Cohomologies of Lie Algebras of Vector Fields with Coefficients in Adjoint Representations Foliated Case

By

Yukihiro KANIE*

Introduction

Let (M, \mathscr{F}) be a foliated manifold. We have a natural Lie algebra $\mathscr{L}(M, \mathscr{F})$ of vector fields locally preserving the foliation \mathscr{F} , and its ideal $\mathscr{T}(M, \mathscr{F})$ of vector fields tangent to leaves of \mathscr{F} . Here we are interested in the first cohomologies of $\mathscr{L}(M, \mathscr{F})$ and $\mathscr{T}(M, \mathscr{F})$ with coefficients in their adjoint representations. This work is in a series of F. Takens' work [7] and the author's [3], [4]. In this paper, we use the latter for the general reference.

Our main result is

 $\begin{array}{ll} \textbf{Main Theorem} & (\ i \) & H^1(\mathscr{L}(M, \ \mathscr{F}) \ ; \ \mathscr{L}(M, \ \mathscr{F})) \!=\! 0. \\ (\ ii \) & H^1(\mathscr{T}(M, \ \mathscr{F}) \ ; \ \mathscr{T}(M, \ \mathscr{F})) \!\cong\! \mathscr{L}(M, \ \mathscr{F}) / \mathscr{T}(M, \ \mathscr{F}). \end{array}$

If M is compact, $\mathscr{L}(M, \mathscr{F})$ is identical with the Lie algebra of vector fields preserving \mathscr{F} . There are compact foliated manifolds (M, \mathscr{F}) such that $H^1(\mathscr{T}(M, \mathscr{F}); \mathscr{T}(M, \mathscr{F}))$ are of dimension r for any r $(0 \leq r \leq \infty)$.

The content of this paper is arranged as follows. In §1, we introduce Lie algebras \mathscr{L} and \mathscr{T} for a standard foliation on a eucildean space, and study their structures. In §2, we investigate properties of derivations of \mathscr{L} and \mathscr{T} , and in §3, we prove Main Theorem for \mathscr{L} and \mathscr{T} (flat case). In §4, we give the proof of Main Theorem and

Communicated by N. Shimada, June 1, 1977.

^{*} Department of Mathematics, Mie University, Kamihama-cho, Tsu 514, Japan.

some examples.

All manifolds, foliations, vector fields, etc. are assumed to be of C^{∞} -class, throughout this paper.

§1. Lie Algebras $\mathcal L$ and $\mathcal T$

1.1. Notations and Definitions. Fix a coordinate system $x_1, \ldots, x_p, y_1, \ldots, y_q$ in a (p+q)-dimensional euclidean space $V = \mathbb{R}^{p+q}$. Denote $\frac{\partial}{\partial x_i}$ by $\partial_i (i=1,\ldots,p)$, and $\frac{\partial}{\partial y_\alpha}$ by $\partial_\alpha (\alpha=1,\ldots,q)$. Use Latin indices i, j, k, \ldots for x_1, \ldots, x_p , and Greek indices α, β, \ldots for y_1, \ldots, y_q , otherwise stated. Put

$$\mathcal{T} = \{\sum_{i=1}^{p} f_i(x, y)\partial_i; f_i(x, y) \text{ are } C^{\infty} \text{-functions of } x_1, \dots, x_p, y_1, \dots, y_q\},\$$
$$\mathcal{L}' = \{\sum_{\alpha=1}^{q} g_\alpha(y)\partial_\alpha; g_\alpha(y) \text{ are } C^{\infty} \text{-functions of } y_1, \dots, y_q\},\$$
$$\mathcal{L} = \mathcal{T} + \mathcal{L}' \qquad (\text{as vector spaces}).$$

Then they are subalgebras of the Lie algebra \mathfrak{A} of all vector fields on V, and \mathcal{T} is an ideal of \mathscr{L} .

Let \mathscr{F} be a standard codimension-q foliation, defined by parallel p-planes: $y_1 = \text{constant}, \ldots, y_q = \text{constant}$, in V. Any vector field Xin \mathscr{T} is tangent to leaves of \mathscr{F} , and X is called *leaf-tangent*. Let ϕ_t be the one-parameter group of diffeomorphisms generated by $Y \in \mathscr{L}$, then ϕ_t transforms every leaf to some leaf for each t, and Yis called *foliation preserving*.

Denote by \mathcal{T}_x or \mathcal{T}_y , the subalgebra of \mathcal{T} of all vector fields in \mathcal{T} whose coefficient functions depend only on x_1, \ldots, x_p , or y_1, \ldots, y_q , respectively.

Here we summarize the facts which will be applied later.

Lemma 1.1. (*i*) Let $X \in \mathfrak{A}$. If $[\partial_i, X] = 0$ for all i = 1, ..., p, then X is independent of the variables $x_1, ..., x_p$.

(*ii*) $[\mathcal{T}_{x}, \mathcal{L}']=0$, and $[\mathcal{T}_{x}, \mathcal{L}]\subset \mathcal{T}$.

(iii) Let $X \in \mathscr{L}$. If $[\partial_i, X] \in \mathscr{L}'$ for all *i*, then X is independent of the variables x_1, \ldots, x_p .

(iv) Let
$$X \in \mathcal{T}_{y}$$
. Then $[X, I] = X$, where $I = \sum_{i=1}^{p} x_{i} \partial_{i} \in \mathcal{T}_{x}$.
(v) Let $X \in \mathcal{L}'$. If $[X, y_{a}\partial_{i}] = 0$ for all i and α , then $X = 0$.

This can be proved by elementary calculations.

