On The Equivariant Isotopy Classes of Some Equivariant Imbeddings of Spheres

By

Kōjun ABE*

§0. Introduction

The purpose of this paper is to study the G-isotopy classes of G-imbeddings of spheres into spheres, where the spheres are equipped with semi-free linear G-actions for a finite group G.

Let V be an *m*-dimensional real G-module. Throughout this paper we shall assume that V is a product module $V = R^n \bigoplus V_1$ of a trivial real G-module R^n of positive dimension n and an (m-n)dimensional real G-module V_1 on the G-invariant unit sphere $S(V_1)$ of which G acts freely. Let W be a real G-module which contains V as a direct summand. Let S^v and S^w denote the one-point compactifications of V and W respectively. Then S^v and S^w are spheres on which G acts linearly. The direct sum of d copies of V will be denoted by dV.

Theorem A. Let G be a cyclic group Z_q and let $W=dV \oplus R^*$ for k > m+1. If $d \ge \max \{(n+3)/2, (m+2)/(m-n)\}$, then any G-imbedding of S^v into S^w is G-isotopic to the standard imbedding.

Theorem B. Let G be a cyclic group Z_q for q>2 and let $W=dV\oplus R^*$ for k>m+1. Suppose that $d \ge (m+1)/(m-n)$ and V_1 is a direct sum of (m-n)/2 copies of an irreducible 2-dimensional real G-module.

(1) If d = (m+1)/(m-n), then there are infinitely many G-

Communicated by N. Shimada, July 4, 1977.

^{*} Department of Mathematics, Shinshu University, Matsumoto, 390, Japan.

KOJUN ABE

imbeddings of S^v into S^w which are not G-isotopic to each other, and
(2) if d>(m+1)/(m−n), then any G-imbedding of S^v into S^w
is G-isotopic to the standard imbedding.

The paper is organized as follows. For any G-imbedding $f: S^{v} \rightarrow S^{w}$, we shall show that, by G-isotopies, $f|S^{n}$ can be deformed to be standard in §1, f can be deformed to be linear on a neighborhood of S^{n} in §2 and f can be deformed to be orthogonal on a neighborhood of S^{n} in §3. Moreover we shall prove that, if two G-imbeddings of S^{v} into S^{w} are G-isotopic and are orthogonal on a neighborhood of S^{n} , then there exists a G-isotopy between them which is orthogonal on a neighborhood of S^{n} in §3. Then we see that the G-isotopy class of f is determined by the homotopy class of the orbit map of $f|(S^{v}-U)$ relative to the boundary, where U is a neighborhood of S^{n} . In §4, using the obstruction theory, we shall prove Theorem A and Theorem B.

The author wishes to thank Professors M. Adachi and T. Matumoto for their kind advices and valuable criticism.

§1. Imbeddings Can Be Deformed to Be Standard on the Fixed Point Set

In this paper we shall assume that all manifolds and all actions are differentiable of class C^{∞} . Until Section 3 the results are valid in the case of G a compact Lie group.

In this section we shall prove that any G-imbedding of S^v into S^w is G-isotopic to a G-imbedding which is standard on S^n (see Proposition 1.3), and if two G-imbeddings of S^v into S^w , which are standard on S^n , are G-isotopic, then there exists a G-isotopy between them which is standard on S^n (see Proposition 1.4).

Definition 1.1. Let M be a G-submanifold of a G-manifold N. Let I denote the unit interval [0, 1] with trivial G-action. A smooth map (resp. smooth G-map) $f: M \times I \rightarrow N$ is said to be an isotopy (resp. G-isotopy) if each $f_t: M \rightarrow N$ is an imbedding (resp. G-imbedding), where $f_i(x) = f(x, t)$, and f_i is independent of t in some neighborhood of 0 and in some neighborhood of 1 (see G. Bredon [1, Chapter VI, §3]). Two imbeddings (resp. G-imbeddings) $f_i : M \rightarrow N$ (i=0, 1) are said to be isotopic (resp. G-isotopic) if there exists an isotopy (resp. G-isotopy) $F : M \times I \rightarrow N$ with $F_0 = f_0$ and $F_1 = f_1$. If ∂M is not empty, we shall consider $M \times I$ as a smooth manifold with corners.

Let $I(S^{v}, S^{w})$ denote the set of all G-isotopy classes of G-imbeddings $f: S^{v} \rightarrow S^{w}$. Our purpose is to determine the set of $I(S^{v}, S^{w})$, provided that $W=dV \oplus R^{*}$ for k > m+1.

Remarks. 1. It is easy to see that any G-map $f: S^{v} \rightarrow S^{w}$ is G-homotopic to the standard imbedding.

2. Using the method of A. Wasserman [7, § 1], we can see that any G-imbedding $f: S^{v} \rightarrow S^{w}$ is G-isotopic to the standard imbedding if d > 2m+2.

The following lemma will be useful.

Lemma 1.2. Let N be a q-dimensional manifold on which G acts semi-freely and let M be a p-dimensional G-submanifold of N. Let K denote I or $I \times I$ and let L be a closed subset of K which contains ∂K . Let $f: M \times K \rightarrow N$ be a continuous G-map such that each $f_k: M \rightarrow N$ is a G-imbedding, where f_k is defined by $f_k(x) = f(x, k)$. If f is a smooth G-map on $M \times L'$, where L' is a neighborhood of L in K, then there exists a smooth G-map $H: M \times K \rightarrow N$ such that each H_k is a G-imbedding and H=f on $M \times L$, where $H_k: M \rightarrow N$ is defined by $H_k(x) = H(x, k)$.

Proof. We shall prove Lemma 1.2 by an equivariant version of J. Munkres' argument [4, Chapter I, §4]. Let $\{U_i\}$ (resp. $\{V_j\}$) be a family of locally finite countable invariant open sets of M such that $\bigcup_i U_i \subset M^c$ (resp. $\bigcup_j V_j \supset N^c$) and \overline{U}_i (resp. V_j) is equivariant diffeomorphic to a *p*-dimensional disc or half disc (resp. *q*-dimensional

Kojun Abe

euclidean space or euclidean half space) with linear G-action, where M^c and N^c denote the fixed point set of M and N respectively. We can choose the family $\{U_i\}$ such that, for any $k \in K$ and for any i, $f_k(\bar{U}_i)$ is contained in V_i for some j depending on k and i. There exists a positive continuous function δ_1 on M as follows. For any continuous map $g: M \times K \rightarrow N$, such that g_k is δ_1 -approximation to f_k for each k, has these properties. Let $\{W_i\}$ be a family of invariant open sets of M with $\overline{W}_i \subset U_i$ and $\bigcup W_i \supset M^c$.

