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Intrinsic Formula for Kuranishi’s 0%
By

Takao AKAHORI*

Introduction

In 1973, M. Kuranishi constructed a versal family of isolated
singularities through the consideration of d, equations under a cer-
tain assumption. He showed that the deformation of an isolated
singularity (V, x), where V is an analytic set in a domain in C*
with an isolated singularity x, corresponds to the deformation of
partially complex structures of the real hypersurface M=V NS*.
But, his method is very complicated and some of his formulas can
only be applied under the assumption of the existence of the “ambi-
ent space”. In this paper the author will show that we can prove
the Kuranishi’s formulas on abstract partially complex manifold in a
much simpler way. And we shall prove Kuranishi’s formulas for
holomorphic vector bundles on partially complex manifolds. The
author wishes to express his hearty gratitude to Professors S. Nakano
and M. Kuranishi for their constant encouragement and valuable

suggestions during the preparation of this paper.

§1. Partially Complex Manifolds and Almost Partially
Complex Manifolds

Let M be a differentiable manifold. By a partially complex
structure on M, we mean a pair (M, °T") of M and a subbundle
°T" of CQTM, where °T” satisfies the following conditions a. 1)
and a.2):
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a.1) °T"Nn°T"=0.

a.2) For any elements X, Y in I'(°T"), [X, Y] isin I'(°T").
Here [I'(E), for a vector bundle E, denotes the set of differen-
tiable cross sections of E, defined on an unspecified open set of M.

M with °T” is also called a partially complex manifold. Let M
be a partially complex manifold. Then there exists a following exact

sequence of vector bundles.
(1. 1) 0—-°T"P°T"->CRTM—>CRTM/°T"®°T"—0.

Differentiably, the above sequence splits and the splitting com-
mutes with the operation of conjugation. So there exists a C~ bundle
isomorphism map

p: CT'R°THYPCRTM/°T"P°T"3CRTM.

We shall fix the splitting CQTM=°T'@°T'PF,  where
F=p(CQTM/°T'@®°T"). F is invariant under the conjugation map
of CQTM. Especially, we denote the subbundle °T"@F of CQRQTM
by T'N.

Next we shall define a differential operator dry from I'(T'N) to
I'(T'NQ(°T")*). For any element u in I'(T'N) we set

(1.2) Oryu (X) =[X, ulpy,

where by [X, #]n, we denote the projection of [X, u] to T'N
according to the above splitting CQRTM=°"T"PT'N.
Then we get the following relations 8. 1) and B. 2)

B.- 1) X(fu)=(Xflu+f Xu,
B.2) [X, Yu=X(Yu)—Y(Xu),

where « in I'(T'N), f being a C* funtion on M, X, Y in I'(°T")
and we put Xeu=dyu(X)=[X, u]my.

In fact, from the relation [X, fu]l=(Xf)u+f[X, u], we get the
relation [X, fulpy=(Xf)u+f[X, u]lry. And so we get the relation
B.1). From the relation [[X, Y], «]=[X, [Y, «]]1-1[7Y, [X, «]],
we get the relation [[X, Y], u]l/y=[X, LY, v1low—LY, [X, u]]lrw=
[X, LY, ulonlen—LY, [ X, 4]pylen for any X, Y in I'(°T”) and u
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in I'(T’N) because of the condition a. 2).

From B.1) and B.2), we can define the operator 0¥, from
F(T’N@/P\(°T”)*) to F(T’N@P;\l("T”)*) as follows: For any ¢ in
T(T'NQACT)*), we set

(1. 3) OND (X, o ey Xp+1)=§(—1)‘+‘X;-¢(X1,--., Xyooos X0
(=D Xy Xyeeey Xiyevoy Xiyoooy Xor)s

i<j
where X/’s are in I'(°T"), and X, means to omit X, It is easily
shown that (1.3) is multilinear in X’s with functions as coefficients,
we also obtain the following complex.

(1)
(1.4) 0——I'(T'N) ”F(T’N@( T")*) F(T’N@/\( T *)—
(p)

— T (T'NQA (°T*)*) ”F(T’N@A( T")*) —>
Especially, we shall remark that

(02%0) (X, V) =[X, oD e — LY, ¢(X)lew—o (X, YD.

Now, we shall define an almost partially complex structure at a
finite distance from °7". (M, E’) is called an almost partially
complex structure at a finite distance when the following conditions
7.1) and 7.2) are satisfied.

r.1) E”" is a subbundle of CQRTM and if p denotes the
projection of CRTM=°"T"PT'N to °T”, then p|E” is a C~-bundle
isomorphisms.

7.2) E'NE"=0.

An almost partially complex sturcture E” at a finite distance
defines an element ¢ in I'(X, T'N®(°T”)*) uniquely, so that
E'={X+¢(X): XeI'(°T")}. We shall look at this correspondence
more closely. ¢ is divided into two parts: ¢=¢,+¢, where ¢, is in
I'(M, °T"®(°T")*) and ¢, is in I'(M, FQ(°T")*). Using ¢, and
¢;, we shall rewrite the relation E“ NE"=0. We claim that E’ N E” = {0}
if and only if for any element Y+#0 in °T", ¢=¢,+¢, satisefies the
relations ¢, (¢,(Y)) #Y or ¢,(¢,(Y)) #¢,(¥).

In fact if there exists an element Y0 in °7” which satisfies
the relations ¢,(¢,(Y))=Y and ¢,(¢,(Y))=¢,(Y), then putting
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X=¢,(Y) in °T", it satisefies the relation X+¢,(X)+¢,(X)=
Y+¢,(Y)+¢,(Y)#0. Conversely, if there exists two elements X and
Y in °T” which satisfy the relation X+¢,(X)+¢,(X)=Y+¢, (Y)+
0, (Y) #0, then we get the relations X=¢,(Y), ¢,(X) =Y and ¢,(X) =
¢,(Y), by comparing the type of both sides according to the de-
composition CRQTM=°"T"P°T'"®F and taking F=F into account.
Therefore we conclude the relation ¢,(¢,(Y))=Y and ¢, (¢,(Y))=
¢,(Y). Thus we have proved the following proposition.

