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On the Spectral Representation of Holomorphic
Functions on Some Domain
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§ 0. Introduction

The investigations of this paper will be concerned with the inverse
Fourier-Laplace transform of functions holomorphic in some domain.
On this subject the representation of entire functions has been
obtained by Paley- Wiener- Schwartz and Eskin (cf . ; [2], [7] p. 238).
However as for the problem of functions holomorphic in bounded
domains, it seems to the author that only the case of a tubular cone
has been studied (cf. ; [1], [6] Chapter VI Theorem 5, [7] Chapter
V § 26).

Among these works, Schwartz5 theorem characterizes a class of
holomorphic functions whose spectral functions0 f ( x ) possess the
following properties :

(1) supp/C[0, oo]

(2) e-<*-*> f ( x ) ^ f f " ( B V for some felF.

Since a distribution in £?' is represented in the form of a finite sum
of derivatives of continuous functions of power increase, we can say
that Schwartz3 theorem essentially treats about a spectral function
f ( x ) in Rl which satisfies the following properties :

(10 fM = -+SMx}) supp /oC[0'

for some integer &^0 and constant

* Communicated by M. Sato, July 7, 1976. Revised February 21, 1977.
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t) We call the spectral function the inverse Fourier-Laplace transform of functions
holomorphic in some domain.
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(2') e<"»ft(x)

is a continuous function of power increase.
In this paper, we shall first prove that the Schwartz theorem can

be generalized to the case where the spectral function g(X) satisfies
the following conditions :

(3) gW = --y*g*W, supp

(4) goW is a continuous function and, for any
there exists a constant Ke^>0 satisfying the inequality

Here V is an affinely homogeneous convex cone in Rn, V* is the

closed dual cone of V, p is a multi-index and f -^y) is a Riemann-
\ OA /

Liouville operator associated with the cone V (see [5], Proposition

1. 1, p. 202). Since the support of the fundamental solution of f-^y

is contained in the closed dual cone F*([5], Theorem 2.2 p. 216),

turns out to be a hyperbolic differential operator. Secondly

we shall consider the case of the Riemann-Liouville operator

"-" Proposition 1.1, p. 202) associated with the real
UL,

Siegel domain

where F(. , .) is a homogeneous F-positive symmetric bilinear form
on Rm with values in Rn. Our result of this case (a main result)
characterizes a class of holomorphic functions whose spectral function

, C) satisfies the following properties :

where /0(^, Q is continuous in (2, £)^RnxCm, entire in CeCw and
is of support in V*xCm',

(6) for any e>0 there exists a constant Ke>0 to satisfy the inequal-
ity
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\f0(A, Q

Inequalities (4) and (6) can estimate the fundamental solution of

the operators (-^y — %) and (-^—^(~aF> ^))3 respectively, where

the vectors p= (ft, . . ., ft) and <J= (a19 . . . , #,) satisfy the conditions

Pis ffi^> — di^>Q (*= 1? • • • > 0 for a fixed vector d= (d19. . . , <sQ. Also

the support of /0(>0 [resp. ^0(^ C)] is contained in the closed dual

cone F* [resp. V*xCm~] which is equal to the support of the funda-

mental solution of the operator (-^y —3> 0 ) resp. (-^—^(-^-9 -*£')} •
\ UA / [_ \ OA \ O<£ U£ / / J

Therefore the spectral function g(X) [resp. f(A, Q] is considered

to approximate the fundamental solution of the operator ( ^ — y Q )
V OA /

resp. \-~^- — F(-*7r9 ^^}} • Thus we call holomorphic functions
L \ 3^ \ 3f 9? // J
satisfying the conditions (3) and (4) [resp. (5) and (6)] "V-hyperbolic"

[resp. "D-parabolic"].

Let us enumerate symbols and notations used in this paper (as

for the details of these symbols and notations, see [4], [5]). Let V

be an affinely homogeneous convex cone of rank / which does not

contain straight lines in Rm and V* be a dual cone of V with respect

to the scalar product ( . , . ) . Since it is possible to transfer to V the

structure of T-algebra ([8], Definition 3, p. 380), we fix a point e

in V to satisfy the condition (e, ^) = sp^([5], p. 22, (2.13)) and

define the dual vector x* by sp (X*A)= (x, A). We denote by Fv*(p)

the gamma function of the cone F*([5]3 Definition 2.2, p. 22).