Let $C_r(y)$ denote a closed *r*-neighborhood of *y* in *K* for a positive number *r* and $y \in K$. There exists a sufficiently small positive number *r* such that, for any $z \in C_r(y)$ and for any $y \in K$, $f_z(\bar{U}_1)$ is contained in V_j for some *j* depending on *y*. Then we can find a finite number of $C_r(y)$, say $C_n = C_r(y_n)$ (n=1, 2, ..., l), such that $\bigcup_{n=1}^{l} C_n \subset K - L'$. We can assume that $C_n \cap L = \emptyset$ for any *n*. Let ψ_1 : $M \to I$ be an invariant smooth function on *M* which equals 1 on \overline{W}_1 and 0 outside of U_1 . Let A_n and B_n , n=1, 2, ..., l, be open sets of *K* such that $\overline{A}_n \subset \overline{B}_n \subset \overline{B}_n \subset$ int C_n and $\bigcup_{n=1}^{l} A_n$ contains K - L'. Let ξ_n : $K \to I$, n=1, 2, ..., l, be smooth functions on *K* which equals 1 on \overline{A}_n and 0 outside of B_n .

We shall identify U_i and V_j as euclidean spaces or euclidean half spaces with linear G-actions. For any n, we can find j(n) such that $f_z(\bar{U}_1) \subset V_{j(n)}$ for any $z \in C_n$. Let $f^{1,n}: M \times C_n \to V_{j(n)}$ be a G-map defined by $f_z^{1,n}(x) = \psi_1(x) \cdot f_z(x)$ for $x \in U_1$ and $z \in C_n$, and $f^{1,n} = 0$ outside of $U_1 \times C_n$. Let $g^{1,n}: M \times K \to V_{j(n)}$ be a G-map defined by $g_z^{1,n}(x) =$ $\xi_n(z) \cdot f_z^{1,n}(x)$ for $x \in M$ and $z \in K$. Since $g_z^{1,n} = 0$ for $z \notin C_n$, we can extend $g^{1,n}$ trivially on $M \times R$ (resp. $M \times R^2$) if K = I (resp. $I \times I$). Define a smooth G-map $h^{1,n}: M \times K \to V_{j(n)}$ by

$$h_{z}^{1,n}(x) = \int_{\mathcal{C}(\epsilon_n)} \varphi_n(y) \cdot g_{z+y}^{1,n}(x) \, dy \text{ for } x \in M \text{ and } z \in K,$$

where $C(\varepsilon_n)$ is a closed ε_n -disc in K and φ_n is a smooth function on R or R^2 which is positive on int $C(\varepsilon_n)$ and 0 outside of $C(\varepsilon_n)$ and $\int_{c(\varepsilon_n)} \varphi_n(y) dy = 1$. Choose the positive number ε_n less than the distance from B_n to the complement of C_n . Then $h^{1,n} = 0$ outside of $U_1 \times C_n$.

Let $F^{1,0} = f$. Assume that $F^{1,n-1} : M \times K \rightarrow N$ is defined such that

 $F^{1,n-1}$ is smooth on $\overline{W}_1 \times (\overline{A}_1 \cup \ldots \cup \overline{A}_{n-1})$ and $F^{1,n-1} = F^{1,n-2}$ outside of $U_1 \times C_{n-1}$. Moreover we assume that $F_k^{1,n-1}$ is a $\delta_1/2^{l-n+2}$ -approximation to $F_k^{1,n-2}$ for each $k \in K$. Then $F_z^{1,n-1}$ is a δ_1 -approximation to f_z . Let $F^{1,n} : M \times K \to N$ be a G-map defined by

$$F_{z}^{1,n}(x) = F_{z}^{1,n-1}(x) \ (1 - \phi_1(x)\xi_n(z)) + h_{z}^{1,n}(x), \text{ for } x \in M \text{ and } z \in K.$$

Since $F^{1,n} = h^{1,n}$ on $\overline{W}_1 \times \overline{A}_n$, $F^{1,n}$ is smooth on $\overline{W}_1 \times (\overline{A}_1 \cup \ldots \cup \overline{A}_n)$ (note that, if $F^{1,n-1}$ is smooth on a subset of $M \times K$, $F^{1,n}$ is smooth on the subset of $M \times K$). Since $h^{1,n} = 0$ outside of $U_1 \times C_n$, $F^{1,n} = F^{1,n-1}$ outside of $U_1 \times C_n$. By the argument of J. Munkres [4, Chapter I, § 4], we can choose the positive numbers ε_i $(i=1, 2, \ldots, n)$ so small that $F_k^{1,n}$ is a $\delta_1/2^{l-n+1}$ -approximation to F_k^{n-1} for each k. Then we can see that $F_z^{1,n}$ is a δ_1 -approximation to f_z and $F_z^{1,n+1}$ is defined. By the induction, we have a G-map $F^{1,l} : M \times K \to N$ such that $F^{1,l}$ is smooth on $\overline{W}_1 \times (\bigcup_{n=1}^{l} \overline{A}_n)$ and $F^{1,l} = F^{1,l-1}$ outside of $U_1 \times C_n$. Set $F^1 = F^{1,l}$. Since $\bigcup_{n=1}^{l} \overline{A}_n$ contains K - L', F^1 is smooth on $\overline{W}_1 \times K$. And since $C_n \cap L = \emptyset$, $F^1 = f$ on $M \times L$.

There exists a positive continuous function $\delta \leq \delta_1$ on M such that, for each $k \in K$, any C^1 -map from M to N, which is a δ -approximation in C^1 -topology to f_k , is an imbedding (see J. Munkres [4, Chapter I, Theorem 3.10]). We can choose the positive numbers ε_n , n =1, 2,..., l, so small that F_k^1 is a $\delta/2$ -approximation to f_k in C^1 -topology for each $k \in K$.

By the induction we have G-maps $F^i: M \times K \to N$ (i=2,3,...), which is smooth on $(\overline{W}_1 \cup \ldots \cup \overline{W}_i) \times K$, such that $F^i = f$ on $M \times L$ and $F^i = F^{i-1}$ outside of $U_i \times K$. Moreover we can choose F_k^i is a $\delta/2^i$ -approximation to F_k^{i-1} in C^i -topology for each $k \in K$. Define a G-map $F: M \times K \to N$ by $F_k(x) = \lim_{i \to \infty} F_k^i(x)$; F_k is well defined because $F_k^i = F_k^{i+1} = \ldots$ on some neighborhood of x, for sufficiently large i. $F: M \times K \to N$ is smooth on $(\bigcup_i \overline{W}_i) \times K$ and F = f on $M \times L$. Moreover F_k is a δ -approximation to f_k in C^i -topology, for each $k \in K$.

Let T be a closed invariant neighborhood of M^{c} in M such that T is contained in $\bigcup W_{i}$. $F_{*}(M-M^{c})$ is contained in $N-N^{c}$, for

each k, since F_k is a G-imbedding. Let $\overline{F} : (M-M^c)/G \times K \to (N-N^c)/G$ be the orbit map of F. Then \overline{F} is a smooth map on a neighborhood of $(T-M^c)/G \times K$ and $\overline{F} = \overline{f}$ on $(M-M^c)/G \times L$, and \overline{F}_k is a δ -approximation to \overline{f}_k for each $k \in K$, where \overline{f}_k is the orbit map of f_k . By the relative version of the argument of J. Munkres [4, Chapter I, §4], we have a smooth map $\overline{H}: (M-M^c)/G \times K \to (N-N^c)/G$ such that $\overline{H} = \overline{F}$ on $(T-M^c)/G \times K$ and \overline{H} is homotopic to \overline{F} relative to $(T-M^c)/G \times K \cup (M-M^c)/G \times L$. Moreover \overline{F}_k is a δ -approximation to \overline{f}_k in C¹-topology, for each $k \in K$. By the covering homotopy property, we have a smooth G-map $H: (M-M^c) \times K \to N-N^c$ whose orbit map is \overline{H} . Define H=F on $T \times K$. Then $H: M \times K \to N$ is a smooth G-map such that H_k is a δ -approximation to f_k in C¹-topology, for each $k \in K$, and H=f on $M \times L$. This completes the proof of Lemma 1.2.