Proposition 1.1. An almost partially complex structure E” at a
finite distance from °T" corresponds to ¢=¢,+¢, in I'(M, T'"NQ
(°T")*) which satisfies the relation ¢,(¢,(Y))#=Y or ¢, (¢p,(Y))+#
0,(Y) for any element Y#0 in °T" on every point on M. The

following formula determines a bijective correspondence.

T ={X+o(X): Xe°T"
§ 2. The Differential Equation for Integrability

We shall study the necessary and sufficient condition for an
almost partially complex structure *7” to be a partially complex
structure. By definition it is necessary and sufficient that for any
X', Y in I'(*T"), [X’, Y'] belongs to I'(°T"). We shall rewrite this
condition. In the first place, we shall recall that I'(*7") is the set
of vector fields X+¢(X), where X is in I'(°T"). Therefore for
any X, Y in I'(°T"), there exists Z in I'(°T") such that [ X+¢(X),
Y+o(Y)]1=Z+¢(Z) if and only if *T” is a partially complex structure.
And so we can rewrite this conditon as follows. *7” is a partially
complex structure if and only if for any element X, Y&lI'(°T),
the following relation holds.

2.1) [X+e(X), Y+o(M]=[X+o(X), Y+¢(¥)lor
+o([X+o(X), Y+ (Y) o).
Thus we have obtained the following theorem. This is our

intrinsic formulation of Kuranishi’s integrability condition (Theorem

3.1 in [1]).
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Theorem 2.1. An almost partially complex structure *T" is a
partially complex structure if and only if for any element X, Y in
I'(°T"), it satisfies the relation

[X4+¢(X), Y+o(M]1=[X+0(X), Y+¢(Y) o
+o([X+o(X), Y+¢(Y)]ors).

We set

Plp) (X, V) =[X+0(X), Y+o(N]-[X+0o(X), Y+0(¥)]ors
—o([X+0(X), Y+o(Y)Iemm),

then our condition becomes the following differential equation (2. 2).
(2.2) P(p) (X, Y)=0

In the expression (2.2), the terms which are of 0-th order in the
components of ¢ cancel. And the first order terms give [ X, ¢(Y) Jpn+
[e(X), Ylpw—e([X, Y]). And so the first order term of p(@) is
equal to oy (X, Y). The second order term of p(p) is

Lo (X)s ¢ Jew—o([X, ¢(Y)Iera+[p(X); Y]erw).

We shall write this term as R,(¢) (X, Y). This term is obviously
skew-symmetric in X and Y and we have R,(¢) (fX, Y) =fR,(¢) (X,Y).
In fact

R, () (f X, V) =[o(fX), Ylow—o([fX, ¢(¥)Iern+[o(fX), Y]ors)
=—(e(MNe(X) +fLe(X), o(¥)Irw
+0(e(V) fX) = fo([X, ¢(Y) Jora+ [0 (X), Y or)
=f[e(X);, e(V)1rw—o([X, ¢(Y)]or
+Lo(X), Yler))
=fR,(¢) (X, Y).
Therefore R,(¢) is in I'(M, T’N®/2\(°T”)*).
The third order term of p(¢) is —@([o(X), ¢(¥Y)]ors). We shall

write this term as R;(¢) (X, Y). This term is obviously skew-
symmetric and R;(¢) (fX, YY) =fR,(¢)(X, Y). In fact

R,(p) X, Y)=—=o([e(FX), ¢(¥)]orm)

=—fo([e(X), ¢(Y)]Jors)
=fR,(p) (X, Y).
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Therefore R,(¢) is in I'(M, T'NQA (°T")*).
Therefore *T” is a partially complex structure if and only if ¢ is

the solution of the differential equation

p(p) =0,

where

2(9) =0ho+ R, (9) + R, (¢).
§ 3. Kuranishi’s 3 for Scalar Valued Forms

For uel'(M, C), we define gusl' (M, (°T")*) by
ou(X)=Xu, X°T".
The differential operator d,: I'(M, C)u—ducl' (M, (°T")*) is

called the (tangential) Cauchy-Riemann operator and we can derive
some properties of 9, from the following.

A1) X(fu) =Xfou+t+f- Xu,

A.2) [X, Yu=X(Yu)—Y(Xu),
where X, YeI'(M, °T"), u, fel' (M, C).

We define differential operators

50 T'(M, ACT)*)—>T(M, ACT)*)

(%°9) (X, -+, X)) =20 (=D Xi(p(X,, .., Koo X))
+ L (DX, X1, Xy Xyooos Xipoooy Xoun)

for all o' (M, /q\(°T”)*) and X,,..., X,.,.€l'(M, °T").

Now, we shall define the operator 3%” for an almost partially
complex structure *T”, so that if #T” is a partially complex structure,
the operator 4, , coincides with the above definition.

In the first place, we shall define the projection operator from
CQRQTM to *T”. Recalling °T"={(Z)ops: ZECKXTM} and °*T'=
{Derv+0(L)err) ; ZECKTM}, we shall put (2), ,= Do+
¢ ((2)ors) €*T". Now we shall define 9, , from I" (M, C) to I'(M, (*T")*)

as follows:
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0, u (X)) =X'u, X'&°T".
Extending this, we define the operator

3, s T(M, ACT) T (M, ACT)*

W G(Xiyonny X)) =S (=DM XG(X, oy Xy, X
+ (=D SAXs Xy Xooeo s XKoo s X

i<j
where ¢’ (M, /P\(*’T")*), Xyoooy Xiyoooy, Xop€lI'(M, #T"). The
above definition is legitimate, since the following condition holds.
B.1) X(u)=Xf-ut+fXu
where X' e*T", uel'(M, C) and fel' (M, C).

