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Classifying Subgroups of Solvable Groups

By

J. F. McClendon*

Let G and K be groups (finite or infinite). Two very general

questions that might reasonably be asked are (1) does G contain an

isomorphic copy of K? (2) can the isomorphic copies of K in G

be classified or (in the finite case) counted? The present paper can

be viewed as directed toward the second question although the first
is touched on lightly. Actually it will be seen that most results

concern subgroups that are isomorphic to K in a certain way. Also

the answer is in terms of one dimensional cohomology. So it is

perhaps accurate to say that the present paper studies relationships

between the subgroup structure of a group and its low dimensional

cohomology.

One result which can be stated without too much terminology is

the following (Corollary 3. 7). Let G = GQ^G1(J. -DG f = l be a solvable

series with A,. = G,._1/Gi.. {2,. ., s] z>7 and B{ = 1, z'el, BS=A{, i&I.

Suppose that if i^I and G/Gf._iZ) W and W covers B13. ., £,-_! then

HS(W, AJ=Q9 j=l, 2. Then (1) G has a subgroup K covering
B19. ., Bs and any two such are conjugate. (2) all such<-»/7,.ej (A,./

A,. 8'~1). This generalizes the classical theorem of P. Hall and the

exact relationship to Hall's theorem is discussed in Section 3. A more

typical result is Theorem 2. 4 whose conclusion reads

S((K, £)cG, E, B0, M} = \JH1(J, J, u*A)/Hl(J, J, u*tB).

The left hand side is a certain set of subgroups of G isomorphic

to K.

The paper is organized as follows. In Section 1 sets of subgroups
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of an abelian extension are studied which are defined by given
maps. In Section 2 it is shown that sometimes the dependence on
maps can be dropped. In Section 3 the results of Sections (1) and
(2) on abelian extensions are spliced to get results on solvable groups.
The results of this section are of a splitting nature. That is, sufficiently
strong hypotheses are used so that one can count subgroups simply
by counting the number produced at each stage and multiplying
the numbers. I hope to study some non-splitting situations at another
time. In an appendix some results on relative cohomology and
derivations are recalled.

§ 1. Subgroups of abelian extensions which extend
given maps.

Let K be a group and A a K-module. Recall that a derivation
a: K-+A is a function such that ot(xy} = a(x) -\-xa(y). Sometimes
A will be written multiplicatively and the condition will be written
a(xy) =a(x) ( x ' a ( y ) ) . If a and /3 are derivations then their sum
is defined by O + /3) (x) = a(x) + fi(x). It is easily checked that the

set Der(J^, A) is an abelian group under this operation. If K is a
subgroup of K let Der(K, K, A) be the subset of Der(X, A)
satisfying a(:c)=0 for x^K. It is a subgroup of Der(K, A). Let
ln(K, A) be the group of inner derivations, that is, derivations of the
form aa where a^A, aa(x)=a~xa and In(X", K, A) the subgroup
of inner derivations trivial over K. Note that if aeDer(j£, A) then
a( l )=0 so Der(^, A) =Der(K, 1, A). If B is a normal subgroup

of K such that BdK acting trivially on A then Der(J£, K, A) =

Dzr(K/B, K/B, A). In particlar, if K is normal and acts trivially
on A we have Der(^, K, A) = Der(£/Jf, 1, A) = Ver(K/K, A).
In this case relative derivations are more a convenience than a
necessity since we can reduce to the absolute case without even
changing coefficients.

On the other hand, for any subgroup K, Der(J£, K, A) can be
viewed as the one dimensional cohomology group Hl(K, K; A) where
the latter is defined by Takasu [7]. Namely, we set I(K, Jt, Z) =
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>Z) where e(2 n{x^)=^ni9 and Hq(K, K', A) =
A.

Ext*~1(/(-K', Jt, Z), A) for #^1, and we have an exact sequence

where H*(K, Jt; A) =Der(^, jg", A). Here we note that H1^; A) -

Der(^, A)/In(K, A) which differs from Der(K, A) itself, and

this is the point where relative cohomology is necessary to study

the set of derivations. See [1] also, but note the different indexing.

In this section we will study the following situation.

U U U

Here E is an abelian group extension (the sequence is exact and A

is abelian). K is a subgroup of G and B = B(K) = KnA, J=J(K) =

p(K), K is a subgroup of K containing B and need not be normal

in K and J=pK. A gets a left J-module structure by (xE}a=xax~l

for x^K. B is a sub J-module. The map K->J gives both K-module

structures. In particular, A has a natural Z)-module structure.

