Cohomologies of Lie Algebras of Vector Fields with Coefficients in Adjoint Representations Foliated Case

By

Yukihiro KANIE*

Introduction

Let (M, \mathcal{F}) be a foliated manifold. We have a natural Lie algebra $\mathscr{L}(M, \mathscr{F})$ of vector fields locally preserving the foliation $\mathscr{F},$ and its ideal $\mathcal{F}(M,~\mathcal{F})$ of vector fields tangent to leaves of \mathcal{F} . Here we are interested in the first cohomologies of $\mathcal{L}(M, \mathcal{F})$ and $\mathcal{T}(M, \mathcal{F})$ $\mathcal F$) with coefficients in their adjoint representations. This work is in a series of F. Takens' work [7] and the author's [3], [4]. In this paper, we use the latter for the general reference.

Our main result is

Main Theorem (i) $H^1(\mathscr{L}(M, \mathscr{F}); \mathscr{L}(M, \mathscr{F}))$ (ii) $H^1(\mathcal{T}(M, \mathcal{F}); \mathcal{T}(M, \mathcal{F})) \cong \mathcal{L}(M, \mathcal{F})/\mathcal{T}(M, \mathcal{F}).$

If *M* is compact, $\mathcal{L}(M, \mathcal{F})$ is identical with the Lie algebra of vector fields preserving \mathscr{F} . There are compact foliated manifolds (M, \mathscr{F}) such that $H^1(\mathscr{T}(M, \mathscr{F}) ; \mathscr{F}(M, \mathscr{F}))$ are of dimension *r* for any r ($0 \le r \le \infty$).

The content of this paper is arranged as follows. In §1, we introduce Lie algebras $\mathscr L$ and $\mathscr T$ for a standard foliation on a eucildean space, and study their structures. In §2, we investigate properties of derivations of $\mathscr L$ and $\mathscr T$, and in §3, we prove Main Theorem for $\mathscr L$ and \mathcal{T} (flat case). In §4, we give the proof of Main Theorem and

Communicated by N. Shimada, June 1, 1977.

^{*} Department of Mathematics, Mie University, Kamihama-cho, Tsu 514, Japan.

some examples.

All manifolds, foliations, vector fields, etc. are assumed to be of C^* -class, throughout this paper.

§ 1. Lie Algebras *&* **and** *y*

1.1. Notations and Definitions. Fix a coordinate system $x_1, \ldots,$ x_p , y_1, \ldots, y_q in a $(p+q)$ -dimensional euclidean space $V = \mathbb{R}^{p+q}$. Denote $\frac{\partial}{\partial x_i}$ by $\partial_i (i = 1, \ldots, p)$, and $\frac{\partial}{\partial y_a}$ by $\partial_a (\alpha = 1, \ldots, q)$. Use Latin indices i, j, k, \ldots for x_1, \ldots, x_k , and Greek indices α, β, \ldots for y_1, \ldots, y_q , otherwise stated. Put

$$
\mathcal{F} = \{ \sum_{i=1}^{p} f_i(x, y) \partial_i; f_i(x, y) \text{ are } C^{\infty} \text{-functions of } x_1, \dots, x_p, y_1, \dots, y_q \},
$$

$$
\mathcal{L}' = \{ \sum_{\alpha=1}^{q} g_{\alpha}(y) \partial_{\alpha}; g_{\alpha}(y) \text{ are } C^{\infty} \text{-functions of } y_1, \dots, y_q \},
$$

$$
\mathcal{L} = \mathcal{F} + \mathcal{L}' \qquad \text{(as vector spaces)}.
$$

Then they are subalgebras of the Lie algebra $\mathfrak A$ of all vector fields on *V*, and $\mathscr T$ is an ideal of $\mathscr L$.

Let $\mathcal F$ be a standard codimension-q foliation, defined by parallel p-planes: y_1 = constant, ..., y_q = constant, in *V*. Any vector field *X* in $\mathscr F$ is tangent to leaves of $\mathscr F$, and X is called *leaf-tangent*. Let ϕ , be the one-parameter group of diffeomorphisms generated by $Y \in \mathscr{L}$, then ϕ_t transforms every leaf to some leaf for each *t*, and *Y* is called *foliation preserving.*

Denote by \mathscr{T}_x or \mathscr{T}_y , the subalgebra of \mathscr{T} of all vector fields in \mathscr{T} whose coefficient functions depend only on x_1, \ldots, x_p , or y_1, \ldots , y_q , respectively.

Here we summarize the facts which will be applied later.

Lemma 1.1. (*i*) Let $X \in \mathfrak{A}$. If $[\partial_i, X] = 0$ for all $i = 1, ..., p$, *then* X is independent of the variables x_1, \ldots, x_r .

(ii) $[\mathcal{T}_*, \mathcal{L}'] = 0$, and $[\mathcal{T}_*, \mathcal{L}] \subset \mathcal{T}$.

(*iii*) Let $X \in \mathscr{L}$. If $[\partial_i, X] \in \mathscr{L}'$ for all *i*, then X is independent *of the variables* x_1, \ldots, x_p .

\n- (iv) Let
$$
X \in \mathcal{F}
$$
, then $[X, I] = X$, where $I = \sum_{i=1}^{b} x_i \partial_i \in \mathcal{F}_x$.
\n- (v) Let $X \in \mathcal{L}'$. If $[X, y_a \partial_i] = 0$ for all i and α , then $X = 0$.
\n

This can be proved by elementary calculations.

