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MIcrolocal Properties of Local Elementary
Solutions for Cauchy Problems for a Class
of Hyperbolic Linear Differential Operators

By

Takahiro KAWAI* and Gen NAKAMURA**

The purpose of this paper is to present a way of explicit con-

struction of local elementary solutions for Cauchy problems for a class

of hyperbolic linear differential operators with multiple character-

istics. We also investigate their singularity structure microlocally.

The class we deal with in this article is a subclass dealt with by

Kashiwara-Kawai [1] and our results can be derived from the very

general and precise results given in §6 of Kashiwara-Kawai [1].

(See Miwa [1] for related topics.) However, the argument of Kashiwara
-Kawai [1] is highly transcendental in its nature, and? hence3 we

cannot expect that their results could be a guidepost for the "Struc-

ture Theorem" for general systems of micro-differential ( = pseudo-

differential) equations in the multiple characteristic case, which is orig-

inally obtained in Sato-Kawai-Kashiwara [1](*} in the simple-charac-

teristic case(**}. To the contrary, our results in this article are, though

restricted, tied up with the recent results of Nakamura [1] and

Hamada-Nakamura [1] whose arguments are constructive in the sense

that the coefficients of the expansion used there are determined

successively in an explicit manner. Thus, we hope our argument

and results in this article will serve as a starting point for the inves-

tigation of "Structure Theorem" for general systems with multiple
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characteristics, as Kawai [2] did in the simple characteristic case.

A linear differential operator P(x, Dx) =P( x1}... , xn)-^— ,.. . ,-~—
\ OX i OXn

considered in this article is always supposed to satisfy the following

conditions (1) and (2). (See Granoff-Ludwig [1] and Ivrii [1] for

related topics.)

( 1 ) P(x, Dx) is a restriction to an open set coRc:Rn of a linear

differential operator P(z, Dz} = P(zli. . . , zn) -=—,.. . , -^— } with
\ azl ozn J

holomorphic coefficients defined in a neighborhood a)I3cDR of
(*>

z = (z1}. .. 5 zn) = (0,.. . 9 0) e C*. The principal part of P(z9 A)

shall be denoted by pm(z, Q =pm(z2, . • •, zn9 Ci, - - -, O-

In the sequel, z and C stand for (z2, . . ., zn) and (C23 • • •, CO?

respectively.

(2) There exist holomorphic functions A+(z,£"), A~(z, CO and

At(z, C) (/=3, . . . , m) which are defined in a complex neigh-

borhood co of {^ = 0} X Sn~l and positively homogeneous of

degree 1 with respect to C so that they satisfy following con-

ditions (2. a) — (2. c). Here Sn~l denotes real (n— 1)-dimensional
sphere.

(2. a) pm (z, C) - (Ci - ^+ (z, C)) (Ci ~ I' (z, O) n (C, - ^ (z, CO).

(2. b) >1+(0? O (resp. J-(0, fO) and ^(0, ?)~\l=39 • - - , m)
are mutually distinct for any f'e^*"1.

(2. c) The Poisson bracket {Ci-^+(*, CO, d-^'fe CO} of

Ci —^^(2;, CO and Ci~ ^~(X CO vanishes identically.

Remark 1. Although one may localize our conditions with respect

to C' by using a neighborhood co: of {£ = 0} x/ for a compact set /of

Sn~\ We present our conditions in the form described above for

simplicity. The /-hyperbolic operators introduced in Kawai [1] can

(*) We sometimes denote by 0 the origin of C", C""1, R" or R"'1, if there is no fear of
confusion.
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be dealt with by this localized expression of the conditions. We

leave the detailed discussion to the reader.

Remark 2. Since we are concerned with the local problems in

this article, we do not refer to & explicitly in the sequel.

When P(z, Dx) satisfies conditions (1) and (2) above, we define

the notion of a bicharacteristic of P emanating from a point (V, CO

e{d = ;i+(*, C) =*"(*, C')l as follows:

Definition 1. Assume that the operator P satisfies the conditions

above. If O°, CO satisfies Q = /l+(z0, CO =^~ (*% C°')> then the bichar-
acteristic associated with P emanating from (2°, CO is by definition

the variety with dimension at most two that is obtained by the follow-

ing procedure :

First consider a bichracteristic ^+ i ( z 0 > c o ) that is associated with

Ci — %+(z, O and that emanates from (z°, C°). Secondly consider a

bicharacteristic ^_ > ( z i > c i ) that is associated with Ci~ >*+(X O and that
emanates from (z1, C1) e/_ i ( z 0 i C O ) . Then the set of all points in ^_ i ( z i > c i )

for some (V, C1) EE^.^".^) ls called a bicharacteristic of P emanating

from (z°9 C°).

In case A+ (z, C) and A~(z, C) are real for real (z, C)3 a real
bicharacteristic associated with P in the sense of Definition 1 is called

time-like if we can find (z1, C1) so that ( z 1 ( t 1 ) — z ° l ) ( z 1 ( t 2 ) — z 1
l ) ' ^ 0

holds, where t± and t2 are real paramaters which describe ^+F(z0 ,co )

and ^_ i ( 2 i> c i ) , respectively.

Remark 1. Of course, one can define the notion of bicharacteristic

associated with P by changing the role of /£+ and ^~. However,

condition (2. c) guarantees that these two procedures yield the same

result.

