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Cohomologies of Lie Algebras of Vector Fields
with Coefficients in Adjoint Representations
Foliated Case

By

Yukihiro KANIE*

Introduction

Let (M, #) be a foliated manifold. We have a natural Lie algebra
L (M, #) of vector fields locally preserving the foliation &, and its
ideal I (M, &) of vector fields tangent to leaves of &#. Here we
are interested in the first cohomologies of ¥ (M, #) and I (M,
&) with coefficients in their adjoint representations. This work is
in a series of F. Takens’ work [7] and the author’s [3], [4]. In
this paper, we use the latter for the general reference.

Our main result is

Main Theorem (1) H' (¥ M, ¥); (M, #))=0.
() H( T M, F); T M, F))=Z% M, F)/T (M, F).

If M is compact, &£ (M, #) is identical with the Lie algebra of
vector fields preserving &#. There are compact foliated manifolds
(M, #) such that H(9 (M, #) ; 9 (M, %)) are of dimension r for
any r (0=r=o0).

The content of this paper is arranged as follows. In §1, we intro-
duce Lie algebras £ and J for a standard foliation on a eucildean
space, and study their structures. In §2, we investigate properties of
derivations of &% and 7, and in §3, we prove Main Theorem for &

and J (flat case). In §4, we give the proof of Main Theorem and

Communicated by N. Shimada, June 1, 1977.
* Department of Mathematics, Mie University, Kamihama-cho, Tsu 514, Japan.



488 YUKIHIRO KANIE

some examples.
All manifolds, foliations, vector fields, etc. are assumed to be of

C=-class, throughout this paper.

§1. Lie Algebras ¥ and J

1.1. Notations and Definitions. Fix a coordinate system xi,...,
Zyy V1o Y10 a (p+¢g)-dimensional euclidean space V=R!** Denote

0 . 0
. by 0,(¢(=1,...,p), and 3.

i

i j, ky...for z,,...,x,, and Greek indices a, §,... for yi,...,y,

by 0,(e=1,...,q). Use Latin indices

otherwise stated. Put
b4
T = {Z}lf, (z, ¥)0;; fi(x, y) are C*-functions of Ziy ..., Zpy Yis e v+ Vals

$I= {Zq-.: 8a (y)aa; 8a (y) are Cw'funcﬁons Of Nig ooy yq},
a=1
£ =9+ (as vector spaces).

Then they are subalgebras of the Lie algebra % of all vector fields
on V, and J is an ideal of Z.

Let &# be a standard codimension-q foliation, defined by parallel
p-planes: y,=constant,..., y,=constant, in V. Any vector field X
in J is tangent to leaves of &, and X is called leaf-tangent. Let
¢, be the one-parameter group of diffeomorphisms generated by
Ye X, then ¢, transforms every leaf to some leaf for each ¢,and Y
is called foliation preserving.

Denote by 7, or ,, the subalgebra of 4 of all vector fields in
J whose coefficient functions depend only on z,...,%, or y,...,
¥, respectively.

Here we summarize the facts which will be applied later.

Lemma 1.1. (i) Let X&¥%. If [0, X]1=0 forall i=1,...,p,
then X is independent of the variables xzy,..., z,

(it) [T., £1=0, and [T. Z]CT.

(fit) Let Xe%. If [0, X]1€¥’ for all i, then X is independent

of the variables xz,, ..., x,.
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(iv) Let XET, Then [X, [1=X, where I= 3, 2,0,€7 ..
(v) Let Xe&'. If [X, v.0,]=0 for all i and «, then X=0.

This can be proved by elementary calculations.

1.2. Vector Fields with Polynomial Coefficients. The vector
field X= i} fi(z, v)o.+ ‘qj g.(z, ¥)0, on V is said to be with polynomial
coeﬂf'lcient':,1 if all f;(x, a;)l and g.(z,y) (G=1,...,p,a=1,...,q) are
polynomials. Such vector fields form a Lie subalgebra % of %. Put
T=9n%U, =209, and Z'=2'NIA. Put

T m= {_i}f,.(x, ). €7 ; f.(x,y) are homogeneous polynomials of

d:glree n+linx,..., z, and of degree m+1iny,..., y}.

Then

Moreover, we have easily

Lemma 1.2. (¢f. [4]) Let I be defined in Lemma 1.1 (iv), then
T a={XeT,; [I, X]=nX}.

