(Q, x0)
jRd

= P,(xa, dy)-~+L]u(s, y)ds.
jQjRd \ OS /

Consequently the diffusion process constructed above is associated

with the operator L. We note that under our fundamental assump-

tion (*), the transition probability Pt(x, dy) has a smooth density

i.e. there exists a function pt(x9 y}<=C°°((Q, °o) x Rd X Rd) such that

dt
-L>t(x, y)=

(2.5)
*\

-^—L9)pt(x, jO =(

I . T i f \ J 7 f \ T T .where Lx= ̂ -(a M^) and Ly = ̂ ^(y^} In fact,

(2.5) is a special case of Theorem 3 of Ichihara and Kunita [11].

Remark 2.3. Under our assumption (*), the main theorem of

Stroock and Varadhan [20] 3 combined with Proposition 2. 1 of Bony

[3], states that the topological support of Px coincides with the set

of all continuous functions taking values in Rd and initial value x,

i. e.

(2.6)

where Cx= {(pt, £2^0: p0 = x, <pt is continuous on [0, e(<p)) and where

e(<p) is the explosion time of <p] .

As a direct consequence of this fact, one has the communication

property for the process ( X t ) C5 P*). More precisely, for each

(*, ^)e(0, oo}xRd and each open subset U of Rd, Pt(x, C7)>0.

Remark 2. 4. The communication property for the process

(X^Cs-P*) implies the following fact which is important for our discussion.

Let D be an open domain with compact closure D. Define rD —

in f f^O; xt&D}. Then we have
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(2.7) supE«[ri]< + oo.
xGD

See Stroock and Varadhan [21], Remark 5. 2 for the proof.

Denote by E2(x) the minimal eigenvalue of the matrix A(x)

))iss*,.w We note that

if the matrix is not singular at x. Thus the condition in Theorem

D below is stronger than the one in Theorem B.

The folio wings are our main results in this chapter.

Theorem C8 1} the condition (*) holds and if

then the process is recurrent.

Theorem D. If the condition (*) holds and if

for some fixed constant r0^>0 on a subset of Sd~l with positive uniform

measure^ then the process is transient.

The proofs of the above theorems will follow the same lines as in

the preceding chapter, though several steps have to be redone.

We start with the Dirichlet problem. The first boundary vaule

problem for the most general elliptic differential operator has been

treated from the martingale point of view by Stroock and Varadhan

[21].
In the following we need a somewhat more precise result and we

shall derive it first. In order to do it, we introduce the "barrier"

function

and define
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-2J : lim 0,(30=0},

(2.8) rQi00=sd~1 n u r0,p.

Proposition 2.1. For eacA /oe(l, °°], (i)

(ii) ,
z/ \x\ =

tp
where <pp(y}~^gp(x') means that for /o< + 00

3 <pf(y3-*g,(x) tf %.«^i

e-21, — ̂  tends to ^er0i|B and lim ̂ p (%) = 0 arcd that for p= +^,
nS + o*

9~>(yn}->g~(x} =1 if yn,n^1^Rd — S1 tends to x^F0i00 and lim <fip(yn)=Q
n/ + oo

for every p^(l, pQ) with a positive constant p0 =

Proof. We first discuss the case l<io< + °°. Let D be a domain

of Rd. Stroock and Varadhan [21], Chapter 5 and Theorem 7. 1

have formulated the first boundary value problem

"Lu=f in D

and

u=g on 3D"

in two ways, which are called the T and r-first boundary value prob-

lem respectively, and shown that under our basic assumption (*) ,

there exists a unique solution of each problem if D is bounded and

that both the solutions are the same a. e. in D. They have further

proved that the r'-solution is a weak solution of Lu=f in D. [21]

Corollary 8. 2. Since <pp is a unique solution of the r'-first boundary

fl on \x\ = l
value problem with respect to D=£—219 /=0 and g=\ ,

10 on \x \ = p

see [21]. Theorem 5.2, this combined with the above facts implies

that <pp is also a weak solution of Lu = Q in SP—S15 i.e.

(2.9) <pp-L</>dx = Q for all <p

By virtue of the hypoellipticity of the operator L Remark 2. 2, there

exists a function <fip^C°°(£p — 1^ such that <fip is a. e. equal to </?p in



462 KANJI ICHIHARA

S.-S, and L0, = 0.