1.1 Definition, (a) Suppose K and L are subgroups of G. A

homomorphism 0: K->L is an E-homomorphism if ^ ( K f l A ) c L n A

It is an ^-isomorphism if it has an inverse which is also an E-

homomorphism. It is an £-monomorphism if it is an ^-isomorphism

onto its image.

(b) S^KdGy E) =all subgroups of G which are £-isomorphic to K.

(c) Let t: K-+G, u: J-+D be given monomorphisms. Define

S(KdG, E, t/u) to be all L in S(KdG, E) such that there is some

£-monomorphism 0: K->G with <f> = t on K, p(p = up, and <j>K = L.

(d) Let u : J-»D. Then u*A is A with the J-module structure

from u. Note that if p<j)—up then in u*A we have x'a — ̂ (x)a (j)(x)~l:

Note also that (J, u*A) and (w(J), A) are isomorphic in the sense

of change of groups.

Monomorphisms t: (K, B)—>(G, A), ui J—>D are compatible if

(1) f induces u on J and (2) £: B->A is a homomorphism of
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J-modules B-*u*A. Note that S(KdG, E, t/u^^t, u are com-

patible.

Let L, L'^S=S(Kc:G, E, t/u) and ^: K-»G, <f>' : K-+G the E-

monomorphisms from (c) above. Define d = d(L, L'} : K-^G by

1.2 Lemma. d(Ly L')(=Der(K, K, u*A) =Der(J, J, wM).

= up=p$' so dCK)cA and ^^^ on ^ so

Also ^(^) =#/(^)#(^)-1 = ̂ /(^)rfCy)#(^)"1=# /W# W'H^W
^(^r)"1) =d(x) (xmd(y)) so J is a derivation to u*A.

1.3 Theorem. Suppose L<=S-S(KdG, E, t/u). Define

A = AL: S->Der(J3 J, w*A)/Der(J3 J3 M*^(J5))

by A(U)-d(Lf, L). TAen J is a bijection.

Proof. Let M be the set of all jE-monomorphisms <p : K—>G such

that p(f> = up. Define an action of Der(J^, K, u*A) on M by

(a$) (x) = a (x) <f> (x) . Let a$ = (j)f. Then (j>f is a homomorphism since

« (.r) (^' a (y) ) ^ (x) 0(y)=a (x) <f> (x) a (y) <f> (x) "^ (x)

. Now x^B^>a(x) =1 so ^/ = ^ on B and so 0'

monic on B and gives a homomorphism ^ : J->Z). It is easily checked

that ^5 = w and so ^ is monic. Now let Mz) AT = those momomorphisms

which restrict to t on K. Der(X, Jt, w*A) acts on N since ^ /ZIZ^

on K. The action is transitive since if 9^ ^2^^then <^(^25 0i)^i = ̂ 2

and by the lemma d is in Der(^? J?5 w*A). The action is clearly

faithful.

There is a surjection N-+S, namely, ^->^(^)cG. In order to

prove the theorem we must show exactly that :

a#(X)=aV(X)^a /a-1eDer(JS:, K, M*f(JB))

for some (and hence any) <f)^N.

First let /8=a/a-1eDer(jS:, Jt, u*t(B)). Then a^(a;) =j8(o:)-1

. But aV|B = ^|B = ^|B so £ (£) C <*'
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and hence a<f>(K) CLa'<f>(K) and vice-versa, proving half the claim.

Now suppose a<j)(K) =a'<f>(K). Then a'0=(a0)ov where y: K-»K

is an ^-automorphism of K giving the identity on K and J. Now

define p(x) = u(x)x~l and check that jueDer(i£, K, E). [Check

that v(K), lK(K)^S(KdG, E, l f / l j K ) and the lemma gives ft =

d(i>, 1) ̂ Der(K, K, £)]. Note that (a^^v= (0o^)a0. The reason is

that (a0) (i/ (a;) ) = a (fi (x) x} <j> (// (a;) a;) = a (// (*) ) 0 (/£ (*) ) a (a;) ̂  (// (^) ) -1

= <f>(fJL(x)) a(x} <j>(x) [since p(x) ^B i> a^(^) =1] =

*)• We see that a'$=(a$)ov=($ofji)a$. Check that

^ u*t(B}) and a/af~1=^>fjt. This proves the theorem.

