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Cohomologies of Lie Algebras of Vector Fields
with Coefficients In Adjoint Representations

Foliated Case

By

Yukihiro KANIE*

Introduction

Let (M9 ^) be a foliated manifold. We have a natural Lie algebra
3? (Mt ^") of vector fields locally preserving the foliation ^% and its
ideal ^~(M, &") of vector fields tangent to leaves of 3? . Here we
are interested in the first cohomologies of J£?(M, ^) and ^~(M,
^) with coefficients in their adjoint representations. This work is
in a series of F. Takens5 work [7] and the author's [3], [4]. In
this paper, we use the latter for the general reference.

Our main result is

Main Theorem ( i ) Hl(3>(M, &} ; J2? (M,
( i i )

If M is compact, & (M, &} is identical with the Lie algebra of
vector fields preserving 3F . There are compact foliated manifolds
(M, ^} such that Hl(^(M, &) ; ^ (M, ^)) are of dimension r for
any r (O^r^oo).

The content of this paper is arranged as follows. In §1, we intro-
duce Lie algebras 3? and ^* for a standard foliation on a eucildean
space, and study their structures. In §2, we investigate properties of
derivations of 3? and ^, and in §3, we prove Main Theorem for &

and ^"(flat case). In §4, we give the proof of Main Theorem and
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some examples.

All manifolds, foliations, vector fields, etc. are assumed to be of

C°°-class, throughout this paper.

§ 1. Lie Algebras & and y

1.1. Notations and Definitions. Fix a coordinate system x15. . .,
xpy 3;u • • • 3 3^ m a (P + #)-dimensional euclidean space V=Rp+q. Denote^ *\
-=— by 3j(i = 1, .. . 3^)3 and -=— by SaC^^ 1,... 3 g). Use Latin indices
OXi t/yB

i, 7, ^ 3 . . . for ^13 ... 3 ^3 and Greek indices a, /3,. . . for yl9..., 3;,,

otherwise stated. Put

i (x> 30 3,- if* (x> y) are C°°-f unctions of xl9 . . . , xp9 yl9 . . . 3 yq}9
i = l

<&'= (Z g".Cy)3. ; 5T«Cy) are C°°-f unctions of yl9 . . . , %}3
a=l

JSf =3T+£" (as vector spaces).

Then they are subalgebras of the Lie algebra SI of all vector fields

on V, and ZT is an ideal of ££ .

Let ^ be a standard codimension-q foliation, defined by parallel

p-planes : y1= constant, . . . , yq= constant3 in V. Any vector field X

in &~ is tangent to leaves of ^% and X is called leaf-tangent. Let

<j)t be the one-parameter group of diffeomorphisms generated by

Y"ej£?, then <f>t transforms every leaf to some leaf for each t, and Y

is called foliation preserving.

Denote by ^ x or «^"y, the subalgebra of &~ of all vector fields in

3T whose coefficient functions depend only on x19 . . . , xp9 or yl9 . . . ,

%, respectively.

Here we summarize the facts which will be applied later.

Lemma 1. 1. ( i ) Le£ Ze2T. // [3,, X] = 0 /or a// i= 1, . . . , />,

2*5 independent of the variables x19 . . . , ^.

(m) L^^ XeJSP. // [3,, X]eJ2Px /or a// z, ^Agn X w independent

of the variables xly . . . , .3;̂ .
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(«0 Let XE^3ry. Then [Z5 T] = X, where /=2
1=1

(?) Let X<=£". If [X, :ya3,] = 0 /or a//

This can be proved by elementary calculations.

1. 2. Vector Fields with Polynomial Coefficients- The vector
p i

field X= 2 /•(#, 30 3,- + E gafa 30 3« on F is said to be with polynomial
»=i 0=1

coefficients, if all f{ (x, y} and ga(x, y) (i= 1, . - . , p, OL= 1, . . . , q) are

polynomials. Such vector fields form a Lie subalgebra SI of 21. Put

3 and J"=j£?'nt. Put
^; fi(x, y) are homogeneous polynomials of

degree 72+ 1 in ^cu . . . , .r^ and of degree m+ 1 in 3/1? . . . , %} .