We want to show that (pp(x)=<pp(x) for all x^If — S^. In order

to do this, we note that the transition probability of the stopped

process xt, t<^rlf\ap is absolutely continuous with respect to the

Lebesgue measure dy because the transition probability Pt(x, dy}

of the process (Xt9 C3 -P*) has the smooth density pt(x9 y} with respect

to the Lebesgue measure dy and

=Pt(x, dy},

Returning to the proof of Proposition 2. 1, we first note that
xt^l/\ap} is a Px -martingale, i. e.

holds. Decompose the left hand side as

(2. 10) ^[ftC^A.,)] =£,I>,OO :

The first term equals Ex\jfip(xt') : t<^rl/\a^\ by the absolute

continuity of Pp
t(x, dy). Since ^(X) converges to <pp(x) as £\0 and

HmPx[t^T1/\0p~] = l9 one obtains that
t\0

lim £,[^(^) = t<Tl/\af~\=<]>f(x}.
t\0

The second term in the right hand side of (2. 10) satisfies

as £\0. Consequently it follows that

lim ^[^(^ArjA..)]
t\0 ^

= lim Ex\_<pp(xt) : K^

which shows that <pp is identical with <f>p in Sp — 2^. The boundary

condition (ii) has been already shown by Stroock and Varadhan

[21], Theorem 5. 2.

For p=+°°, letting p/f+°°, one sees that
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= 0 for all </>(

from (2. 9) and the fact that <pp is boundedly convergent to £>oo on

Rd. This implies that (p^ is a weak solution of Lu = 0 in Rd — Si.

In order to obtain the smoothness of (p^ we need the following

Harnack inequality, valid under the condition (*).

Harnack inequality (Bony [2]5 Theorem 7.2). If u is a positive

solution of Lu = Q in an open domain D, then for any compact subset

K of D, any point y0£zD and any multi index p = (pi,...s pd) of

derivatives, there exists a positive constant C = C(K, y0) p) independent

of u such that

(2.11) sup
*GK ftrfi.. .dxp

d*

where \p \ — 2 p{.

It is easily derived from Bony's Harnack inequality that for any

compact subset K of %PQ~ 2\ with pQ^>l, there exists a positive constant

C=C(K3 PQ) such that

for every x, x ^.K and p^^p^ +°°). Since

we obtain

(2.12) Icp^-y^x

This implies that </><*, is continuous in Rd-~Il. Again using the

hypoellipticity of L, we see that (p^ is a genuine solution of Lu = Q.

The boundary condition for tp^ follows from the fact that Wp/'y^

as pS+oo. . E. D.

Corollary 2.1. For any ball UdRd, (pu(x)=Px[xt^U for some

C°°(Rd-U\ L<pv = Q in Rd-Il and furthermore <pv is strictly

positive on Rd.



464 KANJI ICHIHARA

Proof. The assertions except for the last one follow as after

Corollary 1.1. The strict positivity of (pv follows from Remark 2. 3.

Q..E.D.

The martingale method used in Lemma 1. 1 combined with
Corollary 2. 1 yields the following

Corollary 2.2, The process ( X t , p*} is recurrent if and only if

^ = 1 on Rd,

Using a technique similar to that of Corollary 1.2, we can prove

Corollary 2. 3. // the process is transient, then (p^ cannot attain

the maximum value 1 in the exterior domain Rd — Sl and

Finally we summarize the results of [21] on the set of regular
points. Let Fp be the set of all regular points with respect to

(Xt9 C, P.) and J, — Si i.e.

where TSp_Sl = inf [f2>Q; xt^(If — Si)e}9 and let

Stroock and Varadhan [21], Remark 5.4 and Theorem 6.3 have
shown for our case that

(2. 14) rlif^rf^r0if for K><+°°-
The following lemma shows that the set F p is large enough.

Lemma 2.2. Flp is open dense in

For the proof of this lemma, we introduce the following notation.

For a given Z^^(X1} . . . , Xr) where Z= Z ^(j:)-n— , zi
i = i OXi
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we denote by Z(x) the vector (£,-(.£ ))i<^-<^-

Proof of Lemma 2.2. Suppose there exists an open subset U of

] ^ l ~ P\ where p=l or X<\ + °°) such that

2 atJ(x)xtXj = Q for all
i.j = l

Then it is easy to see that the inner product

(#, X,.(*)) = 0 on U, z=l , . . . , r.