Remark 2. If (*', CO satisfies Q-i^z0, C0 /)=0 for some

then the definition of the bicharacteristic ( = bicharacteristic

strip) associated with Ci~ %i(z, C) emanating from (z0, C) is the same
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as usual, i. e. the integral curve of the ordinary differential equations

dzi

( 3 )

= (,•-1 „•)
ds 3t (J~ ' '"' }

with initial conditions

|*,(0)=*J ( /= ! , . . . , « )

lC,(0)=C 0=1, . . . , «)•

We may also consider bicharacteristics associated with Ci —^ + fo C')

or Ci~ A~(z, C). They are subsets of the bicharacteristics associated

with P in the sense of Definition 1 if

holds. In the sequel, we call any of them also bicharacteristics

associated with P.

An important result of Hamada-Nakamura [1] claims the follow-
ing:

Theorem 00 (Hamada-Nakamura) Consider the following Cauchy

problem ( 5 ) J ( j = 0 ) . . . , m-~ 1) :

Assume that P(z, A) satisfies conditions (1) an6? (2). TAe?z (5)y

(j=Q,. . . ,m—l, resp.) admits a unique solution Ej(z, w', C) (j= 0, . . . ,

m— 13 resp.) of the following form (6) wpon ^Ag condition that (z, te/,0

Z5 sufficiently close to (z, w', C) = (0, 0, |0/) where f0/ belongs to
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where pt(z, w'9 C')(J=3, . . . , w), <pm+i(z, w, C) = P+(*> w, O and

®(z, w', C3 "0 <2r<? the phase functions of P(z, Z)z) defined in §2 of

Hamada-Nakamura [I], (see a/so Z/ie remark below)., p, is a non-

negative integer^ Fly Gl} Fpy G and H are all holomorphic in (z, w'9 £')

and ] - > - ) - 'S holomorPhic i n ^ w '> C )5 \ z \ > \w'\>

. Furthermore, Fh Gh G and

are all homogeneous with respect to £'.

Remark. In our case phase functions <pi and 0 contain parame-

ters w and C5 and their definitions should be modified as follows:

First we define <p+ (z, w', £') by

), (7. a)

(7.b)

Making use of ^± thus defined, we choose 0(z5 co', £', r) so that it

satisfies

(-If = *'(*, gradz,0)3 (8. a)
( 8 ) j °~i

As shown in Hamada-Nakamura [1], condition (2. c) entails

1r+-|r=*+(jc' grad^0)' (9-a)£l U*

\,.,= <p-(z, w, C) (9. b)
(9 )

The modification of the definition of (p, is the same, i. e., </>, (I

= 3, . . . , m) is defined by

(10) dzl

Although Theorem 0 is seemingly a little stronger than the results

of Hamada-Nakamura [1] in that it contains parameters (re/, C'),

one can easily prove it by just the same reasoning as in Hamada-

Nakamura [1]. We can verify the homogeneity with respect to C
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~ °° Fof Fl9 Gly G and Z~^f by examining the procedure by which these
P = Q WP

functions are determined.

From now on, we shall always assume the hyperbolicity of P(x9 Ds)

with respect to the direction (1, 0, . . . , 0), that is, we shall

assume that ^(x9 <f) and h(x9 f) (/=3, . . . , m) are all real for

real (x9 ?') with f/:£0. Assuming this reality condition, we prepare

some geometric propositions, which will play an important role in the

construction and the microlocal investigation of the elementary solutions

which we shall construct. Note that phase functions 0 and <pt are

all real-valued for real (z, w9 £', r) by virtue of the reality of ^±

and 2t.

Proposition 1. For any real f'^eS"-2, we can find

<5>0 and a neighborhood w of the origin of R" X Rn
y7

l such that

£'

holds for (x, y) ^co and real £ and r with\-r

Proof. Since grade,,.,,.,,) 0(x, y', f, r) |^T.0= (f,-?', C^-/))

holds by the definition of <P, the proof is obvious.

Corollary. // $(x, y', ?', r )=0 for real (x,y'9g',T) with

— d^T9 x^dy then

Im^C*,, (^', /, f ) + V - l s £ , r)>0

holds for any £>0, ^i an^ r satisfying e^

Proof. By observing the Taylor expansion of (5 with respect to

(X, y, £') we find this corollary immediately follows from Proposition

L

Proposition 2. Let @(z, w'9 C, T) be a solution of (8). Assume

that (x°9 y°' ; w°, v0') is real and satisfies following equations (11)

(*) The vector with prime such as £"' refers to (w— l)-vector such as (£2°, ••• , C n ) -
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for some real (?"', r, a, b) with a<^r, f^^O and a^>0.

(®(x°, y', £•', r)=0, (11. a)

U = r, (ll .b)

(11) («% W') = (MW «", »") =
= a gradu.,,)<P(a:% y', f', r) ,.,. +6(1, 0, 0), (11. c)

.a gradtt,.rt<P(*% y', f, r) |,«; +6(0, -1) = (0, 0) (11. d)

Then (x°, y°' ; w°, u°') /t'es on a bicharacteristic of u1 — ̂ .+ (x)u")

emanating from (x, y ; u, v") = (x,, x , y' ; u» u, v") = (0, y°', y°' ;

r(y", f), ?', -f).

Proof. First we show that (11) entails following equations (12) :

(<p+(x°, y", f')=0, (12. a)

')=0, (12. b)
+(^, y', f')), (12. c)

(«", tO=agradu,.,,,p+(:c% y", f) (12. d)

In fact, by the definition of $, we immediately see that (11. a)

combined with ( l l .b ) implies (12- a). Furthermore (12. b) and

(12. d) are direct consequences of (11. c) and (11. d), respectively.

