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On The Equivariant Isotopy Classes of
Some Equivariant Imbeddings of Spheres

By

Kojun ABE*

§ 0. Introduction

The purpose of this paper is to study the G-isotopy classes of
G-imbeddings of spheres into spheres, where the spheres are equipped
with semi-free linear G-actions for a finite group G.

Let V be an m-dimensional real G-module. Throughout this
paper we shall assume that V is a product module V=R"@V, of a
trivial real G-module R* of positive dimension 7 and an (m—n)-
dimensional real G-module V, on the G-invariant unit sphere S(V,)
of which G acts freely. Let W be a real G-module which contains
V as a direct summand. Let S" and S¥ denote the one-point
compactifications of V and W respectively. Then S” and S¥ are
spheres on which G acts linearly. The direct sum of d copies of V
will be denoted by dV.

Theorem A. Let G be a cyclic group Z, and let W=dVEPR* for
k>m+41. If dzmax {(n+3)/2, (m+2)/(m—n)}, then any G-
imbedding of SV into SV is G-isotopic to the standard imbedding.

Theorem B. Let G be a cyclic group Z, for q>2 and let
W=dV@R* for k>m-+1. Suppose that d= (m+1)/(m—n) and V,
is a direct sum of (m—n)/2 copies of an irreducible 2-dimensional

real G-module.

(1) If d=(m+1)/(m—n), then there are infinitely many G-
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imbeddings of S¥ into S¥ which are not G-isotopic to each other, and
(2) if d>(m+1)/(m—n), then any G-imbedding of S" into S¥
is G-isotopic to the standard imbedding.

The paper is organized as follows. For any G-imbedding f: S”
—8%, we shall show that, by G-isotopies, f|S* can be deformed to
be standard in §1, f can be deformed to be linear on a neighbor-
hood of S* in §2 and f can be deformed to be orthogonal on a
neighborhood of S" in §3. Moreover we shall prove that, if two
G-imbeddings of S” into S¥ are G-isotopic and are orthogonal on a
neighborhood of §*, then there exists a G-isotopy between them which
is orthogonal on a neighborhood of 5" in §3. Then we see that the
G-isotopy class of f is determined by the homotopy class of the orbit
map of f|(S"—U) relative to the boundary, where U is a neighbor-
hood of S" In §4, using the obstruction theory, we shall prove
Theorem A and Theorem B.

The author wishes to thank Professors M. Adachi and T. Matu-

moto for their kind advices and valuable criticism.

§1. Imbeddings Can Be Deformed to Be Standard
on the Fixed Point Set

In this paper we shall assume that all manifolds and all actions
are differentiable of class C~. Until Section 3 the results are valid
in the case of G a compact Lie group.

In this section we shall prove that any G-imbedding of S” into S¥
is G-isotopic to a G-imbedding which is standard on S* (see Proposi-
tion 1. 3), and if two G-imbeddings of S into S¥, which are standard
on S*, are G-isotopic, then there exists a G-isotopy between them

which is standard on S* (see Proposition 1.4).

Definition 1.1. Let M be a G-submanifold of a G-manifold N.
Let I denote the unit interval [0, 1] with trivial G-action. A smooth
map (resp. smooth G-map) f: MXI—N is said to be an isotopy
(resp. G-isotopy) if each f, : M—N is an imbedding (resp. G-imbed-
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ding), where f,(z)=f(z, t), and f, is independent of t in some
neighborhood of 0 and in some neighorhood of 1 (see G. Bredon
[1, Chapter VI, §3]). Two imbeddings (resp. G-imbeddings) f; : M
—N (1=0, 1) are said to be isotopic (resp. G-isotopic) if there exists
an isotopy (resp. G-isotopy) F : M XI—N with F,=f, and F,=f. If
OM is not empty, we shall consider M XI as a smooth manifold with
corners.

Let I(S¥, S¥) denote the set of all G-isotopy classes of G-imbed-
dings f : $"—S8". Our purpose is to determine the set of I(S%, S¥),
provided that W=dV@R* for k>m+1.

Remarks. 1. It is easy to see that any G-map f: S"—S" is G-
homotopic to the standard imbedding.

2. Using the method of A. Wasserman [7, §1], we can see that
any G-imbedding f : S"—S8" is G-isotopic to the standard imbedding
if d>2m+-2.

The following lemma will be useful.

Lemma 1.2. Let N be a g-dimensional manifold on which G
acts semi-freely and let M be a p-dimensional G-submanifold of N.
Let K denote I or IxI and let L be a closed subset of K which
contains 0K. Let f: Mx K—N be a continuous G-map such that each
fi + M—N is a G-imbedding, where f, is defined by f,(z)=f(z, k).
If fis a smooth G-map on M XL', where L' is a neighborhood of L
in K, then there exists a smooth G-map H : M x K—N such that each
H, is a G-imbedding and H=f on M X L, where H, : M—N 1is defined
by H(x)= H(x, k).