1.2. Vector Fields with Polynomial Coefficients. The vector field $X = \sum_{i=1}^{p} f_i(x, y) \partial_i + \sum_{i=1}^{q} g_i(x, y) \partial_x$ on *V* is said to be with polynomial coefficients, if all $f_i(x, y)$ and $g_a(x, y)$ $(i=1, \ldots, p, a=1, \ldots, q)$ are polynomials. Such vector fields form a Lie subalgebra $\tilde{\mathfrak{A}}$ of \mathfrak{A} . Put $\widetilde{\mathscr{T}} = \mathscr{T} \cap \widetilde{\mathfrak{A}}, \ \widetilde{\mathscr{L}} = \mathscr{L} \cap \widetilde{\mathfrak{A}}, \text{ and } \ \widetilde{\mathscr{L}}' = \mathscr{L}' \cap \widetilde{\mathfrak{A}}. \text{ Put }$ $\mathscr{F}_{n,m} = \{\sum_{i=1}^{p} f_i(x, y)\}\partial_i \in \tilde{\mathscr{F}}; f_i(x, y)$ are homogeneous polynomials of

degree $n+1$ in x_1, \ldots, x_n , and of degree $m+1$ in y_1, \ldots, y_q .

Then

$$
\tilde{\mathcal{F}} = \sum_{n, m \ge -1} \mathcal{F}_{n, m} ;
$$
\n
$$
\tilde{\mathcal{F}} \supset \tilde{\mathcal{F}}_x = \tilde{\mathcal{F}} \cap \mathcal{F}_x = \sum_{n \ge -1} \mathcal{F}_{n, -1} ,
$$
\n
$$
\tilde{\mathcal{F}}_y = \tilde{\mathcal{F}} \cap \mathcal{F}_y = \sum_{m \ge -1} \mathcal{F}_{-1, m} .
$$

Moreover, we have easily

Lemma 1.2. $(cf. [4])$ Let I be defined in Lemma 1.1 (iv) , then $\mathscr{T}_{n,-1} = \{ X \in \tilde{\mathscr{T}}_x ; [I, X] = nX \}.$

Put $\mathscr{L}'_m = \{\sum_{\alpha=1}^q g_\alpha(y)\partial_\alpha \in \tilde{\mathscr{L}}'; g_\alpha(y)$ are homogeneous of degree $m+1\}.$ Then $\tilde{\mathscr{L}}' = \sum \mathscr{L}'_m$, and we have

Lemma 1. 3. Let $J=\sum_{\alpha=1}^q y_\alpha \partial_\alpha \in \mathcal{L}'$, then $\mathcal{L}'_m = \{Y \in \tilde{\mathcal{L}} : [J, Y] = mY\}$.

1. 3. Proposition 1.4. If a vector field $X \in \mathcal{T}$ satisfies j^3 (X) (0) $= 0$, then there exist a finite number of vector fields $X_1, \ldots, X_n \in \mathcal{F}$ *such that*

$$
X=\sum_{i=1}^r [X_i, X_{i+r}] \quad and \quad j^1(X_i)(0)=0 \quad (i=1,\ldots, 2r).
$$

490 YUKIHIRO KANIE

Proof. Clearly it is enough to show the assertion for the case

$$
X = x_1^{i_1} \ldots \ldots x_p^{i_p} y_1^{j_1} \ldots \ldots y_q^{j_q} f(x, y) \partial_i
$$

for
$$
\sum_{k=1}^{p} i_k + \sum_{\alpha=1}^{q} j_{\alpha} \ge 4
$$
. Put $h(x, y) = x_1^{i_1} \dots x_p^{i_p} y_1^{j_1} \dots y_q^{j_q}$.

Case 1. The case where $i_k \geq 2$ for some k.

$$
\begin{aligned} & [x_i^2 \partial_k, \ x_k^{-1} X] - [x_i^3 \partial_k, \ x_k^{-2} X] \\ & = (i_k - 1 - 2\delta_{ik}) \ X - x_k h(x, \ y) \ (\partial_k f(x, \ y)) \ \partial_i \\ & - (i_k - 2 - 3\delta_{ik}) \ X + x_k h(x, \ y) \ (\partial_k f(x, \ y)) \ \partial_i \\ & = (1 + \delta_{ik}) \ X. \end{aligned}
$$

Here δ_{ik} is Kronecker's delta, so $(1 + \delta_{ik}) \ge 1 > 0$. And $f'(x_k^{-2} X)(0) = 0$ is obvious.

In the following, we can assume that $i_k \leq 1$ for all k.

Case 2. The case where $\sum_{i} i_{i} \geq 2$. We can assume $i_{1} = i_{2} = 1$. Let ϕ be a coordinate transformation

$$
\phi: \begin{cases} \bar{x}_1 = x_1 + x_2, & \bar{x}_2 = x_1 - x_2, \\ \bar{x}_i = x_i \quad (i \geq 3), & \bar{y}_a = y_a \quad (all \ \alpha), \end{cases}
$$

then $\phi(\mathcal{T}) = \mathcal{T}$. So this case is reduced to Case 1.

In the following, we can assume that $i_k = 0$ for all k except at most one *k0.*

Case 3. The case where $j_{\alpha} \geq 2$ for some α . We get

$$
[y_a^2 \partial_{k_0}, x_k y_a^{-2} X] - [y_a x_{k_0} \partial_{k_0}, y_a^{-1} X] = (1 + \delta_{ik_0}) X.
$$

Obviously $j^1(Y)(0) = 0$ for all vector fields Y in the left hand.

Case 4. *The case where* $j_a \leq 1$ *for all a.* Since we have $\sum_{a=1}^{q} j_a$ $\geq 4 - 1 = 3$, so this case is also reduced to Case 3, similarly as Case 2. $Q.$ E. D.