In order to show (12- c) we note that (11. c) and (11. d) combined

with (9) entail

(13) b = a(i+(x

Hence, combining (13) and (11. c), we find

(14)

Thus we have obtained (12. c)

Now let us consider in S*M a bicharacteristic /+ associated with

ul — ̂ (x, u') that emanates from (x,y, ?' ; «19 M', w', A') = (a:0, y', £"' ;

^+(a:% gradI,p
+(^°, y', ?"')), grad.,p+ (a:% y', f), grad,,p+ (of, y°', f),

0). Here Af denotes a neighborhood of the origin of Ra"~2, where
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(x> y'y O nins, and S*M denotes its spherical cotangent bundle.

Note that such a bicharacteristic is well-defined in view of (12. c) and

(12. d). Then, cleary, (y'9 ?', h'} is constant along it. On the other

hand, (7. a) and (12) entail that h' is equal to gradf/ <p+ (x, y'9 ?')

along ^+. Therefore

(15) grade,?>+(*, y", f ')=0

holds. In particular, at the point p* where ^ + intersects {^i^O}, we

get

(16) x'=y°',

because <p+(x, y, £')=(x' — y', £'> holds there by virtue of (7. b).

By making use of the same reasoning as above, we find that

(17) *i = *+(0, y*', fO

and

(18) *'=-£•'

hold at p*.

Since the bicharacteristic associated with u1 — A+(x, u') considered

in {(x, y \ u, ^Ol'space is nothing but the projection of /+ on this

space, this completes the proof of Proposition 2.

Proposition 3. Let @(z, w', £', r) be a solution of (8). Assume

that (x°, y°'; u°, v°') is real and satisfies following equations (19) for

some real (f0/, a) with f 0 /=£0 and a

(19) 0/, r) |r=0,

(^c°, y°'; w% t;0/) //^5 o^ a bicharacteristic oful — A~(x, u'}

emanating from (xl9 x, y ; u9 v) = (0, y', ;y0/; ̂ -(0, yX
3 ?

0/)? f0 /
5-f0 /)-

Since the proof of Proposition 3 can be given in a way analogous

to the proof of Proposition 2, we leave the details to the reader.
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Proposition 4. Let @(z, w', £', r) be a solution of (8). Assume

that (x°, y°'; u°, v°') is real and satisfies following equations (20) for

some real (c°'3 ̂ , <*) with f^^O, a^r^xj and a^

(20) (Xi ,,)#(*, /, f, r),

f, r) = (0, 0).

(j;% y' ; M°3 ^
0/) //e5 on a bicharacteristic of P (in the sense of

Definition 1) emanating from (xly x', y \ u1} u', v) = (03 y'3 ^0/ ;

Proof, As in the proof of Proposition 23 we consider in S*M a

bicharacteristic associated with u1 — A~~(x, u') emanating from (x, y, $' ;

w, z/3 A') = (^°3 y'j f °' 3 w% ^0/3 O)? tnat i8? we consider the following

ordinary differential equations :

i __,~ ?

(2D

dt

^j/-=-f~: 0 '=2, . . . ,«) ,
j

aU : (/A / • 1 \

~df = l*T 0=1, • • - , » ) ,

-^- = 0 0=2,.. . , n),

^=0 0 = 2 , . . . , »),

= 2 , . . . , »),

,,0(o:% y', f, r)),

y (0) = ~- fr, y", f, 0 0 = 2, . . . , » ) ,
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Vj (0) = -g- (*% y°', f ', r) 0'= 2, .

£/0)=« 0'=2,.
U,(0)=0 O'=2,.

Then we have

(22)

In view of (20) we now want to show that (r, .2;' (r — .rj) , 3;°' ;

ufr — xl), v^ — xl)} satisfies equations (12) and that

(23)

holds.

In order to show the first statement we first note

holds, since 0 is constant along the bicharacteristic of ul — A~ (x, u')

as a solution to the equation

(24) ]f- = r(;r' Srad"0)

Therefore, combining (24) with (8. b) we get (12. a).

We also find

(25)

), grad.,0(a:(0, y°', f, 0),

, y", f", r) 0 = 2, . . . , n).

Then, setting t — r — x°l} we get the required relations (12. b) through

(12. d).

Finally we show (23). Since -f^-(*% ^0/
3 f0/, 0=0 by the

assumption, (9. a) entails

(26) -CT, y', f, r)=r(^, grad.,0(*% y', f, r))
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= *+(*•, grad*,0(*°3 y'3 £•', r)).

On the other hand, condition (2. c) guarantees that u^ — A+ (x, u)

is constant along the integral curve of (21). Therefore we have

(27) 2+(r, x'(r-x$

Thus, noting the fact that ul — A~ (x, u) is constant along the

bicharacteristic associated with ul — A+ (x, u'), we get the required

results by repeating the proof of Proposition 2. Q. £„ D,

Proposition 5. Define C(a, y') by {(x°, y°r ; u°, z;0/)

there exists real f0/ such that ^(x0, y°'} f
0/, a)=03 (u°, v°') =

grad(Xty,}®(x,y',£°',a) \x=xoiy,=yQ,, grad^,® (x° , y°' , f, a) ! € / = € o/ = 0 and a<0^