The symbol -£p[resp. x^~\ is meant by a compound power function

of V [resp. F*]3 where p is a multi-index ([5], p. 20 (2.3)). Put

p*= ( p l 9 . . ., ft) for p= (ft,. . ., ft). Then we have x= (**);* ([5],

p. 23 (2. 26)). The vector p for which xp becomes a polynomial

are called F-integral ([5], Definition 3.2, p. 37). F(,) denotes a

homogeneous F-positive symmetric bilinear form on Rm with values in

^"([4], p. 199, (1. 1)^(1.4)) and also F(,) is used in case where

it is naturally extended on Cm with values in Cn. The vectors d= (Jf.)

([5], Proposition 2.2, p. 20), n= (nj ([5], p. 14, (1.16)), q= (<?,-)
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([4], p. 201, (1. 16)), >? and I ([4], p. 212, (2.3), (2.4)) are proper
symbols associated with the cone V and the bilinear form F(,).

§ 1. The Case of "V-hyperbolic" Holomorphic Functions

In this section we prove the following theorem which generalizes
Schwartz5 theorem [6] and characterizes the "V-hyperbolicity" of
holomorphic functions.

Theorem 1. Let h(z) be a holomorphic function in the tubular

cone

T= [z<=Ca: 1m z(=V+y0, yQ is fixed] .

Suppose that, for any £^>0, there exist a constant Kf^>0 and a V-integral

vector p0 satisfying

(1.1) |A(*)

in the closed domain

Ts={z^Cn: 1m z-y0-

where V is the closure of V and e is the identity. Then the spectral

function^ g(X) of h(z) is represented for some V-integral vector pl as

where gQ(X) is a continuous function with support in the closed dual
cone V* such that, for any £^>0, there exists a constant K'S^>Q satisfying

(1.3) l&Wl^expt t y0+e).

Conversely, if g(X) satisfies these conditions for a V-integral vector

/?! and a fixed vector yQ^Rm, then the Fourier-Laplace transform h(z)

of g(X) is holomorphic in the tubular domain T and satisfies inequality
(1) for a constant Ks^>0 and a V-integral vector p0.

Proof. We prepare an equality to use in the proof. Since we

t) As for the definition of the spectral function of the holomorphic function in the tubular
cone, see [7], p. 230.
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have

(1.4) exp(i(*,
JV*

= \ exp (-sp (-
JV*

= />(-/»•) (-«)', ImzeF, Re ft<— ̂ -,

»=! , . . . , /,

the Parseval-Plancherel formula gives

(1.5)

where 2 Re /o.-^rf,-— - (/ = !,..., /) and y^Rn is chosen so that

Now let A (z) be a holomorphic function in T satisfying (1. 1).

Then, for a sufficiently large F-integral vector, the spectral function

g(X) of h(z) is expressed as follows:

(1.6)
O/I

We set

gt(X) =( e-'«-*h(z) (-iz-yoy
Pldx.

JRn + iy

Then in virtue of the Cauchy theorem the function g0(X) is inde-

pendent of the plane of integration in the tubular cone T and we

obtain from (1.1) and (1.5)

(1.7) \gQ(X) |

T-(-Re
. Ke P0-Re Pl~d
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if y is chosen so that z=x + iy^Te. Setting y=yQ + ee in (1. 7),

we obtain inequality (1.3). If Z& F*, there exists y^ V+y0 satisfying

(^ ^1-^0)^0. Therefore if we set y = t(y1—y0) +yQ, then y<=V+yQ

for any £>0. Letting Z-» + oo in (1.7), we see that the right side

of (1.7) vanishes. Hence supp gdV*. Since inequality (1. 1) and

equality (1.5) gives

(1.8) \e-

the continuity of gQ(ty follows from Lebegue's convergence theorem.