By virtue of Theorem 2. 2 of Bony [3], one has that

(x, Z(:c))=0 on [7 for all Z^&(x»...9 xr)

which is a contradiction since the Lie algebra &(X1,..., Xr) has

the full rank "d". Therefore Fltp must be open dense in

Q, E. D.

Our next task is to extend the variational principle to the degen-
erate case. In order to do this we make use of the Hilbert space

From the definition of the (^Xr)-matrix G(x) it is clear that

A(#)= —(G • G')(#) where G* is the transpose of G. Using a stan-

dard technique in functional analysis (Yosida [22], page 58), we can
obtain the following

Lemma 2. 3. Each u^Hl'2(2p — 2l: dx) has the following properties :

(i) u and (GtI7u)i^L2(2p — J\)3 /=!,. . . , r where 7u=-\

du represents the distribution derivative.

(ii)

(2. 15)

We are now ready to state the main proposition.

Proposition 2. 2, .For eac/i /o€E( l , +00), let 0P be a C°° function
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as in Proposition 1. 1 (iii), then

(i) ^etfJ-'CF,-^: dx) + {<f>,}
and

( ii ) <pf minimizes an integral

(2. 16)

over all u^H1,'2^,-!,: dx)

Note that H1
Q'2(ZP- II : dx) + [pf] is independent of the choice of

<fip and increasing as in the remark after Proposition 1.1.

Our proof is based on a perturbation method. Let X,, s>0 be

the minimal diffusion process corresponding to Ls=L + sdd where 4* —
d £2

2 -7+-J- and TI, a' and <p* be defined as before. Under our basic
»=i ra j -
assumption on the operator L3 we have the following lemma which

plays an essential role in the proof of Proposition 2. 2.

Lemma 2. 4 (Stroock and Varadhan [21], Theorems 1. 1, 9. 2, and

Remark 9.2). For

(2. 17) lim #(*) = ?,(*) a.^. m ^-^
• \0

Proof of Proposition 2. 2. By virtue of the variational principle

for the nondegenerate case, one has that

(2. 18)

is nonincreasing as s\0. Hence its limit exists. Set

ft = #-& and <pp = (pp-<}>p.

Then it follows from Proposition 1. 1 (iii) that

We have, for
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'F(tf-#'), G'F( #-#')

-

By the same reasoning as in Proposition 1. 2, this equals

' '

which tends to zero as e, e'\0.

Combining this fact with Lemma 2. 4, one obtains

(2.19) nmji^rilH:,Wl)=a

Therefore there exists a unique element <£ of H1Q2(SP—I1: dx} to

which $'p converges as £\0. On the other hand, <p\ itself converges

to <pp a. e. in S? — 2l by Lemma 2.4. This implies that (pp has to be

in Hl
0'

2(2p — Sl; dx] and that <pp
 = <f> in this space. This completes the

proof of the first assertion.

Since <pp is a weak solution of Lu = 0 in SP — £19

( (G'P?,, Gt

for every u^C™(2p — £1}. Taking the closure in the space H1
Q

>2(2P — S1 ;

)) one obtains that

(2.20) \ (G'Pip,, Gt

*A

for every u^Hl>2(Sp — I1 : dx). Coming to the proof of the minimality,
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for

Since (p — ̂ ^H^^^ — S^i dx\ the second term vanishes (See

(2.20)). Hence the following inequality holds.

(2.21)

which shows that the second assertion is valid. Q,. E. D.

Following the same argument as in the preceding chapter3 we

can obtain the same results for the degenerate case as in Chapter 1.

These are summarized in the foollwing.

Theorem 2.1. ( i )

(2.22) lim D(<pf: Sp}=D((p00: Rd)< + °o.

(ii) The process ( X t , PJ is recurrent if and only if

(2.23) lim D(<pf: -F,)=0.

Proof. For the completion of the proof, it suffices to show that

^ = 1 on R* if and only if D(</>„: Rd)=Q. The "only if" part is

obviouso Suppose D(<p00: Rd)=Q

1
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Since X^^ is continuous by Proposition 2. 1,

^)=0 in Rd-Sl9 i=l,...9 r.

