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Intrinsic Formula for Kuranishi's 3&

By

Takao AKAHORI*

Introduction

In 1973, M. Kuranishi constructed a versal family of isolated

singularities through the consideration of 3b equations under a cer-

tain assumption. He showed that the deformation of an isolated

singularity (V, x), where V is an analytic set in a domain in Cn

with an isolated singularity x, corresponds to the deformation of

partially complex structures of the real hypersurface M=Vf}S2
e
n~1.

But, his method is very complicated and some of his formulas can

only be applied under the assumption of the existence of the "ambi-

ent space". In this paper the author will show that we can prove

the Kuranishi's formulas on abstract partially complex manifold in a

much simpler way. And we shall prove Kuranishi's formulas for

holomorphic vector bundles on partially complex manifolds8 The

author wishes to express his hearty gratitude to Professors S. Nakano

and M. Kuranishi for their constant encouragement and valuable

suggestions during the preparation of this paper.

§ 1. Partially Complex Manifolds and Almost Partially

Complex Manifolds

Let M be a differentiate manifold. By a partially complex

structure on M, we mean a pair (M, °T") of M and a subbundle

°T" of C®TM, where °T" satisfies the following conditions a, 1)

and a. 2) :

Communicated by S. Nakano, May 21, 1977.
* Department of Mathematics Ryukyu University Naha, Okirawa, Japan.



616 TAKAO AKAHORI

a. 1) °T"n°T" = 0.

a. 2) For any elements X, Y in F(°T"), [X, 7] is in r(°T").

Here r(E)9 for a vector bundle £, denotes the set of differen-

tiable cross sections of E, defined on an unspecified open set of M.

M with °T" is also called a partially complex manifold. Let M

be a partially complex manifold. Then there exists a following exact

sequence of vector bundles.

(1. 1) 0->°T//0°T//->C'(g)rM->C'®TM/0T//©or/->0.

Differentiably, the above sequence splits and the splitting com-

mutes with the operation of conjugation. So there exists a C°° bundle

isomorphism map

p: (QT®QT''}®C®TM/QT'®°T'~C®TM.

We shall fix the splitting C®TM=°T'®°T"©F, where

F = /jt(C®TM/°T"©°T"). F is invariant under the conjugation map

of C70TM. Especially, we denote the subbundle °T"©F of C®TM

by TN.

Next we shall define a differential operator 5T,N from -F(T'AT) to

'')*)- For any element u in F(T"AD we set

where by [X, w]T/N, we denote the projection of [X, u\ to

according to the above splitting C®TM=°T"@TN.

Then we get the following relations £. 1) and j8. 2)

j8.2) [X, r]w

where M in F(T'AT)3 /being a C°° /untion on M, X, 7 in F(°T")

and we put X-w = 3r/^w(X) =[X, w]T/N.

In fact, from the relation [X, fu] = ( X f ) u + f [ X , u\, we get the

relation [X, fu~]T,N=(Xf)u+f\_X, u]T,N. And so we get the relation

£ 1). From the relation [[X, Y], w] = [X, [7, M]]-[Y, [X, M]],

we get the relation [[X, 7], *;U = [X, [Y, «]]T^-[r, [X, «]]M =

[X, [7, tt]M]T/1,-[y, [X, <U;U for any X3 Y in r(°T") and w
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in T(T'A/) because of the condition a. 2).

From /3. 1) and j8. 2), we can define the operator 3$, from

r(T'AT(g)A(0T")*) to r(T'JV(x)A(°'r')*) as follows: For any 9!- in

/XTW<8>A(°T*)'), we set

(1. 3) d^(Xl

+ 2 (-
»'</

where X/s are in r(°T"), and Xf means to omit Xf. It is easily

shown that (1.3) is multilinear in X's with functions as coefficients,

we also obtain the following complex.

(1.4) 0

Especially, we shall remark that

(9<V)(Z, Y)=[X, ?>(Y)]r,w-[y, <p(X)-\T,N-<p(\_X, 7]).