x\hold} . Define C(y°'} by fl C(a5 3/0/). Then each point in
a<0

lies on a bicharacteristic associated with u1 — A~~(x, u) emanating

from (x19x9 /; u19 u9 v) = (0, y', y'; ^-(0, y', -f0'), -v°', ̂ °')-

Proof. As in the proof of Proposition 4, we find that each point

p* in C(a3 yx) lies on a bicharacteristic associated with wx — %~(x, u}

that emanates from (03 x', y7; w, t>0/) with

|grade/(P(0, ^ y', r, «)=0
3 ^' /y' f ^) | /= 0/

holds with real f'^Q. Since

holds, we can find a function X'(y', £', a) which is analytic in

(/j f> «) so that

v=r(y, r, <o
.y=r(y, r, o)
.grad,,<Z>(0, X'(y, f, a), y', f, a)=0

holds. Therefore ^>* lies on a bicharacteristic associated with t^ —

Z~(x9 u) emanating from (xl9 x'9 y°'; u, t;0/) = (0, X'(y°'9 f, a), y';

gradu.^(PC^y', f7, a) «1-0.«'-x'c,'.e'.a).,'=,«")- Then it clearly follows from
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the definition of 0 and the continuity of X' with respect to a that

x'=y°'

W;=J-(0, y', -tO
u°'=-v°'

holds. This completes the proof of Proposition 5.

Proposition 6. Define K(a, y') by {(x°, y'; u\ z;0') <=R*"-2;

there exist real f°' and T(a^T^xl) which satisfies (20) wzYA a=l}a

Define K(y°') by HK(a, y'). Then each point (x°, y'; M°, z>°') iw
a<0

|a|«l

K(y°') lies on a time-like bicharacteristic associated with P emanating

from (*,, *', /; uly u', i/) = (0, y', y'; J+(0, y7, -O, -*", O

with ;i+(o5 y', -0=^(0, y', -t>°').

Proof. First define ^i(y') and X~2((23 y') in the same way as
in the definition of K(a, y') by restricting r to the interval {r ; O^r^^;}

and {r; a^grfgO}, respectively. Then we immediately see that

^(y') = ̂ (y ')U( HK2(a, y'))
o<0

|a|«l

holds. In view of the way of the proof of Proposition 4 it suffices

to show that each point (x°, y'; u°, v°') in ft K2(a, y0') enjoys the
a<0
UKi

property stated in the proposition. On the other hand, we can prove

by the same reasoning as in the proof of Proposition 5 that (x°, y0';

u°s v°') lies on a bicharacteristic associated with u1 —1~ (x, u} emanating

from te, *', y'i u19 u', v) = (0, y', y0/; ^(0, y', -t;0/)5 -^0/
3 ^0/)

with ^"(03 y', -v°')=Z+(Q, y', --y0/). This completes the proof of
Proposition 6.

Now we embark on the construction of the elementary solution

for Cauchy problem for the operator P(x, Dx),

Theorem 1. Let P(x, Dx) be a linear differential operator which

satisfies conditions (1) and (2). Assume that P is hyperbolic with

respect to the direction (13 0,. . . , 0) near the origin. Then there
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exists a unique local elementary solution for Cauchy problem for the

operator in question, that is, we can find hyperfunctions Ej(x,y')(j =

= 0,... 3 m—V) in a neighborhood of (x, /) = (0, 0) so that it satisfies

the following:

P(x, Dx)Ej(x, /) = 0 O'=0, . . . , m-1),
(28)

Furthermore, if (x°, y°'; V— 1 (w% t;0')00) #0$ ^ *Ae singularity

spectrum of E}-(x, y), then v0/^=0 and (x°, y°'; w°, z;0') belongs either

to a time-like bicharacteristic associated with P (in the sense of Defini-

tion 1) which emanates from (x, y \ u, v') = (xl9 x', y \ u19 u, v') =

= (0, ?', ?'; *+(0, ?', -tO, -v0/, v°') with ^+(03 y°', -v°'} =

= X~ (Q, y°', — v°') or to a bicharacteristic associated with P which emanates

either from (x,, x, y ; u19 u, v) = (0, y°', y°'; 2+ (0, y°', -v°f), -v°', v°'}

or from (x,, x, y'; u,, u, t/) = (0, y°', y°'; ^(03;y0', -t;0/)? ~^0/
? ^0/)

or from (x,, x, y; u,, u', v) = (0, 3;°', y°';^(0, /, -^0/)? -^0/
5 ^0/)

(1=3,..., m).

Proof. First note that the hyperbolicity of P implies that ^ (x, f')

and ^ (^, f') (1= 3,. . . , m) are real valued analytic functions for

real (x, £') if ^: is sufficiently close to the origin and f/:^0. This

entails that <pi(x, y, £') (1= 3,..., m) and @(x, y', £, r) are real as

long as(.r, y, <?') and r are real as mentioned earlier. In fact, we

have only to integrate first order differential equations to obtain (pl

and 0, hence the reality of A* and ^ guarantees the reality of <pt

and (2>. Making full use of this reality of ^ and 0 we shall construct

the required elementary solutions for P (as hyperfunctions).

In the sequel, we consider the case j=m—l. Other cases can be

dealt with by just the same reasoning.

Now we choose a neighborhood ^ of the origin of Rl X Rn
y7

l,

constants a<0, 3>0 and open sets /,-, /;c5;r2= {f'e/2"-1; !f'| =1}(!H)

0"= 1, • • . , A^<oo) so that they satisfy the following :

(*) If there is no of fear confusion, we sometimes identify a subset / of S%72 with a positive cone

U c/ C^""1, without mentioning so.
c>0
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(29) I'^Ij

(30) U i;=S?r2

(31) There exists 3jS=R3(n-» such that

<grad(.,I,/.e/)(J>(^, *', y, f, r), ^
holds if — ̂ <a^r^^<^ and if (x, /) belongs to ^ and

£' belongs to Ijm

Since S"S7
2 is compact. Proposition 1 enables us to find such a

finite covering Zy of Sn
s7

2.