Let $f: S^{v} \to S^{w}$ be a *G*-imbedding. The fixed point set of S^{v} and S^{w} are S^{n} and $S^{d_{n+k}}$ respectively. Let $f^{G}: S^{n} \to S^{d_{n+k}} \subset S^{w}$ denote an imbedding which is a restriction of f to S^{n} . Let $j: S^{v} \to S^{w}$ be the standard imbedding.

Proposition 1.3. Let $f_0: S^{v} \to S^{w}$ be a G-imbedding. Then there exists a G-isotopy $f: S^{v} \times I \to S^{w}$ between f_0 and f_1 with $f_1^{G} = j$ on S^{n} .

Proof. Since dn+k>2n, we have an isotopy $h: S^{dn+k} \times I \to S^{dn+k}$ such that $h_0=1$ and $h_1 \cdot f_0^c = j$. By the isotopy extension theorem, there exists an isotopy $H: S^w \times I \to S^w$ such that $H_0=1$ and H=h on $S^{dn+k} \times I$. Using a result of G. Bredon [1, Chapter VI, Theorem 3.1], we have a G-isotopy $K: S^w \times I \to S^w$ such that $K_0=1$ and K=H on $H^c \times I$, where $H^c = \{x \in S^w ; H_i(g \cdot x) = g \cdot H_i(x) \text{ for any } t \in I \text{ and} g \in G\}$. Note that $S^{dn+k} \subset H^c$. Let $f: S^v \times I \to S^w$ be a G-isotopy between f_0 and f_1 defined by $f_i = K_i \cdot f_0$. Then $f_1^c = j$ and this completes the proof of Proposition 1.3.

Proposition 1.4. Let $f: S^{v} \times I \rightarrow S^{w}$ be a G-isotopy with $f_{i}^{g} = j$ for i = 0, 1. Then there exists a G-isotopy $h: S^{v} \times I \rightarrow S^{w}$ such that $h_i = f_i$ for i = 0, 1 and $h_i^{c} = j$ for $0 \leq t \leq 1$.

Proof. Let $f: S^{v} \times I \to S^{w} \times I$ be a *G*-imbedding defined by $f(x, t) = (f_{\iota}(x), t)$. Let $f^{G}: S^{n} \times I \to S^{dn+k} \times I$ be an imbedding which is a restriction of f to $S^{n} \times I$. Let $E(S^{n}, S^{dn+k})$ denote the set of all imbeddings of S^{n} into S^{dn+k} with C^{∞} -topology. By a result of J. Dax [2, Chapter VI, §3], $\pi_{1}(E(S^{n}, S^{dn+k})) = 0$ since dn+k > 2n+2. Then we have a continuous map $a: I \times I \to E(S^{n}, S^{dn+k})$ such that, for a sufficiently small $\varepsilon > 0$,

$$a(t,s) = \begin{cases} f_t^{c} \text{ for } (t,s) \in I \times [0, \varepsilon] \\ j \text{ for } (t,s) \in [0, \varepsilon] \times I \cup I \times [1-\varepsilon, 1] \cup [1-\varepsilon, 1] \times I. \end{cases}$$

Using Lemma 1. 2, we may assume that $\hat{a} : S^n \times I \times I \to S^{d_n+k} \times I$ is an isotopy, where $\hat{a}(x, t, s) = (a(t, s)(x), t)$. Then we have an imbedding $\tilde{a} : S^n \times I \times R \to S^{d_n+k} \times I \times R$ defined by

$$\tilde{a}(x, t, s) = \begin{cases} \hat{a}(x, t, s), s & \text{for } 0 \le s \le 1 \\ \hat{a}(x, t, 0), s & \text{for } s < 0 \\ \hat{a}(x, t, 1), s & \text{for } s > 1. \end{cases}$$

 $\tilde{a}(S^n \times I \times R)$ is a closed G-submanifold of $S^w \times I \times R$, and $\tilde{a}(S^n \times I \times R)$ intersects normally on $\partial(S^n \times I \times R)$ with respect to a product G-invariant Riemannian metric on $S^w \times I \times R$. By using the proof of G. Bredon [1, Chapter IV, Theorem 2.2] with respect to the Riemannian metric, we have an invariant open ∂ -tubular neighborhood N of $\tilde{a}(S^n \times I \times R)$, where δ is a G-invariant positive real valued function on $\tilde{a}(S^n \times I \times R)$.

The tangent vectors to the curves $\tilde{a}(x \times t \times R)$ define an invariant vector field \tilde{X} on $\tilde{a}(S^n \times I \times R)$ of the form $\tilde{X}(\tilde{a}(x, t, s)) = (X(x, s, t), 0, 1) \in T_{\tilde{a}(x, t)}(S^w \times I \times R)$, where $T(S^w \times I \times R)$ is the tangent bundle of $S^w \times I \times R$. Identifying N with a G-invariant normal bundle to $\tilde{a}(S^n \times I \times R)$ in $S^w \times I \times R$, we denote $p: N \rightarrow \tilde{a}(S^n \times I \times R)$ the bundle projection. Let $r: I \rightarrow R$ be a C^∞ -function such that r(t) =1 for $0 \leq t \leq 1/3$, 0 < r(t) < 1 for 1/3 < t < 2/3 and r(t) = 0 for $2/3 \leq$ $t \leq 1$. Let Y be a G-invariant vector field on $S^w \times I \times R$ defined by $Y(v) = r(||v||/\delta(p(v))) \cdot X(p(v))$ for $v \in N$ and Y = 0 on the outside of N, where || || denote the G-invariant metric of $S^w \times I \times R$. Since $\tilde{a}(x, t, s) = (j(x), t, s)$ for $0 \le t \le \varepsilon$ and $1 - \varepsilon \le t \le 1$, and since $\tilde{a}(x, t, s) = (\hat{a}(x, t, 0), s)$ for $s \le 0$ and $\tilde{a}(x, t, s) = (\hat{a}(x, t, 1), s)$ for $s \ge 1$, Supp(Y) is contained in $S^{W} \times [\varepsilon, 1 - \varepsilon] \times I$ which is compact. We can regard Y as a time-dependent G-invariant vector field on $S^{W} \times I$, and Y generates a G-isotopy $F : S^{W} \times I \times I \rightarrow S^{W} \times I$ (see M. Hirsch [3, Chapter 8, Theorem 1.1]). Since I component of Y is 0, each $F_{s} : S^{W} \times I \rightarrow S^{W} \times I$ is level preserving. Let $h : S^{V} \times I \rightarrow S^{W}$ be a G-isotopy defined by $h = p_{1} \cdot F_{1} \cdot \tilde{f}$, where $p_{1} : S^{W} \times I \rightarrow S^{W}$ is the projection on the first factor. Then $h_{t} = f_{t}$ for t = 0, 1 and $h_{t} = j$ on S^{*} for each t. This completes the proof of Proposition 1.4.