Proof. We shall prove Lemma 1.2 by an equivariant version of
J. Munkres” argument [4, Chapter I, §4]. Let {U} (resp. {V;}) be
a family of locally finite countable invariant open sets of M such
that U, CM® (resp. \WV;DN°) and U (resp. V;) is equivariant

diffeomorphic to a p-dimensional disc or half disc (resp. ¢g-dimensional



658 KoJuN ABE

euclidean space or euclidean half space) with linear G-action, where
M°¢ and N° denote the fixed point set of M and N respectively. We
can choose the family {U,} such that, for any 2K and for any i,
£(U,) is contained in V, for some j depending on % and i. There
exists a positive continuous function 6, on M as follows. For any
continuous map g : M X K—N, such that g, is d,-approximation to f;
for each &, has these properties. Let {W;} be a family of invariant
open sets of M with W,CU, and W, D M°.

Let C,.(y) denote a closed r-nei'ghborhood of yin K for a posi-
tive number r and yE K. There exists a sufficiently small positive
number 7 such that, for any 2&€C,(y) and for any yeK, £(U,) is
contained in V; for some j depending on y. Then we can find a
finite number of C.(y), say C,=C.(y,) (n=1, 2,..., ), such that
\IJC,,CK—L’. We can assume that C,NL=¢ for any n. Let ¢, :
3\—41—>I be an invariant smooth function on M which equals 1 on W,
and 0 outside of U,. Let A, and B,, n=1, 2,..., [, be open sets of
K such that A,cB,CcB,C int C, and \l/ A, contains K—L'. Let &, :
K—I, n=1, 2,..., I, be smooth funct"i:ns on K which equals 1 on
A4, and 0 outside of B,.

We shall identify U, and V; as euclidean spaces or euclidean half
spaces with linear G-actions. For any n, we can find j(z) such that
£.(0) CV, for any z&C,. Let f**: M xC,—V,, be a G-map defined
by fr*(z) =¢,(x)-f.(z) for €U, and 2€C,, and f*"=0 outside of
U, xC, Let g'": MXK—V,, be a G-map defined by gi*(z)=
E.(2) fr"(x) for zeM and z=K. Since gt"=0 for 2 C,, we can
extend g"" trivially on M XR (resp. MXR?*) if K=I (resp. IxI).
Define a smooth G-map A" : MxK—V,, by

hir(x) =SC( )go,,(y) <gir (x)dy for z&eM and z€ K,

where C(e,) is a closed ¢,-disc in K and ¢, is a smooth function on
R or R? which is positive on int C(s,) and 0 outside of C(e,) and
Sc( X2z (y)dy=1. Choose the positive number ¢, less than the distance

from B, to the complement of C,. Then A“"=0 outside of U, xC,.
Let F*°=f. Assume that F**' : MX K—N is defined such that
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Ft»1 s smooth on W,Xx (A,U...UA,_) and F*'=F"" outside of
U, xC,_,. Moreover we assume that Fy"™' is a §,/2'""**approxima-
tion to Fy*? for each k=K. Then F."' is a d,-approximation to f..
Let F** : MXK—N be a G-map defined by

Frr(x) =F"""(x) (1—¢,(x)§,(2)) +hi"(x), for zEM and 2 K.

Since F'"=h*" on W,x A,, F** is smooth on W,x (4,U... UA,)
(note that, if F*"' is smooth on a subset of M XK, F“* is smooth
on the subset of M X K). Since A*"=0 outside of U, xC,, F:*=F"»"!
outside of U,xC,. By the argument of J. Munkres [4, Chapter I,
§ 4], we can choose the positive numbers ¢, (=1, 2,..., n) so small
that Fy" is a 0,/2' ""'-approximation to F%™' for each 2. Then we
can see that F." is a d,-approximation to f, and F;"*' is defined. By
the induction, we have a G-map F“' : M X K—N such that F“!is
smooth on W, X (\’J/L) and F"'=F"'"""' outside of U,x C,. Set F'=F"!,
Since \I/A,, cont;.i=rlls K—L’, F* is smooth on W,x K. And since
C.NL=g, F'=f on MxL.

There exists a positive continuous function d<d. on M such that,
for each k=K, any C-map from M to N, which is a d-approxima-
tion in C'-topology to f;, is an imbedding (see J. Munkres [4, Chapter
I, Theorem 3.10]). We can choose the positive numbers ¢, n=
1, 2,..., I, so small that F} is a d/2-approximation to f, in C'-topology
for each k=K.

By the induction we have G-maps F': MxK—-N (1=2,3,...),
which is smooth on (W,U...UW),) XK, such that Fi=f on MxL
and F'=F"' outside of U,X K. Moreover we can choose Fi is a
d/2'-approximation to Fi™' in C'-topology for each k=K. Define a
G-map F: MXK—-N by F,(z)=lm,,. Fi(zx); F, is well defined
because Fi=F;"'=... on some neighborhood of x, for sufficiently
large i. F : MXK—N is smooth on (\UW,) xK and F=fon Mx
L. Moreover F, is a 0d-approximation to' fi in C'-topology, for each
ke K.