Conversely, suppose that a function g(X) is given for some V-in-

tegral vector p1 by (1.2) with g0(X) satisfying inequality (1.3). Let

us set

h(z}=(
J

Then we have

(1. 9) h(z)

=

Inequality (1.3) yields

(1.10) \ e«*-*g.
JV*

dl

Since the right side of (1.10) is convergent for y—y0—ee^V, we

have inequality (1.1) in the closed domain Ts. Let us show that

h(z) is a holomorphic function in the tubular cone T. From (1.3),

we see that for y— yQ—

(1. 11) l^-'tt.&CJ) \£K'. \*> lexptf, -
X=(X»...,^

Then in virtue of Lebesque's convergence theorem we have
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(1.12) 4

=s,
where z = (z1} . . . , zn) eC", zk=xk + iyk and A= (/i13 . . . , /lre) and also

each integration of (1. 12) is continuous in xk and yk (& = !,..., ri).

Since the first equality of (1. 12) is the Cauchy-Riemann equation,

we conclude that h(z) is holomorphic in the domain T.

Q. E. D.

§ 2o The Case of "D-parafeolic" Holomorpliic Functions

In order to characterize the "~D-pambolicity'* of holomorphic

functions, we prepare a lemma.

Lemma. Let h(u) be an entire function in Cm which> for any

, satisfies the following :

(2. 1) \h(u) |^^eXp{-(l-e)(^ F(u1} Ml)) f l

J, F(u2, u2)}
Pj2},

where X^.V*, p^l (z = l5 2) and u=ul + iu2e.Cm. Then the spectral
function /(£) o/ h(u) :

is entire and for any e^>0 satisfies the inequality

(2. 2)

\ (z = l,2) and £ =

Conversely, if /(£) satisfies these conditions for certain numbers

>\ (z = l,2), i/zew z'£? Fourier-Laplace transform h(u) :



582 TOSHIHIRO WATANABE

h(u)=( eispF(-»y(QJf
Ja^+i,

is entire and satisfies inequality (2. 1) for any

Proof. From inequality (2. 1) we have

(2.3) |/(C) l^expfeptftf, «,) + (!+«)& F(«,, M,))'"*}

X J^ exp {sp^(?, Ml) - (1 -«) (^, *•(«„ «,)) V2} ^-

Put u\=I*u^ Then the integral of the right side of (2.3) becomes

(2. 4) _ exp {spFGfc «,) - (1 -e) (/t, F(«u «,) )'»'*} du,

Putting

r=(sp^(M;5 M;))1/2 and s=(spF(^-1i?, ^*-1
)

and using the Schwarz inequality, we have

(2.5) X7

^C.V*/2sup {exp(r-5- (1-e)/1)}-

In virtue of the Young inequality we can estimate the right side of

(2. 5) as follows:

(2.6) Ce2~^

Summing up, we obtain

(2.7) ^_exp{spF(i?, Mj-Cl-.)^ FCu,, M,))'1"}^

exp -A

Since h(u) is an entire function, the spectral function /(£) is inde-



SPECTRAL REPRESENTATION OF HOLOMORPHIC FUNCTIONS 583

pendent of u2=lm u. So we put

u2= -

in inequality (2.3). Then by setting t=(spF(3.*-1?, A*-1!))172, we

have

(2. 8) exp{SpF(t, «,) + (1 +8) (A, F(u2, «2))>2/2}

= exp { -p-/^t^h^ + (1 + s)A V2}

''- A

Inequalities (2.3) and (2.7) and equality (2.8) prove (2.2). The

analyticity of /(C) can be proved by a way similar to the proof of

Theorem 1 .

Conversely, suppose that f(Q is an entire function satisfying

inequality (2. 2) for any s>0. Then the Fourier-Laplace transform

A(tt) of

h(u)=( ewc..o
JlZ +»>

can be estimated as follows :

(2.9) |A(M)

Putting f'^^*"1? in the integral of (2.9), we have

(2.10) ^-*/2exP{-spF(M2, f)

- (P'^pr'^2 -e)

, r))f2/Vr.
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Further putting

a=(*pF(Pu» 2*w2))
1/2 and &=

and using the Schwarz inequality, we obtain

(2.11) ^expt-spFtf'M,, ?')