Proposition 1.5. If a vector field $Y \in \mathcal{L}'$ safisfies $j^3(Y)(0) = 0$, *then there exist a finite number of vector fields* $Y_1, \ldots, Y_{2r} \in \mathscr{L}'$ such *that*

$$
Y = \sum_{i=1}^{r} [Y_i, Y_{i+r}] \quad and \quad j^{(1)}(Y_i)(0) = 0 \quad (i = 1, ..., 2r).
$$

Proof. Similarly as in Cases 1 and 2 in the proof of the above proposition. $Q. E. D.$

§ 2. Derivations of $\mathcal T$ and $\mathcal L$ (I)

2.1. Let $\mathscr{D} = \mathscr{D}_{e^{\alpha}}(\mathscr{T}; \mathscr{L})$ be the space of derivations of \mathscr{T} with values in \mathscr{L} . And let $\mathscr{D}_{\mathscr{L}}$ or $\mathscr{D}_{\mathscr{F}}$ be the derivation algebra of \mathscr{L} or $\mathscr T$ respectively. Remember that a derivation D satisfies the property $D[X, Y] = [D(X), Y] + [X, D(Y)].$

Proposition 2.1. If a derivation D in \mathscr{D} is zero on $\mathscr{T}_{n,m}$ for $n+m \leq -1$, then *D* is zero on $\tilde{\mathcal{T}}$.

Proof. Step 1. To show that D is zero on $\tilde{\mathcal{T}}_x$. We prove this by the induction on *n* for the decomposition $\tilde{\mathcal{T}}_x = \sum_{n \geq -1} \mathcal{T}_{n,-1}$. When *n* is non-positive, the assertion holds by the assumption. Assume that *D* is zero on $\mathscr{T}_{k-1}(k \leq n-1)$. Let $Z \in \mathscr{T}_{n,-1}(n \geq 1)$, and define the vector fields $X \in \mathcal{T}$ and $Y \in \mathcal{L}'$ as $D(Z) = X + Y$.

Apply D to $[\partial_i, Z] \in \mathcal{T}_{n-1,-1}(1 \leq i \leq p)$, then we get $X \in \mathcal{T}_y$, by Lemma $1.1(i)$ and the hypothesis of the induction.

We get $[I, Z] = nZ$, by Lemma 1.2. Apply D to the both sides of this equality, then by Lemma 1. 1 (iv), we get

-X=nX+nY,

hence $X=Y=0$, so $D(Z)=0$.

Step 2. To show that D is zero on $\mathcal{T}_{0,0}$. Clearly it is enough to show the assertion for the case $X=x,y_a\partial_y\in\mathcal{F}_{0,0}$. Apply *D* to

$$
X = x_i y_a \partial_j = 2^{-1} [y_a \partial_i, x_i^2 \partial_j],
$$

then we have $D(X) = 0$, because $y_a \partial_i \in \mathcal{T}_{-1,0}$ and $x_i^2 \partial_j \in \tilde{\mathcal{T}}_x$.

Step 3. To show that *D* is zero on $\tilde{\mathcal{T}}$,. The proof is carried out by the induction on *m* for the decomposition $\widetilde{\mathscr{T}}_y = \sum_{m \geq -1} \mathscr{T}_{-1,m}$ When *m* is non-positive, the assertion holds by the assumption. Assume that D is zero on $\mathscr{T}_{-1,k}(k \leq m-1)$. Clearly it is enough to show that $D(Y)=0$ for the case

$$
Y = y_1^{j_1} \dots \dots y_q^{j_q} \partial_i
$$

for $\sum j_x = m+1$. There is an index β such that $j_\beta \ge 1$. Apply D to

$$
Y = [y_{\beta}^{-1}Y, y_{\beta}x_i\partial_i],
$$

then $D(Y)=0$, because $y_{\beta}^{-1}Y \in \mathcal{F}_{-1,m-1}$, and $y_{\beta}x_{\beta} \in \mathcal{F}_{0,0}$.

Last Step. Decompose $\tilde{\mathcal{T}}$ as $\tilde{\mathcal{T}} = \sum_{n\geq -1} \left(\sum_{m\geq -1} \mathcal{T}_{n,m} \right)$. We prove the assertion of the proposition by the induction on *n.* The assertion for $n = -1$ holds by Step 3. Assume that D is zero on $\sum_{m \geq -1} \mathcal{F}_{n,m} (n \leq$ n_0-1). It is enough to show that $D(X)=0$ for the case

$$
X = x_1^{i_1} \dots \dots x_p^{i_p} f(y) \partial_k
$$

for $\sum_{i=1}^{n} i_i = n_0 + 1$, and some polynomial $f(y)$ of y_1, \ldots, y_q . Apply *D* to the equality

$$
X = \begin{cases} (i_{k}+1)^{-1} [x_{k}^{-i_{k}} X, x_{k}^{i_{k}+i_{k}} \partial_{k}] & \text{if } i_{k} > 0, \\ [x_{k_{0}}^{-1} X, x_{k_{0}} x_{k} \partial_{k}] & \text{if } i_{k} = 0, \text{ and } i_{k_{0}} > 0 \text{ for some } k_{0}, \end{cases}
$$

we get $D(X) = 0$, because $x_k^{-i}X$, $x_{k_0}^{-1}X \in \sum_{k=0}^{\infty} (\sum_{k=0}^{\infty} \mathcal{F}_{n,m})$, and x_k^{i} ⁺¹ ∂_{k_0} $x_{k_0} x_k \partial_k \in \mathcal{T}_x.$ Q. E. D.