Then

Moreover, we have easily

Lemma 1. 2. (cf. [4]) L^^ / &g defined in Lemma 1. 1 (iv), then

,; [I, X] = «X}.

Put J^l= {2 g*(y)3*^&'; £«Gy) are homogeneous of degree m+ 1}.

Then J7'^ E ^13 and we have

Lemma 1. 3. Let J= £ yB3B e JSf ', then &'m= { Fe & ; [J, Y] = m Y} .

1. 3. Proposition 1. 4. // a vector field X^^ satisfies j3(X) (0)

= 0, then there exist a finite number of vector fields X19 . . . , X2r

such that

X= ± [ X t ) Xl+r-] and / (X,.) (0) = 0 (»=! , . . . , 2r) .
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Proof. Clearly it is enough to show the assertion for the case

P 9

for £ ik+ 2/«^4. Put h(x9 y}=x(\ . . x\*
k=l a = l

Case 1. The case where ik^2 for some k.

= (ik-l-2dik)X-xkh(x, y } ( d k f ( x , 30)9,.

-(ik-2-3dik)X+xkh(x,

Here 3ik is Kronecker's delta, so (1 + 5,,)^1>0. And f ( x > 2 X ) (0) = 0

is obvious.

In the following, we can assume that z"*^l for all k.

Case 2, The case where 2 *'* = 2- We can assume i1=i2=l. LetA
be a coordinate transformation

ya
=ya (all «),

then 0(«^") = ^". So this case is reduced to Case 1.

In the following, we can assume that tk=0 for all k except at most

one k0.

Case 3. The case where ja^2 for some a. We get

Obviously /(7) (0) = 0 for all vector fields Y in the left hand.

q

Case 4. The case where ja^l for all a. Since we have £jJ\
«=i

^ 4—1 = 3, so this case is also reduced to Case 3, similarly as

Case 2. Q. E. D.

Proposition 1. 5. // a vector field Y<E:£" safisfies y3(7)(0) = 0,

then there exist a finite number of vector fields F15..., Y2r^^f such

that
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Y= E [ y,, Yl+r~] and /' ( 7;) (0) = 0 (z = 1, . . . , 2r) .
j = l

Proof. Similarly as in Cases 1 and 2 in the proof of the above

proposition. Q. E. D.

§ 2. Derivations of F and & (I)

2.1. Let ®=2e*(y\ &} be the space of derivations of & with

values in <£ . And let && or S^ be the derivation algebra of &

or y respectively. Remember that a derivation D satisfies the prop-

erty

Proposition 2. 1. If a derivation D in ^ is zero on & 'Him for

^ — ly then D is zero on ST.

Proof. Step 1. To show that D is zero on y x. We prove this

by the induction on n for the decomposition 3T x = 2 «^"»,-i- When 72
n^-l

is non-positive, the assertion holds by the assumption. Assume that

D is zero on ^kt^(k^n-l). Let Ze^^Cwj^l), and define the

vector fields XeEJT and y^jT as D(Z) = X+Y.

Apply D to [3,-, Z]^yn-lt-i(\^i^p)9 then we get Xe«^"w by

Lemma 1. 1 (i) and the hypothesis of the induction.

We get [/, Z] = nZ, by Lemma 1.2. Apply D to the both sides

of this equality, then by Lemma 1. 1 (iv), we get

-X=nX+nY,

hence X=7=0, so D(Z)=0.

2. To show that D is zero on «^"0.o- Clearly it is enough to

show the assertion for the case X=xtyadJ^^0iQ. Apply D to

then we have Z)(X) = 0, because 3>a3,-^«^~_i.0 and
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Step 3. To show that D is zero on ^y. The proof is carried