First define F(z, w, C', s) by

where Fp and G are those given in Theorem 0 so that

U(z, w', O = '

Ffe u;', C', s}ds+H(z, w, C)

satisfies (5)7- withj = m— 1. Clearly F(z, w', C3 ^) is univalent and

holomorphic in the domain Q= {Im @(z, w', C, -0>0). Furthermore

F can be analytically continued across dQ near (z°, w°' , £"', 5°) ^dQ

if (P(«% w0/
5 C

0/, 5°)^=0. From now on, we shall denote by F this

preferred branch of F (on -Q) for simplicity.

We shall now construct a hyperfunction e/y(a:, y, f) by making

use of U(z, w9 C) so that it is defined on w X l j for a neighborhood

w of the origin of Rn
xxRn

y7
l and that it satisfies following condition

(32) there:

y'.
(32)

dxk.
y

~
\ zjt v L) \\£ y} £ /

The reality of 0 combined with the non-vanishing of grad (SiH;/ iC/ iS)^

on {0=0} entails that F defines a hyperfunciton f(x, y', f'5 r) whose

singularity spectrum is confined to the set
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(33) {(x, y, f, r ; V=T(M, v', if, a} oo) e V=l S*^; <Z>(*, y, f, r) -

= 0 and (w, t/, if, v)=c grad(,.,/l€/,r)(P(^ y, f, r)}.

Here Mx stands for {(x, y', f, r) ; (x, y')

where a)2 is a neighborhood of the origin of B?x

Next define e0(x,y,g) by

(34) ^Y(r-a)7(^-r)/(^ y, f7, r) d

We shall now establish the fact that e0(x,y, f) is a well-defined

hyperfunction if a<^i<£ and investigate its singularity spectrum.

Here Y(r) denotes the Heaviside function.

First we note that the multiplication procedure used to define

the integrand of (34) is legitimate in view of Corollary 2.4.2 of

S-K-K [1] Chapter I § 2. 4. In fact, Condition (33) combined with

the fact grad^/.y/.f/^Oc, y', ?', r) is different from zero iir=xl or

a guarantees it. Once one establishes the fact that the integrand is

well-defined, the well-definedness of integral (34) is clear, because

the support of the integrand is confined to {agr^^J.

Secondly we determine the maximum possible set for the singularity

spectrum of e0(x, y , ?'). Here we apply Corollary 2. 4. 2 and

Theorem 2. 3. 1 of S-K-K [1] Chapter I. Condition (33) combined

with the above quoted Corollary 2. 4. 2 of S-K-K [1] implies that

the singularity spectrum of Y(T— a) Y(xl — r)/(.r, y', £ ', r) is contained

in the union of A,(l= 15 . . . , 5) defined below, if we assume x^>a.

(35) A,= {(x, /, r, r; V^T(u, v', if, ^)oo)eV^T 5*M, ;

0(x, /, f, r)=0, xl = r(^a) and (u, v', rj , a}

= (ul9 u', v', if, a)=a grad^ y/,e/ i r )(P(^ y, ?, r) +6(1, 0, 0, 0, - 1)

with a^O, b real and (a, 6)^(0, 0)}.

(36) A2= {(x, y, ^ r; V=T(«, v', if, (T)oo) eV^I 5*Mi;

0(^, y, f, r)=0, T = a(^Xl} and (M, ^, ^, a)

= a grad(,.,/ie/ir)(P(a:, y, f, r)+6(0, 0, 0, 1) with cr^O, & real

and (a, 6)^(0, 0)}.

(37) A3= {(x, y, ^ r; V=T(«, v', if, a}™)^~^\ 5*M, ;

0(^, y, <?', r )=0 and (w, v, 1} ', (?)
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= agradUl,/.l/.T)0te y', f, r) with a>0}.

(38) A4= {(*, y, f, r; V^T(«, z/, ?', <r)oo)eV^l S*MX ;
#! = *•(=£«) and (u19 u, v ', 37', < j ) = & ( l , 0, 0, 03 —1) with

real}.

(39) 45={(*, y, f, r; V=l(tt, v', 7', ^)oo) e^ 5*Afx ; r=a
(7^) and (u, vf, if, a) = 6(0, 0, 0, -1) with 6(^=0) real}.

Applying Theorem 2. 3. 1 of S-K-K [1] Chapter I § 2. 3 to the
integral (34), we conclude that the singularity spectrum of e0(x,y'9 ?')
is confined to the union of the following sets Bt (/= 1, 2, 3). There
M2 denotes a sufficiently small neighborhood of ( x 9 y 9 £') = (0, 0? f 0 / )»
Note that neither A4 nor ^45 contributes to the possible singularity

set of e0(x, y, f ')-

(40) 5,= {(^ y, £',; V^T(«, v', ̂ ^ei^T S*M2;
there exist r with a<^r^xl and real a and b (a>0)(*} such
that 0(^3 y, ?7, r)=05 ^ = r, (M, u', 37') = (w2, w', v', ^)
= agrad(,l.,/.,/.n(P(a:, y, f7, r)+6(l, 05 0, 0) and that

a-2-9(x,y'9 f, r)-6=0}.