If *T" is a partially complex structure, it satisfies the relation
[ X, X}]W,:[X;, X’]. In fact there exists X;, X, such that X;=X,+
o(X;) and X;=X,+¢(X,). So
LXs Xil,, =X Xidera+o([X XiJors)
=[Xi+o (X)), X+ (X)) Jorw
+§D([Xi+§0(Xi): Xj+§0(Xi)]°T”)
=[X], Xj]({from Proposition 2. 1)

P

So, if *T” is a partially complex structure, the operator di, as defined

above becomes

ORP (X XKoo, X)) =2 (=DM X9(X,,..., Xi,..., X,1)

o0

+Z(—1)'+J¢([X:a X;']:"', X:w--; X;‘,°"’ X;+1),

i<j
for any ¢=I'(M, /P\(?T”)*), and our definition coincides with @, taken
*T” as the reference structure.
Now, we shall define the operator ¢, from I (M, /P\(°T")*) to
I (M, P/Jr\l(°T")*) by 0;=22*"-9% - (AP)7, where 1, is an isomorphism
map from °T” to *T”, defined by

i T3 X->X+¢(X) e T,

P

and A is the isomorphism from I'(M, /P\("T”)*) to I' (M, /\("T")*)
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induced by 4,.
Now, we shall show the following theorem. Compare M. Kuranishi’s
formulations Propositions 4. 1, 4. 2, 4.3 and 4.4 in [1].

Theorem 3.1. We shall assume the above conditions. Then, the
Jollowing assertions 1), 2) and 3) are equivalent to one another.

C.1) *¢T" is a partially complex structure.
?

C.2) (@@, I'(M, N(CT")*)) is a cochain complex.

o0’

C.3) (o8, I'(M, /\("T")*) is a cochain complex.

Proof. From the relation 3::2;’*"-35;)”- @(»)~1, it is clear that the
assertion C. 2) is equivalent to C.3). From the assertion C.1), we
have already proven C. 2).

Therefore it is enough to show that the assertion C.3) implies
the assertion C.1). The proof is contained in that of the next

proposition.

Proposition 3.2. For any C= function f, the relation 0%0%f=
df A p(¢) holds, where A is the contraction operator.

Proof. If we prove the relation 050;f(X, Y)=df 4 p(¢) (X, Y)
for any X, Ye°T", we are through.

From the definition, we obtain the relation

(3.2.1)  &O(X, Y)=22.59 . (20 70(X, V),

=00« (A0 (X+9(X), Y+o(Y)),
=(X+¢(X)) (") 0 (Y+o(Y))
—(Y+o(Y) AP 0(X+e(X))
— @) ([X+e(X), Y+e(V)1,,),
=(X+¢(X))-0(Y) — (Y4 (Y))0(X)
—0([X+o(X), Y4+0(Y)]ors).

So
(8.2.2) o8 (asf) (X, V) =(X+o(X)af(Y)— (Y+o(Y))af(X)
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=t ([X+¢(X), Y+ () ]er).

And

(3.2.3) 8f(2) =13, ,) @),
=0,,,f(Z+¢(2)),
=Z+e@)f

From these formulas, we have

(3.2.49 % f(X, V) =X+0o(X) (Y+e(¥)f—Y+e(M)(X
Fo (X f= ([X+9o(X), Y+o(Y) o
+o([X+0o(X), Y+o(Y)]e))f

=[X+¢(X), Y+o(M1f
— ([ X+o(X), Y+o(Y) D,/
=p(p) (X, V),
=df 4 p(p) (X, Y). Q. E. D.

Proposition 3.3. Let fbe a C~ function which satisfies the
relation Xf=0 for any X&I'(M, °T"). Then we have the relation
og(df 4 ¢)=df 4 p(¢).

Proof. We shall show the relation d5(df 4 ¢) (X, Y)=dt 4 p(p)
(X,Y) for any X, Yel'(M, °T").

(38.3.1)  adf Ap) (X, V) =(X+o(X)) df 4¢(Y))
—(Y+o(1) (@f A¢(X))
—df Ao([X+¢(X), Y+¢(Y)om)
=(X+e(X)eMf—(Y+o(Y))ep(X)f
—o([X+¢(X), Y+o(Y)]en)f,

and from the condition Xf=0 for any X (M, °T"),

(3.3.2)  df do)(X, V)=(X+e(X)e(Y)f—(Y+o(Y)e(X)f
—o([X+0(X), Y+o(Y)]em)f
=(X+e(X)) (Y+o(Y)f
—(Y+o(Y) (X+o(X))f
—[X+¢(X), Y+o(Y)]orf
—p([X+o(X), Y+o(Y)]er) f-
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So

(3.3.3)  &(df Ap)(X, V)=p(p)f
=(df 4 p()) (X, Y). Q. E.D.

§4. &: for TN Valued Forms

We shall recall Tanaka’s theory on holomorphic tangent vector
bundle (see for the details, [3]). Let M be a partially complex
manifold, with the subbundle S defining its partially complex struc-
ture. Put T(M)=C®TM/S, then we may define the differential
operator dpqq from I'(M, T(M)) to I'(M, T(M)® (S)*) as follows:

(4.1 dranu(X) =o([X, Z]),

where uel' (M, T(M)), XeI'(S) and @ is the canonical projection
from CRTM to T(M) and &(Z) =u.
Oran 1s well-defined by the above formula, because S is integrable.

Then, we can prove the following D.1) a d D. 2).