out by the induction on m for the decomposition ST y— 2 ^ -i,m-
m^-l

When m is non-positive, the assertion holds by the assumption. As-

sume that D is zero on ^-i,k(k^m— 1). Clearly it is enough to show

that D(Y)=0 for the case

for £ja=m+l. There is an index ft such that/^1. Apply D to

then D(F)=0, because yj*Y^y-lim-l9 and

Last Step. Decompose F as ̂ = S ( Z ̂  J. We prove the
nS-l «S-1

assertion of the proposition by the induction on n. The assertion for

n= — l holds by Step 3. Assume that D is zero on 2 ^n,m(n^
m^-l

HQ— 1). It is enough to show that Z)(X)=0 for the case

for S ^ = W o + l 5 and some polynomial / (3^) of yi, • • • , yq- Apply D

to the equality

+ D -1[^"l"^3 ^i'+13J if f•y

X, xk^xkdk~\ if z* = 0, and i*0>0 for some ^03

we get D(X) = Q, because xk
ikX, xkQ

lX£= £j (2 ^"n.m)? and xf
kk

+1dks

T* T* ^5 <*— £/~ ^>i T7 T^
•"^n & £ a-* >C^ -*-" •*-'•

Corollary 2. 20 TA^ derivation DEi & is zero on ZT', under the

same assumption as Proposition 2. 1.

Proof. It follows from Propositions 1.3 and 1.4 in [4], and Prop-

osition 1.4. Q. E. D.

20 29 Proposition 2* 3, // a derivation DEE $)g is zero on &', then

D is zero on <S?'.
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Proof. Step 1. To show that D(3a) = 0 (a= 1, . . . , 0). Apply D

to [3,., da]=[I, 3B] = 0, then we get D(3.)eJSf", by Lemma 1. l(i),

(iv).

Define the functions gf(;y) as D(3B) = £ g-JGy^eJ?'. Apply D to
t

Sardi=[_da9 yy3,-], then we get

hence gl(y) = 0, so Z>(3a) = 0.

2. To show that D(J)=Q, where J= E yA> Apply D to
«=i

[9* J1=K ^O* then we get D(J)eJ2", by Lemma 1. 1 (i), (iv).

Apply D to [J, ^a3,-]=%3,-^^ then we have Z)(J) = 0, by Lemma

1.1 (v).

Since J^x is decomposed as & '= E ^1 (cf. §1-2) ,
»^-i

then by Lemma 1. 33 this step is carried out similarly as Step 1 in

the proof of Proposition 2. 1. Q. E. D.

Corollary 2a 4. If a derivation D of 3? is zero on 3~ n,m for n

+ m ^ — 1, then D is zero on &.

Proof. Let D be a derivation of JS? such that D is zero on ^n,m

for n + m^ — l. Let D' be the restriction of D to ^. Then by

Coroallry 2. 2, D' is zero on ^~, hence by Proposition 2. 3, D is zero

on &'' The assertion follows from Propositions 1.3 and 1.4 in [4]

and Proposition 1.5. Q. E. D.

§3. Derivations of 3T and J2> (II)

3» 1. Determination of ^9 Let Z be a vector field on V. We

define adZ as adZ(Z) = [Z5 Z] for XEE2L Then we have

Lemma 3.1. The map\ Z - ^adZ^, or Z - >adZ|^ of & into

or Qtg respectively is an into isomorphism.
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Proof. It is sufficient to show the injectivity. Let ££=£?„ Assume
that adZ(5r) = 0. By Lemma 1. 1 (i), we get the vector fields X<=
Fy and YZE&' such that Z=X+Y. Then by Lemma 1. 1 (ii), (iv),

we have X= [Z, /] = 0, whence Y=Q, by Lemma 1.1 (v).
ft E. D.

Theorem 3- 2, Let D£^ &, Then there exists a unique vector

field W on V such that D=adW\y. Moreover, W is in & .

The proof of this theorem will be given in § 3. 3.

Corollary 3B 3. Let Z)E= 3fy or &%. Then there exists a unique

vector field T^eSI such that D=adW\#- or = adW\#. Moreover, W is

in £.

Proof. Obvious for the case De 2y. Let De 3fy. The restriction
of D to F belongs to 2. Then the assertion follows from Theorem
3. 2 and Corollary 2. 4. Q. E. D.

Theorem 3. 4. ( i ) All derivations of 3? are inner, that is, @&

= ad & = &. Hence

( z V ) The derivation algebra of ^ is naturally isomorphic to

that is, &<?-= {adW|^-; W^&}=£>. Hence

In particular, the space Hl(3~ \ ^) is of infinite dimension.