Let T be a closed invariant neighborhood of M¢® in M such that
T is contained in \_/W,-. F,(M—M°) is contained in N—N°¢ for
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each &, since F, is a G-imbedding. Let F : (M—M°/Gx K—(N—
N¢)/G be the orbit map of F. Then F is a smooth map on a
neighborhood of (T—M°®) /GxK and F=f on (M—M°®/GxL, and
F, is a d-approximation to f; for each kK, where f, is the orbit
map of f.. By the relative version of the argument of J. Munkres
[4, Chapter I, §4], we have a smooth map H: (M—M°/GxK—
(N—N°®)/G such that H=F on (T—M¢®) /Gx K and H is homotopic
to F relative to (T—M°®)/GxKU (M—M¢ /GxL. Moreover F, is
a d-approximation to f, in C-topology, for each k=K. By the
covering homotopy property, we have a smooth G-map H : (M—
M°) x K-»>N—N°¢ whose orbit map is H. Define H=F on TxK.
Then H : MX K—N is a smooth G-map such that H, is a d-approxi-
mation to f, in C'-topology, for each k=K, and H=f on MXL.
This completes the proof of Lemma 1.2.

Let f: S"—>S" be a G-imbedding. The fixed point set of S¥ and
S¥ are S* and S*** respectively. Let f¢ :S"—S"*CS"¥ denote an
imbedding which is a restriction of fto S Let j: S'—S" be the
standard imbedding.

Proposition 1.3. Let f, : S">S" be a G-imbedding. Then there
exists a G-isotopy f : SYXI—>S" between f, and f, with fS=j on S~

Proof. Since dn-+k>2n, we have an isotopy A : S XIS+
such that h,=1 and h,-5§=j. By the isotopy extension theorem,
there exists an isotopy H : S¥ XxI—S" such that H,=1 and H=h on
S+t x 1. Using a result of G. Bredon [1, Chapter VI, Theorem 3.1],
we have a G-isotopy K : S¥ XI—S¥ such that K,=1 and K=H on
H¢xI, where H°={zxeS" ; H/(g-x)=g-H,(x) for any tel and
g=G}. Note that S**CHS Let f:S8" xI—>S" be a G-isotopy
between f, and f; defined by f,=K,:f,. Then ff=j and this completes
the proof of Proposition 1. 3.

Proposition 1.4. Let f: S'XI->S" be a G-isotopy with f{i=j
for i=0,1. Then there exists a G-isotopy h :S"XI—>S" such that
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h.,=f, for i=0,1 and h{=j for 0=t<I.

Proof. Let f:S"xI->S" xI be a G-imbedding defined by f(z, t)
=(f.(z), t). Let f¢: S*xI—>S8"**x] be an imbedding which is a
restriction of f to S"XI. Let E(S", S**!) denote the set of all
imbeddings of S" into S*** with C~-topology. By a result of J. Dax
[2, Chapter VI, §3], = (E(S", $***)) =0 since dn+k>2n+2. Then
we have a continuous map a : IXI—=E(S*, $***) such that, for a
sufficiently small >0,

f¢ for (t,s)eIx[0,¢]

a(hs) :{j for (t,5) €[0,e] xIUIX[1—¢ 1JU[1~¢ 1] XL,

Using Lemma 1. 2, we may assume that & : S"XIXI—=>8"**xI is an
isotopy, where d(z, ¢, s) =(a(t, s)(x), t). Then we have an imbed-
ding @ : S"XIX R—>S5""*xXIX R defined by
d(z,t,5),s) for 0=s=1
a(z,tys) ={d(x,t0),s) for s<0
a(z,t,1),s) for s>1.

a(S*xIx R) is a closed G-submanifold of S¥ XIx R, and a(S"xIxR)
intersects normally on 9(S"XIx R) with respect to a product G-in-
variant Riemannian metric on S¥ X/ X R. By using the proof of G.
Bredon [1, Chapter 1V, Theorem 2.2] with respect to the Rieman-
nian metric, we have an invariant open d-tubular neighborhood N
of a(S"xXIxXR), where 0 is a G-invariant positive real valued func-
tion on @(S*XIXR).