This leads to

(2.24) Z^(x") = 0 in Rd-I,

for every Z^&(X19.. ., Xr). Since rank J£P(X 1 ? . . . 5 Xr)=d, one

obtains

(£^=0, constant in Rd — 2l.

Taking the boundary value into consideration (see Proposition 2. 1

(ii), (2. 14) and Lemma 2. 2), we conclude that the above constant

is equal to 1. This completes the proof. Q,, E. D.

Using Theorem 2. 15 we are now able to prove Theorems C and

D. The proof of Theorem C is carried out in exactly the same

way as in Chapter 1. Note that the space Hl'2(Sf — Sl\dx} in place

of Hl'\Sp — I^ wll be used in the proof and that Ei(r) is bounded

away from zero on bounded intervals by virtue of Lemma 2. 2.

In order to prove Theorem D, we need the following lemma

similar to Lemma 1. 2. Let Q be the subset of Sd~l mentioned in

Theorem D. Without loss of generality, we shall take r0=l.

Lemma 2, 4. Let a function v be as in Lemma 1. 23 then

(2.25) D(v: Ie)^ -rf -
\ r1-'£-1(rw)d

for each pe(l, +°°).

Proof. From the definition, we have

Using polar coordinates,

(2. 26) D(v: J,) \S<-* \da
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Applying the Schwarz inequality for each a^Q, we have

(2. 27)

(2. 25) now foUows from (2. 26) and (2. 27). Q.. E. D.

Proof of Theorem D. Since p,— ̂ (,efl'J'2(l'/> — Ji ; <ia;), see Propo-
sition 2. 2(i), there exists a sequence wa, n^l such that

-J,) and

This gives that

(2.28) lira D(
pS + oo

Applying Lemma 2.4 to wn + <j>p, we obtain

£>(«;„+ <f,f: 2f^ Tf -
\ T*-'£;* (ra) dr

As n/"+oo5 (2.28) gives

7l(ra}dr

,̂
\ rl-dE^(

from the assumption in Theorem D. Thus we have shown that

lim D(<pf: ^,)>0.
P/ + OO

This together with Theorem 2. 1 completes the proof of Theorem

D. Q. E. D.
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Chapter 3. Some Examples and Comparison with

Friedman [7] and Hasminskii [8]

We first give some examples to illustrate our main results.

Examples 1 (Recurrent case). If E^x) =o as |

then the associated diffusion is recurrent. In particular, if

(3.1) max
i,j = l,...,d \ \X\

holds, then the above condition is fulfilled.

The followings are the examples of recurrent diffusion processes

corresponding to hypoelliptic operators.

(i) (<f=2). Let a diffusion (Xt9 Px} be associated with

2

Define first order partial differential operators Xl and X2 by

Then it is easy to see that rank 3P(X19 X2}x = 2.t x^.R2. The operator

L satisfies the inequality (3. 1), so the diffusion is recurrent.

(ii) ( rf=3). Let a differential operator on ^3 be defined by

,— -1 ~n - ij~^~~i,j=i dxi \ dxs

where

_( }~

\x\ 2)

=J_ *ilog(2+
2
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Define

y = 1 / log(2+M«) . L2 - " '
and choose a first order partial differential operator Y so that

-

It is now a simple task to verify that

Note that the rank of the coefficients' matrix ( a i j ( x ) ) i i j = l i 2 > 3 is

necessarily less than 33 in particular if x1 = 0) then it is equal to 1.

It is also easy to see that the condition (3. 1) is satisfied. Thus

the associated diffusion is recurrent.

Examples 2 (Transient case). If there

exists a cone V as in Figure 1 such that

with positive constants «>1, ft and ^2,

\x\

for all x^V, \x\ >/l25 then the associated Figure 1

diffusion is transient. For the special case

that

L= £

we have that if

(3.2) min
\X\

for the above x, the diffusion process is transient.

(i) (d=Z). Let L be an elliptic operator defined by

T 92
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Then the operator L becomes a hypoelliptic one satisfying the

fundamental asssumption (*) in Chapter 2. It is also easy to verify

the assumption in Theorem D. Consequently the process associated
with the above operator L is transient.