1.2. Vector Fields with Polynomial Coefficients. The vector field $X = \sum_{i=1}^{p} f_i(x, y)\partial_i + \sum_{\alpha=1}^{q} g_\alpha(x, y)\partial_\alpha$ on V is said to be with polynomial coefficients, if all $f_i(x, y)$ and $g_\alpha(x, y)$ $(i=1, \ldots, p, \alpha=1, \ldots, q)$ are polynomials. Such vector fields form a Lie subalgebra $\widetilde{\mathfrak{A}}$ of \mathfrak{A} . Put $\widetilde{\mathscr{T}} = \mathscr{T} \cap \widetilde{\mathfrak{A}}, \ \widetilde{\mathscr{L}} = \mathscr{L} \cap \widetilde{\mathfrak{A}}, \ \text{and} \ \widetilde{\mathscr{L}}' = \mathscr{L}' \cap \widetilde{\mathfrak{A}}.$ Put $\mathscr{T}_{n,m} = \{\sum_{i=1}^{p} f_i(x, y)\partial_i \in \widetilde{\mathscr{T}}; f_i(x, y) \text{ are homogeneous polynomials of} \}$

degree n+1 in x_1, \ldots, x_p , and of degree m+1 in y_1, \ldots, y_q .

Then

$$\begin{split} \widetilde{\mathcal{T}} &= \sum_{n, m \geq -1} \mathcal{T}_{n, m} \, ; \\ \widetilde{\mathcal{T}} \supset \widetilde{\mathcal{T}}_{x} &= \widetilde{\mathcal{T}} \cap \mathcal{T}_{x} = \sum_{n \geq -1} \mathcal{T}_{n, -1} \, , \\ \widetilde{\mathcal{T}}_{y} &= \widetilde{\mathcal{T}} \cap \mathcal{T}_{y} = \sum_{m \geq -1} \mathcal{T}_{-1, m} \, . \end{split}$$

Moreover, we have easily

Lemma 1.2. (cf. [4]) Let I be defined in Lemma 1.1 (iv), then $\mathcal{T}_{n,-1} = \{X \in \tilde{\mathcal{T}}_x; [I, X] = nX\}.$

Put $\mathscr{L}'_m = \{\sum_{\alpha=1}^q g_\alpha(y)\partial_\alpha \in \tilde{\mathscr{L}}'; g_\alpha(y) \text{ are homogeneous of degree } m+1\}.$ Then $\tilde{\mathscr{L}}' = \sum_{m \ge -1} \mathscr{L}'_m$, and we have

Lemma 1.3. Let $J = \sum_{\alpha=1}^{q} y_{\alpha} \partial_{\alpha} \in \mathscr{L}'$, then $\mathscr{L}'_{m} = \{Y \in \tilde{\mathscr{L}} ; [J, Y] = mY\}$.

1.3. Proposition 1.4. If a vector field $X \in \mathcal{T}$ satisfies $j^3(X)(0) = 0$, then there exist a finite number of vector fields $X_1, \ldots, X_{2r} \in \mathcal{T}$ such that

$$X = \sum_{i=1}^{r} [X_i, X_{i+r}] \quad and \quad j^1(X_i)(0) = 0 \quad (i = 1, \ldots, 2r).$$

YUKIHIRO KANIE

Proof. Clearly it is enough to show the assertion for the case

$$X = x_1^{i_1} \dots x_p^{i_p} y_1^{j_1} \dots y_q^{j_q} f(x, y) \partial_i$$

for
$$\sum_{k=1}^{p} i_k + \sum_{\alpha=1}^{q} j_{\alpha} \ge 4$$
. Put $h(x, y) = x_1^{i_1} \dots x_p^{i_p} y_1^{j_1} \dots y_q^{j_q}$.

Case 1. The case where $i_k \ge 2$ for some k.

$$\begin{split} & [x_k^2 \partial_k, \ x_k^{-1} X] - [x_k^3 \partial_k, \ x_k^{-2} X] \\ &= (i_k - 1 - 2\delta_{i_k}) X - x_k h(x, \ y) \left(\partial_k f(x, \ y) \right) \partial_i \\ &- (i_k - 2 - 3\delta_{i_k}) X + x_k h(x, \ y) \left(\partial_k f(x, \ y) \right) \partial_i \\ &= (1 + \delta_{i_k}) X. \end{split}$$

Here δ_{ik} is Kronecker's delta, so $(1+\delta_{ik}) \ge 1 > 0$. And $j^1(x_k^{-2}X)(0) = 0$ is obvious.

In the following, we can assume that $i_k \leq 1$ for all k.

Case 2. The case where $\sum_{k} i_{k} \ge 2$. We can assume $i_{1}=i_{2}=1$. Let ϕ be a coordinate transformation

$$\phi: \begin{cases} \bar{x}_1 = x_1 + x_2, & \bar{x}_2 = x_1 - x_2, \\ \bar{x}_i = x_i \ (i \ge 3), & \bar{y}_a = y_a \ (\text{all } a), \end{cases}$$

then $\phi(\mathcal{T}) = \mathcal{T}$. So this case is reduced to Case 1.

In the following, we can assume that $i_k=0$ for all k except at most one k_0 .

Case 3. The case where $j_{\alpha} \ge 2$ for some α . We get

$$[y_{\alpha}^{2}\partial_{k_{0}}, x_{k_{1}}y_{\alpha}^{-2}X] - [y_{\alpha}x_{k_{0}}\partial_{k_{0}}, y_{\alpha}^{-1}X] = (1 + \delta_{ik_{0}})X.$$

Obviously $j^{i}(Y)(0) = 0$ for all vector fields Y in the left hand.

Case 4. The case where $j_{\alpha} \leq 1$ for all α . Since we have $\sum_{\alpha=1}^{*} j_{\alpha} \geq 4-1=3$, so this case is also reduced to Case 3, similarly as Case 2. Q. E. D.