Proof, (ii) By Coroallry 3.3, we have S^C {adT7|^ ;
The converse inclusion is obvious, because 3~ is an ideal of J^7. For
the latter half, remember that Hl(2T ; ^) = ^^/ad y (see §1 in

[3]). ft E. D.

3o 2. To prove Theorem 3. 2, we prepare the following four
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lemmata.

Lemma 3,5. Let D^@. Then there exists a vector field Wl

2T such that D(d^)=lWl9 3f-] (mod J2") for i=l,...,p.

Proof. Define the functions fl(x9 y), and the vector fields Yt

JT, as

Apply D to the both sides of [9,-, 94] = 0, then we have, by Lemma

1-1 (ii),

and so

d> (fi (x,y»=3k (f{ (x, y) ) ( 1 ^ i, y , ^ ̂ p) .

Therefore, there are unique functions h'(x, y) (l^j^p') such that

9, (h> (x, y) ) =/{ (x, y) ( 1 ^ i, j ^p) ,

Put Wi= — 2] A1' (^5 y)3i3 then we have the assertion of the lemma.

. E. D.

Lemma 3.6. Let D<^@. Assume that D(3f.) eJ2f x ( l ^z^/>).

(x) D (3.0 = 0 (l^i^),

(n) £Aere ea:wfe a t;^ctor j^eW W2^^~ such that [30 W2] = 0 (1

=[W23 I] (mod J?7)-

Proo/. Define the vector fields Xe^ and 7^^' as D(I) = X

+ F. Apply D to [3f3 /] = 3,-, then by Lemma 1. 1 (ii), (iii), we have

that D (3,0 = 0 (l^z'^/0, and Xe^"y. Hence, by Lemma 1. 1 (iv),

we get

[X, 7] = Z=D(7) (mod J?7)-

Therefore, we can put W2= X. Q. E. D.
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Lemma 3.7. LetD<=&. Assume that D(3f) =0 (l^i^/>), and

Proof. Define the vector fields X^f and i^ejS?7 as D(xidj)

Apply Z> to [3*, Xidj] = dikdj, then by Lemma 1.1 (i), we have Xy

(l^, y^/0- Apply D to [7, #A] = 0> then by Lemma 1. 1 (ii),

(iv), we get Xiy = 0( l^f , 7<£). Q- E. D.

Lemma 3.8. Le£ D^&. Assume that D(3,.) = 0, arad £/z<2£ £)(/)

'(\^i9j^p'). Then,

( i ) D(7) = 0, D(^,3,) -0 (1 ^i, ;^),

exists a unique vector field Wz on V such that

Moreover, W3 is in JS?7.

. Define the vector fields XBfe^" and 7a,eJ^7 as Z)(ya3,)

= -X...+ ya, (1 ̂ i^p, 1 ̂ a^g). Apply D to [3y, ^3,-] = 03 then by Lemma

1.1 (i), we have Xai^^y for all / and a. Apply D to yadi=[yadi9

/], then by Lemma 1.1 (ii), (iv), we get that D(/)=0 and Yai = Q

for all i and a.

Define the functions /I- (y) (l^ij^p, l^a^q) as X., = 2 /i (y) 3y.y
Apply D to y«3£=[y«3;5 ^f-3f]5 then we get

hence D(o:l.3I.)=0 (l^x^), and/i i(y) = 0 for all i^j and a.

Apply D to yadk=[yadi} ^t-3ft] for /^=A, then we get

/** (y) 3, =/i, (y) 3, + [yA, D (a: A) ],

hence Z)(a:A)=0 (l^i, k^p), and /:, (y) =fk
ak (y) for all t>* and a.

Denote /i,(y) by/a(3^) d^a^g), then D(yA) =/. (y)3i-

Let W3 be a vector field on V satisfying the equations in (ii).

Since [W3, 3/]= [W3, 7] = 0 (l^£^/>), then we get Ws^J?', by Lemma
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1. l(i), (iv). Write W3 as W,= i;A,(y)3w then

Hence, A«(y) must be equal to /.(y) for all a.

a- E. D.