Put &, = {Zj: 2.(v)0. €% ; g.(y) are homogeneous of degree m+ 1}.
Then £'= Y ., and we have

m=—1
Lemma 1.3. Let J=3 y.0.€ %, then L= (Ye 2 ; [J, Y]=mY].

1.3. Proposition 1.4. If a vector field X€ T satisfies j7*(X) (0)
=0, then there exist a finite number of vector fields X,,..., X,, €T
such that

X=; [X, X...] and 7(X)(0)=0 (i=1,..., 27r).
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Proof. Clearly it is enough to show the assertion for the case
X=zn.... zip yit. ... yitf(z, v)0;

4 q
for 2, 4,+ 2 j.=4. Put Az, y)=zi...x}» yit. ..y
k=1 a=1

Case 1. The case where i,=2 for some k.
[£30,, ;7' X]—[x30,, x;2X]
= (6= 1-204) X— z:h(z, y) 0uf (z, ¥)) 0,
— (= 2—380,) X+ x:h (z, ¥) (0 (z, ¥))0;
= (14+3d.) X.

Here 6, is Kronecker's delta, so (14+6,,)=1>0. And j*(z;?X) (0)=0
is obvious.

In the following, we can assume that 7,=<1 for all 4.

Case 2. The case where ), i,=2. We can assume 7,=2,=1. Let
k
¢ be a coordinate transformation
i1=x1+x2, Ty =1 Xy,
z=z; (123), .=y, (all a),

then ¢(7)=9. So this case is reduced to Case 1.
In the following, we can assume that 7,=0 for all £ except at most

one k.

Case 3. The case where j,=2 for some a. We get
[y:ako: x,,oy,,'zX] - [yaxboako, vy X]=(1 +5iko) X.
Obviously ;*(Y) (0)=0 for all vector fields Y in the left hand.

Case 4. The case where j,<1 for all a. Since we have Zq: Ja

= 4—1=3, so this case is also reduced to Case 3, similarly as

Case 2. Q. E. D.

Proposition 1.5. If a wvector field Y= safisfies 7°(Y) (0)=0,
then there exist a finite number of wvector fields Y., ..., Y,,€ % such
that
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r

Y=2 1Y, Y.l and ;' (Y) (=0 (=1,..., 2r).

i=1

Proof. Similarly as in Cases 1 and 2 in the proof of the above
proposition. Q. E. D.

§ 2. Derivations of J and ¥ (I)

2.1. Let 2= Dex(J ; £) be the space of derivations of J with
values in &Z. And let 2 or 24 be the derivation algebra of &Z

or J respectively. Remember that a derivation D satisfies the prop-
erty D[X, Y]=[D(X), Y]+[X, D(Y)].

Proposition 2.1. If a derivation D in £ is zero on Z,, for

n+m=<-—1, then D is zero on 7.

Proof. Step 1. To show that D is zero on J,. We prove this
by the induction on n for the decomposition .= 22 T ..-i. When n
is non-positive, the assertion holds by the assurnptiﬂo—n.1 Assume that
D is zero on I, _,(k=<n—1). Let Z&€7,_,(n=1), and define the
vector fields X9 and Y% as D(Z)=X+Y.

Apply D to [0, Z]€T,.,,(1=i<p), then we get X&7, by
Lemma 1.1(3) and the hypothesis of the induction.

We get [, Z]=nZ, by Lemma 1.2. Apply D to the both sides
of this equality, then by Lemma 1.1 (iv), we get

— X=nX+nY,
hence X=Y=0, so D(Z)=0.
Step 2. To show that D is zero on J,, Clearly it is enough to
show the assertion for the case X=2z,y.0,€7 .. Apply D to
X=1x,9,0;=27"[y.0, x30;],

then we have D(X)=0, because y,0,€7 _,, and 2%, ..



492 YUKIHIRO KANIE

Step 3. To show that D is zero on J,. The proof is carried
out by the induction on m for the decomposition fy=m§_l.9"_1,m.
When m is non-positive, the assertion holds by the assumption. As-
sume that D is zero on J _,,(k<m—1). Clearly it is enough to show

that D(Y) =0 for the case

for 3 j,=m+1. There is an index § such that j,=1. Apply D to

Y= [y;IY’ yﬁxiai]’

then D(Y)=0, because y;'YE T _, .-, and y,2,0.E T 4.