Proposition 1.5. If a vector field $Y \in \mathscr{L}'$ safisfies $j^3(Y)(0) = 0$, then there exist a finite number of vector fields $Y_1, \ldots, Y_{2r} \in \mathscr{L}'$ such that

$$Y = \sum_{i=1}^{r} [Y_i, Y_{i+r}] \text{ and } j^1(Y_i)(0) = 0 \ (i = 1, \dots, 2r).$$

Proof. Similarly as in Cases 1 and 2 in the proof of the above proposition. Q. E. D.

§2. Derivations of \mathcal{T} and \mathcal{L} (I)

2.1. Let $\mathscr{D} = \mathscr{D}_{e^{\mathscr{R}}}(\mathscr{T}; \mathscr{L})$ be the space of derivations of \mathscr{T} with values in \mathscr{L} . And let $\mathscr{D}_{\mathscr{L}}$ or $\mathscr{D}_{\mathscr{T}}$ be the derivation algebra of \mathscr{L} or \mathscr{T} respectively. Remember that a derivation D satisfies the property D[X, Y] = [D(X), Y] + [X, D(Y)].

Proposition 2.1. If a derivation D in \mathscr{D} is zero on $\mathscr{T}_{n,m}$ for $n+m \leq -1$, then D is zero on $\widetilde{\mathscr{T}}$.

Proof. Step 1. To show that D is zero on $\tilde{\mathscr{T}}_x$. We prove this by the induction on n for the decomposition $\tilde{\mathscr{T}}_x = \sum_{n \ge -1} \mathscr{T}_{n,-1}$. When nis non-positive, the assertion holds by the assumption. Assume that D is zero on $\mathscr{T}_{k,-1}(k \le n-1)$. Let $Z \in \mathscr{T}_{n,-1}(n \ge 1)$, and define the vector fields $X \in \mathscr{T}$ and $Y \in \mathscr{L}'$ as D(Z) = X + Y.

Apply D to $[\partial_i, Z] \in \mathscr{T}_{n-1,-1} (1 \leq i \leq p)$, then we get $X \in \mathscr{T}_n$, by Lemma 1.1(i) and the hypothesis of the induction.

We get [I, Z] = nZ, by Lemma 1.2. Apply D to the both sides of this equality, then by Lemma 1.1 (iv), we get

$$-X=nX+nY$$
,

hence X = Y = 0, so D(Z) = 0.

Step 2. To show that D is zero on $\mathscr{T}_{0,0}$. Clearly it is enough to show the assertion for the case $X = x_i y_a \partial_j \in \mathscr{T}_{0,0}$. Apply D to

$$X = x_i y_{\alpha} \partial_j = 2^{-1} [y_{\alpha} \partial_i, x_i^2 \partial_j],$$

then we have D(X) = 0, because $y_{\alpha} \partial_i \in \mathscr{T}_{-1,0}$ and $x_i^2 \partial_j \in \widetilde{\mathscr{T}}_s$.

Step 3. To show that D is zero on $\tilde{\mathscr{T}}_{y}$. The proof is carried out by the induction on m for the decomposition $\tilde{\mathscr{T}}_{y} = \sum_{m \ge -1} \mathscr{T}_{-1,m}$. When m is non-positive, the assertion holds by the assumption. Assume that D is zero on $\mathscr{T}_{-1,k}(k \le m-1)$. Clearly it is enough to show that D(Y) = 0 for the case

$$Y = y_1^{j_1} \dots y_q^{j_q} \partial_i$$

for $\sum_{\alpha} j_{\alpha} = m + 1$. There is an index β such that $j_{\beta} \ge 1$. Apply D to

$$Y = [y_{\beta}^{-1}Y, y_{\beta}x_{i}\partial_{i}],$$

then D(Y) = 0, because $y_{\beta}^{-1}Y \in \mathscr{T}_{-1,m-1}$, and $y_{\beta}x_i\partial_i \in \mathscr{T}_{0,0}$.

Last Step. Decompose $\tilde{\mathscr{T}}$ as $\tilde{\mathscr{T}} = \sum_{n \ge -1} (\sum_{m \ge -1} \mathscr{T}_{n,m})$. We prove the assertion of the proposition by the induction on *n*. The assertion for n = -1 holds by Step 3. Assume that *D* is zero on $\sum_{m \ge -1} \mathscr{T}_{n,m} (n \le n_0 - 1)$. It is enough to show that D(X) = 0 for the case

$$X = x_1^{i_1} \dots x_p^{i_p} f(y) \partial_k$$

for $\sum_{i} i_{i} = n_{0} + 1$, and some polynomial f(y) of y_{1}, \ldots, y_{q} . Apply D to the equality

$$X = \begin{cases} (i_{k}+1)^{-1} [x_{k}^{-i_{k}}X, x_{k}^{i_{k}+1}\partial_{k}] & \text{if } i_{k} > 0, \\ [x_{k_{0}}^{-1}X, x_{k_{0}}x_{k}\partial_{k}] & \text{if } i_{k} = 0, \text{ and } i_{k_{0}} > 0 \text{ for some } k_{0} \end{cases}$$

we get D(X) = 0, because $x_k^{-i_k}X$, $x_{k_0}^{-1}X \in \sum_{\substack{n \leq n_0-1 \\ m \geq -1}} (\sum_{\substack{m \geq -1 \\ m \geq -1}} \mathscr{T}_{n,m})$, and $x_k^{i_k+1}\partial_k$, $x_{k_0}x_k\partial_k \in \widetilde{\mathscr{T}}_{a}$. Q. E. D.