Now, we shall define an almost partially complex structure at a

finite distance from °T". (M, £x/) is called an almost partially

complex structure at a finite distance when the following conditions

f. 1) and f. 2) are satisfied.

r. 1) £" is a subbundle of C®TM and if /> denotes the

projection of C®TM=°T"®T'N to °T//, then p \E" is a C°°-bundle

isomorphisms.

r -2) ^n^=o.
An almost partially complex sturcture £" at a finite distance

defines an element <p in F(X, T/A^r(x)(°T//)*) uniquely, so that

£"=:{X+^(.X) : Xer(°T//)}. We shall look at this correspondence

more closely, (p is divided into two parts: (p = ^>i + (p2 where <pl is in

T(M, 0T''(X)(0T'')*) and <p2 is in T(M, F(X)(°T / /)*). Using ^ and

<pz, we shall rewrite the relation E" nE" =Q. We claim that E" ftE" = {0}

if and only if for any element Y^O in °T", ^ = ^ + ^2 satisenes the

relations

In fact if there exists an element Y=£Q in °T// which satisfies

the relations (pl ((pl ( Y) ) = Y and <p2 (^ ( Y) ) = ^?2 ( Y) , then putting
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X=y>1(Y) in °T", it satisefies the relation X+^(X) + <p2(X) =

00 Conversely, if there exists two elements X and

which satisfy the relation X+p^X) + <pz(X) =

5 then we get the relations X = <pl(Y)9 ^(X) =Y and p2(X) =

<pz(Y), by comparing the type of both sides according to the de-

composition C®TM=°T'I®°T®F and taking F=F into account.

Therefore we conclude the relation y>i(<pi(Y)) =Y and <p2(<pi(Y}) =

<p2(Y). Thus we have proved the following proposition.

Proposition 1. 1. An almost partially complex structure E" at a

finite distance from °T" corresponds to <p = <pi + <p2 in F(M, T"AT(X)

( ° T") *) which satisfies the relation <px (^ ( F) ) =£ Y" or <p2 (^ ( Y) ) =£

element Y=£Q in °T" on every point on M. The

following formula determines a bijective correspondence.

9T"={X+<p(X) : XE:°T"}

§ 2. The Differential Equation for Integrability

We shall study the necessary and sufficient condition for an

almost partially complex structure *T" to be a partially complex

structure. By definition it is necessary and sufficient that for any

X', Y in TOT"), [X7, F] belongs to r(°T"). We shall rewrite this

condition. In the first place, we shall recall that T^T") is the set

of vector fields X+<p(X), where X is in F(°T"). Therefore for

any X, Y in T^T"), there exists Z in F(°T") such that [X+^(X)3

Y+<p(Y)~\ =Z+p(Z) if and only if 9T" is a partially complex structure.

And so we can rewrite this conditon as follows. 9T* is a partially

complex structure if and only if for any element X,

the following relation holds.

(2.1)

Thus we have obtained the following theorem. This is our

intrinsic formulation of Kuranishi's integrability condition (Theorem

3.1 in [1]).
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Theorem 2. 1. An almost partially complex structure 9T" is a

partially complex structure if and only if for any element X, Y in

r(°T"), it satisfies the relation

We set

then our condition becomes the following differential equation (2. 2).

(2.2) P(?0(X, Y)=0

In the expression (2. 2), the terms which are of 0-th order in the

components of <p cancel. And the first order terms give [X3 <p(Y)']T,N+

O(X), Y]T,w-p([X, Y]). And so the first order term of p(<p) is

equal to d$N(X, F). The second order term of p(<p) is

We shall write this term as R2(<p)(X, Y). This term is obviously

skew-symmetric in X and Y and we have R,(y>~) (fX, Y) =/Rs(p) (X,y).

In fact

R2

=/!?,(?)) (x, y).
Therefore J?2(p) is in T(M, TW(g)A(°T*)*).

The third order term of p(<p) is -9([y(X), <o(y)].r,)- We shall

write this term as R3((p) (X, Y). This term is obviously skew-

symmetric and R3(^(fX, y)=/R3(p)(X, y). In fact

R3 (P) c/x, y) = - <

, y).
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Therefore £,(?) is in F(M, TN®/\(°T"}*).

Therefore TT* is a partially complex structure if and only if <p is

the solution of the differential equation

where

§ 3. Kuranishi's d\ for Scalar Valued Forms

For wer(M, CO, we define 3bu^T(M, (°T")*) by

96M(X)=ZM, XeT".

The differential operator Sb : F(M, C) 3M->34wer(M, (°T")*) is

called the (tangential) Cauchy-Riemann operator and we can derive

some properties of Sb from the following.

A. 1 ) X(/M) = X/. u +/• Xu,

A. 2) [x, y]M=x(yio-y(x«),
where X, Y<=T(M, °T"), u, /

We define differential operators

by

(^V)(Z1;..., xf+1) = 2
+ E (- l)l

for all <p^F(M, (°T"D and X, - - - , Xq

Now, we shall define the operator 9^ ̂  for an almost partially

complex structure ^T", so that if *T" is a partially complex structure,

the operator 3^ coincides with the above definition.