Last Step. Decompose T as 9= (XNT..). We prove the
2=—1 m=-1

assertion of the proposition by the induction on 7n. The assertion for
n=—1 holds by Step 3. Assume that D is zero on ), J,.(n=
m=—1

n,—1). It is enough to show that D(X)=0 for the case
X=z.... xi2 f (y)0,

for 25 i;=mn,+1, and some polynomial f(y) of ,...,¥. Apply D
to the equality

X= G+ 1) [z X, z2#0,] if 4,20,
[z3) X, 2,20, ] if 4,=0, and #;,, >0 for some &,
we get D(X)=0, because z;*X, z;'XE } (X T ..), and zj™'0,,
~ n=ng—1 m=—1
T, 0 E T . ' Q. E. D.

Corollary 2.2. The derivation DE D is zero on I, under the

same assumption as Proposition 2. 1.

Proof. Tt follows from Propositions 1.3 and 1.4 in [4], and Prop-
osition 1. 4. Q. E. D.

2. 2. Proposition 2.3. If a derivation D€ Dy is zero on I, then

D is zero on Z’.
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Proof. Step 1. To show that D(3,)=0 (a=1,...,q9). Apply D
to [0;, 9.]1=[I, 0.]=0, then we get D(,)=¥’, by Lemma 1.1Q),
@Gv).

Define the functions gf(y) as D(0,) =2, gf(v)9,=&’. Apply D to
0.,0,=[0,, ¥,0;], then we get !

0= [Zﬁ: 220, 3,0:1=gL(¥)0,,

hence gi(y)=0, so D(0d,)=0.

Step 2. To show that D(J)=0, where J=i‘yﬁa. Apply D to
[0., J1=[1, J]=0, then we get D(J)=Z’, by Lemma 1.1 (i), (v).

Apply D to [J, v.0.]=y.0,€7, then we have D(J)=0, by Lemma
.1 (v).

Last Step. Since &’ is decomposed as P'= 3 L, (cf. §1.2),
m=—1
then by Lemma 1. 3, this step is carried out similarly as Step 1 in

the proof of Proposition 2. 1. Q. E. D.

Corollary 2.4. If a derivation D of & is zero on 7 ,.,. for n
+m Z—1, then D is zero on Z.

Proof. Let D be a derivation of % such that D is zero on <, .
for n+m=<=—1. Let D be the restriction of D to 4. Then by
Coroallry 2.2, D" is zero on 7, hence by Proposition 2.3, D is zero
on & The assertion follows from Propositions 1.3 and 1.4 in [4]
and Proposition 1. 5. Q. E. D.

§ 3. Derivations of  and % (II)

3. 1. Determination of 9. Let Z be a vector field on V. We
define adZ as adZ(X)=[Z, X] for X&¥U. Then we have

Lemma 3.1. The map: Z—adZ|y, or Z—adZl|y of & into

9D or Dy respectively is an into isomorphism.
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Proof. It is sufficient to show the injectivity. Let ZEZ. Assume
that adZ(J)=0. By Lemma 1.1 (i), we get the vector fields X&
7, and YEe¥ such that Z=X+Y. Then by Lemma 1.1 (i), (iv),
we have X=[Z, I]=0, whence Y=0, by Lemma 1.1 (v).

Q. E. D.

Theorem 3.2. Let D€ 9. Then there exists a unique vector
field W on V such that D=adW |, Moreover, W is in £.

The proof of this theorem will be given in §3. 3.

Corollary 3.8. Let DE D4 or Dy Then there exists a unique
vector field WEU such that D=adW |, or =adW|gy. Moreover, W is
in ZL.

Proof. Obvious for the case DE Z4. Let DE 4. The restriction
of D to J belongs to 2. Then the assertion follows from Theorem
3.2 and Corollary 2. 4. Q. E. D.

Theorem 3.4. (i) All derivations of & are inner, that is, D¢
=ad ¥ = ¥. Hence

H(¥ ; £)=0.
(ii) The derivation algebra of F is naturally isomorphic to &,
that is, Dg= {adW |, ; Wel}=%. Hence
H(T; N=%/9=%".
In particular, the space H' (T ; F) is of infinite dimension.
Proof. (ii) By Coroallry 3.3, we have 2,C {adW|,; WeL}.
The converse inclusion is obvious, because 7 is an ideal of &. For

the latter half, remember that H'(J ; )= % 4/ad J (see §1 in
[3D. Q. E. D.