The tangent vectors to the curves @(x Xt X R) define an invariant
vector field X on a(S"xIxR) of the form X(a(z, t, 5)) =(X(z, s,
), 0, 1) ETu.n(S" XIXR), where T(SYXIXR) is the tangent
bundle of S¥xIX R. Identifying N with a G-invariant normal bundle
to a(S"xIXR) in SYXIXR, we denote p : N—>a(S*XxIxR) the
bundle projection. Let r: I->R be a C=-function such that r(¢) =
1 for 0=:=1/3, 0<r(&)<1 for 1/3<t<2/3 and r(t)=0 for 2/3<
t<1. Let Y be a G-invariant vector field on S*XIX R defined by
Y (v) =r(j|vll/0(p(v))) X(p(v)) for v&N and Y=0 on the outside of
N, where || || denote the G-invariant metric of SY XIX R.
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Since a(xz, t, s) =(G(x), ¢, s) for 0=<¢=<e and 1—e=t<1, and since
alz, t, s) =@z, t, 0), s) for s=0 and a@(z, ¢, s)=G(x, ¢ 1),s) for
521, Supp(Y) is contained in S¥ X [¢, 1 —e] X I which is compact. We
can regard Y as a time-dependent G-invariant vector field on S¥ X1,
and Y generates a G-isotopy F : S XIXI->S"xI (see M. Hirsch
[3, Chapter 8, Theorem 1.1]). Since I component of Y is 0, each
F, : S"xI->S"xI is level preserving. Let A : S"XI->S" be a
G-isotopy defined by h=p,-F,-f, where p,:S" xI—>S" is the projec-
tion on the first factor. Then A,=f, for t=0, 1 and %,=j on S" for
each ¢t. This completes the proof of Proposition 1. 4.

§ 2. Linearlity on a Neighborhood of the Fixed Point Set

In this section we shall prove that any G-imbedding of S into S¥
is G-isotopic to a G-imbedding which is linear on a neighborhood of
S* (see Proposition 2.1), and if two G-imbeddings of S” into S¥,
which are linear on a neighborhood of S", are G-isotopic, then there
exists a G-isotopy between them which is linear on a neighborhood
of S§* (see Proposition 2. 3).

Since the fixed point set of SV is S* and since S" is a G-subma-
nifold of S¥, we can regard S" as a G-submanifold of S¥. Let U
and N denote invariant open tubular neighborhoods of S* in SV and
S* in SV respectively. We shall identify U and N with invariant
normal bundles to $* in SV and to S* in S¥ respectively. Let f:S8"
—S8” be a G-imbedding with f®=j. We shall assume that f(U) is
contained in N. Let f : U-N be a G-bundle monomorphism defined
by the differential of f.

Proposition 2.1. Let f: S'—>S" be a G-imbedding with f¢=j.
Then there exists a G-isotopy h : S¥VXI—->S" such that h,=f and h,=

f on some invariant neighborhood of S* in S".

In order to prove Proposition 2.1, we start with the following

lemma.
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Lemma 2.2. Let M be a G-submanifold of a G-manifold N. Let
f: MXI—>N be a G-isotopy such that f,(0M) CON and f,(M) intersects
transversally on ON for each t. Let A be an invariant subspace of M
such that A is compact. Then there exists a G-isotopy F : NXI—->N
such that Fy=1 and F,-f,=f, on A for 0=t=1.

Proof. Let f: MXR—>NXR be a G-imbedding defined by

(fi(@),t) for 0=t=1
Flz, )=1{ (f(x),t) for t<0
(fi(x),t) for t>1.

We can assume that G acts by isometries in some product metric on
NxR. Let v be an invariant normal bundle of f(MXR) in NXR
and let p : v>f(MxR) be the projection. Then the exponential
map is defined on some neighborhood of f(Mx R) in v and is an
equivariant immersion on a smaller invariant open neighborhood of
Ff(MxR) (see the proof of G. Bredon [1, Chapter VI, Theorem
2.2]). Let B be an invariant open neighborhood of A such that B
is compact. Since B is compact, the exponential map is a G-imbed-
ding on an invariant neighborhood of F(BXI) in v|f(BxI). By a
method of the proof of G. Bredon [1, Chapter VI, Theorem 2. 2],
we have a G-imbedding ¢: v|f(BXxI)>NxR. We shall identify
v|f(BxI) as the image of ¢.

The tangent vectors to the curves f(xxR) (x&M) define an
invariant vector field X on f(M X R) of the form X(f(z, 1)) =(X(x,
t), DET,.,(NXR). Note that Supp(X) is contained in F(M xI).
Take an invariant C™-partition of unity subordinate to the covering
{B, M—A} of M, and let u be the invariant function correspond-
ence to B. Let X be an invariant vector fields on f(M x R) defined
by X (f(z, t))=u(z)-X(z,t) and X' =0 outside of F(BxR).
Then Supp(X’) is contained in f(BxI) and X'=X on f(AXR).

Let r : R—[0, 1] be a C~-function such that r(¢) =1 for <1,
0<r(@®) <1 for 1<t<2 and r(¢) =0 for t=2. Let Y be an invariant
vector field on N xI defined by Y(v) =r(||[vj])- X' (p(v)) on v|f(Bx
I) and Y=0 outside of v|f(BXI), where || || is an invariant Rie-
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mannian metric on v. Then we can regard Y as a time-dependent
invariant vector field on N. Note that Supp(Y) is contained in v(2)
|BxI which is compact, where »(2) = {vEv; ||[v|]|<2}. Therefore Y
generates a G-isotopy F : NXI—->N such that F,=1 and F,-f,=f, on
A for 0=¢t=1. This completes the proof of Lemma 2. 2.