- (rt-'A"*'"* -«) (spFCF, O )^

^ C. sup {exp (a • b - (fc'-'A '•"' - s) ft*') }
0^6<<»

The Young inequality yields the inequality

(2. 12) Ce sup {exp(a-b-(p'2-%
P'2/P2-£)bP'2)}

Consequently, we obtain

(2.13) \a&*"exp{-SpF(u2, f)
t/JZ

On the other hand the function h(u) is independent of the plane

of integration £ = £ + «? (where 17 = constant) . Therefore by setting

Jt*I*ttI and c=(;,

we have

(2. 14) exp {-spf («„ 7) + ̂ -'A'^'

X

r= exp {

-exp {-(1-6) (*, FCii,, ^))V2}.

Thus inequality (2.1) follows from (2.9), (2.13) and (2.14). The

analyticity of /(C) can be proved by a way similar to the proof of

Theorem 1. Q. E. D.
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Now we can state the main result concerning the "D-parabolicity"

of holomorphic functions.

Theorem 2. Let h(z, u) be a holomorphic function in the domain

D={(z, u)<=Cn+m: Imz+F(u1, uJ-F(u2, u2

Suppose, for any e>0, there exist a constant Ce>0, a V-integral

vector p0 and integers & f>0 (z = l 3 2) such that

(2. 15) \h(z, u) I^C.

X \(-iz+F(u,

in the closed domain

D£={(z, u

Then, for some V-integral vector p^ the spectral function

is represented as

where the function /0(^, Q is continuous in (^ C)^B"XCW , entire in

C^C7OT and is of support in V* xC"", and satisfies in V* x€m the ine-

quality

(2. 17) |/e(*, 0 |^K.

Conversely, if a function /(^, C) satisfies these conditions (2. 16)

and (2. 17) for any e>0 and some V-integral p1} the Fourier-Laplace

transform

h (z, u) =
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is holomorphic in the domain D and satisfies the inequality

(2.18) \h(z9 u)\^C's\(-

in the closed domain

D'e={(z, u)
-(l+s)F(w2, uz)-ee<=V} CD for any £>0.

Proof. We denote by g(A, u) the spectral function of h(z, u)
with respect to z :

=\ e-i(l'*h(z, u)dx
jRtt+iy

where, for any fixed u£=Cm, y is chosen so that (z, u} EiZ). Then for
any F-integral vector p19

(2. 19) g(2, u) =(-lr+F(u, w))"

•>&(*, u)(-iz+F(u, u}Y"ldx (z, 1*
Js"+!y

Put

(2.20) ga(*,u)= e-'^h(z, u)(-iz+F(u, u)

Then by Theorem 1 we see that ^0(^3 u) is continuous in
and the support of g0(A9 u) is contained in V*xCm. Since, for any
fixed u^Cm, the plane of integration of (2.20) is chosen so that
(z, u)^D, gG(h M) is an entire function of u^Cm. Since the inte-

grand h(z} u)( — iz+F(u, M)) PI of (2.20) is holomorphic in the
domain D, we see that gQ(%, u) is independent of y* Therefore it
follows from (1. 5), (2.15) and (2.20) that for a sufficiently large
F-integral vector pl and y=—F(u19 u1)+F(u2y u^+ee (s>0)3

(2.21) \g,(l, u

Xexp(/l, —F(u19 ul)

{-(l-e)(^ F(u» MI)

Now if we apply Lemma with />x= p2 = 2 to the function
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(2. 22) /. y, 0 = \
J

then we see from (2. 2) that f0(X9 Q satisfies inequality (2. 17) and
is an entire function of CeC"1. The continuity of the function /0(/!3 Q

with respect to A^.Rn is obvious. We have from (2. 19)

Conversely, if the function /(^, Q satisfies conditions (2. 16) and
(2. 17) for any e>0 and some V-integral vector p^ it follows from

Lemma with p1=p2=2 that g0(A, u) in (2.22) is continuous in
and entire in CeC"% and satisfies the inequality

(2.23) \go(A, M) |^K;exp{-(l-e)(J, F(ul9 MI))

Then, by use of Theorem 1, the Fourier-Laplace transform h (z, u)

of /(^, Q is holomorphic in the domain D and satisfies (2. 18) in
the domain D(. Q. E. D.
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