Note that it follows from the theorem that rf(I/, I/) is a well

defined element of Der(J, J, w*A)/Der(J5 J, w*^JS) and depends

only on L and L7. Also d(L, L /)=OoL=L / .

1.4 Corollary. Suppose K normal in K and L<=S = S(Kc:G, E,

t/u) . Then

Derivations can always be viewed as absolute one dimensional

cocycles, and they can also be viewed as one dimensional relative

cohomoJogy classes and this leads to the following corollary.

1.5 Corollary. 1) AL : S-^H^J, J, u*A)/Hl(J, J, u*tE) =

Hl(K, K, u*A)/Hl(K, K, u*tB) is a bisection.

2) // K is normal in K then

AL: S-*Hl(J/J, 1, u*A*}/Hl(J/J, 1, u*tB*) is a bijection.

Notice that if we only wanted part 2 we could have used absolute

derivations only in Theorem 1. 3. However, even in this case relative

derivations seem more natural and are required for the cohomology

statement anyway-since (J/J9 1) can't be changed to J/J without

changing coefficients. The following simple (simplest) example shows

this. Let G = Sz Asymmetric group on 3 symbols and let A-»G— »£)

be A-*S3->C2 where A is the cyclic subgroup of order 3 and in
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general Cn is the cyclic group with n elements. Let B-*K-^>J be

1-+K-+K where K is the subgroup {1, (12)} of order 2. Let K =

B=l and u : J-^D be the isomorphism. Then we have Hl(K/K, 1, u*A)/

Hl(K/K, 1, u*tB)=Hl(C2, 1, C3)=C3. It is easily seen directly that

S(KdG, E, t/u) does indeed have three elements. However,

H(K/K, u

1.6 Corollary. 5^>Ker 8 : Hl(J, J, u* (A/tB))-*H2(J, J, u*tB)

Proof. Q-*B->A-*A/B— >0 gives an exact sequence

0->£P (J, J, B) -»Hl (J, J, A) -+H1 (J, J, A/E) -*H2 (J, J, B) ->. . .

(where A is w*A etc.) and the corollary follows.

1.7 Corollary. Assume Ker<5 : ̂ (J, u*tB)-*H2(J, J, u*tB) is

0 and Hl(J, u*tB)-*Hl(J, u*A} is isomorphic. Then

Proof. The hypotheses and the pair (J, J) give the following

commutative diagram with exact rows. Here A is u*A and B is

u*tB.

Q-*AJ-*AJ->Hl(J, J, A)-*Hl(J, A)
t T t T =

Q-*BJ-*BJ-*Hl(J, J, B)-+H*(J, 5)->0

The result now follows from a diagram argument.

1.8 Corollary- (1) Suppose K = BandH1(J:> u*tB)-*Hl(J; u*A)

isomophic. Then

* A/\u* AJ + u*tB]

(2) Suppose K = B=l and Hl(J; u*A)=Q. Then S^u*A/u*AK.

Proof. Since J=l these results follow from corollary 1.7.

Note that the S3 example mentioned above illustrates part (2)



CLASSIFYING SUBGROUPS OF SOLVABLE GROUPS 563

since H1(C2 ;w*C3)=0 and S

In general a conjugate of an element of S(KdG, E) is another

element of S(KcG, E).

Let A' = An centralizer of t K. Then S(KdG, E, t/u) is closed

under conjugation by elements of A'.

1.9 Theorem. Let L<=S(KdG, E, t/u) and A = AL. Then

S< --- - --- >Der(J, J, MM)/Der(J, J, u*tB)
U U

^'-conjugates of L <— In(J, J, ttM)/In(J, J, u*A) nDer(J, J, w*E)

Proof. Let F = d~1. It will suffice to show that /X#> is conjugate

to L iff a'elnCJ, J, w*A) for some a'e<tf>. Let L = $(K) where

<pEiN as in the proof of Theorem 1. 3. First suppose a =

a f lGEln(J, J, wM). Then (a^) (x) =a(x^(x} = a(x'a}-l(j) (x) =

and r<^a) is an A-conjugate of L. Conversely,

aLa'1 implies a0(X) = (cao^) (J^) = (aa^) (X) and so <a>

1.10 Corollary. Assume Hl (J, J, u*A) =du*AJ + i*H1(J, J, M*^S).

Then all elements of S(KdG> E, t/u) are conjugate by elements of A'.