D.1) X(fu)=Xf-u+[fXu,
D.2) [X, Yu=X(Y-u)—Y(X-u),

where X, Y are in I'(S) and u is in I'(M, T(M)), and we put
X-u=orgu(X) =0 ([X, Z)].

Then we define the operator 0§y, from I'(M, T(M)@/P\S*) to
(M, TADRAS*) as follows:
For any element ¢ in I"(M, T'(Z\l)@;\S*), we put

3;?&05/1()(1, X29 ceey Xp+1) = Z<_1)j+1Xi'¢(X1: cvey X'; evey Xp+1)

J

+ (DX, X1, Xipeons Xipons Xppovns X0,

It is well defined because of D.1) and from D.2) we can prove
the relation 0%3Y « 0%, =0.

Now, we shall develop Tanaka’s theory to the case of an almost
partially complex structure *7”. Of course, it must coincide with
the classical one when *7” is a partially complex structure.

We shall define the operator %4, from I'(M, T(M)) to
I'(M, *T(M)R(°T")*), where *T(M)=CRQTM/*T" and *T" is an
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almost partially complex structure. Since *T” is not always a partially
complex structure, (4.1) applied to *T'(M) may not define an
operator from I' (M, eT(M)) to I'(M, *T(M)R (°T")*).

To help this point, first we shall prove the following lemmas.

Lemma 4.1. Let @ be a projection operator from CQRQTM to
CRXTM/fT’. Then, the map @ |y restricted to TN is an isomorphism.

Proof. Tt is sufficient to prove tqat @[y 1s an injective map.
If there are elements x, y in 7°N such that the relation @ |py(x)=
@ |y (y) holds, then x—ye*T”, and there is an element z&°71”
which satisfies the relation z—y=2z+¢(2). Comparing the components
in the decomposition CRTM=°"T"P°T"PF, we see that z=0.
Therefore we have z=y. Q. E.D.

Lemma 4.2. Assuming the above condition, we have the relation
(Gj IT’N) _low (z) =z (z)'PT”’
where @ |py: T"N=CQRQTM/T".

Proof. For any element zeC®TM, we can prove that z — (2)

P
is in 7N. Therefore Lemma 4.2 follows from Lemma 4. 1.

Q.ED.

Lemma 4.3. Assuming the above condition, the following schema
commutes.
opy: I'(M, T'N)——I"(M, T'NQ (°T")*)
o |o
dran : I'(M, T(M))——I'(M, T(MX (°T")*),

where we define 01y by opyu(Z) =[Zyu] 1y for any element Z& T (M,°T"),
and o: CQTM—-T(M)=CRTM/°T" means the canonical projection.

Proof. From the definition of 0.y, it satisfies the relation 0y yu(Z) =
[Z, ulry=1Z, ul—1[2, v]or Therefore we obtain the relation
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@ (Oru(2)) =o([Z, u]—[Z, «los) =0 ([Z, u]) =Oran® (v) (Z).
Q. E.D.

After these preparations, we shall define the operator 3,W) from
ru, T(M)) to I'M, *TADRCT)*).

Proposition 4.4. Let @ be the projection form CRQTM to *T (M),
and let 0%,y be the differential operator from I'(M, T'N) to I'(M, T'NE
(tT")*) defined as follows: For any ue ' (M, T'N), we put 04 yu(Z') =
[Z, ul-[Z, ul,,,, where Z' is in *T". Also let awmn be the differential
operator from I'(M, *T(M)) to I'(M, *T(M)YRCT")*) defined as
follows : For any [u]le " (M,*T(M)), we put a,m[u] ) = ([Z, #]),
where Z' is in *T" and # is the unique inverse image of [u] in
I'(T’'N). Then, the following schema commutes.

oty : I'(M, T'N)—I'(M, T"TNQ(¢T")*)
lm lm
Bpperyt (M, *T(M))——I (M, *T(M)Q CT")*).

o1 (M) "

Proof. Before everything, we shall check that the maps %y and

Opp, are well-defined. To see this, 1t is sufficient to prove the relation

opyu(fZ') =fogmyu(Z’) for any Z' in I'(M, *T”) and for any C=

function f on M, and to prove the similar relation
Opp iy (FZ) =f0,, , u(Z)).
Now we have
Fu(f2) =12, ul-[fZ, «],,
=—u(NZ+Z, vl - (—u(NZ +f1Z, ul),,

The element Z' being in *T”, we have Z'=(Z"), and so

Lo 4

Opnu(fZ) =fUZ, ul—-[Z, ul,,)
= fopu(Z').
Similarly, we have the relation d,, an L4 ( fZ') =19, an [#](Z"). Now
Proposition 4.4 is clear from the relation @ (6% yu(Z)) =a([Z, u]) =
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8,0, (41 (). Q. E.D.

Next we shall define the complex (I"(M,*TQDRACT)*®),

3;;’(M>).To do this, we have to prove the following proposition.

Proposition 4.5. We have the relation.

E 1) X(fuw)=Xru+fXu,
for any X' in *T" and for any u in I'(M, T'N), where we put X'-u
as 0tyu(X'). Similarly we have

E.2) X(flul) =X'flul +fX[u],
for any X' in *T" and for any [u] in ['(M, *T(M)), where we put
X'[ul=ad,, [u]l(X).

T (M)

Proof. We shall prove E.1) only, for the proof of E.2) is similar.
From the definition of 6%y, we have the following relation :

O (fu) (X)) =[X, ful -[X, ful,,
=Xfout+fILX, u]l— (X fout+ (X, u])
=Xfout+f([X, u]l -[X, u])

(For (u)w = () opr + 0 ((%4) opr) =0.)
=X'fou+ fogyu(X").

o

ern’

And so

X (fu) =Xfut+fX -u.

From Proposition 4.5, we have the following proposition.