§2. Linearlity on a Neighborhood of the Fixed Point Set

In this section we shall prove that any G-imbedding of S^{v} into S^{w} is G-isotopic to a G-imbedding which is linear on a neighborhood of S^{n} (see Proposition 2.1), and if two G-imbeddings of S^{v} into S^{w} , which are linear on a neighborhood of S^{n} , are G-isotopic, then there exists a G-isotopy between them which is linear on a neighborhood of S^{n} (see Proposition 2.3).

Since the fixed point set of S^{v} is S^{n} and since S^{v} is a *G*-submanifold of S^{w} , we can regard S^{n} as a *G*-submanifold of S^{w} . Let *U* and *N* denote invariant open tubular neighborhoods of S^{n} in S^{v} and S^{n} in S^{w} respectively. We shall identify *U* and *N* with invariant normal bundles to S^{n} in S^{v} and to S^{n} in S^{w} respectively. Let $f: S^{v} \rightarrow S^{w}$ be a *G*-imbedding with $f^{c}=j$. We shall assume that f(U) is contained in *N*. Let $f': U \rightarrow N$ be a *G*-bundle monomorphism defined by the differential of f.

Proposition 2.1. Let $f: S^{v} \to S^{w}$ be a G-imbedding with $f^{g}=j$. Then there exists a G-isotopy $h: S^{v} \times I \to S^{w}$ such that $h_{0}=f$ and $h_{1}=f'$ on some invariant neighborhood of S^{n} in S^{v} .

In order to prove Proposition 2.1, we start with the following lemma.

662

Lemma 2.2. Let M be a G-submanifold of a G-manifold N. Let $f: M \times I \rightarrow N$ be a G-isotopy such that $f_t(\partial M) \subset \partial N$ and $f_t(M)$ intersects transversally on ∂N for each t. Let A be an invariant subspace of M such that \overline{A} is compact. Then there exists a G-isotopy $F: N \times I \rightarrow N$ such that $F_0 = 1$ and $F_t \cdot f_0 = f_t$ on A for $0 \leq t \leq 1$.

Proof. Let $\tilde{f}: M \times R \rightarrow N \times R$ be a G-imbedding defined by

$$\tilde{f}(x,t) = \begin{cases} (f_t(x),t) & \text{for } 0 \leq t \leq 1 \\ (f_0(x),t) & \text{for } t < 0 \\ (f_1(x),t) & \text{for } t > 1. \end{cases}$$

We can assume that G acts by isometries in some product metric on $N \times R$. Let ν be an invariant normal bundle of $\tilde{f}(M \times R)$ in $N \times R$ and let $p: \nu \rightarrow \tilde{f}(M \times R)$ be the projection. Then the exponential map is defined on some neighborhood of $\tilde{f}(M \times R)$ in ν and is an equivariant immersion on a smaller invariant open neighborhood of $\tilde{f}(M \times R)$ (see the proof of G. Bredon [1, Chapter VI, Theorem 2.2]). Let B be an invariant open neighborhood of \bar{A} such that \bar{B} is compact. Since \bar{B} is compact, the exponential map is a G-imbedding on an invariant neighborhood of $\tilde{f}(\bar{B} \times I)$ in $\nu |\tilde{f}(\bar{B} \times I)$. By a method of the proof of G. Bredon [1, Chapter VI, Theorem 2.2], we have a G-imbedding $\varphi: \nu |\tilde{f}(\bar{B} \times I) \rightarrow N \times R$. We shall identify $\nu |\tilde{f}(\bar{B} \times I)$ as the image of φ .

The tangent vectors to the curves $\tilde{f}(x \times R)$ $(x \in M)$ define an invariant vector field \tilde{X} on $\tilde{f}(M \times R)$ of the form $\tilde{X}(\tilde{f}(x, t)) = (X(x, t), 1) \in T_{f(x,t)}(N \times R)$. Note that Supp(X) is contained in $\tilde{f}(M \times I)$. Take an invariant C^{∞} -partition of unity subordinate to the covering $\{B, M-\bar{A}\}$ of M, and let u be the invariant function correspondence to B. Let X' be an invariant vector fields on $\tilde{f}(M \times R)$ defined by $X'(\tilde{f}(x, t)) = u(x) \cdot X(x, t)$ and X' = 0 outside of $\tilde{f}(B \times R)$. Then Supp(X') is contained in $\tilde{f}(\bar{B} \times I)$ and X' = X on $\tilde{f}(\bar{A} \times R)$.

Let $r: R \to [0, 1]$ be a C^{∞} -function such that r(t) = 1 for $t \leq 1$, 0 < r(t) < 1 for 1 < t < 2 and r(t) = 0 for $t \geq 2$. Let Y be an invariant vector field on $N \times I$ defined by $Y(v) = r(||v||) \cdot X'(p(v))$ on $\nu |\tilde{f}(\bar{B} \times I)$ I and Y = 0 outside of $\nu |\tilde{f}(\bar{B} \times I)$, where || || is an invariant Rie-

KOJUN ABE

mannian metric on ν . Then we can regard Y as a time-dependent invariant vector field on N. Note that Supp(Y) is contained in $\nu(2)$ $|\bar{B} \times I$ which is compact, where $\nu(2) = \{v \in \nu; ||v|| \leq 2\}$. Therefore Y generates a G-isotopy $F: N \times I \rightarrow N$ such that $F_0 = 1$ and $F_t \cdot f_0 = f_t$ on A for $0 \leq t \leq 1$. This completes the proof of Lemma 2.2.

Proof of Proposition 2.1. Let $g: U \times I \to N \hookrightarrow S^w$ be a homotopy of G-imbeddings defined by $g_t(v) = 1/(1-t) \cdot f((1-t)v)$ for $0 \le t < 1$ and $v \in U$, and $g_1 = f'$. Note that $g_0 = f|U$, $\lim_{t\to 1} g_t = f'$ and g_t is a G-imbedding for each t. By Lemma 1.2 we can assume that g is a G-isotopy between f|U and f'. By Lemma 2.2 there exists a G-isotopy $G: S^w \times I \to S^w$ such that $F_0 = 1$ and $F_t \cdot g_0 = g_t$ on some neighborhood of S^n . Let $h: S^v \times I \to S^w$ be a G-isotopy defined by $h_t = F_t \cdot f$. Then $h_0 = f$ and $h_1 = f'$ on some neighborhood of S^n . This completes the proof of Proposition 2.1.

By Proposition 1.3 and Proposition 2.1, any element of $I(S^v, S^w)$ is represented by a *G*-imbedding $f: S^v \to S^w$ such that $f^c = j$ and f = f' on an invariant tubular neighborhood of S^n .