Proof. Here, u*AJ = H°(J; u*A}^>Hl(J, J; u*A) is part of the

exact sequence of (J, J). The corollary follows from 1.9 since

In(J, J, A)/[In(J, J, A)nDer(J,J,5)]-[In(J,J,A)+Der(J,J,5)]/

Der(J, J, 5) and by the assumptions that the last is Der(J, J, A)/

Der(J, J, B)=S.

§ 2. Subgroups of abeliazi extensions which extend

given subgroups

The notation of Section 1 will be used here.

2.1 Definition. Let GiDM:D50, Di)J0. Define S((K, Jt)cG,

E,B0/J0, M) to be all L in S(KdG, E) such that there is an
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-E-monomorphism <fi:K->G with <?>B = B0, <j>(K)=L $J=JQ, <j>K=M.

Define S((K, £)cG, E, B0, M) by requiring only 0B=BQ and

=M. If B = K drop M and K from the notation.

Suppose t :X"-»G, fi : J-*D are given monomorphisms with t(K) =M,

*(B) = B0, ^(7)=J0. Then we have

S=S(KdG, E, t/tfdS'=S((K, Jt)cG, E, B0/J0, M)

2.2 Definition. (£, Jt, B) is a (f/w) -triple if S = S'.

We note here the following basic examples of (t/u) -triples.

(1) J=l. Then (B, B, B) is a (*/l)-triple.

(2) S non-empty, B = A. Then (K, A, A) is a (id/tt) -triple.

(3) B=l. Then (K, 1, 1) is a (l/M)-triple.

(1) and (2) are clear since In each case S and S' have exactly

one element. (3) can be checked directly without much trouble,

however, it follows from the theorem below.

Let Aut(X, K, B) be the group of automorphisms of K sending

K to itself and B to itself (similarly for Aut(2C, Jt) etc.). Let

SeAutCS, B) and eeAut(J, J). Say that d and e are compatible

if (1) 5 induces e on J and (2) d is an s-homomorphism of the J-

module B (i.e., 8(x*b)=e(x)*d(b) for ^eJ, 6eB). Note that

every aeAut (K, Jt, B) gives rise to a compatible pair (5, e)

where d is the restriction of a and e is induced by a. Call (K9 K, B)

a ze>&2& triple of every compatible pair comes from some a^Aut

(K, K, B).

2. 3 Theorem. // (K9 K, B) is a weak triple then (K, K, B) is

a (t/u) -triple for any compatible (t, u).

Proof. Let (j>(K)^Sf where 0: (K, K, B)-*(G, M, B0) is an

jE-monomorphism. Let ^ Jt=^ and let ^ induce v : J-> J0. Define

£ = v~1u: J->J. Since w, v: (J, J)->(J0, J0) we have eeAut (J, J).

Define d:K->K by 3=5-^ so 3eAut(Jt, B). It is easily checked

that d and e are compatible. Let aeAut(X, J?, B) with a\K = d
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and a inducing e. Define <j)' = <j)a\ (K, K, J3)—>(G3 M3 B0)0 Then

$'\R = t and 0' gives w on J. Hence $(K)=$'(K)^S proving the

theorem.

Example. Let JdJ-^Aut B and K=BxJ, K = BxJ. If (5 and e

are compatible it follows that 3(0Cr) (&)) =0(e(#))5(fe) for 6eB

= 5x1 and dx = sx for x^J=lxJ, Set a=dxe. Then a is an

Aut (X", K, JB) and gives (5, e). Hence (X, Jt3 B) is a weak triple,.

2o 4 Theorem. For each JQ^S1=S(JdD) choose an isomorphism

u — u(Jo) : J— >J0. Let t:K->M be a fixed isomorphism. Suppose

that H2(J, J, u*A)=Q=H1(J, J, HomCB, wM)) /or a// cAawew M.

Suppose that (K, K, E) is a weak triple. Then

S((K, X)CG3 E, BQ, M) = UJGSH
1(J, J, u*A)/Hl(J, J, u*tB}a

Proof. Note first that S((K, K) cG3 E, B03 Af) = U 5((X3 Jt) c
-

G3 £3 BO/JQ, M) and because (K3 A, B) is a weak triple this last

is c S(KdG, E, t/u). We will be finished if Corollary 1.5 can
J0es'

be applied; for this we must show that S(Kc:G, £3 t/u) is non-

empty for u : J->J0. We have

giving K c: K

where H=(up}*G the pull-back of G along up. Thus a section of

H-+K extending tr will give the desired <f>: jKT—>G3 making the first

diagram commutative. Now define 06(O = [<?, t'(K)~\^.H2(K,K, A).