Corollary 2.2. The derivation $D \in \mathcal{D}$ is zero on \mathcal{T} , under the *same assumption as Proposition* 2. 1.

Proof. It follows from Propositions 1.3 and 1.4 in [4], and Proposition 1.4. Q. E. D.

2. 2. Proposition 2. 3. If a derivation $D \in \mathcal{D}_{\mathcal{L}}$ is zero on \mathcal{T} , then *D* is zero on $\tilde{\mathscr{L}}'$.

Proof. Step 1. To show that $D(\partial_{\alpha}) = 0$ $(\alpha = 1, \dots, q)$. Apply D to $[\partial_i, \partial_{\alpha}] = [I, \partial_{\alpha}] = 0$, then we get $D(\partial_{\alpha}) \in \mathcal{L}'$, by Lemma 1.1(i), $(iv).$

Define the functions $g_a^{\beta}(y)$ as $D(\partial_{\alpha}) = \sum_{\beta} g_a^{\beta}(y) \partial_{\beta} \in \mathcal{L}'$. Apply D to $\delta_{\alpha} \partial_i = [\partial_{\alpha}, y_i \partial_i]$, then we get

$$
0 = \left[\sum_{\alpha} g_{\alpha}^{\beta}(y) \partial_{\beta}, y_{\gamma} \partial_{i} \right] = g_{\alpha}^{r}(y) \partial_{i},
$$

hence $g_g^r(y) = 0$, so $D(\partial_a) = 0$.

2. To show that $D(J) = 0$, where $J = \sum_{\alpha=1}^{J} y_{\alpha} \partial_{\alpha}$. Apply D to $[\partial_i, J]=[I, J]=0$, then we get $D(J)\in\mathscr{L}'$, by Lemma 1.1 (i), (iv).

Apply *D* to [*J*, $y_a \partial_i$]= $y_a \partial_i \in \mathcal{T}$, then we have $D(J) = 0$, by Lemma $1.1 (v).$

Since $\tilde{\mathscr{L}}'$ is decomposed as $\tilde{\mathscr{L}}' = \sum_{m \ge -1} \mathscr{L}'_m$ (cf. §1.2), then by Lemma 1. 3, this step is carried out similarly as Step 1 in the proof of Proposition 2. 1. Q. E. D.

Corollary 2.4. If a derivation D of $\mathscr L$ is zero on $\mathscr T_{n,m}$ for n $+m \leq -1$, then *D* is zero on *L*.

Proof. Let *D* be a derivation of $\mathscr L$ such that *D* is zero on $\mathscr T_{n,m}$ for $n + m \leq -1$. Let *D'* be the restriction of *D* to \mathscr{T} . Then by Coroallry 2. 2, D' is zero on \mathscr{T} , hence by Proposition 2. 3, D is zero on *&''* The assertion follows from Propositions 1.3 and 1.4 in [4] and Proposition 1.5. Q. E. D.

§3. Derivations of $\mathscr T$ and $\mathscr L$ (II)

3. 1. Determination of \mathscr{D} **.** Let Z be a vector field on V. We define adZ as $adZ(X) = [Z, X]$ for $X \in \mathfrak{A}$. Then we have

Lemma 3.1. The map: $Z \rightarrow \text{ad}Z|_{\mathcal{F}}$, or $Z \rightarrow \text{ad}Z|_{\mathcal{L}}$ of \mathcal{L} into *or Qtg respectively is an into isomorphism.*

Proof. It is sufficient to show the injectivity. Let $Z \in \mathscr{L}$. Assume that $adZ(\mathcal{T}) = 0$. By Lemma 1.1 (i), we get the vector fields $X \in$ \mathscr{T}_y and $Y \in \mathscr{L}'$ such that $Z = X + Y$. Then by Lemma 1. 1 (ii), (iv), we have $X=[Z, I]=0$, whence $Y=0$, by Lemma 1.1 (v). Q. E. D.

Theorem 3.2. Let $D \in \mathcal{D}$. Then there exists a unique vector field W on V such that $D = \text{ad}W|_{\mathscr{T}}$. Moreover, W is in \mathscr{L} .

The proof of this theorem will be given in § 3. 3.

Corollary 3.3. Let $D \in \mathcal{D}_{\mathcal{F}}$ or $\mathcal{D}_{\mathcal{F}}$. Then there exists a unique *vector field* $W \in \mathfrak{A}$ such that $D = adW|_{\mathcal{F}}$ or $= adW|_{\mathcal{F}}$. Moreover, W is *in £.*

Proof. Obvious for the case $D \in \mathscr{D}_{\mathscr{F}}$. Let $D \in \mathscr{D}_{\mathscr{F}}$. The restriction of *D* to *F* belongs to *2.* Then the assertion follows from Theorem 3. 2 and Corollary 2. 4. Q. E. D.

Theorem 3.4. (*i*) All derivations of \mathcal{L} are inner, that is, $\mathcal{D}_{\mathcal{L}}$ $=$ ad $\mathscr{L} \cong \mathscr{L}$. Hence

$$
H^1(\mathscr{L}; \ \mathscr{L}) = 0.
$$

(*ii*) The derivation algebra of $\mathcal T$ is naturally isomorphic to $\mathcal L$, *that is,* \mathscr{D}_{g} = {adW | $_{g}$; $W \in \mathscr{L}$ } $\cong \mathscr{L}$. Hence

$$
H^1(\mathcal{F}\,;\; \mathcal{F})\, \widetilde{=}\, \mathscr{L}/\mathscr{F} \, \widetilde{=}\, \mathscr{L}'.
$$

In particular, the space $H^1(\mathcal{T}; \mathcal{T})$ is of infinite dimension.