(41) B2= {(^ y, f; V~1(M, v7, 57
/)°°)^V^ 5*M2;

there exist real a and b with a^0c**) such that 0(x,y'9 f7, a)
= 0, (M, u7, 37 /)=«grad(, iy/,e/ )(P(a:, y, f7, r) | r==a and that

(42) B,= {(x9 y, r ; V^1(M, t;7, ̂ 7)oo)eV^ 5*M2;

there exist o:>0 and r with a^r^^! such that 0(x9

= 03 (M, z;', 3/)=<* grad ( l iy/ fe/)0Cr, y, f7, r) and that

JU(*,y, r, r)=0}.

By the same reasoning as above we can conclude that

e,(x, y, f) = r(r-a)r(-r)/(*, y, f, r)^r

(*) Note that any points in AI with a = 0 (hence ^^0) do not give any contributions to
the singularity spectrum of e0 (x, y', 10-

(**) The same remark as in the footnote (*) also applies here.
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is a well-defined hyperfunction on M2=(t)3Xlj for some neighborhood

co3 of the origin of R^xR^1 and its singularity spectrum is confined

to the union of B'j(j=l, 2, 3) defined below:

(43) B( = {(x, y'9 r ; iPlfX v, j /)oo)eV=l S*M'2i

there exists #>0 such that (u, v9 rf)

= agrad(x.y,,^®(x,y')?,T) |r=0 holds with 0(x, y, f, 0)=0}.

(44) B'2 = {(x, y', r ; ^l(u, v', ?') oo) e= V=T 5*M^ ;

there exists o:^>0 such that (w, ^'5 57')
= orgrad ( X i , / i f / ) (P(^ /, f7, r) |T=- holds with 0(x9y, f ' ,a)=0}.

(45) BJ= {(*, y, r ; V^T(Ws v'9 ^)) eV^l 5*M^ ;
there exist a>0 and r with a^r^O such that @(x, y', f7, T)

= 0, (u, v, )/) =a gradUy,.5/)00r3 y, ?7, r) and that

A0(^ y'9 ̂  r)=0}.

Now define (multi-valued) analytic function JP\(s, w', C) (^=3,. . . ,
m+1) by

(46) —l-—?—/ r/N

where Fh Gt and ^/ are the holomorphic functions used in Theorem
0. Clearly Pt is univalent and holomorphic in the domain Qt =

{(z, w', C) ; Im <PI(Z, w', C)>0}. By the reality of <pt mentioned earlier,
FI(Z, tf',0 defines a hyperfunction//(j:, y\ f) as its boundary valued
attained from the domain Qt.

Now we show that

satisfies (32). In order to show this we first define a multi-valued

analytic function E(z} w', C) as follows:

(47) E(z, w, a = ^ w', C, s)ds
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One can easily verify that

F(*, "', C, s)ds

is univalent and holomorphic in a neighborhood U of

; z , w, =e;

Furthermore, by the localized version of Bochner's tube theorem

(Komatsu [1], S-K-K [1] Chapter I § 3. 1 Theorem 3. 1. 1), we may

assume that U contains a conical neighborhood of FJ9 i. e.3 U con-

tains

«, W, N'l, l lmCKl, (Re*, Re w, Re O

c, where £ is a constant
Tm (r 7P/ !"}Im (z, w, (,) _ ,Q g
\Im(z w C) I

depending only on Re z, Re w, and ReC'}.

On the other hand, the result on the singularity spectrum of

e0(x, y, ?') entails that hyperfunction e0(x, y', f) is the boundary

value of a holomorphic function f0 (z, w', C) in a conical neighborhood

U' of FJ. Of course one may assume without loss of generality that

V=U. We now want to claim that f0(z, w, C) — f,(z9
 w/> O m U.

By the definition of f0(z9 w', C),

C s)dsf*= \
Ja

holds if a;J is real and sufficiently close to zero. Here F(x°l} z', w ', C3 ̂ )

is defined and holomorphic in the domain Qx°=Qr\{z1 = xl} =

{ (z, w, ?, 5) ; Im (0 (z, w', ?, s) | BI.,O) >0} . Note that Im( Q(z, w, £, s) | .^

>0 even if s is real (a^s^xl) as long as ®(xl, Re z7, Re w ', Re C, 5) =0

and Im(z7, w/, f 0 — £^j (0<Ce<CO hold. In view of the definition of
the procedure of restriction of hype rf unctions (S-K-K [1] Chapter

I § 2. 2), the boundary value of F(x°l9 z', w', C, s) attained from the

domain Q^ coincides with/Or,;)/, ?7, r) Li=^. Note that the procedure
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of restricting /(.r, 3;', <?', r) to the hypersurface {x1 = x°1} is a legitimate

one by virtue of the previous result (33) on the singularity spectrum

of f(x, y'y f, r). Actually, (33) entails more strongly that restricting

the hype rf unction f(x, y, f, r) Y(T — a) Y(xl — r) to x1 = x°1(^a) is a

legitimate procedure and the resulting hyperfunction coincides with

(/(•£>/> ?', r) |,1=SBj)y(r-a)y(:r; — r). Therefore, the boundary

value of a holomorphic function f0 (x°l9 z, w\ C) considered in Ut*

= {z1 = x°1} n U attains

On the other hand, hyperfunction e0(x9y'9 <f7) 1^=*; is the boundary

value of /„(*, w, Ol.,-.; in view of S-K-K [1] Chapter I §2.2.

Therefore f0(z, w9 C) |,lB,,j=/0(«, w'9 O L1=^. This immediately

implies that f 0 ( z , w', £')=f0(z, w', C) holds, since x\ is an arbitrary

real number that is sufficiently close to zero.