In the next stage, we want to compare our results with those of

Friedman [7] and Hasminskii [8].

We first explain briefly their main results.

Let L be a strictly elliptic differential operator defined by

where aij^Cz(Rd), symmetric and bi^Cl(Rd}. Denote the associated

diffusion by (Xt9 Px}.

Define

STr") —0{XJ
i

l*l
\x\ / 1 fag ( x ) ~T~ Xjbj ( x

2 dij^X^XiXj

}

1

for x^Q and

5+(r)= max 5(j:), 5_(r)= min 5(x)
|*|=r U I = r

for r>0.

Constructing some semimartingales, they have shown

Theorem 3.1. If \ exp[—\ S+(u}du~\dr— +°o? ^Agw ^Ae process

is recurrent.

Theorem

is transient.

3.2. If \ exp[ —\ S_(u)du~]dr<^ + °Gy then the process

See Friedman [7], Chapter 9, for the proofs of the above results.

In order to compare their theorems with ours, we restrict our

consideration to the selfadjoint case. Therefore, from now on, it is
assumed that
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The following theorem shows that Theorem A is a generalization of
Theorem 3. 1 in the selfadjoint case.

Theorem 3.3. If \ exp[—\ S+(u)du]dr= + oo}then it also holds

that

The proof of the above theorem uses the one dimensional diffu-
sion operator defined by

Lemma 3.1. Let v(x)=u(\x\) be a smooth function in

Then

(3.4) (LrtO(r) = |

for r>l where ds(x) is the surface element of \x\=r.

Proof. By a simple compution, we obtain

Ul=r

The first term is equal to

Therefore it suffices to show thatj

V(AP\x\}ds(x)= l^-'l —
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Now consider, for r^>l

(AV x\ , n_(x}}ds(x}
J

\X\=r Ul

where n+(x) = — n_(x} = F \x |,

= \ V(AV\x\~)dx, by the divergence theorem.
KUKr

So by differentiating them with respect to r, one obtains

1^(r))= V(AV\x\}ds(x). Q..E.D.

Proof of Theorem 3. 3. First define the following functions

- --
\ ul-dE^(u}du

(" exp[-{" S+

(r) =^ _ ^f\ r J c f

for re[l, rf.

Then it is clear that

) ( r )=0 on ( I ,

(3.5)

We want to show that

(3.6) (L^)(r)^0 on (1,,).

We now compute Luf(x), where up(x) = W

since Wp(\x\} is decreasing with respect to x\ . From the
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definition of Wp, we see that

d\x\> <+ d\x\ <

Thus we have shown (Luf~)(x)^0 in l<i\x\<^p. Combining this

inequality with Lemma 3. 1, (3. 6) follows immediately. Using (3. 5),

(3. 6) and the maximum principle, we can conclude that

(3.7) f,(r)^,CO for re (!,/>).

From the assumption of Theorem 3. 33 we have

lim Wf(r) = \ for every r>l
P/*+~

and so lim ^(r) = l for r>l.
/»/•+«»

This implies that (°°rl-dEr1(r)dr= + 00. Q. E D.

Finally we shall exhibit a few examples which Friedman and

Hasminskii's criterions do not cover.

Examples, (i) (rf=2). Suppose L is given by
32 32

L=

This satisfies the inequality (3. 1). Consequently the associated process

is recurrent. Now computing S(x} for the operator, one obtains

Taking the maximum of the function S(x) on \x =r, we have a

lower bound,

5+(r)= m a x S ( x ) , r > L
ui=r r

It is now easy to see that

exp[- ^ S+(u}du]dr< + oo.

This shows that Friedman and Hasminskii's test for recurrence does

not cover the above case and that the converse of Theorem 3. 3 is

not valid,
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(ii) (d=T) Let L be defined by

where aly a2 are strictly positive and

as

with positive constants a, /3>1 and 7-, (5.
It is easy to verify that the inequality (3. 2) holds in the cone

1 3domain {x=(xl9 x2) ; -~-x1<x2<— x^} . So the associated diffusion

is transient. On the other hand, we have

If x1 = x2y then S(x)=- — :. This implies that

which shows that the integral

is divergent. Thus Theorem 3. 2 is of no help in proving transience.