Proof. (ii) By Coroallry 3.3, we have $\mathscr{D}_{\mathscr{F}} \subset {\rm ad}W|_{\mathscr{F}}$; $W \in \mathscr{L}$. The converse inclusion is obvious, because $\mathscr F$ is an ideal of $\mathscr L$. For the latter half, remember that $H^1(\mathcal{T}; \mathcal{T}) \cong \mathcal{D}_{\mathcal{T}}/ad \mathcal{T}$ (see §1 in [3]). $Q. E. D.$

3.2. To prove Theorem 3.2, we prepare the following four

lemmata.

Lemma 3.5. Let $D \in \mathcal{D}$. Then there exists a vector field W_1 $\mathcal{F} \subseteq \mathcal{F}$ such that $D(\partial_i) \equiv [W_i, \partial_i] \pmod{\mathcal{L}}$ for $i=1,\ldots,p$.

Proof. Define the functions $f_i^j(x, y)$, and the vector fields Y_i $\in \mathscr{L}'$, as

$$
D(\partial_i) = \sum_{j=1}^p f_i^j(x, y)\partial_j + Y_i \qquad (1 \leq i \leq p).
$$

Apply *D* to the both sides of $\lceil \partial_i, \partial_k \rceil = 0$, then we have, by Lemma 1-1 (ii),

$$
\sum_{j=1}^k \left\{\partial_i(f'_k(x,\ y)) - \partial_k(f'_i(x,\ y))\right\}\partial_j = 0 \qquad (1 \leq i,\ k \leq p),
$$

and so

$$
\partial_i(f^i_k(x, y)) = \partial_k(f^i(x, y)) \qquad (1 \leq i, j, k \leq p).
$$

Therefore, there are unique functions $h'(x, y)$ $(1 \leq j \leq p)$ such that

$$
\begin{cases} \partial_i(h^i(x, y)) = f_i^i(x, y) & (1 \le i, j \le p), \\ h^i(0, y) = 0 & (1 \le j \le p). \end{cases}
$$

Put $W_1 = -\sum h^i(x, y)\partial_i$, then we have the assertion of the lemma. . E. D.

Lemma 3.6. Let $D \in \mathcal{D}$. Assume that $D(\partial_i) \in \mathcal{L}'$ $(1 \leq i \leq p)$. (*i*) $D(\partial_i)=0$ ($1\leq i\leq p$),

(*ii*) there exists a vector field $W_2 \in \mathcal{T}$ such that $[\partial_1, W_2] = 0$ (1) $\leq i \leq p$, and $D(I) \equiv [W_2, I] \pmod{\mathscr{L}}$.)-

Proof. Define the vector fields $X \in \mathcal{T}$ and $Y \in \mathcal{L}'$ as $D(I) = X$ $+ Y$. Apply *D* to $[\partial_i, I] = \partial_i$, then by Lemma 1. 1 (ii), (iii), we have that $D(\partial_i)=0$ $(1 \leq i \leq p)$, and $X \in \mathcal{T}_y$. Hence, by Lemma 1. 1 (iv), we get

$$
[X, I] = X \equiv D(I) \pmod{\mathscr{L}}.
$$

Therefore, we can put $W_2 = X$. Q. E. D.

Lemma 3.7. Let $D \in \mathcal{D}$. Assume that $D(\partial_i) = 0$ $(1 \leq i \leq p)$, and $D(I) \in \mathscr{L}'$. Then, $D(x_i \partial_i) \in \mathscr{L}'$ $(1 \leq i, j \leq p)$.

Proof. Define the vector fields $X_{ij} \in \mathcal{F}$ and $Y_{ij} \in \mathcal{L}'$ as $D(x_i \partial_j)$ $=X_{ij}+Y_{ij}$ ($1\leq i, j\leq p$).

Apply D to $[\partial_k, x_i \partial_j] = \delta_{ik} \partial_j$, then by Lemma 1.1 (i), we have X_{ij} $\in \mathscr{F}, (1 \leq i, j \leq p)$. Apply D to $[I, x_i\partial_j] = 0$, then by Lemma 1. 1 (ii), (iv), we get $X_{ij} = 0$ ($1 \leq i, j \leq p$). Q. E. D.

Lemma 3.8. Let $D \in \mathcal{D}$. Assume that $D(\partial_i) = 0$, and that $D(I)$ $\in \mathscr{L}'$, $D(x_i \partial_j) \in \mathscr{L}'$ ($1 \leq i, j \leq p$). Then,

(i) $D(I) = 0$, $D(x_i\partial_i) = 0$ (1 $\leq i$, $i \leq p$),

exists a unique vector field W^z on V such that

$$
\begin{aligned} \n\left[W_3, \ \partial_i\right] &= \left[W_3, \ I\right] = \left[W_3, \ x_i \partial_j\right] = 0, \\ \n\left[W_3, \ y_a \partial_i\right] &= D\left(y_a \partial_i\right) \qquad (1 \leq i, \ j \leq p, \ 1 \leq \alpha \leq q).
$$

Moreover, W_3 *is in* \mathscr{L}' .

. Define the vector fields $X_{ai} \in \mathcal{T}$ and $Y_{ai} \in \mathcal{L}'$ as $D(y_a\partial_i)$ $= X_{ai} + Y_{ai}$ ($1 \le i \le p$, $1 \le \alpha \le q$). Apply D to $[\partial_j, y_a \partial_i] = 0$, then by Lemma 1. 1 (i), we have $X_a \in \mathcal{F}_y$ for all *i* and *a*. Apply D to $y_a \partial_i = [y_a \partial_i,$ *I*, then by Lemma 1.1 (ii), (iv), we get that $D(I) = 0$ and $Y_{ai} = 0$ for all i and α .