Proposition 4.6. The map 0% is well-defined as a map from
I'(M, TNQACT)*) to I'(M, TNOACT")*) :
For any ¢ in I'(M, T’N@/'\(‘PT”)*), we determine 0%¢ by
BRP( Xy ooy X)) =X (1)K d(Xpyeeny Xyony X0
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+ 2 (=D, XL, Xooory Xyoory Xoun),

where X, is in *T". In other words 0aP¢(X;, ..., X,p1) is skew

symmetric and multilinear in X's, with functions as coefficients.

Proof. It is clear that 02¥P¢(X,..., X,.,) is skew symmetric.

And so it is sufficient to prove the following relation.
(4'- 2) 5;‘”(15;)¢ (fX;’ X;, ceey X;+1) =f31;"(1$)¢(X;’ X;’ L} X;+l)-

We write down the left hand side of (4.2) according to the defini-

tion.

BPYX, Xiyoo oy Xiow)
;ﬂz¢%X;X;H.p£“>+;;—1V“X}¢o&;u.,Xwn,X;o
+ DD K Ky Xipevs Xy X

+K§](—1)'+f¢([xz, Xpr X0y Xy Xipotty X500

On the other hand

@3 X, X,,=(—Xf- XX, XD,
=X, f X +fIX, X1

ern’
And from Proposition 4.5
(4. 4) X (F Xy ooy Xiyoory Xow)
=X (fp(Xpy ey Xiyoons X))
=X (XKoo, Xpyooy X)) +X0( Xy o, Xy ooty X,

From these formulas, we have Proposition 4. 6.
Thus we have the diagrams
e, (1)

0—-I"(M, T’N)——>(M T'NRQ (*T") * )h T (MT'NQNA T %)

o, (£)
TIN

—»I’(M T’N@/\(*’T”)*)——>
01" (M, ?T(M))-@QF(M ¢T(M)®<wTﬂ)*)1’.<_“‘;..._>

o

LM, *FODRA T *) 88 (M, T DA CT?)*) - -+

Note that they are not necessarily comlpexes.
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Now, we shall define Kuranish’s a:.

Definition 4.7. We shall define the differential operator 6 from
I (M, T’N®/’\(°T")*) to I'(M, T’N@P/Jr\l(°T") *) as follows.

_ p¥1
B: I (M, TNQACT)*)—I'(M, TNOACT)*®)
le) Tzég+l)

@ I'(M, TNRACT) ) ——I (M, TN CT)*)

We put 05=23".04% - (A®) "' where A¥ is the map induced by

At T2 X—X+o(X)eT".

Theorem 4.8. With the above notations the following assertions
are equivalent one another.

1) o is integrable.
2 (3@

e7(m)’

I'(M, ”T(M)@;\@T") *)) is a cochain complezx.
3)  (@n®, I'(M, TNQA (T")*) is a cochain complez.
4) (os, I'(M, T’N®/<(°T")*)) is a cochain complex.

Proof. It is clear that the assertion 2) is equ valent to the asser-
tion 3) and 4). Moreover we have already proven that the asser-
tion 2) is included in the assertion 3). And so, it is sufficient to
prove that we can have the assertion 1) from the assertion 2).

From the relation 0%, 0%,y =0 contained in the assertion 2), we
shall show that ¢ is a partially complex structure. Our condition

means

(4.5) 02, 00g,yu (X, Y) =0

for any u in I'(M, T'N) and for any X', Y’ in *7”. From this we
have

(4.6) X'08,,u(Y') =Y 055u(X") —05u([X, Y], )=0.

PN

And so
4.7 X (Yu)=Y (X -u)—[X, Y,]qu,,u =0,
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for any u in I'(M, T'N) and for any X', Y in *T”. Then
(4. 8) X (Y fu) =Y (X' fu) -[X, Y],,,fu=0

for any C~ function f on M.

While we have

4.9 Y (fu)=Y fut+f-Yu.

From Proposition 4.5

(4.10) X+ (Y-fu) =(XYHlu+t (Yf) - Xu+(Xf) - Yu+fX'Yu.

And
@1 [X, Y1, fu=[X, Y1, futfIX, Y1,

From (4.10) and (4.11), the relation (4.8) can be reformed into
next relation.
(4.12) (X.Y-Y.-X—-[X, Y1, )u

+f(XY-Y -X~-[X, Y],,)u=0,

for any C~ function f and any u in I'(M, T'N). Therefore we have
(4.13) X.Y-Y.X—-[X, Y],,) /=0 for any C~ function f.

And so

(4.14) [X, Y]-[X,Y],. =0 for any X, Y in I'(M,*T").

eTH

So ¢ is integrable. Q. E.D.

In the course of Theorem 4.8, we have shown that the operator
X.Y-Y-X-[X, Y],, where X', Y in I'(M, *T"), is a first order
differential operator from I'(M, T'N) to I'(M, T'N). Moreover, we

can prove the following theorem (Proposition 4.2 in [1]).