Proposition 2.3. Let $f: S^{\vee} \times I \rightarrow S^{\vee}$ be a G-isotopy such that $f_i^{\mathsf{G}} = j \ (0 \leq t \leq 1)$ and $f_i = f_i' \ (i=0, 1)$ on an invariant tubular neighborhood U of S^{n} . Then there exists a G-isotopy $h: S^{\vee} \times I \rightarrow S^{\vee}$ such that $h_i = f_i \ (i=0, 1)$ and $h_i = h_i'$ on an invariant neighborhood of S^{n} for $0 \leq t \leq 1$.

Proof. Let $\tilde{f}: S^{v} \times I \to S^{w} \times I$ be a G-imbedding defined by $\tilde{f}(x, t) = (f_{\iota}(x), t)$. We can assume that $f_{\iota}(U)$ is contained in N for each t. Let $\tilde{f}': U \times I \to N \times I$ be a G-imbedding defined by $\tilde{f}'(v, t) = (f'_{\iota}(v), t)$. Let $F: U \times I \times I \to N \times I$ be a G-map defined by $F_{\iota}(v, t) = (1/(1 - s) \cdot f_{\iota}((1 - s)v), t)$ for $0 \leq s < 1$ and $F_{1} = f'$. Then $F_{0} = \tilde{f}$ and $\lim_{t \to 1} F_{\iota} = \tilde{f}'$ and F_{ι} is a G-imbedding for each s. Note that, by the definition of G-isotopy, there exists a positive number ε such that $f_{\iota} = f_{0}$ for $0 \leq t \leq \varepsilon$ and $f_{\iota} = f_{1}$ for $1 - \varepsilon \leq t \leq 1$. Thus $F_{\iota} = f'_{0} \times 1$ for $0 \leq t \leq \varepsilon$ and $F_{\iota} = f'_{1} \times 1$ for $1 - \varepsilon \leq t \leq 1$. By Lemma 1.2 we can assume that F

is a G-isotopy between $\tilde{f}|U \times I$ and \tilde{f}' . Let $\tilde{F}: U \times I \times R \rightarrow N \times I \times R \rightarrow S^{w} \times I \times R$ be a G-imbedding defined by

$$\tilde{F}(x, t, s) = \begin{cases} (F(x, t, s), s) & \text{for } 0 \leq s \leq 1 \\ (F(x, t, 0), s) & \text{for } s < 0 \\ (F(x, t, 1), s) & \text{for } s > 1. \end{cases}$$

Let U and U_2 be invariant open tubular neighborhoods of S^n such that $\overline{U}_1 \subset U_2 \subset \overline{U}_2 \subset U$. Let ν be an invariant normal bundle of $\widetilde{F}(U \times I \times R)$ in $S^w \times I \times R$ and let $p: \nu \to \widetilde{F}(U \times I \times R)$ be the projection. Similarly as the proof of Lemma 2.2, we have a G-imbedding $\varphi: \nu | \widetilde{F}(\overline{U}_2 \times I \times I) \to S^w \times I \times R$. We shall identify $\nu | \widetilde{F}(\overline{U}_2 \times I \times I)$ as the image of φ .

The tangent vectors to the curves $\tilde{F}(x \times t \times R)$ $(x \times t \in U \times I)$ define an invariant vector field \tilde{X} on $\tilde{F}(U \times I \times R)$ of the form $\tilde{X}(\tilde{F}(x, t, s)) =$ $(X(x, t, s), 0, 1) \in T_{\tilde{F}(x,t,s)}$ $(N \times I \times R)$. Note that Supp(X) is contained in $\tilde{F}(U \times [\varepsilon, 1-\varepsilon] \times I)$. Take an invariant partition of unity subordinate to the covering $\{U_2, U - \bar{U}_1\}$ of U, and u be the invariant C^{∞} -function corresponding to U_2 . Let X' be an invariant vector field on $\tilde{F}(U \times I \times R)$ defined by $X'(\tilde{F}(x, t, s)) = u(x) \cdot X(x,$ t, s) for $(x, t, s) \in \bar{U}_2 \times I \times R$ and X'=0 outside of $\tilde{F}(\bar{U}_2 \times I \times R)$. Then Supp(X') is contained in $\tilde{F}(\bar{U}_2 \times [\varepsilon, 1-\varepsilon] \times I)$ and X'=X on $\tilde{F}(\bar{U}_1 \times I \times R)$.

Let $r: R \to [0, 1]$ be a C^{∞} -function such that r(t) = 1 for $t \leq 1$, 0 < r(t) < 1 for 1 < t < 2 and r(t) = 0 for $t \geq 2$. Let Y be an invariant vector field on $S^{W} \times I \times R$ defined by $Y(v) = r(||v||) \cdot X'(p(v))$ for $v \in$ $\nu |\tilde{F}(\bar{U}_2 \times I \times I)$ and Y = 0 outside of $\nu |F(\bar{U}_2 \times I \times I)$, where || || is an invariant Riemannian metric on ν . Then we can regard Y as a time-dependent invariant vector field on $S^{W} \times I$. Note that Supp(Y) is contained in $\nu(2) |\tilde{F}(\bar{U}_1 \times [\varepsilon, 1 - \varepsilon] \times I)$, where $\nu(2) = \{v \in \nu : ||v|| \leq$ 2]. Then Y generates a G-isotopy $H: S^{W} \times I \times I \to S^{W} \times I$ such that $H_0 = 1$ and $H_i \cdot F_0 = F_i$ on $\bar{U}_1 \times I$ for $0 \leq s \leq 1$. Since I component of Y is 0, each $H_i: S^{W} \times I \to S^{W} \times I$ is level preserving equivariant diffeomorphism. Let $h: S^{V} \times I \to S^{W}$ be a G-isotopy defined by $h = p_1 \cdot H_1 \cdot \tilde{f}$, where $p_1: S^{W} \times I \to S^{W}$ is the projection on the first factor. Then $h_i = f_i$ for i = 0, 1 and $h_i = h'_i$ on U_1 . This completes the proof of KOJUN ABE

Proposition 2.3.

Definition 2.4. Let $f_i : S^{\vee} \to S^{\vee}$ (i=0, 1) be G-imbeddings such that $f_i = f'_i$ on U. f_0 and f_1 are said to be equivalent if there exists a G-isotopy $f : S^{\vee} \times I \to S^{\vee}$ between f_0 and f_1 such that $f_i = f'_i$ on some neighborhood of S^n . Let $I_1(S^{\vee}, S^{\vee})$ denote the set of all equivalence classes of these G-imbeddings.

Corollary 2.5. The natural map $i_1 : I_1(S^v, S^w) \rightarrow (S^v, S^w)$ is bijective.

Proof. By Proposition 1.3 and Proposition 2.2, i_1 is surjective. By Proposition 1.4 and Proposition 2.3, i_1 is injective, and Corollary 2.5 follows.

§ 3. Orthogonality on a Neighborhood of the Fixed Point Set

In this section we shall prove that any G-imbedding from S^{\vee} into S^{\vee} is G-isotopic to a G-imbedding which is orthogonal on a neighborhood of S^n . Moreover we shall prove that, if two G-imbeddings f_0 and f_1 , which are orthogonal on U, coincide on U, then there exists a G-isotopy f between f_0 and f_1 such that $f_t = f_0$ $(0 \le t \le 1)$ on U_1 , where U and U_1 are invariant neighborhood of S^n .