Define the functions $f_{ai}^j(y)$ $(1 \leq i, j \leq p, 1 \leq \alpha \leq q)$ as $X_{ai} = \sum_j f_{ai}^j(y) \partial_j$. Apply D to $y_a \partial_i = [y_a \partial_i, x_i \partial_i]$, then we get

$$
\sum_{j} f_{ai}^{j}(y) \partial_{j} = f_{ai}^{i}(y) \partial_{i} + [y_{a} \partial_{i}, D(x_{i} \partial_{i})],
$$

hence $D(x_i \partial_i) = 0$ $(1 \leq i \leq p)$, and $f_{ai}^j(y) = 0$ for all $i \neq j$ and α .

Apply D to $y_a \partial_k = [y_a \partial_i, x_i \partial_k]$ for $i \neq k$, then we get

$$
f_{ak}^{k}(y)\partial_{k} = f_{ai}^{i}(y)\partial_{k} + [y_{a}\partial_{i}, D(x_{i}\partial_{k})],
$$

hence $D(x_i \partial_k) = 0$ $(1 \leq i, k \leq p)$, and $f_{ai}^i(y) = f_{ak}^k(y)$ for all $i \neq k$ and α . Denote $f_{ai}^i(y)$ by $f_a(y)$ $(1 \le \alpha \le q)$, then $D(y_a\partial_i) = f_a(y)\partial_i$.

Let *W3* be a vector field on *V* satisfying the equations in (ii). Since $[W_s, \partial_i] = [W_s, I] = 0 \ (1 \leq i \leq p)$, then we get $W_s \in \mathcal{L}'$, by Lemma

1. 1(i), (iv). Write W_3 as $W_3 = \sum_{\beta} h_{\beta}(y)\partial_{\beta}$, then

$$
[W_3, y_a \partial_i] = h_a(y) \partial_i \qquad (1 \le i \le p, 1 \le \alpha \le q).
$$

Hence, $h_{\alpha}(y)$ must be equal to $f_{\alpha}(y)$ for all α .

Q. E. D.

3.3. Proof of Theorem 3.2. Let $D \in \mathcal{D}$. Then, by Lemmata 3. $5\sim$ 3. 8, we have a unique vector field W on V such that D $=$ adW on $\mathscr{T}_{n,m}$ for $n + m \le -1$. We can determine W as $W = W_1$ $+W_2+W_3$, where W_i ($i=1, 2, 3$) are given in the above lemmata. Clearly $W \in \mathscr{L}$.

Hence, by Corollary 2.2, we get that $D = adW$ on \mathcal{T} .

Q. E. D.

3.4. Remarks. (i) Any derivation of \mathcal{T} or \mathcal{L} is continuous, because it is realized as adW for some $W \in \mathscr{L}$.

(ii) Let V' be a subspace of V, spanned by y_1, \ldots, y_q . Then Theorem 3. 4 (i) can be rewritten as in the following form in terms of $C^{\infty}(V')$, which is suggestive for calculations of cohomologies of $\mathcal T$ with various coefficients.

Theorem 3.9. Let \mathscr{D}_{e*} $(C^{\infty}(V'))$ be the derivation algebra of *the associative algebra C°°(y^f). Then*

$$
H^1(\mathcal{T}; \mathcal{T}) \cong \mathcal{D}_{e^{\mathbf{x}}} (C^{\infty}(V')).
$$

This follows immediately from the following well-known fact.

Lemma 3. 10, *There is an natural Lie algebra isomorphism of* \mathscr{L}' onto \mathscr{D} er($C^{\infty}(V')$).

We give here its elementary proof for completeness. Let $D \in \mathscr{D}_{e^*}$ $(C^{\infty}(V'))$. Define functions $g_{\alpha}(y)$ $(\alpha=1,\ldots,q)$ as $D(y_{\alpha})=g_{\alpha}(y)$. Let $Y = \sum_{\alpha} g_{\alpha}(y)\partial_{\alpha} \in \mathscr{L}'$. The vector field *Y* operates on $C^{\infty}(V')$ as a first-order partial differential operator, then it defines a derivation D_Y of $C^{\infty}(V')$. Easily by induction, we can show that *D* coincides with D_Y on the polynomial algebra $R[y_1, \ldots, y_q]$. Hence we obtain Lemma 3. 10, because when $j^2(g)(0) = 0$, g is expressed as $g(y)$ $=\sum_{\alpha} y_{\alpha} y_{\beta} g_{\alpha\beta}(y)$ with $g_{\alpha\beta} \in C^{\infty}(V')$.

§4. Lie Algebras $\mathscr{L}(\mathbf{M}, \mathscr{F})$, $\mathscr{T}(\mathbf{M}, \mathscr{F})$, and Their Derivations

4. 1. Lie Algebras Associated **with Foliations. Let** *M be a (p + q)* -dimensional manifold and *&* a codimension-g foliation on *M.* Around any point of M , there is a distinguished coordinate neighborhood $(U; x_1, \ldots, x_p, y_1, \ldots, y_q)$, for which a plate represented as y_1 $=$ constant, ..., $y_q =$ constant in U is a connected component of $L \cap U$ for some leaf *L* of \mathcal{F} (see e.g. [6] for definitions).