Chapter 4. Rate of Escape

Let L= 2 -3—(a'-r^—) be a uniformly elliptic operator i. e. assume
i,j = l (JXi \ OXj /

that there exists a positive constant /!>! such that for all (x, f) e

(4.1) ^ I f l 2

We further assume the smoothness of the coefficients atj(
which ensures the existence of the unique fundamental solution
P*(z, 30 of d/dt-L. See McKean [17].
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Let (Xf, P,), x<=Rd be the associated diffusion in Rd. The follow-

ing theorem is an extension of the Dvoretsky-Erdos' test for the

Brownian motion in space. (See Dvoretsky-Erdos [6].)

Theorem E (d^3). // (4. 1) holds and 0<#(*)\ as t/*+<x>, then

(4.2) P,[|*,|^V*£(0, 1.0., */ + oo] = l or 0

r+~
according as \ g(t}d~2dt/t = + 00 or < + oo.

Our proof of this theorem is based on the following result which

is essentially due to Aronson [2].

Lemma 4. 1. There exist positive constants Ai9 M,-, /= 1, 2 such

that

(4. 3)

for every (t, x9 y} e (0, + oo) x JJ^X R*.

Proof. The upper bound has been given by Aronson [1], To

obtain the global lower bound, we need the following Harnack

inequality of Moser [18],

Harnack inequality: If u is a positive solution of d/dt—L, i. e.9
— L)u = 0 in (0, T) X R*9 then one has

(4 . 4 ) l o g ^ c - + log t/s+ l& t — s &

for 0<^s<^t<^T, X, y£=iRd where C is a positive constant which

depends only on d and X.

The lower bound: Step i) . There exist constants Cf-]>0, z'=l, 2

such that

P.CI^-oH^QVfl^C, for (t, x}^R+xRd.

This follows directly from the inequality,
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which comes from the upper bound.

Stepii). Set u(t9y) =pt(x9y) for a fixed x^Rd. Applying Harnack's
o

inequality for -= -- L in the domain { \y — x \2^Clt], we get

u(t/2, y)£u(t, *)-

By step i), it is possible to choose a point yQ(x)^Rd such that

and

u(t/2, y0(x)

where M depends only on C19 C2 and d. Therefore one obtains

M/td/2^u(t/2, y.(x)}^u(t9 :r)exp{2C.q+C log 2 + C}.

Thus one has

(4.5) pt(x, x) = u(t, x}^M/td'2 for (t, x ) { E ( Q , oo)XRd

with some positive consiant M independent of t9 x.

Step iii). Applying Harnack's inequality once more, we obtain

(4. 5) with t replaced by t/2 now yields,

(4.6) p.(x9 y) = u(t, 30

for every (t, x, y) e (0, oo) x RdxRd. Q. E. D.

From Lemma 4. 1, it is easy to see that the 0-order Green

function defined by

(4.7) G(x, y) = pt(x, y)dt

satisfies the inequalities,

(4'8) -
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for x, y^Rd, (<^3) and some positive constants C45 C5.

Define

for y^R*9 0<r<>< + ooe Then

is a Px-martingale for r<^\x—y\<^p. Using this, one has the follow-
ing

Lemma 4. 2. For some positive constants C6, C7,

\\x-y\J = * r = \\x-y\J

Proof. Making use of the martingale defined above and the
bounds for G(x, y)9

As t/ + °o, this tends to

If we now let /o/' + 00
3 we obtain

]. for |x-

Q / y-2
Hence Px\j

y
r^> + °°] =~7^"( ] r) • Similarly we can obtain the

upper bound. Q. E. D.

Lemma 4.3. For T^O, r^O, define Qy(r, T) by

(4.9) Qy(r, T)=Py\_\xt-y\^r, for some t^T]9

then
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where C8, C9 are positive constants.

Proof. Using the Markov property and Lemma 4. 2, we obtain

*PT(y, x}dx<^Qy(r, T)

and so

Q,(r, T)£\ QM/-4

Similarly we can obtain the lower bound,

Q,(r, D ^ C ^ e x p - . Q, E. D.

Lemma 4. 4. Let K^> I be such that

c,0 = c8 exP ( - ^) - c; >o.
\v A. /

(4. 10) P,(r, T, X) =P,{ |o;,-y | ̂ r, /or iome ^e [T, KT]} .