In the first place, we shall define the projection operator from

C®TM to *T". Recalling ° T" - { (Z) OT,, : Z^C^TM] and *T" ' =

{ (Z) OT,, + y((Z} orO ; Z <= C7® TM} , we shall put (Z) r^ = (Z) OT,, +

p( WorO e'T*. Now we shall define Sf^ from T(M, C) to T(M,

as follows :
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5rTau(X')=X'u, X'&T".

Extending this, we define the operator

by

2 (- Di+

where ^er(M, ACT")*), XJ, . . . , X'i} . . . , X;+1er(M, 'T"). The

above definition is legitimate, since the following condition holds.

B.I) X' (/a) = X'/. u +/X'M

where X'e'T*, u^T(M, C) and feF(M, C).

If fT* is a partially complex structure, it satisfies the relation

[XJ, XJ]^ = [XI, X;.]. In fact there exists X,, X, such that X; = X; +

() and XJ = X, + f)(Xy). So

= [X;, X .̂] (f rom Proposition 2.1)

So, if 'T* is a partially complex structure, the operator 9^ as denned

above becomes

3£<Kx;, x;, . . . , x;+1) = E (- D<+1^(Xi, . . . , x;, . . . , x;+1)
+ Z ( - 1) i+^([x;, x;.], . . . , 1;, . . . , xj, . . . , x;+1) ,

'

for any (/>^F(M, A(p^T/ /)*)> and our definition coincides with 3b taken

*T* as the reference structure.

Now, we shall define the operator d*b from T(M5 /\(QT")*} to
/> + !

T(M, A(°T*)*) by 3l = ^+».3Wr.(^r t)~I, where ^ is an isomorphism

map from °T" to "T", denned by

and ^ is the isomorphism from F(M, A ("T")*) to T(M, A(°T*)*)
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induced by 2f.

Now, we shall show the following theorem. Compare M. Kuranishi's

formulations Propositions 4. 1, 4. 2, 4.3 and 4.4 in [1].

Theorem 3. 1. We shall assume the above conditions. Then, the

following assertions 1), 2) and 3) are equivalent to one another.

C. 1) 9T" is a partially complex structure.

C. 2) (3<£, r(Af, AC'T*)*)) « « cocAam complex.

C. 3) (3j, r(M, AC0?1")*) w a cocAam complex.

Proof. From the relation 3z = ̂ +1)-3J£- (^})~S it is clear that the

assertion C. 2) is equivalent to C. 3). From the assertion C.I) , we

have already proven C. 2).

Therefore it is enough to show that the assertion C. 3) implies

the assertion C. 1). The proof is contained in that of the next

proposition.

Proposition 3. 2. For any C°° function f, the relation 3j5j/=

df A p(<p) holds, where A is the contraction operator.

Proof. If we prove the relation 5l5%f(X, Y) =df A p(<p) (X, Y)

for any X, Y^°T", we are through.

From the definition, we obtain the relation

(3. 2. 1 ) 3:6 (X, Y) = t? . 3«, . (4») -'(? (X, Y) ,

So

(3.2.2)
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And

(3.2.3)

From these formulas, we have

(3.2.4)

, Y). Q.E.D.

Proposition 3. 3. Le£ f be a C°° function which satisfies the
relation Xf=Q for any X^F ' (M, °T"). Then we have the relation

Proof. We shall show the relation %(df A p) (X, Y~)=df A p(<p)
(X, Y) for any X, YeT(M, °T").

(3.3.1)

-df

and from the condition X/=0 for any Xe (Af, "T"),

(3.3.2)
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So

(3.3.3) di(dfAri(X9 Y) =/»(?>)/
7). Q.E.D.

§ 4. 3j for TN Valued Forms

We shall recall Tanaka's theory on holomorphic tangent vector

bundle (see for the details, [3]). Let M be a partially complex

manifold, with the subbundle S defining its partially complex struc-

ture. Put l'(M)=C®TM/S, then we may define the differential

operator 3t(M) from F(M, f(M)) to F(M, f(M)(g)(5)*) as follows:

(4.1) dtwu(X)=m(\_X, Z]),

where u^F(M, T(M))3 X^F(S) and e> is the canonical projection

from C(x)TM to f(M) and a>(Z)=u.

d? CM) is well-defined by the above formula, because S is integrable.

Then, we can prove the following D. 1) a d D. 2).

D. 1) X ( f u ) = X f - u + f X u ,

D.2) [X, Y]« = X(r.tO-r(X.iO,

where X, Y are in F(£T) and u is in F(M, T(M)), and we put

X*u = dtwu(X}=w(lX, Z)].

Then we define the operator 3$,, from T(M, f (M)®A^*) to
. /> + !