As in §2, let U and N be invariant normal bundles of S^n in S^v and to S^n in S^w respectively. Note that U and N are isomorphic to product bundles $S^n \times V_1$ and $S^n \times (dV_1 \bigoplus R^{(d-1)n+k})$ as a G-vector bundles over S^n respectively. Let $f: S^v \to S^w$ be a G-imbedding with $f^g = j$. Then $f': U \to N$ induces a continuous map

$$\hat{f}: S^n \to Mon^G(V_1, dV_1 \oplus R^{(d-1)n+k}),$$

where $Mon^{G}(V_{1}, dV_{1} \oplus R^{(d-1)n+k})$ is the set of all G-module monomorphisms from V_{1} to $dV_{1} \oplus R^{(d-1)n+k}$ with usual topology. By Schur's lemma, $Mon^{G}(V_{1}, dV_{1} \oplus R^{(d-1)n+k})$ is isomorphic to $Mon^{G}(V_{1}, dV_{1})$.

666

Proposition 3.1. Let $f: S^{v} \to S^{w}$ be a G-imbedding with $f^{c}=j$. Let $h: S^{n} \times I \to Mon^{c}(V_{1}, dV_{1})$ be a homotopy with $h_{0}=\hat{f}$. Then there exists a G-isotopy $F: S^{v} \times I \to S^{w}$ such that $F_{0}=f$ and $\hat{F}_{1}=h_{1}$.

Proof. Let $p: U \to S^n$ be the bundle projection. Let $F': U \times I \to N$ be a homotopy of G-imbeddings defined by $F'_i(u) = h_i(p(u))$ (u) for $u \in U$. Then, by Lemma 1.2, we can assume that F' is a G-isotopy. By Lemma 2.2, we have a G-isotopy $H: S^{W} \times I \to S^{W}$ such that $H_0 = 1$ and $H_i \cdot f' = F'_i$ on some invariant neighborhood of S^n for each t. Let $F: S^{V} \times I \to S^{W}$ be a G-isotopy defined by $F_i = H_i \cdot f$. Then $F_0 = f$ and $\hat{F}_1 = h_1$, and this completes the proof of Proposition 3.1.

Let $O^{c}(V_{1}, dV_{1})$ denote the set of all G-module orthogonal monomorphisms from V_{1} to dV_{1} . Let F denote the field of real numbers R, complex numbers C or quaternionic numbers H. Let U(q, F)denote the orthogonal group O(n), the unitary group U(n) or the symplectic group Sp(n) in the case of F=R, C or H respectively. Let $Hom^{c}(V_{1}, V_{1})$ denote the group of G-module endmorphisms of V_{1} . Let $V'_{r,t}(F)$ denote the Stiefel manifold (over F) of s-frames in F^{r} .

Lemma 3.2. Suppose that V_1 is isomorphic to $\bigoplus_i k_i W_i$, where W_i runs over the inequivalent irreducible real G-modules. Then

$$Mon^{G}(V_{1}, dV_{1}) = \prod_{i} V'_{dk_{i},k_{i}}(F_{i})$$

and

$$O^{G}(V_{1}, dV_{1}) = \prod U(dk_{i}, F_{i}) / U((d-1)k_{i}, F_{i}),$$

where $F_i = R$, C and H when dim Hom^G (W_i , W_i) = 1, 2 and 4 respectively.

Proof. If W_i is a real restriction of an irreducible complex (resp. quaternionic) G-module W'_i , then $Hom^c(W_i, W_i)$ is isomorphic to C (resp. H) given by the scalar multiplication of W'_i . Otherwise $Hom^c(W_i, W_i)$ is isomorphic to R given by the scalar multiplication of W_i (see J. -P. Serre [6, 13.2]). Therefore $Mon^c(k_iW_i, dk_iW_i)$

and $O^{c}(k_{i}W_{i}, dk_{i}W_{i})$ are identified with $V'_{dk_{i},k_{i}}(F_{i})$ and $U(dk_{i}, F_{i})/U((d-1)k_{i}, F_{i})$ respectively. By Schur's lemma $Hom^{c}(V_{1}, dV_{1})$ is isomorphic to $\bigoplus_{i} Hom^{c}(k_{i}W_{i}, dk_{i}W_{i})$. Then $Mon^{c}(V_{1}, dV_{1})$ and $O^{c}(V_{1}, dV_{1})$ are identified with $\prod_{i} Mon^{c}(k_{i}W_{i}, dk_{i}W_{i})$ and $\prod_{i} O^{c}(k_{i}W_{i}, dk_{i}W_{i})$ respectively. This completes the proof of Lemma 3.2.

Proposition 3.3. Let $f: S^{\vee} \times I \rightarrow S^{\vee}$ be a G-isotopy such that $f_i^{\sigma} = j$, $f_i = f'_i$ on U for each t and $\hat{f}_0 = \hat{f}_1$. If $\pi_{n+1}(Mon^{\sigma}(V_1, dV_1)) = 0$, then there exists a G-isotopy $h: S^{\vee} \times I \rightarrow S^{\vee}$ such that $h_i = f_i$ for i = 0, 1 and $\hat{h}_i = \hat{f}_0$ for $0 \le t \le 1$.

Proof. Let $a_f: S^n \times \partial(I \times I) \to Mon^{G}(V_1, V_1)$ be a continuous map defined by

$$a_{f}(x, t, s) = \begin{cases} \hat{f}_{t}(x) & \text{for } s = 0 \text{ and } 0 \leq t \leq 1 \\ \hat{f}_{0}(x) & \text{for } s = 1 \text{ and } 0 \leq t \leq 1 \\ \hat{f}_{0}(x) & \text{for } t = 0, 1 \text{ and } 0 \leq s \leq 1. \end{cases}$$

Since $\pi_{n+1}(Mon^{c}(V_{1}, dV_{1})) = 0$, the only obstruction to extend a_{f} to $S^{n} \times I \times I$ is a well defined cohomology class $o(a_{f}) \in H^{2}(S^{n} \times I \times I, S^{n} \times \partial(I \times I)$; $\pi_{1}(Mon^{c}(V_{1}, dV_{1})) = \pi_{1}(Mon^{c}(V_{1}, dV_{1}))$. If $d \ge 3$, $Mon^{c}(V_{1}, dV_{1})$ is 2-connected by Lemma 3.2, and $o(a_{f}) = 0$.

Now we will consider the case of d=1. In this case $Mon^{g}(V_{1}, dV_{1})$ is a group $A^{g}(V_{1})$, where $A^{g}(V_{1})$ is the group of all *G*-module automorphisms of V_{1} . Let $b_{f} : \partial(I \times I) \to Mon^{g}(V_{1}, dV_{1}) = A^{g}(V_{1})$ be a continuous map defined by $b_{f}(x) = a_{f}(*, x)$ for $x \in \partial(I \times I)$, where *is a point of S^{n} . Then the above obstruction class $o(a_{f})$ is represented by b_{f} . Note that an element of $A^{g}(V_{1})$ can be regarded as an equivariant linear diffeomorphism of S^{W} in the natural way. Let $g: S^{V} \times I \to S^{W}$ be a *G*-isotopy between f_{0} and f_{1} defined by $g_{i} = \hat{f}_{0}(*) \cdot \hat{f}_{i}(*)^{-1} \cdot f_{i}$. Then $b_{g}(x) = \hat{f}_{0}(*)$ for any $x \in \partial(I \times I)$, and $o(a_{g}) = 0$. Replacing the *G*-isotopy *f* between f_{0} and f_{1} by *g*, we can assume $o(a_{g}) = 0$.