Proof of Proposition 2.1. Let g: UXI—>N=-S" be a homotopy of
G-imbeddings defined by g,(v) =1/(1—=¢)-f((1—¢t)v) for 0=¢t<1 and
veU, and g,=f. Note that g,=f|U, lim,,, g.=f and g, is a G-im-
bedding for each & By Lemma 1.2 we can assume that gis a
G-isotopy between f|U and f. By Lemma 2.2 there exists a G-iso-
topy G : S¥ xI—S" such that F,=1 and F,-g,=g, on some neighbor-
hood of S". Let A: S"XI—>S" be a G-isotopy defined by h,=F, -f.
Then h,=f and A,=f" on some neighborhood of S". This completes
the proof of Proposition 2. 1.

By Proposition 1.3 and Proposition 2. 1, any element of I(S¥, S¥)
is represented by a G-imbedding f: S'—S¥ such that f°=j and

4

f=f on an invariant tubular neighborhood of S

Proposition 2.3. Let f: S"XI->S" be a G-isotopy such that
fé=j (0=t=Z1) and fi=f; (1=0, 1) on an invariant tubular neigh-
borhood U of S". Then there exists a G-isotopy h:S" XI—>S" such
that h,=f, (1=0, 1) and h,=h, on an invariant neighborhood of S"
Jor 0=t<1.

Proof. Let f: 8" xI—->S" xI be a G-imbedding defined by f(z, t) =
(f;(®), t). We can assume that f,(U) is contained in N for each
t. Let f: UXI>NXI be a G-imbedding defined by F (v, t) = (v),
t). Let F: UxIXI->NxI be a G-map defined by F,(v, ) =(1/(1—
s)«f,((1—9)v), t) for 0=<s<1 and F,=f. Then F,=f and lim,.,
F,=f and F, is a G-imbedding for eachs. Note that, by the defini-
tion of G-isotopy, there exists a positive number & such that f,=f,
for 0=t=<e and f,=f, for 1—e=<t=<1. Thus F,=f;x1 for 0=t=e

and F,=f;x1 for 1-e<¢<1. By Lemma 1.2 we can assume that F
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is a G-isotopy between f|UXI and f. Let F: UXIXR->NXIX
R=—S"xXIxX R be a G-imbedding defined by

(F(z, t,s),s) for 0=s=1
F(x: t,s)=1{ (F(z,t,0),s) for s<0
(F(z,t,1),s) for s>I.

Let U and U, be invariant open tubular neighborhoods of S"
such that U,cU,cU,cU. Let v be an invariant normal bundle of
F(UXIXR) in S"XIXR and let p: v>F(UXIXR) be the projec-
tion. Similarly as the proof of Lemma 2.2, we have a G-imbedding
¢ : v|F(U,xIxI)—S” xIx R. We shall identify v|F(U,xIxI) as
the image of ¢.

The tangent vectors to the curves FxxtxR) (xxteUxI) define
an invariant vector field X on F(UxIx R) of the form X(F(x,¢t,s)) =
(X(z, t, 8), 0, 1) ETspry (NXIXR). Note that Supp(X) is
contained in F(Ux[e, 1—¢]xI). Take an invariant partition of
unity subordinate to the covering {U, U—U,} of U, and u be the
invariant C*-function corresponding to U, Let X' be an invariant
vector field on F(UxIXR) defined by X' (F(z, t, 5))=u(z) -X(z,
t, s) for (z, t, s)€U,xIXxR and X' =0 outside of F(U,xIXR).
Then Supp(X’) is contained in F(U,x[e, 1—e]xI) and X'=X on
F(U,xIxR).

Let r : R—[0, 1] be a C~-function such that r(¢) =1 for <1,
0<r(t)<1 for 1<t<{2 and r(¢) =0 for t=2. Let Y be an invariant
vector field on S¥ XIX R defined by Y(v) =r(liv|]]) - X' (p(v)) for vE
viF(U,xIxI) and Y=0 outside of v|F(U,xIxI), where || || is an
invariant Riemannian metric on v. Then we can regard Y as a
time-dependent invariant vector field on S¥ XI. Note that Supp(Y)
is contained in v(2) |F(U,x [e, 1 —¢] xI), where v(2)={veyv: |jv||<
2}. Then Y generates a G-isotopy H : S¥XIxXI—->S"XI such that
H,=1 and H,-F,=F, on U, xI for 0<s<1. Since I component of
Y is 0, each H, : " xI—>S" xI is level preserving equivariant diffeo-
morphism. Let 2 : S XI—S" be a G-isotopy defined by hA=p,-H,-f,
where p, : S¥ xI—>SY is the projection on the first factor. Then
h;=f, for i=0, 1 and h,=h; on U, This completes the proof of
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Proposition 2. 3.

Definition 2.4. Let f, : $">S"7 (=0, 1) be G-imbeddings such
that f,=f: on U. f, and f, are said to be equivalent if there exists
a G-isotopy f: S"xI—->S" between f, and f; such that f,=f, on some
neighborhood of S". Let I,(S", S¥) denote the set of all equivalence

classes of these G-imbeddings.