3.2. To prove Theorem 3.2, we prepare the following four
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lemmata.

Lemma 3.5. Let D=9. Then there exists a vector field W,
€ J such that D@O,)=[W, 0] (mod &’) for i=1,...,p.

Proof. Define the functions f{(z, y), and the vector fields Y,
e %, as

D@)= 3 fiz »O+Y,  (ISisp).
Apply D to the both sides of [d;, 3,]=0, then we have, by Lemma
1.1 (1),
4 N . .
; 0. (fi(z, ) —0:.(fi(z, y))}9,=0  (1=i, k=p),
and so
0; (fi(z, ¥))=0.(fi(z, ¥)) (1=i, j, k=p).
Therefore, there are unique functions 2’ (x, ) (1=<j=p) such that

0; (W (z, ¥))=fi(z, ¥) (1=4, j=p),
R0, y)=0 (I=j=p).

Put W,= —2 hi(x, y)0., then we have the assertion of the lemma.
Q. E. D.

Lemma 3.6. Let DE 9. Assume that D(©,) €% (1=i<p). Then

(¢) D@)=0 (1=i=p),

(i1) there exists a vector field W,eJ such that [0, W,]=0 (1
<iZp), and D) =[W, I] (mod £Z).

Proof. Define the vector fields X4 and Ye% as DI)=X
+ Y. Apply D to [0, []=0,, then by Lemma 1. 1 (i), (iii), we have
that D(0,)=0 (1={=p), and X7, Hence, by Lemma 1. 1 (iv),

we get
[X, [1=X=D{I) (mod &’).
Therefore, we can put W,=X. Q. E. D.
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Lemma 3.7. Let De 9. Assume that D(0,))=0 (1=i<p), and
D(He¥’'. Then, D(z0,)e¥ (=i, j<p).

Proof. Define the vector fields X;,;€9 and Y,=%  as D(x9,)
=X,;+Y,(1=4, j=p).

Apply D to [d,, x.0;]1=0.0;, then by Lemma 1.1 (i), we have X,
eJ,(1=4, j=p). Apply D to [I, 2,0,]=0, then by Lemma 1.1 (ii),
@1iv), we get X,,=0(1=4, j<p). Q. E. D.

Lemma 3.8. Let De 9. Assume that D(0;)=0, and that D(I)
€X', D(z,0,) €% (1<i, j<p). Then,

(i) D=0, D(d)=0 (1<i, j<p),

(#i) there exists a unique vector field W, on V such that

(W, 0.1=[W,, I1=[W,, z.9,]1=0,
[Wa, y..a,]zD(yaa,) (lét, JéP, léaééﬁ

Moreover, W, is in Z’.

Proof. Define the vector fields X,.€7 and Y,.=% as D(y,0,)
=X.+Y,.(1=5i<p, 1Sa=q). Apply D to [0}, y.0.]1=0, then by Lemma
1. 1 (i), we have X,,€7, for all i and a. Apply D to y.0,=[y.9,
I], then by Lemma 1.1 (i), (iv), we get that D(I)=0 and Y,,=0
for all 7 and a.

Define the functions f1; (y) (1=4, j<p, 1Sa=q) as X.,= 2] fi(y)0,.
Apply D to y.0.=[y.0., x,0;], then we get J

2 fu()0;=1u()0:+ [v.0;, D(z:9.)]1,

hence D(x,0,)=0 (1=i=<p), and fi;(y)=0 for all i#j and a.
Apply D to v,0.=[v.0;, z.0,] for i#k, then we get

Fa () o=fi ()0 + [y.0:, D(x:0,)]1,

hence D(x,0,)=0 (1=, k<p), and fi,(y) =f5(y) for all i#% and a.
Denote f..(y) by f.(y) (1=a=g), then D(3.0,) =f. ()3,

Let W, be a vector field on V satisfying the equations in (ii).
Since [W,, 0,]=[W,, I]=0 (1<{<p), then we get W,E¥’, by Lemma
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1. 1(3), Gv). Write W, as W,= 3} A,(y)d,, then
[

[Ws, yaai]zku(y>ai (1§i§P> I=sa=gq).