By the same reasoning as above we find that

f°\ f(z, w, £, r)dr
Ja

defines a (univalent) holomorphic function in a conical neighborhood

of Fj and it attains

r * , y , , r r

as its boundary value. On the other hand, we have clearly

S
zi f°
f(z, w, C, r)Jr-\ f(z, w, C3 ^dr

a Ja

f*1

= \ f(z9 w', C, r)dr
Jo

in a conical neighborhood of /V Therefore, the boundary value of

E(z9 w', O = U(z9 w', C) attained from a conical neighborhood of
m + l

Fj coincides with ex (x, y, f) =e0(x, y', f) -^(^, /, f) + 2/z(o:, /, f)
1=3

+ H(x, y} f7) . Since 17 (s, w', fx) satisfies (5),- with j=m—l, we

thus find that eT.(x, y', |') satisfies (32) as its boundary value.
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Now we appeal to Holmgren's uniqueness theorem (e. g. S-K-K

[1] Chapter III § 2. 1 Proposition 2. 1. 3) and conclude that

(48) eij(x9 y, o=*//<*> y, o
holds on cox (/Jfi-^/) for a sufficiently small neighborhood CD of the

origin of ICx/^/"1, as o>x (/Jn/i/)^ 0. Therefore we can find a

hyperfunction e(>, y, O defined on coXS"^2 so that

(49) e(x9 y', f) U/.^.U, y, O

holds. Clearly e(:r, y, £') satisfies

dk

(50)

"y. O+V-10)- 0 = 0... . . m-l).

Therefore, by making use of the well-known formula (John [1],

Gel'fand-Shilov [1])

(51)

we conclude that Em-1(x) y \ a)=-\e(x9 y, £')<*>(?') satisfies (28).

In passing, if we choose a^>0 suitably, we can construct

jEjTOr, y ; a) so that it satisfies (28) by replacingy(r—a) Y(XI~T) with

Y(a— r) Y(r — xj in the argument above. Then we appeal to

Holmgren's uniqueness theorem to find Ek(x9 y} so that it satisfies

(28) and that it coincides with Ek(x} y ; a) in an open neighborhood

of {x^co; -Tj^O} and with E^~ (x, y'; a) in an open neighborhood

of {x^Wy ^^0}. We note that the domain of definition of Ek(x9y)

thus defined can be chosen so that it is independent of the choice

of a and a. This fact implies that S. S. Ek(x9 y} thus constructed

is contained in fl S. S. Ek(xJ y ;a) for ^^0 and in f| S. S. E^(x9y
f; a')

a<0 a'>Q

for ^^0. This will be used in determing the possible singularity set

for Ek(x9 y) below.

Since the uniqueness assertion in the theorem immediately follows
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from Holmgren's uniqueness theorem, what remains to be proved is the
singularity structure of Em_l(xy y) claimed in the theorem. Since
we have already determined the maximum possible singularity set for
e l f ( x , y, ?'), hence for e(x, y, ?'), we can conclude by virtue of
Theorem 2. 3. 1 of S-K-K [1] Chapter I § 2. 3 that the singularity
spectrum of Em^(x, y} is contained by the union of C,(/=0, 15 23

3, . . . , 772+1) and C\ (1=0, I, 2) defined below:

(52) C0= H {(x, y'i V=T(«, t /)oo)e^T S*o> ;
o<UKi

there exist j and r with a(r— a)<0, real a and b with a

and real f'(E7y(*) such that 0(x, y, f, r) =0, .r^r, (w,, u, v") =

= agrad(..t0 *(«, /, f, 0 L1=t + 6(l, 0, 0) and that

t)0(*5 /, f, r)+6(0, -1) = (0, 0)}.

(53) C1= 0 {(a:, /; V^!(M, w')oo)e^T ,S*a>;
0<|aKl

there exist j and real f'e/, such that 0(x, y',

y/)(P(j:, y, f, a) and

hold.}

(54) Ca= H {(a:, y; V^T(M, vO^eV^I 5*oi;
o<uici

there exist j, «>0? r with (r— a) (r — xj ^05 a(^— a)<0 and

real f'e/y such that (P(a:, y, ?', r )=0 and that

grad(f,r)0(^y, r, r)=(0, 0)}B

(55) C,= {(x, y \ i^l(u, O^eV^T 5*(y;

there exist real a and f with a>0 such that ^/(^, y, f)

= 0, (M, v /)=agradu,,/)^(j:, y, f) and that

(56) C'Q= {(x, y ; V^T(M, O^eV^T S*w;

there exist a>0 and real f7 such that 0(^3 y, f, 0)=0,
(w, v7)= a gradu., /)(P(^, y, f7, r) | r=0 and that

(57) c;=c,
(58) C;= ^n^ {(x, y; V^T(tt, tO°°)eV=l £*«;

(*) Precisely speaking, /',- has been chosen for a<0 and for 0>0 different notations would
better be used. However, a little loose notation used here and in the sequel will not
cause any confusion.
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there exist j9 a>03 f'e/J and T with a(r—a) <^0 such that

0O, /, ?', 0=0, (u, */)= « grad(,.,/)#(*, /, f, r) and that
grad«,.r)<P(*, y'9 f, r) = (0, 0)}.

Lastly we consider the geometric meaning of these set C z(/=03 . . . 3
m+l) and C,(l=09 1, 2).

We first discuss Cz. The conditions on (x9 y ; V— 1 (w, ?/)oo)

given in (52) is clearly re-written as follows:

0(x, /, £', r )=0 (59. a)

i = r (59. b)
(59)

' 3S ̂  r)+-j~0(x, y', f, r) ) (59. c)

(«', i/)=« grad(,,.,/)0(*, /, f, r) (59. d)

holds for some cr>0e

Then Proposition 2 imlpies that (x°3 yQ'; w°5 z;0/) described by C0

lies on a bicharacteristic associated with P emanating from

(xl9 x', y; uly u'9 v) = (0, y°'', y7; ^+(03 y°', -v°'}, -v°'', z;0/).