Corollary 2.5. The natural map i, : I,(S", S")—>(S", S¥) is

bijective.

Proof. By Proposition 1.3 and Proposition 2.2, ¢, is surjective. By
Proposition 1.4 and Proposition 2.3, 7, is injective, and Corollary 2.5
follows.

§ 3. Orthogonality on a Neighborhood of
the Fixed Point Set

In this section we shall prove that any G-imbedding from S” into
S¥ is G-isotopic to a G-imbedding which is orthogonal on a neighbor-
hood of S". Moreover we shall prove that, if two G-imbeddings f,
and f;, which are orthogonal on U, coincide on U, then there
exists a G-isotopy f between f, and f; such that f,=f (0=t=1) on
U,, where U and U, are invariant neighborhood of S".

As in §2, let U and N be invariant normal bundles of S§* in S¥
and to " in S¥ respectively. Note that U and N are isomorphic to
product bundles S*"X V, and S" X (dV.@RY ") as a G-vector bun-
dles over S respectively. Let f : S"—S" be a G-imbedding with f¢=j.

Then f': U—N induces a continuous map
fi 8" Mon®(V,, dV,@ R0+,
where Mon®(V,, dV,@R“ D"+ is the set of all G-module monomor-

phisms from V, to dV,®R“ "+ with usual topology. By Schur’s
lemma, Mon®(V,, dV,®R“***) is isomorphic to Mon®(V,, dV,).
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Proposition 3.1. Let f: S">SY be a G-imbedding with f=j.
Let h : S*XI—>Mon®(V,, dV,) bea homotopy with h,=f. Then there
exists a G-isotopy F : S* xI—>S" such that F,=f and F,=h,.

Proof. Let p: U—S* be the bundle projection. Let F': UXI->N
be a homotopy of G-imbeddings defined by Fi(u)=~h,(p(u)) (u) for
ucU. Then, by Lemma 1.2, we can assume that F’ is a G-isotopy.
By Lemma 2.2, we have a G-isotopy H: S¥ XI—S" such that H,=1
and H,-f'=F; on some invariant neighborhood of S* for each . Let
F : 8" xXI—-S" be a G-isotopy defined by F,=H,-f. Then F,=f and
F,=h,, and this completes the proof of Proposition 3. 1.

Let O°(V,, dV,) denote the set of all G-module orthogonal mo-
nomorphisms from V, to dV,. Let F denote the field of real numbers
R, complex numbers C or quaternionic numbers H. Let U(g, F)
denote the orthogonal group O(n), the unitary group U(n) or the
symplectic group Sp(n) in the case of F=R, C or H respectively.
Let Hom®(V,, V,) denote the group of G-module endmorphisms of V..
Let V., (F) denote the Stiefel manifold (over F) of s-frames in I".

Lemma 3.2. Suppose that V, is isomorphic to @ kW, where W,
runs over the inequivalent irreducible real G-modul;s. Then
Mon®(V,, dV,) =IiIV,§,,'__,,i (F))
and
0°(V,, dV,) =1:_[U(dk,., F)/u((d—1)k, F)),

where F,=R, C and H when dim Hom® (W, W,) =1, 2 and 4 respec-
tively.

Proof. If W, is a real restriction of an irreducible complex (resp.
quaternionic) G-module W), then HomS(W, W,) is isomorphic to
C (resp. H) given by the scalar multiplication of W;. Otherwise
Hom®(W,, W,) is isomorphic to R given by the scalar multiplication
of W, (see J. -P. Serre [6, 13.2]). Therefore Mon®(k, W, dk,W,)
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and O°(kE,W, dk,W,) are identified with V,;,,’_,,,i(Fi) and U(dk;, F,)/
U((d—1)k,, F,) respectively. By Schur’s lemma Hom®(V,, dV,) is
isomorphic to @ Hom®(k, W, dk,W). Then Mon°(V,, dV,) and
0%(V,, dV)) arc; identified with II Mon®(k,W,, dk,W,) and II O°
(k. W,, dk,W,) respectively. This c'ompletes the proof of Lemmai 3.2

Proposition 3.8. Let f: S'xI—>S" be a G-isotopy such that
fé=j, fi=f, on U for each t and fi=f. If =,.,(Mon°(V, dV,)) =0,
then there exists a G-isotopy h:S" xI—S¥ such that h,=f;, for i=0,1
and h,=f, for 0=t<1.

Proof. Let a; : S*x0(IXI)—>Mon®(V,, V,) be a continuous map
defined by

fi(x) for s=0 and 0<t<1
a;(x, t,s)=1{ f,(x) for s=1 and 0=t<1
f(x) for t=0, 1 and 0<s<I1.

Since m,.,(Mon¢(V,, dV,)) =0, the only obstruction to extend a; to
S*xIxI is a well defined cohomology class o(a,) e H*(S*xIxI, S" X
oI xXI) ; m(Mon(V,, dV,)) =n,(Mon®(V,, dV,)). If d=3, Mon°
(V, dV,) is 2-connected by Lemma 3.2, and o(a,) =0.