A vector field X on a foliated manifold (M, \mathcal{F}) is called *leaftangent,* if X is tangent to the leaf *L* through *p* for any point *p* of *M,* that is, the vector *Xp* belongs to the tangent space *Tp L* of *L* at *p. A* vector field *X* is called to be *locally foliation preserving* (or /. f. p., in short), if ϕ_t maps every plate to some plate, where ${\phi_t}$ is a one-parameter group of local diffeomorphisms generated by *X.*

Locally for any distinguished coordinates $(x_1, \ldots, x_p, y_1, \ldots, y_q)$, a leaf-tangent vector field is represented as $\sum_{i=1}^{r} f_i(x, y) \partial_i$, and a *l. f. p*. vector field is represented as $\sum_{i=1}^{p} f_i(x, y) \partial_i + \sum_{\alpha=1}^{q} g_{\alpha}(y) \partial_{\alpha}$, where $f_i(x, y)$ y) $(i=1, \ldots, p)$ are C^{oo}-functions of $x_1, \ldots, x_p, y_1, \ldots, y_q$, and $g_a(y)$ $(\alpha=1, \ldots, q)$ are C^{{\inetractions of y_1, \ldots, y_q ^T. Here we use the} notations ∂_i or ∂_α instead of $\frac{\partial}{\partial x_i}$ or $\frac{\partial}{\partial y_\alpha}$ respectively, and the convention on indices (see § 1. 1).

All *l. f.* p. vector fields on (M, \mathscr{F}) form a Lie algebra $\mathscr{L}(M, \mathscr{F})$, and all leaf-tangent vector fields form its ideal $\mathcal{T}(M, \mathcal{F})$.

If a l . f . p . vector field X is complete, then X is foliation preserving, that is, the diffeomorphism ϕ , maps every leaf of $\mathcal F$ to some leaf for each t. Similarly, if a leaf-tangent vector field *X* is complete, ϕ , leaves every leaf of $\mathscr F$ stable. Thus, when *M* is compact, *l. f.* p. vector fields are foliation preserving.

4. 2. Derivations. Let $\mathscr{D}(M, \mathscr{F}) = \mathscr{D}_{e^{\mathscr{K}}}(\mathscr{F}(M, \mathscr{F}) ; \mathscr{L}(M, \mathscr{F}))$ be the space of derivations of $\mathcal{F}(M, \mathcal{F})$ with values in $\mathcal{L}(M, \mathcal{F})$. And let $\mathscr{D}_{\mathscr{L}}(M, \mathscr{F})$ or $\mathscr{D}_{\mathscr{F}}(M, \mathscr{F})$ be the derivation algebra of $\mathscr{L}(M, \mathscr{F})$ or $\mathscr{F}(M, \mathscr{F})$ respectively. Sometimes we omit \mathscr{F} in the notations $\mathcal{F}(M, \mathcal{F}), \mathcal{D}(M, \mathcal{F}),$ etc.

Lemma 4.1. Let U be an open subset of M, and $X \in \mathcal{L}(M, \mathcal{F})$. *Assume that* $[X, Y]=0$ on U for any $Y \in \mathcal{T}(M, \mathcal{F})$ with support *contained in U. Then, X=0 on U.*

Proof. Let $p \in U$. Take a sufficiently small neighborhbood U' of p in U, and distinguished coordinates $(x_1, \ldots, x_p, y_1, \ldots, y_q)$ in U'. Let a vector field Y' on U' be any one of ∂_i , $x_i\partial_i$, and $y_n\partial_i$, $(1 \leq i, j$ $\leq p$, $1 \leq \alpha \leq q$). Since $\mathcal{T}(M)$ is $C^{\infty}(M)$ -module, there is a vector field $Y \in \mathcal{T}(M)$ such that $Y=Y'$ on U' and the support of Y is contained in *U*. Then we have $[X, Y] = 0$ on *U* by the assumption. By the proof of Lemma 3. 8, we have that *X=* 0 on *U',* in particular, at p . Hence we get $X=0$ on U . Q . E. D.

From this lemma, we get the following two lemmata, similarly as Proposition 2.4 and Corollary 2.5 in [4].

Lemma 4.2. Let $D \in \mathcal{D}(M, \mathcal{F})$ or $\mathcal{D}_{\mathcal{L}}(M, \mathcal{F})$. Then, D is local.

Lemma 4.3. Let $D \in \mathcal{D}(M, \mathcal{F})$. Then, D is localizable (see § 1.2). *in* [4] *for definition).*

4.3. Proposition 4.4. Let $D \in \mathcal{D}(M, \mathcal{F})$. Then, there exists a *vector field* W on M such that $D = \text{ad}W|_{\mathscr{F}(M,\mathscr{F})}$. Moreover, W is in $\mathscr{L}(M, \mathscr{F}).$

Proof. Take a distinguished coordinate neighborhood system *[Ux* ; $(x_1^{\lambda}, \ldots, x_n^{\lambda}, y_1^{\lambda}, \ldots, y_n^{\lambda})\}_{\lambda \in \Lambda}$ on (M, \mathscr{F}) . Since D is localizable, the derivation $D_{\nu_\lambda} \in D(U_\lambda, \mathscr{F}|_{\nu_\lambda})$ can be defined for all $\lambda \in \Lambda$ in such a way that $D(X)_{\vert v_{\iota}} = D_{v_{\iota}}(X|_{v_{\iota}})$ for all $X \in \mathcal{T}(M)$. Then by Theorem 3. 2, there exists a unique vector field W_{λ} on U_{λ} such that $D_{U_{\lambda}}$ $=$ ad W_{λ} / $\mathcal{F}(U_{\lambda})$ for any $\lambda \in \Lambda$. On the other hand, we have $D_{U_{\lambda}}|_{U_{\lambda} \cap U_{\mu}}$ $= D_{U_{\mu}}|_{U_{\mu}\cap U_{\mu}}$, so $W_{\lambda} = W_{\mu}$ on $U_{\lambda} \cap U_{\mu}$. Hence there is a vector field *W* on *M* such that $W = W_i$ on U_i for all $\lambda \in \Lambda$ and that $D = ad W|_{\mathcal{F}(M)}$. Moreover, we have $W\in\mathscr{L}(M)$, because $W_\lambda\in\mathscr{L}(U_\lambda)$ for all $\lambda\in\Lambda$. Q. E. D.