Theorem 4.9. For any element 0 in ['(M, T’N®/P\(9’T”)*), we
have the following relation.
For p=1,

005 R0(X Xope v vy Xiia)
=2 (=X X - X X[ X5 X01,,,)0(X,. .,

i<j v

D. SN Xi"" X;+z)
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+ 5 (=DHHRO(9) (X X))y Kilpys e Koo
X::'-', X;"--'a X;+2)

+ X (=DHHO((0) (X, X))y Xiypysees Koo
Xpoons Xpons X

+ 2 (=DR([p(e) (Xi X)), Xl X,
Xyoooy Xiyoons Xoua)s

and for p=0
0P - 00 (X5, X5)
=X X, - X;- Xi—[ X, X;]

er

+
Proof. For ¢ in I'(M, T'N®ACT")*) we have
3;:'(15+1)¢(X;a X;’ e :X;+2)
—Z(_l)j“X, ¢(X;’ X;; ooy X;"- ey X;+2)
+2<—1>‘+J¢<[ Xy eor Kooy Xy Xia),
We shall put ¢ =0%%6. Then

3?’/35)0()(;,---: X,,i"'-’ X;+z)
:E.(_l)k+1X;-0(X;, Xpoooy Xpgoooy Xipoohy Xoa)
+Z<}k(—1)*+2X’-0(X;, Xpooioy Xipoooy, Xiooiy Xou)
+I<Z< ("—1)l+m0([X;3 Xl]gar,, ] X;J-'-, X:n""’
Xisoons Xpsa)
+ X (=D ([ X5, Xl yseees Kiperns Xiponn,
I<j<m
Xooins X0
+ 0 (=D, Xdypees Xisoens Koo

Xiyoors Xio)-
Therefore

(=) X5 020X Xpyervy Xipoory Xora)
ZZ(_‘I)H-JX;"X;O(X;, X;"'-y X;:---: X;"-'-: X;+2)

k<j

(DX XG0( Xy Xayevvs Kyerry Kiporny Xora)

i<k
+ 3 (DX, X, e X,..., X, ...,
I<m<j

Xioros X0
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Xy, Xowo)
y X, X,
X oony Xoio).

+ 2 (=D HX0 (X, X]

1<7<m pro’

+ 2 (=D"Xe (X, X.]

ye e
1<m<j i

And
(=D 0gP0[X Xily ppeees XKooy Xiyoons Xpua)
=[X X1, 00X, Xy oony Xyt Xp00)
+K§j(—1)f=X10(X§,..., X,oo0 Xoyoooy Xioity Xowo)
+i<kz<l_<—1)f=+lxga(xg,..., Xyooy Xipoooy Xpoony Xowa)
+i<§k(—1)*xg0(xg,..., X0, X, Xiyoots Xou)
+,<,ZL,.<—1)"’([[X?’ Xilopr Xidprp Xisevns Xipenns
Xpoooy Xyoony Xowa)
+ 2 (=DMOALX, XL, Xl Xieeos Koo
Xy Xpyoory Xowa)
+,-§<,<'1)'0<[[X:’ Xy Xl Xipeons Xipoo,
X,.... X, ..., X,.).
While
(42)7p (o) (X, X)) =[X, X1-[X, X71,,,
From these formulas, we have Theorem 4. 9. Q. E. D.

Theorem 4.10. With the notation as above, we have

% (p(9)) =0 for pI'(M, T'NR(°T")*).

Proof. The following schema commutes :
& (M, TNQACT)*) —I (M, TNQACT)®)
* i
59 : T(M, TNQACT)*) ——I' (M, TNQACT)®)
|o lo
52+ T, " TODRACT) ) —T (M, *TADRACT)*)

T (M)
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and A%, 2 and @ are isomorphisms. Therefore it is sufficient to
show the relation af,?(mm (A2)~1(p(¢)) =0 in order to prove d5p(¢) =0.

It is clear that @(A®) ' (p(9)) (X, V) =a([X’, Y1), for X, Y
in I'(W, *T"). In fact p(p) (X, V) =[X+e(X), Y+oe(N]1-[X+
o(X), Y+o(Y)],,,, where X, Y in I'(M, °T"). And so, we have

@) 7p(p) (X, Y) =[X, Y]-[X, Y]

[0
where X', Y in I'(M, *T").
Therefore

@ (3)7p(p) (X, V) =a([X, Y], ).

Now we put p(¢) =@+ (A?)7p(p) and compute 02 p(p) =0:

£T(M)
4.15) 82, (o) (X, Y, Z)
=X p() (Y, Z) =Y p(p) (X, Z)+Z p(p) (X, V)
—p(@ ([X, Y, Z)+p(p) ([X, Z],,,, Y)
-p( (Y, 21,,, X7,

where X'-u=a([X’, #]), ¢ is the inverse image of u&l (*T(M))
in I'(M, T'N). Therefore

4.16)  Xp(e) (Y, Z)=X"-a([Y, Z1)
=o([X, LY, Z]1-1Y, Z1,,D)
From (4.16), the right hand side of (4.15) becomes
#*17 (X, [Y, Z]-1Y, 7], 1-1Y, IX, Z]-[X, ],,,]
+1Z, [X, Y]-1X, Y], +e(-[[X, Y]
+LLXs 21,,,, Y1-[1Y, Z]

7]

o XD

Therefore (4.17) becomes to

418  o([X, [V, Z11-LY, [X, Z11+[Z, [X, Y]] =0.
Q. E.D.



634 TAKAO AKAHORI

Moreover we have the following theorem. Compare Proposition
4.6 in [1].

Theorem 4.11. If ¢ and 0 are in I'(M, T'Q(°T")*), then
p(p+6) —p(p) = 050 mod 6.

Proof. From the definition of 0%, we put dpyu(Z)=[Z, u]—
[Z, u},,, And we shall put Zwu=[Z, ul-[Z, ul,,=1Z, ulew—
o([Z, ulern).

I'(M, T'N)—I'(M, TN®(°T’)*)iF(M, T'NQA(T)*)

| v G

02,

I'(M, T'N)——I'(M, TNQCT)* 20 (M, TNQACT?)*)

From the definition of @, 0§ =A®.05% (A")™.
For 8 in I'(M, T'N®(°T")*),
(4.19) BO(X, Y) =22-39+ 3™ 70(X, Y)
=059 AP) 0 (X+9(X), Y+o(Y))
=(X+¢(X)) - A (Y+o(Y))
—(Y+o(Y)) () 70(X+e(X))
=@M ([ X+e(X), Y+e()],,)-
=(X+¢(X))0(Y) — (Y+¢(Y))0(X)
—O0([X+¢(X), Y+¢o(Y)Jorn).
While

(4.20) p(p+0) (X, V)
=[X+(p+0) (X), Y+ (p+0) ()]~ [X+ (9+0) (X),
Y+ (0+6) (V)00

4.21) p(p)(X, Y)
=[X+¢o(X), Y+o(N]-[X+¢(X), Y+o(V)],, .