Then for VT^r>0

(4.11) P,(r, T, K^C10(~
2.

Proof. From the definition of P,(r, T, K) and Q,(r, T),

P,(r, T, £)^Q,(r, T)-Q,(r, XT).

Applying Lemma 4. 3, we obtain

P f ~~ T* TT~\ ~*~-> f^ I ^"
y(r, 1, A;^C8(-7==
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We are now in a position to prove our theorem.

Proof of Theorem E. We first note that it is enough to consider
the case,

as

Now define

Ek= [CD: \zt(w) \^~ig(t) for some t^\_K\ Kk+l~]}

Ek = {co: \xt(w) \ ̂ W" g(Kk) for some

for every positive integer k. Since g is decreasing, EkdEk

By Lemma 4. 3,

We now assume the convergence of the integral in our theorem.
Then

(4.12) SP0(£

and so by the Borel-Cantelli Lemma, the left hand side of (4. 2)
equals zero.

Next we consider the divergent case. Using a result of Kochen
and Stone [13], we shall first show that

under the additional assumption

(4.13) ^g(tY~2\0 as Z/H-oo.

In order to do this, we introduce the following definition

El.y={a>: xt(o))-y\^!?g(Kk+1) for some t^lKk
9 Kk+1]}

for every y^Rd, positive integer k and positive -^^L From Lemma
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4. 4, it follows that

(4. 14) PXEJ^Clo.*-'fc(li?+l)}'-8

and so

(4. 15) ZPy(EU^clly-2 (+0°g(ty-2 ^- + 00.
k=l J t

Define a stopping time by

+ oo, if no such t exists.

Using the strong Markov property, for a pair i^>j9

f

., n £U = \ P, { k, -y |
JKJ

max

/or some t^K,- Ki+1] Py « , ̂  ^+I

By Lemma 4. 3, we have that

+1) /or

_c
- \^Q , -- --.

iK'-Ki+1

On the other hand, (4. 13) implies that

and

_ -
TlK'-Ki+r= (log K'-^1)2'"-

for i^j+2, where A and A are positive constants which are

independent of i,j, ^ and g above. This combined with the inequality
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(4. 14) shows that for i^j+2

py {©., n EU ^c12py «5-,.,} -P, m.y]
with a positive constant C12 independent of A, y and g. For t=j+ 1,
it is obvious that

So from the inequality (4. 14) with k=l, we have that if

(4. 16) Py {

for z>y where C13 is a positive constant which does not depend upon
y and g.

It is now easily seen that

__ {E P, (©.,)}' i
(4. 17) lim ̂ ^ - ^

for every ^, y and ^ above. Combining this with a result of Kochen

and Stone [13], it follows that

(4.18) py{J5Tfii,}^
nS + °° At/

This implies that

(4.19) Py{\xt-y\^titg(t}, Lo.,

for every ^e-y, 1 i, y^Rd and g- satisfying (4. 13). We want to

show that

(4.20) Py{\xt\^J+^ g(t+u\ Lo., ' J = nf-r
^^13

for any fixed positive w. First note that (4. 19) gives
— i

(4.21) P,[\xt\£tit g(t), Lo., ̂  + oo}^_-

because lim -/=- \ N =0« In order to deduce (4.20), we observe

that
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and

for all sufficiently large t, where u is a fixed positive number.

Hence combining this with (4.21), we obtain the inequality (4.20).

Using (4. 20)3 we shall prove

Define

), i.o.,

where ^ = ff[xs9 s<^i}. Then Yt is an -^-martingale. Since Y, is

bounded, by the martingale convergence theorem we have

r „, N fl if l*,(a>) \^t g ( £ ) , L o., t^ + oo
hm Y,(oO =

f/+°° 10 otherwise.

On the other hand, from the definition of Yt and the inequality

(4.20),

This implies that lim Yt (co) — 1 a. e.5 i. e.5t/*+°°

Pt[\xt\^tg(t), i.o., as i/ + oo] = l, X<=R".

For a general g 'COj define

It is evident that ^(0 satisfies the condition (4. 13).

Therefore, from what we have shown above, it follows that

On the other hand, from the convergent case,

r +°° ^
because of \ —-,N-2~

<^ + 00- Hence we finally obtain that
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I. O.,

Q. E. D.
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