Corollary 2.2. The derivation $D \in \mathcal{D}$ is zero on \mathcal{T} , under the same assumption as Proposition 2.1.

Proof. It follows from Propositions 1.3 and 1.4 in [4], and Proposition 1.4. Q. E. D.

2.2. Proposition 2.3. If a derivation $D \in \mathscr{D}_{\mathscr{L}}$ is zero on \mathscr{T} , then D is zero on $\tilde{\mathscr{L}}'$.

Proof. Step 1. To show that $D(\partial_{\alpha}) = 0$ ($\alpha = 1, ..., q$). Apply D to $[\partial_i, \partial_{\alpha}] = [I, \partial_{\alpha}] = 0$, then we get $D(\partial_{\alpha}) \in \mathscr{L}'$, by Lemma 1.1(i), (iv).

Define the functions $g^{\beta}_{\alpha}(y)$ as $D(\partial_{\alpha}) = \sum_{\beta} g^{\beta}_{\alpha}(y) \partial_{\beta} \in \mathscr{L}'$. Apply D to $\delta_{\alpha}\partial_{i} = [\partial_{\alpha}, y_{i}\partial_{i}]$, then we get

$$0 = \left[\sum_{\alpha} g^{\beta}_{\alpha}(y) \partial_{\beta}, y_{\gamma} \partial_{i}\right] = g^{\gamma}_{\alpha}(y) \partial_{i},$$

hence $g_{\alpha}^{r}(y) = 0$, so $D(\partial_{\alpha}) = 0$.

Step 2. To show that D(J) = 0, where $J = \sum_{\alpha=1}^{q} y_{\alpha} \partial_{\alpha}$. Apply D to $[\partial_i, J] = [I, J] = 0$, then we get $D(J) \in \mathscr{L}'$, by Lemma 1.1 (i), (iv).

Apply D to $[J, y_{\alpha}\partial_i] = y_{\alpha}\partial_i \in \mathscr{T}$, then we have D(J) = 0, by Lemma 1.1 (v).

Last Step. Since $\tilde{\mathscr{L}}'$ is decomposed as $\tilde{\mathscr{L}}' = \sum_{m \ge -1} \mathscr{L}'_m$ (cf. § 1. 2), then by Lemma 1. 3, this step is carried out similarly as Step 1 in the proof of Proposition 2. 1. Q. E. D.

Corollary 2.4. If a derivation D of \mathcal{L} is zero on $\mathcal{T}_{n.m}$ for $n + m \leq -1$, then D is zero on \mathcal{L} .

Proof. Let D be a derivation of \mathscr{L} such that D is zero on $\mathscr{T}_{n,m}$ for $n+m \leq -1$. Let D' be the restriction of D to \mathscr{T} . Then by Coroallry 2.2, D' is zero on \mathscr{T} , hence by Proposition 2.3, D is zero on $\mathscr{\tilde{L}}'$. The assertion follows from Propositions 1.3 and 1.4 in [4] and Proposition 1.5. Q. E. D.

§ 3. Derivations of \mathscr{T} and \mathscr{L} (II)

3. 1. Determination of \mathscr{D} . Let Z be a vector field on V. We define $\operatorname{ad} Z$ as $\operatorname{ad} Z(X) = [Z, X]$ for $X \in \mathfrak{A}$. Then we have

Lemma 3.1. The map: $Z \longrightarrow adZ|_{\mathscr{F}}$, or $Z \longrightarrow adZ|_{\mathscr{L}}$ of \mathscr{L} into \mathscr{D} or $\mathscr{D}_{\mathscr{L}}$ respectively is an into isomorphism.

Proof. It is sufficient to show the injectivity. Let $Z \in \mathscr{L}$. Assume that $\operatorname{ad} Z(\mathscr{T}) = 0$. By Lemma 1.1 (i), we get the vector fields $X \in \mathscr{T}$, and $Y \in \mathscr{L}'$ such that Z = X + Y. Then by Lemma 1.1 (ii), (iv), we have X = [Z, I] = 0, whence Y = 0, by Lemma 1.1 (v). Q. E. D.

Theorem 3.2. Let $D \in \mathcal{D}$. Then there exists a unique vector field W on V such that $D = \operatorname{ad} W|_{\mathcal{F}}$. Moreover, W is in \mathcal{L} .

The proof of this theorem will be given in § 3. 3.

Corollary 3.3. Let $D \in \mathscr{D}_{\mathscr{F}}$ or $\mathscr{D}_{\mathscr{L}}$. Then there exists a unique vector field $W \in \mathfrak{A}$ such that $D = \operatorname{ad} W|_{\mathscr{F}}$ or $= \operatorname{ad} W|_{\mathscr{L}}$. Moreover, W is in \mathscr{L} .

Proof. Obvious for the case $D \in \mathscr{D}_{\mathscr{T}}$. Let $D \in \mathscr{D}_{\mathscr{L}}$. The restriction of D to \mathscr{T} belongs to \mathscr{D} . Then the assertion follows from Theorem 3.2 and Corollary 2.4. Q. E. D.

Theorem 3.4. (*i*) All derivations of \mathscr{L} are inner, that is, $\mathscr{D}_{\mathscr{L}} = \operatorname{ad} \mathscr{L} \cong \mathscr{L}$. Hence

$$H^{1}(\mathscr{L}; \mathscr{L}) = 0.$$

(ii) The derivation algebra of \mathcal{T} is naturally isomorphic to \mathcal{L} , that is, $\mathcal{D}_{\mathcal{T}} = \{ \operatorname{ad} W |_{\mathcal{T}}; W \in \mathcal{L} \} \cong \mathcal{L}$. Hence

$$H^{1}(\mathcal{T}\,;\,\mathcal{T})\cong\mathscr{L}/\mathcal{T}\cong\mathscr{L}'.$$

In particular, the space $H^1(\mathcal{T}; \mathcal{T})$ is of infinite dimension.