Here <? is the sequence A-*H"-^£" and H2(jK:3 it, A) is identified

with equivalence classes [^3 L] by [7, Theorem 4. 1], I claim that

ob(tf) =0 iff tf has an extension to a section of <f. The reason is that

by the proof in [7]3 [<^, L]=0 iff there is an isomorphism F : E—>

KxvA (semi-direct product) such that I7F=p and F(x) = (p(x), 1) =

i^x) for all x^L. Now if ob(tf) =Q then it is easy to see that F~lil

is the desired extension. Conversely, if s is such an extension then

F(e) = (p(e), e(sp(e}}~1} will be the required isomorphism. To
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complete the proof it will suffice to show that H2(K, £, u*A) = 0.

There is an exact sequence

Q-*H2(J, J, M)-*H2(K, K, M)-*Hl(J, J, Hl(B, M) )->...

(see [8]) and using M=u*A, Hl(B, u*A)=Hom(B, u*A) and our

hypotheses give H2(K, K, A) = 0.

It may be worthwhile to discuss a relatively concrete example.

Suppose A~>G— >D is a given abelian extension. Let S3 be the

symmetric group on three letters. We ask for the copies of S3 that

are in G. First of all let S1=S(S3dD) and a<=H2(D, A) the

classifying element of the given extension. For J0^S1 let a\JQEi

H2(S3, A) be the restriction of a. Let T= [JQ^S1 \a \J0 = 0} . If

S3^LdG then we must have either L[\A = l or Lf]A^C3. The

L's with LftA = l are the elements of S(S3C.G, E, 1/J0) where

B-+K-+J is l->53->53. Now (^3, 1, 1) is a weak triple so that

Theorem 2.3 applies. Corollary 1.5 gives Uj^H^S^ 1, w*A) for

these I/'s, where u = u(Jo) : S3->D is a chosen monomorphism.

Now we consider L's with L[\A = CZ. These are the elements

of S(S3c:G, E, B0/J0) where B-+K-»J is Cs-^53-*C2. For each copy

of C2 in D pick a monomorphism z; : C2-^D. For simplicity we make

the following assumptions on the C2 -modules v*A.

Assumption: H2(C2, v*A) = Hom(C33 -y*A)/HomC2((C35 vM) =

Hl(C2, Hom(C33 u*A))=0.

The cohomology of cyclic groups is well known [see, e. g. 2] so

these are easily checked in particular cases. From these assumptions

we deduce easily that H2(C2, 1, v*A)=Q=Hl(Cn 1, Hom(C35 v*A))

and Theorem 2. 4 can be applied. (-S^ C3, C3) is a weak triple

because S3 = C3x^,C2. The final result is that

G)<^[ U ffGS,, 1,
/Oer

U Hl(Ca,

where T is as above, 52=5(CacD), S2'=S(C3c:A), v = t;(AO : C2-> D,

s=s(N) : C3-»A are chosen monomorphisms. If we know that two

copies of S3 in D from T are isomorphic by an automorphism of
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D and similarly for any two copies of C2 in D then this simplifies to

ct, i, AVH'CC,, i, c3>]
In Definition 2.2 we could drop the hypotheses KuB. But then

if S = S((K, J£)cG, E, B0/J0, M)3L we have L>£03 ZoM so

Ml=MB, is a subgroup of L and S=S((K, K)dG, £3 £0/J03 M)

with K = KB, M=MBQ.

§ 3. Certain subgroups of solvable groups

Let G be a group (finite or infinite). Recall that a solvable

series for G is a descending chain

G = G0z>G1iD...z>G I_1:DG, = l

with each G,. normal in G and each G.-.i/G,- abelian. It will be

convenient to write Gi=FiG and speak of the solvable series F of

G. The factors of the series are the groups Gi,1/Gi=Ai (F)9

i = l, 2 , . . , 5.

If K is a subgroup of G then it has induced filtration

K= KOD K^ . . .D ^_I=D £. - 1

where X",. — Kf|Gf.. A. gets a left K/Ki_1 module structure by

(xyx-l}Gi for ^eK and yeG,-^. Let Bi=Bi(K) =

The z'th stage is then

, =At - >G/G,
U U U

, =Bt

Similarly each quotient group of G has an induced filtration. When

confusion is unlikely, all induced nitrations from F will be denoted

by F also.