We now turn to the case d=2. If V_1 is isomorphic to $\bigoplus_i k_i W_i$, then $Mon^{\sigma}(V_1, 2V_1) = \prod_i V'_{2k_i,k_i}(F_i)$ by Lemma 3.2. Note that $\pi_1(V'_{2k_i,k_i}(F_i))$ is 0 beside the case $F_i = R$ and $k_i = 1$. Let J be the set of index i such that $F_i = R$ and $k_i = 1$. Let $p : \prod_i V'_{2k_i,k_i}(F_i) \to \prod_{i \in J} V_{2,1}(R)$ be the natural projection. Then $p_* : \pi_1(\prod V'_{2k_i,k_i}(F_i)) \to \pi_1(\prod_{i \in J} V'_{2,1}(R))$ is isomorphic. Let $r : I \to \prod_{i \in J} V'_{2,1}(R)$ be a continuous map defined by $r(t) = p \cdot \hat{f}_i(*)$. Since $\pi : \prod_{i \in J} GL(2, R) \to \prod_{i \in J} V'_{2,1}$ is a product bundle, there exists a continuous map $\tilde{r} : I \to \prod_{i \in J} GL(2, R)$ such that $\pi \cdot \tilde{r} = r$ and $\tilde{r}(0) = \tilde{r}(1)$. Note that, for each $i \in J$, GL(2, R) can be regarded as the automorphism group $A(2W_i)$ of G-module $2W_i$ whose element defines an equivariant linear diffeomorphism of S^w . Let $g : S^v \times I \to S^w$ be a G-isotopy between f_0 and f_1 defined by $g_i = \tilde{r}(0) \cdot \tilde{r}(t)^{-1} \cdot f_i$. Since π is identified with the natural map $\prod_{i \in J} A^G(2W_i) \to \prod_{i \in J} Mon^G(W_i, 2W_i)$, $p \cdot \hat{g}_i(*) = p \cdot \hat{f}_0(*)$ and $o(g_f) = 0$. Replacing the G-isotopy f between f_0 and f_1 by g, we can assume $o(a_f) = 0$.

Therefore we can assume that a_f can be extended to $S^n \times I \times I$. Let $F: U \times I \times I \to N \times I$ be an equivariant map defined by $F(v, t, s) = (a_f(q(v), t, s)(v), t)$, where $q: U \to S^n$ is the bundle projection. Then each $F(\cdot, t, s)$ is a G-imbedding, and $F_0(u, t) = (f_t(u), t) = (f'_t(u), t)$ and $F_1(u, t) = (f_0(u), t) = (f'_0(u), t)$ for $(u, t) \in U \times I$. By Lemma 1.2 we can assume that F is a G-isotopy. In the same way as the proof of Proposition 2.3, we have a G-isotopy $h: S^v \times I \to S^w$ such that $h_i = f_i$ (i=0, 1) and $h_i = f'_0 (0 \le t \le 1)$ on some invariant neighborhood of S^n . Therefore $\hat{h}_t = \hat{f}_0$ for each t, and this completes the proof of Proposition 3.3.

Remark. I don't know whether Proposition 3.3 is valid without the assumption $\pi_{n+1}(Mon^{c}(V_{1}, dV_{1})) = 0$.

Now we shall assume $\pi_{n+1}(Mon^{c}(V_{1}, dV_{1})) = 0$. Choose a continuous map $a_{\lambda} : S^{n} \rightarrow O^{c}(V_{1}, dV_{1})$, which represents an element λ , for each element λ of $\pi_{n}(O^{c}(V_{1}, dV_{1}))$. Let $A = \{a_{\lambda}; \lambda \in \pi_{n}(O^{c}(V_{1}, dV_{1}))\}$

Definition 3.4. Let $f_i: S^v \to S^w$, i=0, 1, be *G*-imbeddings, which represent elements of $I_1(S^v, S^w)$, such that \hat{f}_i , i=0, 1, are elements of *A*. f_0 and f_1 are said to be equivalent if there exists a *G*-isotopy $f: S^v \times I \to S^w$ between f_0 and f_1 such that $\hat{f}_i = \hat{f}_0$ for $0 \leq t \leq 1$. Let

 $I_2(S^v, S^w)$ denote the set of equivalence classes of these G-imbeddings.

Corollary 3.5. If $\pi_{n+1}(Mon^{c}(V_{1}, dV_{1})) = 0$, the natural map $i_{2}: I_{2}(S^{v}, S^{w}) \rightarrow I_{1}(S^{v}, S^{w})$ is bijective.

Proof. Let $f: S^{v} \to S^{w}$ be a *G*-imbedding which represents an element of $I_{1}(S^{v}, S^{w})$. By Lemma 3.2 $O^{c}(V_{1}, dV_{1})$ is a deformation retract of $Mon^{c}(V_{1}, dV_{1})$. Therefore, by Proposition 3.1, we can assume that f is an element of A, and i_{2} is surjective. By Proposition 3.3, i_{2} is injective, and this completes the proof of Corollary 3.5.

§4. Proof of Theorem A and Theorem B

In this section we shall prove that, if G is a finite group and $\pi_{n+1}(Mon^{e}(V_{1}, dV_{1})) = 0$, then the G-isotopy class of a G-imbedding $f: S^{v} \rightarrow S^{w}$ is determined by the homotopy class of the orbit map of $f|(S^{v}-U)$ relative to the boundary, where U is an invariant open neighborhood of S^{n} . And, using the obstruction theory, we shall prove Theorem A and Theorem B.

In this section we shall assume that G is a finite group and $\pi_{n+1}(Mon^{c}(V_{1}, dV_{1})) = 0$. Let $f_{i} : S^{v} \rightarrow S^{w}$, i=0, 1, be G-imbeddings which represent elements of $I_{2}(S^{v}, S^{w})$. Let U be an invariant open ε -tubular neighborhood of S^{n} in S^{v} . We can choose a sufficiently small positive number ε such that $f_{i}=f'_{i}$ on U and $f_{i}(S^{v}-U) \subset S^{w}-T$ for i=0, 1. By Corollary 3.5, we have the following :

Lemma 4.1. With the above notations, f_0 and f_1 are G-isotopic if and only if there exists a G-isotopy $f: S^{\vee} \times I \rightarrow S^{\vee}$ such that $f_t(S^{\vee} - U)$ is contained in $S^{\vee} - T$ and $f_t = f_0$, $0 \le t \le 1$, on U.