Proof. (ii) By Coroallry 3.3, we have $\mathscr{D}_{\mathscr{T}} \subset \{ \operatorname{ad} W |_{\mathscr{T}}; W \in \mathscr{L} \}$. The converse inclusion is obvious, because \mathscr{T} is an ideal of \mathscr{L} . For the latter half, remember that $H^1(\mathscr{T}; \mathscr{T}) \cong \mathscr{D}_{\mathscr{T}}/\operatorname{ad} \mathscr{T}$ (see §1 in [3]). Q. E. D.

3.2. To prove Theorem 3.2, we prepare the following four

lemmata.

Lemma 3.5. Let $D \in \mathcal{D}$. Then there exists a vector field $W_1 \in \mathcal{F}$ such that $D(\partial_i) \equiv [W_1, \partial_i] \pmod{\mathcal{L}'}$ for $i = 1, \ldots, p$.

Proof. Define the functions $f_i^j(x, y)$, and the vector fields $Y_i \in \mathscr{L}'$, as

$$D(\partial_i) = \sum_{j=1}^p f_i^j(x, y)\partial_j + Y_i \qquad (1 \le i \le p).$$

Apply D to the both sides of $[\partial_i, \partial_k] = 0$, then we have, by Lemma 1.1 (ii),

$$\sum_{j=1}^{p} \left\{ \partial_i (f_k^j(x, y)) - \partial_k (f_i^j(x, y)) \right\} \partial_j = 0 \qquad (1 \le i, \ k \le p),$$

and so

$$\partial_i(f^j_k(x, y)) = \partial_k(f^j_i(x, y)) \qquad (1 \leq i, j, k \leq p).$$

Therefore, there are unique functions $h^{j}(x, y)$ $(1 \leq j \leq p)$ such that

$$\begin{cases} \partial_i (h^j(x, y)) = f_i^j(x, y) & (1 \le i, j \le p), \\ h^j(0, y) = 0 & (1 \le j \le p). \end{cases}$$

Put $W_1 = -\sum_{i=1}^{p} h^i(x, y)\partial_i$, then we have the assertion of the lemma. Q. E. D.

Lemma 3.6. Let $D \in \mathcal{D}$. Assume that $D(\partial_i) \in \mathcal{L}'(1 \leq i \leq p)$. Then $(i) \quad D(\partial_i) = 0 \quad (1 \leq i \leq p),$

(ii) there exists a vector field $W_2 \in \mathcal{F}$ such that $[\partial_i, W_2] = 0$ (1 $\leq i \leq p$), and $D(I) \equiv [W_2, I] \pmod{\mathscr{L}'}$.

Proof. Define the vector fields $X \in \mathscr{T}$ and $Y \in \mathscr{L}'$ as D(I) = X + Y. Apply D to $[\partial_i, I] = \partial_i$, then by Lemma 1. 1 (ii), (iii), we have that $D(\partial_i) = 0$ $(1 \le i \le p)$, and $X \in \mathscr{T}_{\gamma}$. Hence, by Lemma 1. 1 (iv), we get

$$[X, I] = X \equiv D(I) \pmod{\mathscr{L}'}.$$

Therefore, we can put $W_2 = X$.

Q. E. D.

Lemma 3.7. Let $D \in \mathscr{D}$. Assume that $D(\partial_i) = 0$ $(1 \leq i \leq p)$, and $D(I) \in \mathscr{L}'$. Then, $D(x_i\partial_j) \in \mathscr{L}'$ $(1 \leq i, j \leq p)$.

Proof. Define the vector fields $X_{ij} \in \mathscr{T}$ and $Y_{ij} \in \mathscr{L}'$ as $D(x_i \partial_j) = X_{ij} + Y_{ij} (1 \leq i, j \leq p)$.

Apply D to $[\partial_k, x_i \partial_j] = \delta_{ik} \partial_j$, then by Lemma 1.1 (i), we have $X_{ij} \in \mathscr{T}_y(1 \leq i, j \leq p)$. Apply D to $[I, x_i \partial_j] = 0$, then by Lemma 1.1 (ii), (iv), we get $X_{ij} = 0(1 \leq i, j \leq p)$. Q. E. D.

Lemma 3.8. Let $D \in \mathscr{D}$. Assume that $D(\partial_i) = 0$, and that $D(I) \in \mathscr{L}'$, $D(x_i\partial_j) \in \mathscr{L}'(1 \leq i, j \leq p)$. Then,

 $(i) \quad D(I) = 0, \ D(x_i\partial_j) = 0 \ (1 \le i, \ j \le p),$

(ii) there exists a unique vector field W_3 on V such that

$$\begin{bmatrix} W_3, \ \partial_i \end{bmatrix} = \begin{bmatrix} W_3, \ I \end{bmatrix} = \begin{bmatrix} W_3, \ x_i \partial_j \end{bmatrix} = 0,$$

$$\begin{bmatrix} W_3, \ y_a \partial_i \end{bmatrix} = D(y_a \partial_i) \qquad (1 \le i, \ j \le p, \ 1 \le a \le q).$$

Moreover, W_3 is in \mathcal{L}' .