Now we will consider the case of d=1. In this case Mon®(V,,dV,)
is a group A°(V,)), where A°(V)) is the group of all G-module
automorphisms of V,. Let b, : 0(IXI) »>Mon°(V,, dV,)=A%(V,) be
a continuous map defined by b,(x) =a,(*,z) for x=d(I xI), where =
is a point of S". Then the above obstruction class o(a,) is repre-
sented by b;. Note that an element of A°(V,) can be regarded
as an equivariant linear diffeomorphism of S¥ in the natural way.
Let g: S"xI—>S" be a G-isotopy between f, and f, defined by
g.=fG)f,(+)7fi. Then b,(x)=f(+) for any z€d(IxI), and
o(a,) =0. Replacing the G-isotopy f between f, and f; by g, we can
assume o(a,) =0.

We now turn to the case d=2. If V, is isomorphic to 6—) kW,, then
Mon¢(V,, 2V, :HV;k;-*; (F;) by Lemma 3.2. Note that n':(VZ’hi,,,,_ (F))
is 0 beside the ca'se F.=R and k,=1. Let J be the set of index ¢
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such that F;=R and k;=1. Letp :II V2k ;, (F)—>H V.. (R) be the
natural projection. Then p, : nl(H V;k ;, (F))—»n'l(H V2 (R)) 1is iso-
morphic. Let r I—>H Vi (R) be a continuous map defined by
r(t) =p-f:(*). Since =: HGL(2 R) —>_H V,. is a product bundle,
there exists a continuousler;lap 7o I—»_H‘ECJ?L(Z, R) such that zn-7=r
and #(0) =#(1). Note that, for eac}{(EiJEJ, GL(2,R) can be regarded
as the automorphism group A(2W,) of G-module 2W, whose element
defines an equivariant linear diffeomorphism of S". Let g:S"xXI—>S%
be a G-isotopy between f, and 7, defined by g, =#(0) -#(¢) *+f.. Since
7 is identified with the natural map H A QW) —>1II Mon® (W, 2W,),

=

peg,(¥) =p+£(*) and o(g,) =0. Replacmg the G-isotopy f between f,
and f; by g, we can assume o(a,) =0.

Therefore we can assume that a, can be extended to S"XIXxI.
Let F: UXIXI—>NxI be an equivariant map defined by F(v, t, 5) =
(a;(q(v), t, s)(v), t), where q: U—S" is the bundle projection. Then
each F(-,¢t,s) is a G-imbedding, and F,(u, t) =(f,(v), t) = (. (u), ?)
and F,(u, t) =(f,(uw), t)=(f(u), t) for (u, t)eUxI. By Lemma
1.2 we can assume that F is a G-isotopy. In the same way as the
proof of Proposition 2.3, we have a G-isotopy A~ : S” XI—S" such that
h,=f; (i=0, 1) and h,=f, (0=t=<1) on some invariant neighborhood
of S*. Therefore A, =ﬁ for each ¢, and this completes the proof of
Proposition 3. 3.

Remark. 1 don’t know whether Proposition 3.3 is valid without
the assumption =,.,(Mon¢(V,, dV,)) =0.

Now we shall assume =#,.,(Mon®(V,, dV,))=0. Choose a contin-
uous map a, : S">0°%(V,, dV,), which represents an element 4, for
each element 2 of #,(0°(V,, dV,)). Let A=la,; 2€x,(0°(V,, dV,)}

Definition 3.4. Let f;: S"—S%, i=0, 1, be G-imbeddings, which
represent elements of I,(S", S¥), such that f,-, =0, 1, are elements

of A. f, and f, are said to be equivalent if there exists a G-isotopy
f: 8" xI->S" between f, and f, such that £=/ for 0=<¢<1. Let
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L,(S", S”) denote the set of equivalence classes of these G-imbeddings.

Corollary 3.5. If =,.,(Mon®(V,dV,))=0, the natural map
7, + L(SY, S")—>I,(S", S¥) is bijective.

Proof. Let f: S'—>S" be a G-imbedding which represents an
element of I,(S”, S¥). By Lemma 3.2 0°(V,, dV,) is a deformation
retract of Mon®(V,, dV,). Therefore, by Proposition 3.1, we can
assume that f is an element of 4, and 7, is surjective. By Proposition

3.3, 7, is injective, and this completes the proof of Corollary 3.5.
§4. Proof of Theorem A and Theorem B

In this section we shall prove that, if G is a finite group and
Tosy(Mon®(V,, dV,)) =0, then the G-isotopy class of a G-imbedding
f i1 S"—>S" is determined by the homotopy class of the orbit map of
f1(S"—U) relative to the boundary, where U is an invariant open
neighborhood of S*. And, using the obstruction theory, we shall prove
Theorem A and Theorem B.