From (4.20) and (4.21)
Plo+0) —p(p)) (X, V)
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=[X+(p+0) (X), Y+ (¢+6) () ]ry
—(p+0) ([ X+ (¢+6) (X), Y+ (¢+6) (Y)Tors)
—[X+o(X), Y+o(NIn+o([X+e(X), Y+o(X)Terr)

=[0(X), Y+o(N]ow+[X+e(X), 6(Y) 1y
—o([X+0(X) - 0(Y)]ora+[0(X), Y+¢(Y) Jors)
—0([X+¢(X), Y+¢(Y)]ors) mod 6*

={[X+¢(X), 0V Iry—o([X+¢(X), 0(Y) o)}
—{[Y+o(Y), 0(X)]rn—o(Y+0(Y), 0(X)Jorn)}
—0([X+o(X), Y+o(Y) o)

=(X+¢(X))-0(Y) — (Y+o(¥))-0(X)
—0([X+o(X), Y+¢(Y)]ern)

=00(X, Y).

Q. E.D.

Appendix

Intrinsic formula for Kuranishi’s 5; on homorphic vector
bundles: Here we start with a given holomorphic vector bundle E on
a partially complex manifold M, (in the sence of Tanaka [3]), and
consider its deformations. We shall deal with the counterpart of
Kuranishi’s theory in this setting.

The formulation in this work develops into a briefer treatment
of Kuranishi’s formulation in [1].

§ Al. Almost Holomorphic Vector Bundles

Let M be a partially complex manifold with a subbundle S of
CQTM, as described in the introduction, and let E be a C* vector
bundle on M.

We shall define a structure of an almost holomorphic vector bundle

on E as follows;

Definition Al.1. (E, d;) is an almost holomorphic vector bundle
if it satisfies the following relations: d; is a differential operator from
I'(E) to I'(EQRQ(S)*), and satisfies the following relation :



636 TAKAO AKAHORI
(Al.1) X(fu) =Xfou+fX-u,

where w is in I'(E), X is in I'(S) and f is a C~ function on M,
and we put

(A1.2) Xou=0u(X).

Proposition Al.2. Let (E, d;) be an almost holomorphic vector
bundle. For any $I'(EQN(S)*), we define 894 by
0P (Xpy ooy X)) =5 (=1 X0 ( Xy vy Xjyooty X,

v

SPHCSILET(P AP o HIPHD ATND ATIND 6

where X; is in I'(S) and we put Z-u=0,u(Z) for Z in I'(S) and u
in '(E). Then 02 is a map
39 IEQA )" ~T ERAG)™,

that is (0P¢) (X, ..., X,11) is skew symmetric and multilinear in

X’s, with functions as coeffcient.s.

Proof. Tt is clear that d¥’¢ is skew symmetric. So it is sufficient
to prove the following relation:

(AI 3) 52-”911(le, Xz: ceey Xp+1) =fa§:?)¢'<X1: XZ’ ceey Xp+1),

where X, are in I'(S) and fis a C* function. To see this we proceed
as follows.
(AI 4) 9;;“9[’ (qu Xzy R Xp+1) =fX1'¢(X2: seey Xp+1)

+ é:z(_l)jﬂXj'gb(qu ceey Xj) LR Xp+1)

+Z (DK XKooy Xppeons Xy

v

+ B (DK X1 K Ko, Xy s X

(AL.5) X, X;1=— (X)) Xi+f[ X, X1
(Al.6) GUXneoos Xppooos 00 =Xy Xpyooty X0
since I (EQA (S)*).

ALT X,(fdp(Xyeens Xiyeros X)) =X (X oo s Xiyeo oy Xo00)
FfX (X evs Xpyeons Xoia).
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(E, 0;) being an almost holomorphic vector bundle, (Al.3) follows

from these formulas.

Proposition Al.3. Let (E, d;) be an almost holomorphic vector
bundle. Then, we can introduce an almost holomorphic structure on

EndE in a natural way.

Proof. 1t is sufficient to give the operator Ognaz from I'(EndE) to
I'(EndEQ (S)*). We do this as follows; For any M in [I'(EndE),
we put

(OgnasM) u =0, (Mu) — Mdzu, for u in I'(E).
This gives the desired map by virtue of the fact that (E, d;) is

almost holomorphic.

N. Tanaka defines a holomorphic vector bundle (E, d;) as follows
(N. Tanaka [3]):

@ (E, d;) is almost holomorphic,
for X, Y in I'(S), where we put Zeu=0,u(Z).

We call the condition @) the integrability condition. If (E, d;) is
a holomorphic vector bundle, we have the following.

Proposition Al.4. Let (E, d;) be a holomorphic wvector bundle.
Then. (F(E@/P\(S)*),ag")) is a complex.

For the proof, see Tanaka [3].
We shall prove the inverse.

Proposition Al.5. Let (E, d;) be an almost holomorphic wvector
bundle. If (F(EQAS)*), 8P) is a complex, then (E, 8,) is a
holomorphic vector bundle.

Proof. From the assumption, we have the following.

(Al. 8) 3® .5, =0.
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So, for any u in I'(E) and for any X, Y in I'(S), we have

(AL 9) 3@ .3 (X, Y) =0.

(AL 10) X-3,u(Y) — Y-3,u(X) —du([X, Y])=0.
Therefore

(AL 11) X-Yeu—Y-X-u—[X, Y]u=0.

Thus we have proved Proposition A 1.5.

