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On The Equivariant Isotopy Classes of
Some Equivariant Imbeddings of Spheres

By

Kojun ABE*

§ 0. Introduction

The purpose of this paper is to study the G-isotopy classes of
G-imbeddings of spheres into spheres, where the spheres are equipped
with semi-free linear G-actions for a finite group G.

Let V be an ra-dimensional real G-module. Throughout this
paper we shall assume that V is a product module V=JR"0yi of a

trivial real G-module Rn of positive dimension n and an (m—ri)-

dimensional real G-module Vj on the G-invariant unit sphere S(V^)

of which G acts freely. Let W be a real G-module which contains
V as a direct summand. Let Sv and Sw denote the one-point
compactifications of V and W respectively. Then Sv and Sw are
spheres on which G acts linearly. The direct sum of d copies of V

will be denoted by dV.

Theorem A. Let G be a cyclic group Zq and let W=dV@Rk for

k>m + l. If d^max {(n + 3)/2, (m + 2)/(m-n)}9 then any G-

imbedding of Sv into Sw is G-isotopic to the standard imbedding.

Theorem B. Let G be a cyclic group Zq for g>2 and let

W=dV@Rk for *>m + l. Suppose that d^(m + i)/(m-ri) and Vl

is a direct sum of (m — n)/2 copies of an irreducible ^-dimensional

real G-module.

(1) // d = (m +1)/(m — n), then there are infinitely many G-
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imbeddings of Sv into Sw which are not G-isotopic to each other, and

(2) if d^>(m + l)/(m — ri)> then any G-imbedding of S7 into Sw

is G-isotopic to the standard imbedding.

The paper is organized as follows. For any G-imbedding / : Sv

~*SW, we shall show that, by G-iso topics, f\Sn can be deformed to

be standard in § 1, / can be deformed to be linear on a neighbor-

hood of S* in § 2 and / can be deformed to be orthogonal on a
neighborhood of Sn in § 3. Moreover we shall prove that, if two

G-imbeddings of Sv into Sw are G-isotopic and are orthogonal on a

neighborhood of <S", then there exists a G-isotopy between them which

is orthogonal on a neighborhood of Sn in §3. Then we see that the

G-isotopy class of / is determined by the homotopy class of the orbit
map of f\(Sv — U) relative to the boundary, where U is a neighbor-

hood of Sn. In § 4, using the obstruction theory, we shall prove
Theorem A and Theorem B.

The author wishes to thank Professors M. Adachi and T. Matu-

moto for their kind advices and valuable criticism.

§ 1. Imbeddings Can Be Deformed to Be Standard

on the Fixed Point Set

In this paper we shall assume that all manifolds and all actions
are differentiable of class C°°. Until Section 3 the results are valid

in the case of G a compact Lie group.

In this section we shall prove that any G-imbedding of Sv into Sw

is G-isotopic to a G-imbedding which is standard on Sn (see Proposi-

tion 1.3), and if two G-imbeddings of Sv into Sw, which are standard

on Sn, are G-isotopic, then there exists a G-isotopy between them

which is standard on S* (see Proposition 1.4).

Definition 1.1. Let M be a G-submanifold of a G-manifold N.

Let I denote the unit interval [0, 1] with trivial G-action. A smooth

map (resp. smooth G-map) /: MxI-*N is said to be an isotopy

(resp. G-isotopy) if each ft : M-+N is an imbedding (resp. G-imbed-
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ding), where /,(#) =f(x, 0? an(i /« i§ independent of t in some

neighborhood of 0 and in some neighorhood of 1 (see G. Bredon

[1, Chapter VI, §3]). Two imbeddings (resp. G-imbeddings) /- :M

-+N (z=0, 1) are said to be isotopic (resp. G-isotopic) if there exists

an isotopy (resp. G-isotopy) F : MxI-*N with F0=f0 and Fl=f1. If

dM is not empty, we shall consider Mxl as a smooth manifold with

corners.

Let I(SV, Sw) denote the set of all G-isotopy classes of G-imbed-

dings / : SV-*SW. Our purpose is to determine the set of I(SV, Sw),

provided that W=dV@Rk for k>m + l.

Remarks. 1. It is easy to see that any G-map / : SV-^SW is G-

homotopic to the standard imbedding.

2. Using the method of A. Wasserman [7, § 1], we can see that

any G-imbedding / : SV-^SW is G-isotopic to the standard imbedding

if

The following lemma will be useful.

Lemma 1. 2. Let N be a q-dimensional manifold on which G

acts semi- freely and let M be a p-dimensional G-sub manifold of N.

Let K denote I or Ixl and let L be a closed subset of K which

contains dK. Let f : MxK— >N be a continuous G-map such that each

fk : M-^-N is a G-imbedding, where fk is defined by fk(x) =f(x, k).

If f is a smooth G-map on MX L', where L' is a neighborhood of L

in K, then there exists a smooth G-map H: MxK-^N such that each

Hk is a G-imbedding and H=f on MxL, where Hk : M-+N is defined
by Hk(x)= H(x, k).