3. 1 Definition, (a) Suppose K and L are subgroups of G. A

homomorphism <j> : K-^L is an F-homomorphism if <f>(K{) cLf z"= 1, . . .,

5. It is an F-isomorphism if it has an inverse which is also an

F-homomorphism. It is an F-monomorphism if it is an J^-isomorphism
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onto its image.

(b) S(KdG, F) = all subgroups of G which are F-isomorphic to

K.

(c) Let KuK. Let t: K-^G, uf: 5,.->A. be given monomor-

phisms. Define S(KdG, F, {u,}, t} to be all L^S(KdG, F) such

that there is an -F-monomorphism 0: K-^G with ^>i=ui: K^JK^

G.-.j/G,- and 0 | K= t. If K= 1 drop it from the notation.

(d) Let J^A—A^F), *"= 1, 2,. . ., s, and McG be given sub-

groups. Define S((K, K) cG, F, {J,}, M) to be all L in S(KcG, F)

such that there is an F-monomorphism 0 : K-+G, $(Bi)=Ji} $(K) = M.

Define ^((^ Jt)cG3 F, M) by requiring only (f>(K} = M.

(e) A subset of S(KdG, F) is called a conjugate set if all its

elements are conjugate. It is called a ^-conjugate set if all its

elements are conjugate to K.

For the next lemma we use the following notation.

S=S((K, K)cG3 F, {JJ, f = l , . . . , 5, M)
CG/GS_13 F, {J,}, i= 1,. . . , 5- 1, pM)

£5 J./1Z, M)

Here £ is 1-*G-_1->G4G/G-_1->1. Let J=M^JS. Clarly we always

have Sd\J [S"(K)/R^S'}. We are interested in finding sufficient

conditions for equality.

3.2 Lemma. Let Ji = Bi) M= K normal in G. Bs and Bs normal

in G. Suppose S' is a K/K^-conjugate set. Then S"(R)*->S"(K/KS_J

by conjugation. If S" (K/K,-^) is a conjugate set then so is each S"(R)

and S is a K-conjugate set. Furthermore S= U S"(R}.

Proof. Let cx : (K/Kt_19 pK)-*(R, pM) be an isomorphism where

cs is conjugation by x^G/G,^. Let x=yGs_1) and consider cy:

5//(X'/X',_1)->5r//(J?). Because the compositions of an ^-isomorphism

and cy is an E isomorphism and because Bs and Bs are normal we

see that cy is well defined. The inverse is cy-\ so cy gives the desired

1-1 correspondence. Now suppose L^S" (R) then L is a conjugate
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of an element of S/\K/KS_1) which is in turn a conjugate of K.

Thus L is a conjugate of K and hence in S [The reason is that

conjugation is an J^-monomorphism. Specifically, if G=G0IDG1I3. . .

Z)GS=13 Gr>G,., Kj=Kr\GS9 y^G, cy: K->G conjugation by y, then

cy is an jP-homomorphism and the equation (cyK) j = c y ( K j ) shows that

cy_! is also an F-homomorphism which will serve as an inverese to cyJ\

Proving S= \JS"(R) and that S is a conjugate set.

For the following theorem we suppose G, F, K, K given and take

Ji=Bi9 M=K. Here A—G^/G^ B—K^/K,, B^K^/K,. Suppose

K normal in G and each B,. and Bf normal in G/G,. Assume for

Hyp. 1) StK/KtdG/GoBt/WK^^WK,} or Hyp. 2) (K/Kt,

(K K{/Kt9 5,) a weak triple and Ker d: Hl(Ji9 B^H*(J» J,, Bf)

is 0 and Hl(Ji9 B^-^Hl(Ji9 A,} is isomorphic where J—K/K^, J{ =

K K f ^ / K f ^ . Let /= [i \i=2, . - ., s9 Hypothesis 2 is satisfied and

Hypothesis 1 is not.}

3.3 Theorem. (1) S=S(KdG, F, (B,}5 K) is a conjugate set.

(2) S<->H

Proof. The proof is by induction on s. The result is trivally true

for s=l [5=single element, A^1/Ai1 + B1
Jl = A/A+B=single element]

so we assume the result for filtrations of length s—l and prove it

for those of length s. We use the notation preceeding Lemma 3. 2.