Proof. Define the vector fields $X_{\alpha i} \in \mathscr{T}$ and $Y_{\alpha i} \in \mathscr{L}'$ as $D(y_{\alpha}\partial_i) = X_{\alpha i} + Y_{\alpha i} (1 \leq i \leq p, 1 \leq \alpha \leq q)$. Apply D to $[\partial_i, y_{\alpha}\partial_i] = 0$, then by Lemma 1. 1 (i), we have $X_{\alpha i} \in \mathscr{T}_y$ for all i and α . Apply D to $y_{\alpha}\partial_i = [y_{\alpha}\partial_i, I]$, then by Lemma 1.1 (ii), (iv), we get that D(I) = 0 and $Y_{\alpha i} = 0$ for all i and α .

Define the functions $f_{\alpha i}^{j}(y)$ $(1 \leq i, j \leq p, 1 \leq \alpha \leq q)$ as $X_{\alpha i} = \sum_{j} f_{\alpha i}^{j}(y) \partial_{j}$. Apply D to $y_{\alpha} \partial_{i} = [y_{\alpha} \partial_{i}, x_{i} \partial_{i}]$, then we get

$$\sum_{j} f_{\alpha i}^{j}(y) \partial_{j} = f_{\alpha i}^{i}(y) \partial_{i} + [y_{\alpha} \partial_{i}, D(x_{i} \partial_{i})],$$

hence $D(x_i\partial_i)=0$ $(1 \le i \le p)$, and $f^j_{ai}(y)=0$ for all $i \ne j$ and α .

Apply D to $y_{\alpha}\partial_k = [y_{\alpha}\partial_i, x_i\partial_k]$ for $i \neq k$, then we get

$$f_{\alpha k}^{k}(y)\partial_{k} = f_{\alpha i}^{i}(y)\partial_{k} + [y_{\alpha}\partial_{i}, D(x_{i}\partial_{k})],$$

hence $D(x_i\partial_k) = 0$ $(1 \le i, k \le p)$, and $f_{ai}^i(y) = f_{ak}^k(y)$ for all $i \ne k$ and α . Denote $f_{ai}^i(y)$ by $f_{\alpha}(y)$ $(1 \le \alpha \le q)$, then $D(y_a\partial_i) = f_{\alpha}(y)\partial_i$.

Let W_3 be a vector field on V satisfying the equations in (ii). Since $[W_3, \partial_i] = [W_3, I] = 0$ $(1 \le i \le p)$, then we get $W_3 \in \mathscr{L}'$, by Lemma

1. 1(i), (iv). Write W_3 as $W_3 = \sum_{\beta} h_{\beta}(y) \partial_{\beta}$, then

$$[W_3, y_{\alpha}\partial_i] = h_{\alpha}(y)\partial_i \qquad (1 \leq i \leq p, \ 1 \leq \alpha \leq q).$$

Hence, $h_{\alpha}(y)$ must be equal to $f_{\alpha}(y)$ for all α .

Q. E. D.

3.3. Proof of Theorem 3.2. Let $D \in \mathcal{D}$. Then, by Lemmata 3.5~3.8, we have a unique vector field W on V such that D=adW on $\mathcal{T}_{n,m}$ for $n+m \leq -1$. We can determine W as $W=W_1$ $+W_2+W_3$, where $W_i(i=1, 2, 3)$ are given in the above lemmata. Clearly $W \in \mathcal{L}$.

Hence, by Corollary 2.2, we get that $D = \operatorname{ad} W$ on \mathcal{T} .

Q. E. D.

3.4. Remarks. (i) Any derivation of \mathscr{T} or \mathscr{L} is continuous, because it is realized as adW for some $W \in \mathscr{L}$.

(ii) Let V' be a subspace of V, spanned by y_1, \ldots, y_q . Then Theorem 3.4 (i) can be rewritten as in the following form in terms of $C^{\infty}(V')$, which is suggestive for calculations of cohomologies of \mathcal{T} with various coefficients.

Theorem 3.9. Let $\mathscr{D}_{e^{\infty}}(C^{\infty}(V'))$ be the derivation algebra of the associative algebra $C^{\infty}(V')$. Then

$$H^1(\mathcal{T}; \mathcal{T}) \cong \mathscr{D}_{e^{\mathbf{k}}} (C^{\infty}(V')).$$

This follows immediately from the following well-known fact.

Lemma 3.10. There is an natural Lie algebra isomorphism of \mathscr{L}' onto $\mathscr{D}_{ex}(C^{\infty}(V'))$.

We give here its elementary proof for completeness. Let $D \in \mathscr{D}_{ex}$ $(C^{\infty}(V'))$. Define functions $g_{\alpha}(y)$ $(\alpha = 1, ..., q)$ as $D(y_{\alpha}) = g_{\alpha}(y)$. Let $Y = \sum_{\alpha} g_{\alpha}(y) \partial_{\alpha} \in \mathscr{L}'$. The vector field Y operates on $C^{\infty}(V')$ as a first-order partial differential operator, then it defines a derivation D_r of $C^{\infty}(V')$. Easily by induction, we can show that D coincides with D_r on the polynomial algebra $\mathbf{R}[y_1, \ldots, y_q]$. Hence we obtain Lemma 3. 10, because when $j^2(g)(0) = 0$, g is expressed as g(y) $= \sum_{a,b} y_a y_b g_{ab}(y)$ with $g_{ab} \in C^{\infty}(V')$.

§4. Lie Algebras $\mathscr{L}(\mathbf{M}, \mathscr{F}), \mathscr{T}(\mathbf{M}, \mathscr{F})$, and Their Derivations

4.1. Lie Algebras Associated with Foliations. Let M be a (p + q)-dimensional manifold and \mathscr{F} a codimension-q foliation on M. Around any point of M, there is a distinguished coordinate neighborhood $(U; x_1, \ldots, x_p, y_1, \ldots, y_q)$, for which a plate represented as $y_1 = \text{constant}, \ldots, y_q = \text{constant}$ in U is a connected component of $L \cap U$ for some leaf L of \mathscr{F} (see e.g. [6] for definitions).