, TCMXgJA-S1*) as follows:

For any element <p in F(M, /t(M)<S)/\S*), we put

9^^(X15 X,,..., X,+l) = S(-1)/+%^(X1, . . . , X,, . . . , X>+1)

+ E ( - D '^¥(C^, XJ, X19 . . . , X,, . . . , X,, . . . , X,+1) .

It is well defined because of D. 1) and from D. 2) we can prove

the relation 3$tf.3$o=0.

Now, we shall develop Tanaka's theory to the case of an almost

partially complex structure VT' '. Of course, it must coincide with

the classical one when *T* is a partially complex structure.

We shall define the operator 3j(M) from F(M, T(M)) to

T(M, ^f(M)®(°T / /)*), where *T(M) =C®TM/*T" and *T is an
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almost partially complex structure. Since 9T" is not always a partially

complex structure, (4. 1) applied to yrP(M) may not define an

operator from T(M, 't(M)) to T(M, *f (M)(x)(0T") *).

To help this point, first we shall prove the following lemmas.

Lemma 4.1, Let w be a projection operator from C(X)TM to

" . Then, the map o) \TfN restricted to T'N is an isomorphism.

Proof. It is sufficient to prove tqat o) \T,N is an injective map.

If there are elements x, y in T'N such that the relation ®\T,N(x) =

®lr'#(30 holds, then x— y&T , and there is an element z&°T"

which satisfies the relation x— y = z + <p(z}. Comparing the components

in the decomposition C®TM=°T"®QT"®F, we see that z=0.

Therefore we have x—y. Q. E. D.

Lemma 4. 2. Assuming the above condition, we have the relation

where

Proof. For any element z&C(S)TM, we can prove that z — (z) VT//

is in T'N. Therefore Lemma 4. 2 follows from Lemma 4. 1.

Q. E. D.

Lemma 4. 3. Assuming the above condition, the following schema

commutes.

3T,N: T(M, TN) - >F(M,

, f(M))

where we define df,N by 5T,Nu(Z) = \_Z,u\T,N for any element

and ®: C7(X)TM->T(M) =C(x)TM/0T" means the canonical projection.

Proof. From the definition of 3T/N, it satisfies the relation 5T,Nu (Z) =

[Z, u~\T,N = {Z, u} — [Z, U~]OT,,. Therefore we obtain the relation
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Q. E. D.

After these preparations, we shall define the operator S9Jt M from

, f(M)) to

Proposition 4.4, Le£ o) be the projection form C(X)TM

and let d$,N be the differential operator from F (M, T'N) to F ' (M, T'N®

("T") *) defined as follows : For any u<=F(M, T'AT), we put d$,Nu(Z') =

[Z', u~\ -[Z', U\TN, where Zf is in *T" . Also let d9f^ be the differential

operator from F (M, 'f(Af)) to F(M, *>f (M)®^^)*) defined as

follows: For any [u\ eT(M3 *f (M)), we pwi ̂ f(M)[
M] (z/) =®([^ ^])5

where Zf is in VT" and u is the unique inverse image of [M] in

F(T'N). Then, the following schema commutes.

T'AT) - >F(M, T'N®(*T")*)

© o?

Proof. Before everything, we shall check that the maps 3f/w and

5^ are well-defined. To see this, it is sufficient to prove the relation

d*T,Nu(fZ')=fd*T,Nu(Z') for any Z' in F(M, *T"} and for any C°°

function / on M, and to prove the similar relation

Now we have

The element Zx being in *T*, we have Z /=(Z /) f and so

=f(\Z, u~\-\Z!9 U\TI)

Similarly, we have the relation dr [u](JK)=fdr [u](Z'). Now

Proposition 4.4 is clear from the relation ®(5$,,Nu(Z')) =®(\Zf, w]) =
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Next we shall define the complex (r(M,'T (MXg)A

3^} ).To do this, we have to prove the following proposition.

Proposition 4. 5. We have the relation.

E. 1 ) X' (fu) = X'f-u +fX'u,

for any X' in 9T" and for any u in P(M, T'N), where we put X'*u

as d%,Nu(X'). Similarly we have

E. 2) X' (/[>] ) = X'f\u] +/X' [«],

for any X' in rT" and for any [u~] in F(M, *'lr(M)), where we put

Proof. We shall prove E. 1) only, for the proof of E. 2) is similar.

From the definition of dr'N> we have the following relation :

') =\_X', fu\ -IX', fu\Tii

= X'f.u+f\_X', u-]-(X'f>u+f(X', «]) f ,

(For ( M ) f , = (M)oT» + 5o((M)or,) =0.)