3.3. Proof of Theorem 3.2. Let D<ES. Then, by Lemmata

3. 5-^3. 8, we have a unique vector field W" on V such that D

= adW on ^n,w for n + m^ — l. We can determine W as W= Wl

+ W2+W3, where W f ( z= l , 2, 3) are given in the above lemmata.

Clearly W^^.

Hence, by Corollary 2. 2, we get that D^adW' on y .

Q. E. D.

3« 4. Remarks. ( i ) Any derivation of <J~ or =£? is continuous,

because it is realized as adVF for some W^J£.

( ii ) Let "7' be a subspace of F, spanned by yl9 . . . , 3^g. Then

Theorem 3. 4 (i) can be rewritten as in the following form in terms

of C^CV"), which is suggestive for calculations of cohomologies of ^

with various coefficients.

Theorem 3.9. Let Q>e* (C'CV")) be the derivation algebra of

the associative algebra C°°(yf). Then

This follows immediately from the following well-known fact.

Lemma 3. 10, There is an natural Lie algebra isomorphism of

onto &

We give here its elementary proof for completeness. Let Z)GE ^^

(C°°(F)). Define functions ga(y) (a=l,...,q') as D(ya)=ga(y).

Let Y=^ga(y)da^^\ The vector field Y operates on C~(V) as a

first-order partial differential operator, then it defines a derivation
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DY of C^CF')- Easily by induction, we can show that D coincides

with DY on the polynomial algebra R[y19 . . . , yq~\. Hence we obtain

Lemma 3. 10, because when / (g) (0) = 0, g is expressed as g(y)

§48 Lie Algebras J^(M, &), y(TA9 &)9 and Their Derivations

4. 1. Lie Algebras Associated with Foliations. Let M be a (p

+ q) -dimensional manifold and & a codimension-g foliation on M.

Around any point of M, there is a distinguished coordinate neighbor-

hood (£7; #1, . . . , xp9 3/l3 . . . , %), for which a plate represented as yl

= constant, ... , yq= constant in U is a connected component of

Lr\U for some leaf L of ^(see e.g. [6] for definitions).

A vector field X on a foliated manifold (M, ^) is called leaf-

tangent, if X is tangent to the leaf L through p for any point p of

M, that is, the vector Xp belongs to the tangent space Tp L of L at

p. A vector field X is called to be locally foliation preserving (or /.

/. p., in short), if <f*t maps every plate to some plate, where {^J is

a one-parameter group of local diffeomorphisms generated by X.

Locally for any distinguished coordinates (X, . . . , xp, yl9 . . . , yq),
P

a leaf -tangent vector field is represented as 2/*Gr? 30^-, and a /. /.
1=1

P i
p. vector field is represented as 2 -/)(#> 30 9.- + 2 £« 60 9«> where /,(#,

1=1 a=l

y) (i= 1, . . . , / > ) are C°° -functions of ^15 . . . , ^p, 3/15 . . . , yw and^a(y)

( a = l 5 . . . , g) are C°°-functions of ;yl3 . . . , yq. Here we use the

notations 9f or 5a instead of -= — or -= — respectively, and the con-
dxt oya

 r 3

vention on indices (see § 1. 1).

All If. p. vector fields on (M, ^) form a Lie algebra J2?(M, ^

and all leaf -tangent vector fields form its ideal ^~(M, ^").

If a /. /. p. vector field X is complete, then X is foliation pre-

serving, that is, the diffeomorphism <j>t maps every leaf of ^ to some

leaf for each t. Similarly, if a leaf-tangent vector field X is complete,

$t leaves every leaf of 3* stable. Thus, when M is compact, /. /. p.

vector fields are foliation preserving.
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4. 2. Derivations, Let 2 (M, &} = ®*» (ST (M, ^) ; J^ (M,

be the space of derivations of 3~ ' (M, ^) with values in & (M, &).

And let ^(M, ^) or ^^(M, ^) be the derivation algebra of

c£?(M, «F) or 3~(M, ^) respectively. Sometimes we omit & in the

notations f (M, ^), ^ (M, ̂ ), etc.

Lemma 4.1. Le£ [7 6e an open subset of M, and

Assume that [X, Y] = 0 on £7 for an;y Y^^(M} ^) with support

contained in U. Then, X=0 on U.