A vector field X on a foliated manifold (M, \mathscr{F}) is called *leaf-tangent*, if X is tangent to the leaf L through p for any point p of M, that is, the vector X_p belongs to the tangent space $T_p L$ of L at p. A vector field X is called to be *locally foliation preserving* (or l. f. p., in short), if ϕ_i maps every plate to some plate, where $\{\phi_i\}$ is a one-parameter group of local diffeomorphisms generated by X.

Locally for any distinguished coordinates $(x_1, \ldots, x_p, y_1, \ldots, y_q)$, a leaf-tangent vector field is represented as $\sum_{i=1}^{p} f_i(x, y)\partial_i$, and a *l*. *f*. *p*. vector field is represented as $\sum_{i=1}^{p} f_i(x, y)\partial_i + \sum_{\alpha=1}^{q} g_\alpha(y)\partial_\alpha$, where $f_i(x, y)$ $(i=1,\ldots, p)$ are C^{∞} -functions of $x_1,\ldots, x_p, y_1,\ldots, y_q$, and $g_\alpha(y)$ $(\alpha=1,\ldots, q)$ are C^{∞} -functions of y_1,\ldots, y_q . Here we use the notations ∂_i or ∂_{α} instead of $\frac{\partial}{\partial x_i}$ or $\frac{\partial}{\partial y_{\alpha}}$ respectively, and the convention on indices (see § 1.1).

All *l. f. p.* vector fields on (M, \mathcal{F}) form a Lie algebra $\mathcal{L}(M, \mathcal{F})$, and all leaf-tangent vector fields form its ideal $\mathcal{T}(M, \mathcal{F})$.

If a l. f. p. vector field X is complete, then X is foliation preserving, that is, the diffeomorphism ϕ , maps every leaf of \mathscr{F} to some leaf for each t. Simliarly, if a leaf-tangent vector field X is complete, ϕ , leaves every leaf of \mathscr{F} stable. Thus, when M is compact, l. f. p. vector fields are foliation preserving.

4.2. Derivations. Let $\mathscr{D}(M, \mathscr{F}) = \mathscr{D}_{\mathscr{C}}(\mathscr{T}(M, \mathscr{F}); \mathscr{L}(M, \mathscr{F}))$ be the space of derivations of $\mathscr{T}(M, \mathscr{F})$ with values in $\mathscr{L}(M, \mathscr{F})$. And let $\mathscr{D}_{\mathscr{L}}(M, \mathscr{F})$ or $\mathscr{D}_{\mathscr{F}}(M, \mathscr{F})$ be the derivation algebra of $\mathscr{L}(M, \mathscr{F})$ or $\mathscr{T}(M, \mathscr{F})$ respectively. Sometimes we omit \mathscr{F} in the notations $\mathscr{T}(M, \mathscr{F}), \ \mathscr{D}(M, \mathscr{F})$, etc.

Lemma 4.1. Let U be an open subset of M, and $X \in \mathscr{L}(M, \mathscr{F})$. Assume that [X, Y] = 0 on U for any $Y \in \mathscr{T}(M, \mathscr{F})$ with support contained in U. Then, X = 0 on U.

Proof. Let $p \in U$. Take a sufficiently small neighborhood U' of p in U, and distinguished coordinates $(x_1, \ldots, x_p, y_1, \ldots, y_q)$ in U'. Let a vector field Y' on U' be any one of $\partial_i, x_j\partial_i$, and $y_a\partial_i(1 \leq i, j \leq p, 1 \leq \alpha \leq q)$. Since $\mathcal{T}(M)$ is $C^{\infty}(M)$ -module, there is a vector field $Y \in \mathcal{T}(M)$ such that Y = Y' on U' and the support of Y is contained in U. Then we have [X, Y] = 0 on U by the assumption. By the proof of Lemma 3.8, we have that X = 0 on U', in particular, at p. Hence we get X = 0 on U.

From this lemma, we get the following two lemmata, similarly as Proposition 2.4 and Corollary 2.5 in [4].

Lemma 4.2. Let $D \in \mathcal{D}(M, \mathcal{F})$ or $\mathcal{D}_{\mathcal{G}}(M, \mathcal{F})$. Then, D is local.

Lemma 4.3. Let $D \in \mathcal{D}(M, \mathcal{F})$. Then, D is localizable (see § 1.2 in [4] for definition).

4.3. Proposition 4.4. Let $D \in \mathscr{D}(M, \mathscr{F})$. Then, there exists a vector field W on M such that $D = \operatorname{ad} W|_{\mathscr{F}(M,\mathscr{F})}$. Moreover, W is in $\mathscr{L}(M, \mathscr{F})$.

Proof. Take a distinguished coordinate neighborhood system $\{U_{\lambda}; (x_{1}^{\lambda}, \ldots, x_{p}^{\lambda}, y_{1}^{\lambda}, \ldots, y_{q}^{\lambda})\}_{\lambda \in A}$ on (M, \mathcal{F}) . Since D is localizable, the derivation $D_{U_{\lambda}} \in D(U_{\lambda}, \mathcal{F}|_{U_{\lambda}})$ can be defined for all $\lambda \in A$ in such a way that $D(X)|_{U_{\lambda}} = D_{U_{\lambda}}(X|_{U_{\lambda}})$ for all $X \in \mathcal{F}(M)$. Then by Theorem

3.2, there exists a unique vector field W_{λ} on U_{λ} such that $D_{U_{\lambda}} = \operatorname{ad} W_{\lambda}|_{\mathscr{T}(U_{\lambda})}$ for any $\lambda \in \Lambda$. On the other hand, we have $D_{U_{\lambda}}|_{U_{\lambda} \cap U_{\mu}} = D_{U_{\mu}}|_{U_{\lambda} \cap U_{\mu}}$, so $W_{\lambda} = W_{\mu}$ on $U_{\lambda} \cap U_{\mu}$. Hence there is a vector field W on M such that $W = W_{\lambda}$ on U_{λ} for all $\lambda \in \Lambda$ and that $D = \operatorname{ad} W|_{\mathscr{T}(M)}$. Moreover, we have $W \in \mathscr{L}(M)$, because $W_{\lambda} \in \mathscr{L}(U_{\lambda})$ for all $\lambda \in \Lambda$. Q. E. D.