Hence, 4.(y) must be equal to f,(y) for all a.
Q. E. D.

3.3. Proof of Theorem 3.2. Let D 2. Then, by Lemmata
3.5~3.8, we have a unique vector field W on V such that D
=adW on J,., for n+m=<—1. We can determine W as W=W,
+ W,+ W,, where W,;(i=1, 2, 3) are given in the above lemmata.
Clearly We 2.

Hence, by Corollary 2.2, we get that D=adW on 7.

Q. E. D.

3.4. Remarks. (1) Any derivation of J or & is continuous,
because it is realized as adW for some We 2.

(ii) Let V' be a subspace of V, spanned by y,...,y,. Then
Theorem 3.4 (i) can be rewritten as in the following form in terms
of C=(V’), which is suggestive for calculations of cohomologies of I

with various coeflicients.

Theorem 3.9. Let Der (C™(V')) be the derivation algebra of
the associative algebra C*(V'). Then

HNT ; T)=Den (C=(V)).

This follows immediately from the following well-known fact.

Lemma 3.10. There is an natural Lie algebra isomorphism of
L’ onto Qew(C“’(V')).

We give here its elementary proof {for completeness. Let DE Dex
(C=(V")). Define functions g.(y) (@=1,..., q) as D({.)=g.(y).
Let Y=) g.(3)0.€%’. The vector field Y operates on C*(V’) as a

first-order partial differential operator, then it defines a derivation
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Dy of C=(V’). Easily by induction, we can show that D coincides
with Dy on the polynomial algebra R[y,..., y,]. Hence we obtain
Lemma 3. 10, because when j°(g) (0)=0, g is expressed as g(y)

= Zﬂyayﬁgaﬂ(y) With gnﬁECw(V’)‘

§4. Lie Algebras (M, &), 9 (M, &%), and Their Derivations

4.1. Lie Algebras Associated with Foliations. Let M be a (p
+¢)-dimensional manifold and -# a codimension-¢ foliation on M.
Around any point of M, there is a distinguished coordinate neighbor-
hood (Uj; ..., s ¥1y ..+, ¥,), for which a plate represented as y,
=constant, ..., y,=constant in U is a connected component of
LN U for some leaf L of & (see e.g. [6] for definitions).

A vector field X on a foliated manifold (M, %) is called [leaf-
tangent, if X is tangent to the leaf L through p for any point p of
M, that is, the vector X, belongs to the tangent space T, L of L at
p. A vector field X is called to be locally foliation preserving (or .
f. p., in short), if ¢, maps every plate to some plate, where {¢,} is
a one-parameter group of local diffeomorphisms generated by X.

Locally for any distinguished coordinates (Zi,..., Ly Y .ovs Vo)

a leaf-tangent vector field is represented as ﬁf,- (z, ¥)0;, and a [ f.

? q
p. vector field is represented as }; fi(x, )0;,+ 2] g.(y)0,, where f;(x,
y) (@E=1,..., p) are C°-functions of Zy,..., Z,, Yi,.--, ¥y and g, (y)
(a=1,..., q) are C=-functions of y,..., v, Here we use the

. . 0 .
notations 0, or 0, instead of —— or respectively, and the con-

9
o, ay,
vention on indices (see §1.1).

All L f. p. vector fields on (M, #) form a Lie algebra & (M, #),
and all leaf-tangent vector fields form its ideal (M, ).

If a L f. p. vector field X is complete, then X is foliation pre-
serving, that is, the diffeomorphism ¢, maps every leaf of & to some
leaf for each t. Simliarly, if a leaf-tangent vector field X is complete,
¢, leaves every leaf of & stable. Thus, when M is compact, L. f. p.

vector fields are foliation preserving.
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4.2. Derivations. Let Q9 (M, F)=Dex (T (M, F) ; L (M, F))
be the space of derivations of Z (M, &) with values in & (M, &).
And let 24(M, F) or 24-(M, &) be the derivation algebra of
L (M, F) or 7 (M, F) respectively. Sometimes we omit # in the
notations J (M, &#), 2 (M, &%), etc.