Note that the induction assumption applies to both S' and S". First

suppose Hypothesis 1 is satisfied. Then S"(K/KS_^ is a conjugate

set and Lemma 3. 2 shows S=\jS"(K)=S'xS"(K/Ki,J+*S' and S

is a conjugate set. This proves the theorem in the case. Now

suppose Hypothesis 2 is satisfied. We have

, E, id/id) ->S"(K/K,-J

and by our weak triple assumption and Theorem 2. 3 these sets are

equal. The hypotheses of Corollary 1. 10 follow from those here so

t-i} is a conjugate set. Lemma 3.2 now shows that S is a
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conjugate set and S<^S'x S"(K/KS_J. Corollary 1. 7 gives S"(K/K,-J

<r*AJ/{AJ+BJ~\ and completes the proof of the theorem.

The theorems until now have assumed KdG. I now want to

include an existence statement. The resulting hypotheses, are, unfor-

tunately, inductive in nature. However it will sometimes be possible

to check them all at once rather than at each step.

Suppose p : E->D is a group homomorphism and K a subgroup of

E and B a subgroup of D. Say that K covers B if pK=B. Now

suppose G^GoiDGiD. . .nGs= 1 is a solvable filtration of G with

A—Gi-JGi and A.O-B,.. Say that a subgroup K of G covers Bi

provided K^ covers Bt.

Let B{ be normal in G/G,. If G/G^D Wand W covers B19 . . . A_i

then assume H*(W, A{/B{) = 0 for this W and also

either Hypothesis. 1) there can be at most one subgroup G/G,

covering Bi and W

or Hypothesis. 2) if W covers W and £, then (W, Bt) is a weak

pair and Hl(W, BJ-^H^W, AJ is isomorphic.

3. 4 Theorem. In the above sitting

(1) There is a subgroup K of G covering Bly . . . , Bs.

(2) S=S(KdG, F, {£.}) w a conjugate set.

(3) Le£ 7= {/ | z'= 2, . . . , ^ ^wcA ^Aa^ Hypothesis 2 w satisfied and

Hypothesis 1 M TZO^} . T^en 5<^ H

Proo/. We may assume the result for G/GS^ so we have WM^

covering J51? . . . , B,^. Consider the following diagram

A, - > G -U G/G-_1

1 1 g I
AS/BS - > G/BS - » G/G..,

U

W..,

The middle extension splits when pulled back over W,^ and there

results a monomorphism of Wf_! into G/J3, with image, say, Ws.
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q~lW's covers W,_! and Bs. This proves (1) of the theorem. Parts

(2) and (3) are now consequences of Theorem 3.3 with K=l.

Theorem 3.4 and the corollaries that follow can be viewed as

generalizations of P. Hall's theoerm [1]. The reader may wish to

compare them to some other generalizations from a somewhat different

viewpoint [5,6].

3.5 Corollary. In 3.4 (2) can be replaced by (20 any two

subgroups covering B15. . . , Bs are conjugate.

Proof. In the proof of 3.4 we assume (2) and (20 at the (5-1)-

stage. Suppose W covers Bly. . ., Bs and consider the diagram at the

beginning of the proof of 3. 4. Let W'=qW. p'W covers B13. . *, Bs_!

so it is in S''. p' is an isomorphism on W and W so W is F-isomorphic

to W and so conjugate to it (by the theorem). Now the conjugation

lifts to show W and W are conjugate.

Consider

£P(G/G,._13 AJ-^>H*(G/Gi-l, At/BJ-^+IPtW, AJBj and let

Ei=(Ai^>G-*G/Gi.1')<=H2(G/Gi.l9 A,). Then the proof shows the

following corollary to be true.

3.6 Corollary. In 3.4 the hypothesis H*(W, A,./J3,) = 0 can be

replaced by rest q*(Ei) = Q.

Recall the following classical theorem of P. Hall [1]. Let G be

a solvable group of order mn with (m, n) = 1. Call H a Hall subgroup

of G if \H\ = m. Then any two Hall subgroups are conjugate. Let

h be the number of Hall subgroups of G. Then h is the product

of factors/, such that (a) f{ = l (mod />,.) and p{ is a prime factor

of m, and (b) f{ is a power of a prime and divides one of the chief

factors of G. Now form a chief series for G, G^GoZjGjZ). . ,IDGS= 1.

The A{ are elementary abelian. If \A{\=qf then q \ m or q \ n. If

q\m set Bi = Ai and if q n set B~l. If W covers Bi9. . ., Bs then

\W\\m and is relatively prime to |A,/5t.| and so H2(W, Af./B,.) = 0.
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If Bi = Ai then Hypothesis 1 is satisfied. If B,.= 1 then (W, B,) is

a weak triple, fP(W, Bl.) = 0=flri(W, Af) since |W| and |Af | are

relatively prime. Corollary 3. 5 gives the conjugacy of the Hall

subgroups and that h=\HAi/Ai
 i~1 where I is the set of i with

£67

Bf.= l. Part (b) is clear and part (a) follows from induction and

the following elementary counting fact : If A is an elementary q

group of order qn acted on by a p group P then |AP1 =qf^qn~f = l

(mod />).
The above discussion includes a proof of the following.