Corollary 4.5. Let $D \in \mathscr{D}_{\mathscr{F}}(M, \mathscr{F})$ or $\mathscr{D}_{\mathscr{L}}(M, \mathscr{F})$. Then there exists a vector field W on M such that $D = \operatorname{ad} W|_{\mathscr{F}(M,\mathscr{F})}$ or $= \operatorname{ad} W|_{\mathscr{L}(M,\mathscr{F})}$ respectively. Moreover, W is in $\mathscr{L}(M, \mathscr{F})$.

Proof. Obvious for the case $D \in \mathscr{D}_{\mathscr{T}}(M)$. Let $D \in \mathscr{D}_{\mathscr{L}}(M)$. The restriction of D to $\mathscr{T}(M)$ belongs to $\mathscr{D}(M)$. Then the assertion follows from Proposition 4. 4 and Lemma 4. 1. Q. E. D.

Then we get Main Theorem similarly as Theorem 3.4.

Theorem 4.6. (*i*) All derivations of $\mathscr{L}(M, \mathscr{F})$ are inner, that is, $\mathscr{D}_{\mathscr{L}}(M, \mathscr{F}) = \mathrm{ad}\mathscr{L}(M, \mathscr{F}) \cong \mathscr{L}(M, \mathscr{F})$. Hence

 $H^{1}(\mathscr{L}(M, \mathscr{F}); \mathscr{L}(M, \mathscr{F})) = 0.$

(ii) The derivation algebra of $\mathcal{F}(M, \mathcal{F})$ is naturally isomorphic to $\mathcal{L}(M, \mathcal{F})$, that is, $\mathcal{D}_{\mathcal{F}}(M, \mathcal{F}) = \{ \operatorname{ad} W |_{\mathcal{F}(M, \mathcal{F})}; W \in \mathcal{L}(M, \mathcal{F}) \}$ $\cong \mathcal{L}(M, \mathcal{F}).$ Hence

 $H^{1}(\mathcal{T}(M, \mathcal{F}); \mathcal{T}(M, \mathcal{F})) \cong \mathcal{L}(M, \mathcal{F}) / \mathcal{T}(M, \mathcal{F}).$

4.4. Examples. Let $H^1 = H^1(\mathcal{T}(M, \mathcal{F}); \mathcal{T}(M, \mathcal{F})) \cong \mathcal{L}(M, \mathcal{F})/\mathcal{T}(M, \mathcal{F})$ for a foliated manifold (M, \mathcal{F}) . In many cases, H^1 are of infinite dimension.

Proposition 4.7. Assume that there is a compact leaf L of \mathscr{F} such that there is a saturated neighborhood U of L, which is a product foliation $D^q \times L$, where D^q is a q-dimensional disk. Then, H^1 is of infinite dimension.

Proof. Every leaf in U is represented by a point of D^{q} . Let f be a function supported in D^{q} . Then $f \cdot \mathscr{L}(M, \mathscr{F}) \subset \mathscr{L}(M, \mathscr{F})$. Hence the assertion follows from Theorem 3. 4. Q. E. D.

However, H^1 may be of finite dimension. Assume that M is compact. J. Leslie [5] gives examples of dim $H^1=0$, or 1: (i) an Anosov flow with an integral invariant for dim $H^1=0$, and (ii) irrational flows on a two dimensional torus T^2 for dim $H^1=1$. We can modify the latter to get a foliated manifold with dim $H^1=n$ (for arbitrary $n < +\infty$), that is, irrational flows on an (n+1)-dimensional torus T^{n+1} .

We have also other examples. Fukui and Ushiki [2] shows that dim $H^1=2$ for the Reeb foliation on a 3-shpere S^3 . Further, Fukui [1] shows that the following: let (M, \mathcal{F}) be a Reeb foliated 3-manifold, then dim H^1 is finite, and equals to the number of generalized Reeb components.

References

- [1] Fukui, K., On the homotopy type of some subgroups of $\text{Diff}(M^3)$, Japan. J. Math., 2(1976), 249-267.
- [2] Fukui, K. and Ushiki, S., On the homotopy type of FDiff (S³, *F_R*), J. Math., Kyoto Univ., 15 (1975), 201-210.
- [3] Kanie, Y., Cohomologies of Lie algebras of vector fields with coefficients in adjoint representations; Hamiltonian Case, Publ. RIMS, Kyoto Univ., 10 (1975), 737-762.
- [4] Kanie, Y., Cohom ologies of Lie algebras of algebras of vector fields with coefficients in adjoint representations; Case of Classical Type, *Publ. RIMS*, *Kyoto Univ.*, **11** (1975), 213-245.
- Leslie, J., A remark on the group of automorphisms of a foliation having a dense leaf, J. Differential Geometry, 7 (1972), 597-601.
- [6] Reeb, G., Sur certaines propriétés topologiques des variétés feuilltées, Act. Sci. Ind., Hermann, Paris, 1183 (1952), 83-154.
- [7] Takens, F., Derivations of vector fields, Compositio Math., 26 (1973), 151-158.