And so

From Proposition 4. 5, we have the following proposition.

Proposition 4. 6. The map 9j>if) zs well-defined as a map from
P P+I

F(M, T'N®f\(*T"-)*) to r(M, T'N®/\(*T")*) :

For any <p in F(M, T'N^AC'T*)*), we determine S^(f> by
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where X'{ is in 9T". In other words d$,$<p(X'l9..., X'p+1) is skew

symmetric and multilinear in X's, with functions as coefficients.

Proof. It is clear that d$$</>(X'19..., X'p+1) is skew symmetric.

And so it is sufficient to prove the following relation.

We write down the left hand side of (4. 2) according to the defini-

tion.

X1}..., Xj,..., Xp+l}

(-1)«+v ([x;, X / L , fx[,..., xf
i}..., 1;,..., x;+1).

On the other hand

(4.3) [fx{, X;.]PT,=(-
= -

And from Proposition 4. 5

(4.4) x

From these formulas, we have Proposition 4. 6.

Thus we have the diagrams

Note that they are not necessarily comlpexes.
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Now, we shall define Kuranish's d£.

Definition 4.7. We shall define the differential operator dl from
P P+I

F(M, TN<S>/\(°T"D to F(M, T'N®/\(°TT) as follows.

"}*) >r(M, TN®/\(°T"')*')

p+l

We put 3l=^*+1)-3f/Sj)-(^))~1 where ^ is the map induced by

V- °T"BX - >X+<p(X)&T"0

Theorem 4. 8. With ihe above notations the following assertions

are equivalent one another.

1) <p is integrable.

2) (3^(M)3 r(M, S9f(M)(x)A(pr//)*)) is a cochain complex.

3) (5f>^, F(M, TN^/\(fT")*) is a cochain complex.

4) (dl, F(M, 7vN®A(°T-r)*)) is a cochain complex.

Proof. It is clear that the assertion 2) is equ valent to the asser-

tion 3) and 4). Moreover we have already proven that the asser-

tion 2) is included in the assertion 3). And so, it is sufficient to

prove that we can have the assertion 1) from the assertion 2).

From the relation 3^\3^,N=0 contained in the assertion 2), we

shall show that <p is a partially complex structure. Our condition

means

(4.5) fy$5*T,Nu(X', r)=0

for any a in T(M, TN) and for any X', Y in >T". From this we

have

(4. 6) X'5*T,Nu(Y') - Y'-S^utX') -d^u(\_X', Y'\^ =0.

And so

(4.7) X'.(Y'.u)-Y'.(X'.u)-lX', Y'^u=0,
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for any u in P (M, TN) and for any X', Y in 'T*. Then

(4. 8) X'- (Y-fu) -7'. (X'./zO -[*', F]fT>=0

for any C°° function / on M.

While we have

(4. 9) r C/M) = ( Y /) • M +/• Yu.

From Proposition 4. 5

(4. io) z'.(r./M) = (
And

(4.11) [X, F],r> =

From (4.10) and (4.11), the relation (4.8) can be reformed into

next relation.

(4. 12) ( (*'. Y-Y.X- [X', !%„)/) u

for any C°° function / and any u in P(M, TN). Therefore we have

(4.13) (X'.r-r.X'-[X', F]Pr//)/-0 for any C~ function /

And so

(4. 14) [X*, r]-[X^nfT, = 0 for any X7, F in T(M, T").

So ^> is integrable. Q. E. D.

In the course of Theorem 4. 8, we have shown that the operator

X'-r-r-X'-CX7, F]PT//, where XX
3 Y in r(M, <"F"), is a first order

differential operator from T(M, TW) to T(M, T'iV). Moreover, we

can prove the following theorem (Proposition 4.2 in [1]).

Theorem 4.9. For any element 6 in T(M, T'N®/\(*T"}*)> we

have the following relation.

For p^l,
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+ s (- D i+(+m0(i>(p) (x;, x;o, xj] , . . ., x;, . . . ,1

Xf, ... 5 Ay, ... 5 Xp+2)

:, x;), x;],T,, . . . , x;, . . . ,

Y"' "f"' Y' ^-A-y, ... , -^5 ... 5 -A.^+2^ 5

and for p=0

Proo/. For 0 in T(M, T'2V(g) A C'T*) *) we have

= S(-D/+I^^(x;, x;,..., x;,..., x;+2)
+ S(-i)i+¥([x;, r,]^,..., x;,..., x;,..., x;+f)

We shall put $ = <%$&. Then

s^^cx;,..., x;,..., x;+2)
= S(-Di+1xi.^(x;, x;,..., xi,..., x;,..., x;+2)