Lemma 4.1. Let U be an open subset of M, and X% (M, ¥).
Assume that [X, Y]=0o0on U for any YEI (M, &) with support
contained in U. Then, X=0 on U.

Proof. Let peU. Take a sufficiently small neighborhbood U’ of
p in U, and distinguished coordinates (..., Z,, ¥1, ..., ¥,) in U’
Let a vector field Y on U’ be any one of 0,, z,d,, and .0,(1=t, j
<p, 1=a=qg). Since I (M) is C”(M)-module, there is a vector
field YeJ (M) such that Y=Y on U’ and the support of Y is
contained in U. Then we have [X, Y]=0 on U by the assumption.
By the proof of Lemma 3.8, we have that X=0 on U’, in particu-
lar, at p. Hence we get X=0 on U. Q. E. D.

From this lemma, we get the following two lemmata, similarly as
Proposition 2.4 and Corollary 2.5 in [4].

Lemma 4.2. Let De 9 (M, ) orDo(M, F). Then, D is local.

Lemma 4.3. Let D2 (M, ). Then, D is localizable (see §1.2
in [4] for definition).

4.3. Proposition 4.4. Let D 9 (M, F). Then, there exists a

vector field W on M such that D=adW|zw.#, Moreover, W is in
LM, F).

Proof. Take a distinguished coordinate neighborhood system {U,;
@y ooy xh ¥, o0ty ¥ }ies on (M, F). Since D is localizable, the
derivation Dy, €D(U,, # |y,) can be defined for all 2&4 in such a
way that D(X) |y,=Dy,(X|y,) for all X&J (M). Then by Theorem
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3.2, there exists a unique vector field W, on U, such that Dy,
=adW,|gw, for any 2&4. On the other hand, we have Dy, v.n0,
=Dy, lv,nv, s0 W,=W, on U;NU, Hence there is a vector field W
on M such that W=W, on U, for all 2&4 and that D=ad W |zu,.
Moreover, we have We¥ (M), because W,eZ (U,) for all 1€ 4.
Q. E. D.

Corollary 4.5. Let D=9 4(M, F) or Do(M, F). Then there
exists a wvector field W on M such that D=adW |gue or=
adWlgu.g respectively. Moreover, W is in & (M, F).

Proof. Obvious for the case DD 4,(M). Let D€D4(M). The
restriction of D to (M) belongs to 2 (M). Then the assertion follows
from Proposition 4. 4 and Lemma 4. 1. Q. E. D.

Then we get Main Theorem similarly as Theorem 3. 4.

Theorem 4.6. (i) All derivations of & (M, F) are inner, that
is, 99(M, F)=ad¥ (M, F)=% (M, ¥). Hence

H(&E M, 7); (M, F))=0.
(71) The derivation algebra of I (M, ) is naturally isomorphic
to g(M, gz)’ that is, gy(M, y): {adW:y(M‘g'); WEX(M, g’-)}
=% (M, F). Hence
H(T M, F); T M, F)HN=LM, )/ T (M, F).

4.4, Examples. Let H'=H' (I (M, ¥); 7 (M, F))=Z (M,
F)/ T (M, F) for a foliated manifold (M, #). In many cases, H*

are of infinite dimension.

Proposition 4.7. Assume that there is a compact leaf L of %
such that there is a saturated neighborhood U of L, which is a product
foliation DX L, where D° is a q-dimensional disk. Then, H' is of

infinite dimension.
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Proof. Every leaf in U is represented by a point of D% Let f
be a function supported in D Then f-& (M, F)CZ (M, F).
Hence the assertion follows from Theorem 3. 4. Q. E. D.

However, H' may be of finite dimension. Assume that M is
compact. J. Leslie [5] gives examples of dim H'=0, or 1: (i) an
Anosov flow with an integral invariant for dim H'=0, and (ii) irra-
tional flows on a two dimensional torus 77 for dim H'=1. We
can modify the latter to get a foliated manifold with dim H'=#7n (for
arbitrary n<{+ ), that is, irrational flows on an (n+1)-dimensional
torus T,

We have also other examples. Fukui and Ushiki [2] shows that
dim H'=2 for the Reeb foliation on a 3-shpere S°. Further, Fukui
[1] shows that the following: let (M, #) be a Reeb foliated 3-
manifold, then dim H' is finite, and equals to the number of gen-

eralized Reeb components.
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