Proof. Let p^U. Take a sufficiently small neighborhbood U' of

p in C73 and distinguished coordinates (xl} . . . , x^ y1} . . . , yq) in C/x.

Let a vector field Y^ on U' be any one of d0 3:̂ ,3 and 3;B9,-(l^f, j

^•P, ^^oc^q). Since ^(M) is C°°(M) -module, there is a vector
field Fe^CM) such that Y=T on IT and the support of Y is

contained in U. Then we have [_X, Y^ = 0 on U by the assumption.

By the proof of Lemma 3. 8, we have that X= 0 on U', in particu-

lar, at p. Hence we get X=0 on C7. Q. E. D.

From this lemma, we get the following two lemmata, similarly as
Proposition 2.4 and Corollary 2.5 in [4],

Lemma 4.2. Let D^@(MS &} or^^(M, &). Then, D is local.

Lemma 4. 3. Let D^@(M, &). Then, D is Realizable (see § L 2

in [4] for definition).

4o3. Proposition 4.4. Let D<=@(M, &). Then, there exists a

vector field W on M such that D=adW\^-(M,^^ Moreover, W is in

Proof. Take a distinguished coordinate neighborhood system [Ux ;

(x\,..., x"p, y\,..., yl}}v=A on (M, ^). Since D is localizable, the

derivation DU^ e Z) ( C/^, ^li/J can be defined for all ^e^ in such a

way that D(X) 1^ = 1)^ (^li/J for all Xe^(M). Then by Theorem
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3. 2, there exists a unique vector field W>. on U* such that DUx

= adWi \p(u2) for any 1<E.A. On the other hand, we have DUjL lu^u^

= DUft\UlinU(t, so W^Wp on UinUp. Hence there is a vector field W

on M such that W= W, on U, for all teA and that D=adW\^-(M}.
Moreover, we have W^&(M), because W^&^UJ for all 2^ A.

Q. E. D.

Corollary 4.5. Let D^^^(M, &) or &#(M, &). Then there

exists a vector field W on M such that D=adW \&\M,&-) or~

respectively. Moreover, W is in £ '(M, ^r).

Proof. Obvious for the case D^^^-(M). Let DeS^(M). The
restriction of D to ^~(M) belongs to S (M). Then the assertion follows
from Proposition 4. 4 and Lemma 4. 1. Q. E. D.

Then we get Main Theorem similarly as Theorem 3. 4.

Theorem 4. 6. ( z ) All derivations of 3? (M, ^) are inner, that
is, @#(M, #")=adJ?(Af, #")SJ2f(Af, ^). Hence

( z Y ) TA^ derivation algebra of ^ (M, ^} is naturally isomorphic

^), that is, ®r(M, ^) = fad W\
). Hence

4.4. Examples. Let Hl = Hl(^T(M, ^) -, ^ (M, ^)}=^ (M,
^~}/^(M, &} for a foliated manifold (M, ^). In many cases, Hl

are of infinite dimension.

Proposition 4. 7. Assume that there is a compact leaf L of ^
such that there is a saturated neighborhood U of L, which is a product
foliation DqxL, where D9 is a q-dimensional disk. Then, Hl is of
infinite dimension.
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Proof. Every leaf in U is represented by a point of Dq. Let /
be a function supported in Dq. Then f-& (Af, ^) CJ*? (M3 JF).
Hence the assertion follows from Theorem 3. 4. Q. E. D.

However, H1 may be of finite dimension. Assume that M is
compact. J. Leslie [5] gives examples of dim Hl=Q, or 1: (i) an
Anosov flow with an integral invariant for dim Hl=0,> and (ii) irra-
tional flows on a two dimensional torus T2 for dim H1=l. We
can modify the latter to get a foliated manifold with dim Hl=n (for
arbitrary n<^+°°), that is5 irrational flows on an (n+ 1)-dimensional
torus Tn+1.

We have also other examples. Fukui and Ushiki [2] shows that
dim H1=2 for the Reeb foliation on a 3-shpere S3. Further, Fukui
[1] shows that the following: let (M, &) be a Reeb foliated 3-
manifold, then dim H1 is finite, and equals to the number of gen-
eralized Reeb components.
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