*<y

+ S4(-i)
i+2x;^(x;, x;..., x;,..., x;,..., x;+2)

' < ' H X],^,..., x;,..., x:,...,

+ S ( - 1) i+m+^([x;, xy . . . , x;, . . . , 1;, . . . ,
LKj<m

+ E ( - 1) 1+^([x;, rj . . . , x;, . . . , xm, . . . ,T

Therefore

(_i)y+ix;..3^^(^ xj, . . . , 1;,..., x;+2)
= S_(~"l )* + J^y'^*^(^» Xg, . . . , Xi5 . . . , Xy, . . . 3 X'p+2)

+ E ( - 1) w+ix;.. x^(x;, x;, . . . , x;, . . . , x;, . . . , x;+2)
j<t

+ E ( - 1) ™+Jx;0([x;, xi] . . . , x;, . . . , x:, . . . ,
Z < m < j

Ay, ... 5 X'p+2)
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Xm, ... 5 Xp+2)

+ s (-D'+^^ccx, x , . . . , x',,..., x,...,
/ < « < j

And

;, XV-.., x,..., *;,...,

( 1) Xk0(X19 ... 3 X^3 . . . 3 X,-3 ... 3 A^j . . . 3 ^ + 2)

(- Di+IX<?(X, . . . , %, . . . , Z, . . . , x'j, . . . , x't+2)

r,, X, . . . , X',, . . . ,
Xj} ... 3 Xt, ... 3 Xp+2)

, x(,..., x:,...,
Xfy ... 3 Xjy ... 3 ^ + 2)

, x,..., i;,...,
JL^ . . . 3 Aj3 ... 3 ^+2) •

While

From these formulas, we have Theorem 4. 9. Q. E. D.

Theorem 4. 10. With the notation as above, we have

Proof. The following schema commutes :

, TN®/\(°T")*)
A

3(2) 5(3)

® a)
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and ^2), ^3) and ffi are isomorphisms. Therefore it is sufficient to

show the relation 3®CM)ffi(;i™)~1(K?))) = 0 m order to prove <>lp(<p) = 0.

It is clear that aj^f)-1^)) (X', F) =®([X', F]), for X', F
in F(W, '7"). In fact /»(?>) (•*, F) =[X+p(X), F+^(F)]-[X+
fi>(X), F+p(F)]^, where X, Y in T(M, °T"). And so, we have

where X', 7' in T(M, "T").
Therefore

Now we put p(<p) =&• (^2)) lp(<p) and compute 9f? P($) =0 :

(4.15) 3 « / » ( 9 > ) ( X ' , r, Z')

r ^f,r\ f V7 '7/^ I 7' **f ,rC\ f V V^
*P\$) \^- 3 ^ / +^ *P\*P) \^- ) * )

f, Z']^, F)

where X'-M=«s([X/, zi]), M is the inverse image of u
in F(M, T'N). Therefore

(4. 16) X' ./, (p) ( r, Z') = X' .0 ( [ Y, Z'] )

From (4. 16), the right hand side of (4. 15) becomes

(4. 17) ffl([X', [r, Z'] - [F, Z']PrJ - [F, [X', Z'] - [X', Z

', [X', F]-[X', F],TJ)+ffi(-[[X', F]^, Z']

, Z']Pr,, X']).

Therefore (4. 17) becomes to

(4.18) ®([X', [F, Z']]-[F, [X', Z']] + [Z', [X', F]]) =0.
Q. E. D.
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Moreover we have the following theorem. Compare Proposition

4. 6 in [1].

Theorem 4.11. If <p and 0 are in F(M, T'(x)(or')*), then

= did mod 0\

Proof. From the definition of d$N9 we put 5%.,Nu (Z') = [Z'5 u\ —

[Z'5 u}^. And we shall put Z'.W = [Z', u\-\Z!, «]^ = [Zf, tt]T/w-

', TN) —
*

(1)

, T'JV)

From the definition of 3?, 3r=^)-^>g)-(^I))"1.
For 0 in T(M, TW<8)(0T')«),

(4. 19) dlO(X, Y) =^>.ap,«. (^)-'(?(Z, Y)

While

(4.20)

(4.21) p(<p)(X, Y)
= \_X+?(X)

From (4.20) and (4.21)
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, 7+
i:
, 0(7) ;u
,

) mod

=3i(?(X, 7).
Q. E. D.

Appendix

Intrinsic formula for Kuranishi's dl on homorphic vector
bundles: Here we start with a given holomorphic vector bundle E on
a partially complex manifold M3 (in the sence of Tanaka [3])3 and
consider its deformations. We shall deal with the counterpart of
Kuranishi's theory in this setting.