Corollary 4.5. Let $D \in \mathscr{D}_{\mathscr{F}}(M, \mathscr{F})$ or $\mathscr{D}_{\mathscr{L}}(M, \mathscr{F})$. Then there *exists a vector field W on M such that* $D = adW |_{\mathcal{F}(M,\mathcal{F})}$ $or =$ *respectively.* Moreover, W is in $\mathscr{L}(M, \mathscr{F})$.

Proof. Obvious for the case $D \in \mathscr{D}_{\mathscr{F}}(M)$. Let $D \in \mathscr{D}_{\mathscr{L}}(M)$. The restriction of *D* to $\mathcal{T}(M)$ belongs to $\mathcal{D}(M)$. Then the assertion follows from Proposition 4. 4 and Lemma 4. 1. Q. E. D.

Then we get Main Theorem similarly as Theorem 3. 4.

Theorem 4.6. (*i*) All derivations of $\mathcal{L}(M, \mathcal{F})$ are inner, that *is,* $\mathscr{D}_{\mathscr{L}}(M, \mathscr{F}) = \mathrm{ad}\mathscr{L}(M, \mathscr{F}) \cong \mathscr{L}(M, \mathscr{F})$. Hence

 $H^1(\mathscr{L}(M, \mathscr{F}); \mathscr{L}(M, \mathscr{F})) = 0.$

(*ii*) The derivation algebra of $\mathcal{T}(M, \mathcal{F})$ is naturally isomorphic *to* $\mathscr{L}(M, \mathscr{F})$, that is, $\mathscr{D}_{\mathscr{F}}(M, \mathscr{F}) = \{ \text{ad } W |_{\mathscr{F}(M, \mathscr{F})}; W \in \mathscr{L}(M, \mathscr{F}) \}$ $\cong \mathscr{L}(M, \mathscr{F})$. Hence

 $H^1(\mathcal{T}(M, \mathcal{F}); \mathcal{T}(M, \mathcal{F})) \cong \mathcal{L}(M, \mathcal{F})/\mathcal{T}(M, \mathcal{F}).$

4.4. Examples. Let $H^1 = H^1(\mathcal{T}(M, \mathcal{F}); \mathcal{T}(M, \mathcal{F})) \cong \mathcal{L}(M,$ $\mathscr{F}/\mathscr{T}(M, \mathscr{F})$ for a foliated manifold (M, \mathscr{F}) . In many cases, H^1 are of infinite dimension.

Proposition 4. 7. *Assume that there is a compact leaf L of ^ such that there is a saturated neighborhood U of L, which is a product foliation* $D^q \times L$, where D^q is a q-dimensional disk. Then, H^1 is of *infinite dimension.*

Proof. Every leaf in U is represented by a point of D^q . Let f be a function supported in D^q . Then $f \mathscr{L}(M, \mathscr{F}) \subset \mathscr{L}(M, \mathscr{F})$. Hence the assertion follows from Theorem 3. 4. Q. E. D.

However, *H¹ may* be of finite dimension. Assume that *M* is compact. J. Leslie [5] gives examples of dim $H^1=0$, or 1: (i) an Anosov flow with an integral invariant for dim $H^1=0$, and (ii) irrational flows on a two dimensional torus T^2 for dim $H^1 = 1$. We can modify the latter to get a foliated manifold with dim $H^1 = n$ (for arbitrary $n \leq +\infty$), that is, irrational flows on an $(n+1)$ -dimensional torus T^{n+1} .

We have also other examples. Fukui and Ushiki [2] shows that dim *H1=2* for the Reeb foliation on a 3-shpere *S³ .* Further, Fukui [1] shows that the following: let (M, \mathcal{F}) be a Reeb foliated 3manifold, then dim *H¹* is finite, and equals to the number of generalized Reeb components.

References

- [1] Fukui, K., On the homotopy type of some subgroups of Diff(M3), Japan. J. Math., 2(1976), 249-267.
- [2] Fukui, K. and Ushiki, S., On the homotopy type of FDiff (S^3, \mathscr{F}_R) , *J. Math.*, *Kyoto Univ.,* 15 (1975), 201-210.
- [3] Kanie, Y., Cohomologies of Lie algebras of vector fields with coefficients in adjoint representations; Hamiltonian Case, *Publ. RIMS, Kyoto Univ.,* 10 (1975), 737-762.
- [4] Kanie, Y., Cohom ologies of Lie algebras of algebras of vector fields with coefficients in adjoint representations; Case of Classical *Type, Publ. RIMS, Kyoto Univ.,* 11 (1975), 213-245.
- [5] Leslie, J., A remark on the group of automorphisms of a foliation having a dense leaf, *J. Differential Geometry, 7* (1972), 597-601.
- [6] Reeb, G., Sur certaines propriétés topologiques des variétés feuilltées, Act. Sci. Ind., Hermann, Paris, 1183 (1952), 83-154.
- [7] Takens, F., Derivations of vector fields, *Compositio Math.,* 26 (1973), 151-158.