Secondly we discuss C^. Then we find by Proposition 3 that a

point (.r0, y'; ^°3 ^°') described by C lies on a bicharacteristic

associated with ul — l~(x, u'} emanating from (xl9 x\ y \ ul9 u', v)

= (0, yx, y7; ^"(0, y', -t;0'), -< O-
As for Ci and C{ ( = d), we apply Proposition 5 to conclude that

each point (x°, y0'; t^°? v°'} in Cj lies on a bicharacteristic associated

with u1 — /l~~(x, u} emanating from (xl3 ^x, y ; z^13 z/? t;') = (0, y', y';

^+(03 y', -^)? -< -^0/).

As for C2 and Ca, Proposition 6 implies that a point (x°, y°r; w°3 z;0/)

described by C2 or Ca lies on a time-like bicharacteristic associated with

P emanating from (xl9 x'9 y \ ul9 u', v) = (09 y°',y°'', ^+(0; y°'9 —v°f),

~v°\ v°'} with ^+(03 y
x, -v')=^"(0, y', -^0/).

Lastly we recall the results of Kawai [2] and find that a point

(x°y y'; w°3 f0/) described by C; ( /=3, . . . , m+!3 resp.) lies on a

bicharacteristic associated with P emanating from (xl9 x9 y'; ul9 u9 v')

= (0, y', y'; ^(0, y7, ~^0 /)3 -^ ^0/) (/=3,. . ., m+ 1, resp.)3 if we

conventionally define %m+i(x, u) by %~(x9 u'}.

Summing up the results obtained so far, we conclude that
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Em-i(x, y) is a well-defined hyperfunction on w and, if (x°9 y0/;

V — \(u°9 z;°')oo) is contained in its singualrity spectrum, then (#% y';

u°9 v°') lies in the union of bicharacteristics emanating from either

(xl9 x'9 y ; ul9 u, z/) — (0, y', y7; ^+ (0, y', —t>°'), — v°'', t>°') or (o:1? ̂ ', y ;

Ui9 u'9 v) — (0, y'5 y'; ^(0, y', — v0/), ~I;0/? ^0/) f°r some ^=3, . . . , m

and a time-like bicharacteristic emanating from (x19 x', y'; ul9 u'9 v)

= (0, y', yx; ^+(0, y7, — ̂ o/)3 — ̂ 0/
3 ^0/) with /i+(0, y7, —1;°7)

This completes the proof of Theorem 1.

Theorem 2. Let P(x9 Dx} be a linear differential operator that

satisfies the same conditions as in Theoerm 1. Then there exists an

open neighborhood O)Q of the origin of Rn
x7

l that satisfies following con-

dition :

For any m-tuple of hyperf unctions (JHO (#'),. . . , ^-lOO) defined

on w0) we can find a solution f(x) of the following Cauchy problem

(60).

L\X) UX)J\X) U,

(60)

Furthermore, the singularity spectrum of f(x) considered in a

sufficiently small neighborhood Q of the origin of Rn
x is confined to

the union of bicharacteristics associated with P emanating either from

(xl9 x9 y \ ul9 u'9 v')=(Q9 y\ y 9 ^+(05 /, f)> ^ ~O or from

(xl9 x9 /; u, u'9 v') = (Q9 /, y \ ^"(0, y 9 £')9 f7, -£7) or from

(xl9 x9 y ; ul9 u, v) = (0, y', /; ^(0, /, O, f7, ~O (/=3,. . . , w)

a?2j time-like bicharacteristic associated with P emanating from

(xl9 x'9 y ; ul9 u'9 v) = (0, y'9 y'; V (0, /, fx) , f7, - f0 w^A ̂ + (0, /, f')

— ^~(03 y, I')? where (y'9 V—1 f'oo) belongs to the singularity spectrum

°f [Ak(.x/} for some k.

Proof. First choose <w0 sufficiently small so that {x1 = 0} Xco0Xa)0

is contained in the domain of the definition of Ek(x, y') constructed

in Theorem 1. Since the sheaf & of hyperf unctions is flabby, we
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can find hyp erf unctions p.k(x} defined on Rn~l and supported by o)0

so that it coincides with /^OO on coa. Then, by making use of the
regularity property of Ek(x^ y) proved in Theorem 1 and Corollary
2. 4. 2 and Theorem 2. 3. 1 of S-K-K [1] Chapter I, we find

is a well-defined hyperfunction defined on a neighborhood of the
origin of Rn. It is obvious that f ( x ) satisfies (60) and that its sin-
gularity spectrum is confined to the union of the bicharacteristic
associated with P which emanates from (xly x ; ul9 u'} — (0, y ; A, ?')
with ^=^+(05 y, O or J-(0, /, f) or J,(0, y, f) ( /=3, . . . , m),
and a time-like bicharacteristic associated with P emanating from
(xl9 x'i ul9 w) = co, y, ^+(o5 y, n, o with ^+(o, y, o=r(o, y,
?')> where (y, V— 1 <?'°°) belongs to the singularity spectrum of pt(y")
for some k. Then, choosing Q sufficiently small, f ( x ) enjoys the
required singularity structure in Q, See Kawai [3] Remark 2 in p. 646
for more precise information on the shape of Q.

Q. E. D.
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