The formulation in this work develops into a briefer treatment
of Kuranishi's formulation in [1].

§ A 1. Almost Holomorphic Vector Bundles

Let M be a partially complex manifold with a subbundle S of
C®TM, as described in the introduction, and let E be a C°° vector
bundle on M.

We shall define a structure of an almost holomorphic vector bundle

on E as follows ;

Definition Al. 1. (E, 3E) is an almost holomorphic vector bundle
if it satisfies the following relations : dE is a differential operator from
F(E) to r(£(g) ($)*), and satisfies the following relation:
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(AL 1) X(fu) = Xf-u+fX.u,

where u is in r(E), X is in F(S) and /is a C°° function on M3

and we put

) X-u=5Eu(X).

Proposition Al. 2. Let (E, SE) be an almost holomorphic vector

bundle. For any </>^r(E®/\ (&)*), we define d™<f> by

where Xf. zs m /"(A?) and ?z>e ^w£ Z-u=3Eu(Z) for Z in F(S) and u

in r(E). Then 5™ is a map

that is (9^V) (Xn . . . , Xp+1) is skew symmetric and multilinear in

X's3 with functions as coeffcient.s.

Proof. It is clear that $£*$ is skew symmetric. So it is sufficient

to prove the following relation :

(Al. 3) #V(/Xi> X2, . . . , Xp+l) =/3SfV(Xu X2, . . . , Xp+1),

where X,- are in /^(*5) and /is a C°° function. To see this we proceed

as follows.

(Al. 4) 3

+ S ( - iy^xt

x,],..., 1,,...,

(Al. 5) [/Z15 XJ = - (X/) X, +/[XU XJ.

(Al. 6) ^ (/X15 . . . , Xit . . . , X,+1) =y%6 (X,, . . . , Xj, . . . , X>+1)

since #er(E®A(5)*).

(Al. 7) X,(/#(XU . . . , X,, . . . , X,+I)) =XJ/.5ft(Xu . . . , X,, . . . ,
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(E, 5jj) being an almost holomorphic vector bundle, (Al. 3) follows

from these formulas.

Proposition Al. 3. Let (E, 9£) be an almost holomorphic vector

bundle. Then, we can introduce an almost holomorphic structure on

EndE in a natural way.

Proof. It is sufficient to give the operator 5End£ from F(EndE) to

r(End£(g)(5)*). We do this as follows; For any M in F(EndE),

we put

(5^EM)u=5E(Mu)-M5Eu, for u in F(E).

This gives the desired map by virtue of the fact that (E, 3£) is

almost holomorphic.

N. Tanaka defines a holomorphic vector bundle (E, 3£) as follows

(N. Tanaka [3]) :

(D (E, BE) is almost holomorphic,

for X, Y in ^(5), where we put Z*u—dEu(Z).

We call the condition @ the integrability condition. If (E, 5£) is

a holomorphic vector bundle, we have the following.

Proposition Al. 4. Let (E, 5E) be a holomorphic vector bundle.
P _

Then. (F(E®/\(S}*},5E
P}) is a complex.

For the proof, see Tanaka [3].

We shall prove the inverse.

Proposition Al. 5. Let (E, 3£) be an almost holomorphic vector

bundle. If (r(£(x)AGS)*), 3^) is a complex, then (E, dE) is a

holomorphic vector bundle.

Proof. From the assumption, we have the following.

(A1.8) 3^.5^=0.
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So, for any u in F(E) and for any X, Y in /^(*5), we have

(A1.9) 5p-3Mu(X, Y)=0.

(Al. 10) X.3Eu(Y)-Y-5Eu(X)-5Eu([X, Y]) -0.

Therefore

(Al. 11) X.y^-y.X.w-[X, Y]M = 0.

Thus we have proved Proposition A 1.5.

Proposition Al. 6. Let (E, 3E) be an almost holomorphic vector

bundle. Then, for any co in T(End£(X)(5) *), (£,3;) w an almost

holomorphic vector bundle, where, dE=dE+a). Conversely any almost

holomorphic structure on M is of the above form.

Proof. From the assumption, we have the relation 3Eu=3Eu+o)(u),

where o) is in /^(End£(X)(*5)*) and u is in F(E). Therefore we

have the following relation :

(Al. 12) X(fu) = 3»Efu(X) =3Efu(X) +<o(fu) (X)

=f3Eu(X) +Xf*u+fco(u) (X)

=fXu + ( X f ) u .