In this section we shall assume that G is a finite group and
T (Mon®(V,, dV,))=0. Let f; : S"=S% i=0, 1, be G-imbeddings
which represent elements of I,(S”, S¥). Let U be an invariant open
e-tubular neighborhood of S* in S”. We can choose a sufficiently small
positive number & such that f;=f; on U and f;(S"—U)CS¥—T for
=0, 1. By Corollary 3.5, we have the following :

Lemma 4.1. With the above notations, f, and f, are G-isotopic if
and only if there exists a G-isotopy f : S'XI—>S" such that f,(S"—U)
is contained in SY—T and f,=f, 0=t=1, on U.

It is clear that free G-manifolds S¥— U and S" —7T are equivariant
diffeomorphic to S(V,) XxD*** and S(dV,) X D****' respectively. Let
L and L’ denote the orbit spaces S(V,)/G and S(dV,)/G respectively.
Then the orbit spaces (S*—U)/G and (S¥—T)G are diffeomorphic
to LxXD** and L' xD***** respectively. Let f; : L X D**'— L’ x D+,
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=0, 1, be imbeddings defined by the orbit maps of f;|(S"—U).

Proposition 4.2. With the above notations, f, and f, are G-isotopic
if and only if f, and f, are homotopic relative to L X S".

Proof. By Lemma 4.1, if f, and f, are G-isotopic, then f, and
# are homotopic relative to LxS". Conversely if £, and f, are homo-
topic relative to L xS", then £, and £, are isotopic relative to L XS"
because dim (L' x D****1)>2 dim (L xD**')+1. Since G is a finite
group, S'—U—-(S"—U)/G and S"—T—>(S"—T)/G are covering
spaces. By the covering homotopy property, there exists a G-isotopy
h,: S"—U-S"—T (0=¢=<1) relative to d(S'—U) such that A,=f,
and A =f for 0=<t<1. Since %,]0(S"—U) =£|3(S"—U) and A,=f,
by the property of the covering space, we have A,=f; on S"—U.
Therefore f, and f, are G-isotopic and this completes the proof of
Proposition 4. 2.

Proof of Theorem A. Suppose that Vlz@kiWi, where W, runs
over the inequivalent irreducible real G-mc;dules. If ¢>2, Mon®
(V,, dVy) =11 V';".-"'4<C) by Lemma 3.2. Since Vi, . (C) is 2(d—1)k.-
connected, 7,.,(Mon®(V,, dV,))) =0 if d=(n+3)/2. If q=2, V,=
(m—n) W, and Mon°(V,, dV,) =Vt n-n(R), where W, is the non-
trivial 1-dimensional real representation of Z, Since Vim—m mn(R)
is (d—1) (m—n) —1-connected, =,,,(Mon®(V,, dV,))=0if d=(m+2)/
(m—mn). Therefore, combining Corollary 2.5 and Corollary 3.5, the
set 1(S", S¥) can be identified with the set I,(S”, S¥). Let fy: ST—>S"
be the standard imbedding. Let f: S"—S" be a G-imbedding which
represents an element of I,(S", S¥). Since =x,(Monc(V, dV,)) =0,
we can assume f=f;. With the notation of Proposition 4.2, f and f;
are G-isotopic if and only if f and £ are homotopic relative to S* X L.

Note that L (resp. L') is an m—n—1 (resp. d(m—n) —1)-dimen-
sional lens space or real projective space. Since d=(m+2)/(m—1),
m, (L' x D) =0 for 2<7i<m. By the obstruction theory of P. Olum
[5, Theorem 9.10 and Theorem 16.5], f and f; are homotopic
relative to L xX.S". This completes the proof of Theorem A.
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Proof of Theorem B. By Lemma 3.2, Mon®(V,, dV,) = V-2 tneny2
(C). Thus Mon®(V, dV,) is (d—1) (m —n)-connected, and if
d=(m+1)/(m—n), x,.,(Mon®(V,, dV,)) =0. Combining Corollary 2. 5
and Corollary 3.5, the set I(S”, S¥) can be identified with I,(S",S¥).

Let f: 8"—S8" be a G-imbedding which represents an element of
I,(S", S¥). Similarly as the proof of Theorem A, we can assume
FILxS"=f|LxS", and in the case of d>(m+1)/(m—n), f is G-
isotopic to the standard imbedding fs.

Now consider the case of d=(m+1)/(m—n). Since H'(LxD"*,
Lx8; n,(L'x D"y =H""(L ; n,(L"))=0 for i<m and H™
(LxD***, LxS"; z,(L'x D)) =H"~"*(L; n;(L")) =0 for i<m, by
the obstruction theory, the homotopy classes of maps f: LXD"*—
L’ x D***** relative to L X.S" are in one to one correspondence with

the elements of
H"(LxD, LXS§; n, (L' x D)) =g (L').

Since dim L'=d(m—n) —1=m in the case of d=(m+1)/(m—n), by
Proposition 4.2, we have I(S¥, S¥) =Z. This completes the proof of
Theorem B.

Remark. Suppose that V,=@k, W, and k=3 for each { if dim

Hom®(W,, W,)=1, where W, runs over the inequivalent irreducible

1

real G-modules. Then Theorem A is valid when G is a finite group.
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