It is clear that free G-manifolds $S^{v} - U$ and $S^{w} - T$ are equivariant diffeomorphic to $S(V_{1}) \times D^{n+1}$ and $S(dV_{1}) \times D^{dn+k+1}$ respectively. Let L and L' denote the orbit spaces $S(V_{1})/G$ and $S(dV_{1})/G$ respectively. Then the orbit spaces $(S^{v} - U)/G$ and $(S^{w} - T)G$ are diffeomorphic to $L \times D^{n+1}$ and $L' \times D^{dn+k+1}$ respectively. Let $\overline{f_{i}} : L \times D^{n+1} \rightarrow L' \times D^{dn+k+1}$, i=0, 1, be imbeddings defined by the orbit maps of $f_i | (S^v - U)$.

Proposition 4.2. With the above notations, f_0 and f_1 are G-isotopic if and only if \overline{f}_0 and \overline{f}_1 are homotopic relative to $L \times S^n$.

Proof. By Lemma 4.1, if f_0 and f_1 are G-isotopic, then \bar{f}_0 and \bar{f}_1 are homotopic relative to $L \times S^n$. Conversely if \bar{f}_0 and \bar{f}_1 are homotopic relative to $L \times S^n$, then \bar{f}_0 and \bar{f}_1 are isotopic relative to $L \times S^n$ because dim $(L' \times D^{d_n+k+1}) > 2$ dim $(L \times D^{n+1}) + 1$. Since G is a finite group, $S^v - U \rightarrow (S^v - U)/G$ and $S^w - T \rightarrow (S^w - T)/G$ are covering spaces. By the covering homotopy property, there exists a G-isotopy $h_t: S^v - U \rightarrow S^w - T$ $(0 \le t \le 1)$ relative to $\partial(S^v - U)$ such that $h_0 = f_0$ and $\bar{h}_t = \bar{f}_t$ for $0 \le t \le 1$. Since $h_1 |\partial(S^v - U) = f_1| \partial(S^v - U)$ and $\bar{h}_1 = \bar{f}_1$, by the property of the covering space, we have $h_1 = f_1$ on $S^v - U$. Therefore f_0 and f_1 are G-isotopic and this completes the proof of Proposition 4.2.

Proof of Theorem A. Suppose that $V_1 = \bigoplus_i k_i W_i$, where W_i runs over the inequivalent irreducible real G-modules. If q > 2, Mon^{c} $(V_1, dV_1) = \prod_i V'_{d_{k_i},k_i}(C)$ by Lemma 3.2. Since $V'_{d_{k_i},k_i}(C)$ is $2(d-1)k_i$ connected, $\pi_{n+1}(Mon^{c}(V_1, dV_1)) = 0$ if $d \ge (n+3)/2$. If q=2, $V_1 = (m-n)W_1$ and $Mon^{c}(V_1, dV_1) = V'_{d(m-n),m-n}(R)$, where W_1 is the nontrivial 1-dimensional real representation of Z_2 . Since $V'_{d(m-n),m-n}(R)$ is (d-1)(m-n)-1-connected, $\pi_{n+1}(Mon^{c}(V_1, dV_1)) = 0$ if $d \ge (m+2)/(m-n)$. Therefore, combining Corollary 2.5 and Corollary 3.5, the set $I(S^v, S^w)$ can be identified with the set $I_2(S^v, S^w)$. Let $f_s: S^v \to S^w$ be the standard imbedding. Let $f: S^v \to S^w$ be a G-imbedding which represents an element of $I_2(S^v, S^w)$. Since $\pi_n(Mon^{c}(V_1, dV_1)) = 0$, we can assume $\hat{f} = \hat{f}_s$. With the notation of Proposition 4.2, f and f_s are G-isotopic if and only if \tilde{f} and \tilde{f}_s are homotopic relative to $S^n \times L$.

Note that L (resp. L') is an m-n-1 (resp. d(m-n)-1)-dimensional lens space or real projective space. Since $d \ge (m+2)/(m-1)$, $\pi_i(L' \times D^{d_n+k+1}) = 0$ for $2 \le i \le m$. By the obstruction theory of P. Olum [5, Theorem 9.10 and Theorem 16.5], \bar{f} and \bar{f}_s are homotopic relative to $L \times S^n$. This completes the proof of Theorem A.

Proof of Theorem B. By Lemma 3.2, $Mon^{c}(V_{1}, dV_{1}) = V'_{d(m-n)/2, (m-n)/2}$ (C). Thus $Mon^{c}(V_{1}, dV_{1})$ is (d-1)(m-n)-connected, and if $d \ge (m+1)/(m-n)$, $\pi_{n+1}(Mon^{c}(V_{1}, dV_{1})) = 0$. Combining Corollary 2.5 and Corollary 3.5, the set $I(S^{v}, S^{w})$ can be identified with $I_{2}(S^{v}, S^{w})$.

Let $f: S^{v} \to S^{w}$ be a G-imbedding which represents an element of $I_{2}(S^{v}, S^{w})$. Similarly as the proof of Theorem A, we can assume $\bar{f}|L \times S^{n} = \bar{f}_{s}|L \times S^{n}$, and in the case of d > (m+1)/(m-n), f is G-isotopic to the standard imbedding f_{s} .

Now consider the case of d = (m+1)/(m-n). Since $H^i(L \times D^{n+1}, L \times S^n$; $\pi_i(L' \times D^{d_{n+k+1}})) = H^{i-n-1}(L; \pi_i(L')) = 0$ for i < m and $H^{i-1}(L \times D^{n+1}, L \times S^n; \pi_i(L' \times D^{d_{n+k+1}})) = H^{i-n-2}(L; \pi_i(L')) = 0$ for i < m, by the obstruction theory, the homotopy classes of maps $\bar{f}: L \times D^{n+1} \rightarrow L' \times D^{d_{n+k+1}}$ relative to $L \times S^n$ are in one to one correspondence with the elements of

$$H^{m}(L \times D^{n+1}, L \times S^{n}; \pi_{m}(L' \times D^{dn+k+1})) = \pi_{m}(L').$$

Since dim L'=d(m-n)-1=m in the case of d=(m+1)/(m-n), by Proposition 4.2, we have $I(S^v, S^w)=Z$. This completes the proof of Theorem B.

Remark. Suppose that $V_1 = \bigoplus_i k_i W_i$ and $k_i \ge 3$ for each *i* if dim $Hom^{G}(W_i, W_i) = 1$, where W_i runs over the inequivalent irreducible real *G*-modules. Then Theorem A is valid when *G* is a finite group.

References

- [1] Bredon, G., Introduction to Compact Transformation Groups, Academic Press, New York and London, 1972.
- [2] Dax, J., Étude homotopique des espaces de plongements, Ann. Sci. Ecole Norm. Sup., 5 (1972), 303-377
- [3] Hirsch, M, Differential Topology, Springer-Verlag, Berlin-Heidelberg New York, 1976.
- [4] Munkres, J., Elementary Differential Topology, Princeton Univ. Press, 1966.
- [5] Olum, P., Obstruction to extensions and homotopies, Ann. of Math., 52 (1950), 1-50.
- [6] Serre, J.-P., Représentations Linéaires des Groupes Finis, Hermann S.A., Paris, 1971.
- [7] Wasserman, A., Equivariant differential topology, Topology, 8 (1969), 127-150.