So 7 Corollary. Suppose G is a group and G= GOID GXD . . . D Gs = 1

a solvable series with A{= G^JG^ Let {2> . . . , s} D! anJ Bf-= 1, f el,

Suppose that if i<=I and G/G^D W awrf W cowers JB15 . . . ,

Then (1) G Aas a subgroup K covering B1} . . . , 55 a?2j any two

such are conjugate (2) If S — all subgroups covering B13 . . . , jBs

At/A™*'-*\
tS7

Appendix

I will recall here a few facts about relative cohomology from
[Takasu, 3] for the readers benefit. I will also prove the equivalence

of the first cohomology group and the derivation group since this

was not done explicitly by Takasu.

Let G be a group, H a subgroup, and A a G-module. /(G, H, A)

is the kernel of the natural epimorphism Z(G)(g)HA-»A, g®a-^>ga,

and J(G, H5 A) is the cokernel of the natural monomorphism

A-»HomH(Z(G), A), a-*(g-*ga). Hq(G, H, A) is defined to be

Ext9~1(I(G, £T, Z), A) for q^l. There is a long exact sequence for

the pair (G, H),

and also a long exact sequence for 0-»A'—».A-»A"->0 (a short exact

sequence of G-modules)
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G, H, A')-*fl"f(G, H, A)->
, H, A ' ) - > - « -

Relative cohomology can be reduced to absolute cohomology by

H«(G, H, A) = H*'l(G9 J(G, H, A)).

Let GiDHuN and G\>N. There is a spectral sequence which gives

in particular

Hl(G/N, H/N, A")^£P(G, H, A)

and an exact sequence

0->H2(G/N, H/N, AN)-*H2(G, H, A)->
Hl(G/N, H/N, IP(N, A^-*H3(G/N, H/N, AN)->

H3(G3 H, A).

Now write I(G, H, Z)=I(G, H}. The definition tells us that

JfT(G, H5 A)=HomG(I(G5 H), A). Also we have (by definition)

where s0(^nixi')= ^nf and s(r(g)m) =£0(r')m. Define

Hom7(ZG(g)HZ, A)= fee Horn (ZG(x)HZ, A) |^(r

and check that it is a subgroup.

Theorem. Der(G, H, A) ̂  Horn7 (ZG(x)HZ5 A) ̂ HomG(I(G,£0,A) =

Hl(G, H3 A)

Proo/. [cf. MacLane34, pp. 106-107]. Let ^eDer(G5 H, A)

and define g-'eHom' by g7(#(8)l)=£Gr). It is a well defined

homomorphism since ZG(x)HZ is free abelian on G\£T. It is easily

checked to be in Horn'. For weHom define u in HomG(/(G3 H)9 A)

by M=W |/(G, H) and check that it is a well defined G-homomorphism.

Now define p:ZG®H Z->/(G, H) by Xr®l) = r®l-e(r) (l(g)l).

If /£e=HomG then h->hp is a homomorphism to Horn'. t>-»£> |G is a

homomorphism Hom'-^Der. It is easy to check that these maps
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give the desired isomorphisms.
The lemma reveals the relationship between the cohomology of

Barr-Rinehart [1,2] and that of Takasu [8]. It also suggests that
Barr-Rinehart made an unfortunate (although defensible) choice
of indexing. Recall that Barr-Rinehart defined Hj(G3A) via derivations
where <j>: G-*D is a group homomorphism. They noted that for
0=identity5 Hn^(G, A)=Hn+1(G, A), n^l, where the last is group
cohomology. Now let 7# (G, H) = I(G,H) ®ZGZD and define HI (G,H,A) =
ExtrWG, H), A) for q^l [cf. 2, p. 207]. If $=id. then this
is group cohomology. It is easy to see that Hf(G, A) =Hn^l(G, 1, A),
n^Q, and in particular Hn(G, A)=Hn+1(G, I, A), n^Q. The H
indexing and relative notation seem best to me since they are consistent
with topology and should make the relationship between results in

algebraic and topological cohomology transparent.
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