Conversely, let (E, 5E/) be another holomorphic structure on E. Then,

we put a)f=5E,—dE. Since we have the folio wings

d'Efu(X)=f3'Eu(X)+Xfu

and

the operator w is linear with the C°° functions on M as coefficients.

Therefore w is in r(EndE(g)(5)*). Q. E. D.

§ A2. Kuranishi's Formula

In this section, let (E, 5£) be a holomorphic vector bundle and co

be in r(EndE(g)(5)*). We shall study the structure of d»=dE + a).
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Proposition A2. 1. (£, 5fy is a holomorphic vector pundle if and

only if a) satisfies the relation p(co) =5^EQ)+ct)/\a) = 0.

Compare this proposition with Theorem 2. 1 in this paper.

From Proposition Al. 6, (E9 5;) is an almost holomorphic vector

bundle and we can define d^'u from Proposition 1. 2. And we have

the following proposition.

Proposition A2. 2.

'"p) (Xu XM . . . , X,+I)

(X,, X,)P(XU ..., X0 . . . ,£„ . . . , X,+2),

is in r(E(g)AG$)*). Heno? ^ operator

differential operator of order 0.

Proof. For any <p in F (E(X) A (*5) * ) , we have the relation by

simple calculation.

(A2. 1) (%+»"dP"rt(X19...9 Xp+2)

^-X,.X,.-[X,, XJ) -pCX,, . . . , X, . . . ,

where we put Z*u—%lu(Z) for w in /"(£) and Z in P(S). And so

(A2. 2) X,.p(Xw . . . , X,5 . . . , 1,, . . . , X,+a)

=3^(XW . . . , X,5 . . . , Xy, . . . , X,+8) (X,) H-oiCX^^CX,, . . . ,

X,-, ... 5 Xy, ... 5 Xp + 2) 5

(A2. 3) X, • X& (Xw . . . , Xf, . . . , X,, . . . , X,+I)

u . . , xf, . . . , x,, . . . , x>+2) cxy)
1, . . . , X0 . . . , X,, . . . , Z,+2)} (X,)

u . . . , X,, . . . , Xy, . . . , X,+I) (X,)

y)p(XI, . . . , X, . . . , 1,, . . . , X,+2)}

while we have the following relation :

(A2. 4) (3^ft)tt=3i[«-(^tt) + (- D'+'^SM

for M in r(E) and <p in r(End£(x) A(-5)*). (This is a direct
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consequence of the definition of the almost holomorphic structure

on EncLE.) In particular for /> = !, we have

(A2. 5) (3£«aO u =d? (ow) +a>8Eu.

Therefore we have the following relation :

(A2.6) (^+1>-^-p) (Xu . . . , X,+I)
= Z](XJ.X,-X,.XI-[XI, X,])P(XU . . . , X,, .. ., X j , . . . , X,+I)

i<i

,MXI5 ..., X,,..., Xj,..., X,+l)) (X..)

Xi} . . . , Xj} . . . , Xp+2» (X.)

(, .... xfl .... x,+I) (xy)
1> . . . , XH . . . , X,, . . . X,+1) (X,)

1 , . . . , X«. . . , X,,..., X,+1)

(Xf, X,)} p(Xu . . . , X,, . . . , X,, . . . , Xp+2-

a E. D.

We shall study 9lnd£. From the definition,

(3SndjiM)M=3;(Mw) -M3^,

where M is in r(£) and M is in r(EndJE(g)(5)*). Hence,

=dE(Mu) +w(Mu) -M(5Eu

= (^EndB^) M + <*> ' MW —M-QJU.

So, we have the relation :

8wEntEM = 5^EM +a)M- Ma).

Similary, we have the relation :

for M in r(End£(x) A (£>*).

We can derive the following proposition from these considera-

tions.

Proposition A2. 3. 5(^Ep(a)) =0.
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Proof. Let us calculate S^lp((a).

From the relation p(ui) —^Affo+o>/\o>, we have

-/»(«) A®,

and

=p(<o)/\<a-<o/\p(<o).

Hence fepO) =0, Q. E. D.

Proposition A2. 4.

p(co + 6)-p(a>-)=d^E6 (mode2)

for a), 0er(End£(x)G5)*).

Proof. p(<a + d) =gwu (ai + «) + (<u + 6) /\ (a> + 5) ,

while 3^,^=5^,^ +

From these formulas Proposition A 2. 4 follows.

Proposition A2. 5. ^•'(<a(5Ef)) =p(ta) (dEf) where f is C°°

function.

Proof. S«- («(3£/) ) =3® («(3£/) ) +o.(o.(3,/) )

= (3«dE<u+£UAw)5£/
=PW(8,f). Q.E.D.
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