Proposition Al.6. Let (E, d;) be an almost holomorphic vector
bundle. Then, for any o in I'(EndEQR (S)*), (E, 02) is an almost
holomorphic vector bundle, where, 03=0;+w. Conversely any almost

holomorphic structure on M is of the above form.

Proof. From the assumption, we have the relation dsu =0d;u+ (),
where o is in I'(EndE®(S)*) and u is in ['(E). Therefore we

have the following relation:

(Al.12) X(fu) =03 fu(X) =0 fu(X) +o(fu) (X)
=f0su(X) + Xf-u+fo(u) (X)

Conversely, let (E, dz/) be another holomorphic structure on E. Then,

we put @’ =0d;, —0;. Since we have the followings
Oz fu(X) =f0eu(X) + Xfu
and
O fu(X) = foru(X) + X fu,

the operator w is linear with the C~ functions on M as coefficients.
Therefore w is in I"(EndE® (S) *). Q. E.D.

§ A2, Kuranishi's Formula

In this section, let (E, d;) be a holomorphic vector bundle and @
be in I"(EndE® (S)*). We shall study the structure of 92=0;+w.
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Proposition A2.1. (E, 62) is a holomorphic vector pundle if and
only if o satisfies the relation p(®) =080+ 0/ A\ew=0.

Compare this proposition with Theorem 2.1 in this paper.

From Proposition Al.6, (E, d3) is an almost holomorphic vector
bundle and we can define d¥* from Proposition 1. 2. And we have
the following proposition.

Proposition A2. 2.

(aé”“)""aé")‘”so) (X Xpenns Xp+2)
=30 (Xiy X)P(Koyenvs Kiners XKevns X0,

i<j
where ¢ is in F(E@;\(S’)*). Hence the operator 0¢+22d®" is a
differential operator of order 0.

Proof. For any ¢ in F(E@/P\(S_')*), we have the relation by
simple calculation.

(A21)  (e090) (X .., Xyur)
=2(X X, - X, X, — [ X, X, D-p(X,..., X;: .o

* s
i<j

%

Xj, eeey X;+z)’
where we put Z-u=02u(Z) for u in I'(E) and Z in I'(S). And so

(A2.2) X0 Xyeooy Xigoooy Xiyotos Xoi2)
=9ESD(X13---: Xu'-') st"'y Xﬁ+2) (X]) +w(Xj)9D(X15'-

v

Xi,"'! Xj!“" Xp+z)’

*5

(A2.3) X Xo(Xyyoony Xiyuory Xpyoony Xo00)

=0 {0:0( Xy oo, Xiyouoos Xiyorty X,00) (X))
+o(X)o(Xyeony Xiyoooy Xiyoory X0} (X))
+o(X) {Oe0(Xyoos Xvoooy X,yenty X,0) (X))

+o(X)o(Xyeuvs Xoooy Xiyorty X,o00)}
while we have the following relation :
(A2.9) (04s) u =02 (pu) + (—1)**'¢dzu
for v in I'(E) and ¢ in F(EndE@/p\(S')*). (This 1s a direct
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consequence of the definition of the almost holomorphic structure
on EndE.) In particular for p=1, we have
(A2.5) (09,:0) u =09 (wu) +wogu.
Therefore we have the following relation :
(A2.6) (0 e3¢ 0) (Xis -y X,10)
=§(X.-X.—X.-X.—[X,., XD Xy ooy Xiyeors Xjyovry Xora)
—Z{a (@(X)p(Xiyenny Xiyoooy Xpyorny X,00)) (X))
—3 (w(X,)§0(Xu-- ’ X L) X; s Xp+z))(Xi)
+w(Xi)gE§0(X1: . X', o) Xn s p+2) (X))
—0(X))05p(Xiy e ooy Xiyoows Xjpovr Xpua) (X))
+w(X,.)-w(X,.)go(Xl,..., Xoooos Xyoovs X0
'—Q)(X) 'w(Xi)gD(Xu ceey Xia ceey Xj; ceey Xp+z>
= § {(3§3axw+0)/\w) (X Xj)}GD(Xu ey Xigeos Xy ooy Xppa)
Q.E.D.

We shall study 0%, From the definition,
(0800 M) u =03 (Mu) — Moju,
where u is in I'(E) and M is in I'(EndE® (S)*). Hence,

(Og0asM) u =03 (Mu) — Mogu
=0, (Mu) +w(Mu) — M (0u+wu)
= (Ognas M) 2t +w+ Mu — M- wu.

So, we have the relation:
02nazM =08y M +wM — Mo.
Similary, we have the relation:
0REM =0uM +o \M+ (—1)*"' Mo,
for M in I'(EndEQA (5)*).

We can derive the following proposition from these considera-

tions.

Proposition A2.3. 0229 (w) =0.
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Proof. Let us calculate 02:2p (o).
From the relation p(0w) =08:0+o0 Ao, we have

022 (p (@) =0R4ep (0) +o\p(w) —p(w) Ao,

and
0az (P (@) =08z (08az0 + 0\ @)
= (024:0) N@ =0\ (0824:0)
=p(0) No—o/\p(0).
Hence 0@:2p(w) =0, Q.E.D.

Proposition A2.4.
p(0+0) —p (@) =020 (mod )
for w, 0" (EndER (S)*).

Proof. P(@+0) =0 (0+0) + (0+0) N\ (0+0),
(o) =3§}1r2dEw+w/\w’

while 0820 =080 +w/A\0+0/\w.

From these formulas Proposition A 2.4 follows.

Proposition A2.5. 09 °(0(0:f)) =p(w) (0:f)  where fis C

Sfunction.

Proof. 0P ((0:1)) =0 (@ (9:1)) +w(@(d:1))
= (00 + 0/ \w) 05 f
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