Proof. We shall prove Lemma 1. 2 by an equivariant version of

J. Munkres' argument [4, Chapter I, §4]. Let {C7J (resp. {Vy}) be

a family of locally finite countable invariant open sets of M such

that wf/ fcMG (resp. \jV^NG) and ty (resp. V,.) is equivariant
» j

diffeomorphic to a ^-dimensional disc or half disc (resp. g-dimensional
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euclidean space or euclidean half space) with linear G-action, where

MG and NG denote the fixed point set of M and N respectively. We

can choose the family {[/,} such that, for any k^K and for any z,

fkCOi) is contained in Vj for some j depending on k and i. There

exists a positive continuous function d1 on M as follows. For any

continuous map g : MxK-*N, such that gk is ^-approximation to fk

for each k, has these properties. Let {Wf} be a family of invariant

open sets of M with Wict/, and wW,oMG.
s

Let CrOy) denote a closed r-neighborhood of y in K for a posi-

tive number r and y^K. There exists a sufficiently small positive

number r such that, for any z^Cr(y) and for any y^K, f g ( U i ) is

contained in Vj for some j depending on y. Then we can find a

finite number of Cr(y), say Cn = Cr(^n) (rc = l, 2 , . . . , /), such that
/
\jCndK—L'. We can assume that CnnL = p for any n. Let ^ :

M-»7 be an invariant smooth function on M which equals 1 on Wi

and 0 outside of U^ Let An and £„, w = l, 2 , . . . , /, be open sets of

K such that ^4ncSnc5nC int Cn and w ^4n contains K-U. Let £, :
n = l

K-*I, n = l, 2 , . . . , /, be smooth functions on K which equals 1 on

An and 0 outside of Bn.

We shall identify [/. and Fy as euclidean spaces or euclidean half

spaces with linear G-actions. For any n, we can find j(n) such that

/.(Oi) c Fy(n) for any 2;^ Cn. Let y1- : MX Cn->7y(n) be a G-map defined

by /*'n(X> =0i (*)•/,(*) for ^et/i and 2;eCn, and /-"=0 outside of

C/xXC.. Let g-1-" : Mx^->7y(,) be a G-map defined by gi'n(X) =

f»U) e/z'n(-^) for ^eM and jzeJC. Since gi'"=0 for z&Cn, we can

extend g1'" trivially on Mx£ (resp. MxR2} if K=I (resp. 7x7).

Define a smooth G-map A1-" : MxK-*VjM by

=\
J

for j:eM and

where C(eB) is a closed £n-disc in ^ and (pn is a smooth function on

R or J£2 which is positive on int C(en) and 0 outside of C(en) and

\ 9n(y}dy — 1. Choose the positive number sn less than the distance

from Bn to the complement of Cn. Then A l f"=0 outside of UlxCn.

Let F1-0^/. Assume that F1-"-1 : MxK-^N is defined such that
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F1-"-1 is smooth on W, X (A,\J . . -U An_0 and F1-n-l=F1'n~2 outside of

[/! X Cn_j. Moreover we assume that F^*"1 is a ^/S'"" "^-approxima-

tion to Ffc iB~2 for each k^K. Then F^71"1 is a ^-approximation to /,.

Let Fl'n : MxK-*N be a G-map defined by

F^OO^F1;"-1^) (1 -& 00 £,/*))+ A1;" (*), for x^M and self.

Since Fl'n=h1-n on WiXj4 s , F1-" is smooth on W1x(A1\J... U A J

(note that, if Fl'n~l is smooth on a subset of MxK, Fl'n is smooth

on the subset of MxK). Since A1--=0 outside of U^xCn, F1-n=F1'n~l

outside of Ul X Cn. By the argument of J. Munkres [4, Chapter I,

§4], we can choose the positive numbers e, (i = l, 2, . . . , ri) so small

that FJ1" is a ^/^'""""-approximation to F"""1 for each k. Then we

can see that F*'71 is a ^-approximation to /z and F*-n+1 is defined. By

the induction, we have a G-map F1-1 : MxK-*N such that F1-1 is

smooth on t^ x (w^J and Fl'l=Fl>l~l outside of C^x Cn. Set F1=F1-1.
I _ n=l _

Since \jAn contains K—U, F1 is smooth on Wi X K. And since

C,ni=V, F1=fon MxL.

There exists a positive continuous function <5fg<5i on M such that,

for each k^K, any C^-map from M to AT, which is a ^-approxima-

tion in C1 -topology to /„ is an imbedding (see J. Munkres [4, Chapter

I, Theorem 3. 10]). We can choose the positive numbers £„, n —

1, 2, . . . , 1) so small that FJ is a <5/2-approximation to fk in C1 -topology

for each k^K.

By the induction we have G-maps F1 : MxK-*N (f = 2, 3, . . .)3

which is smooth on ( WjU . . . U W,) X X", such that F1' =/ on MxL

and F1' =Fi~1 outside of U{ x K. Moreover we can choose F[ is a

<5/2'" -approximation to F^1 in C1 -topology for each k<=K. Define a

G-map F : MxK->N by F,(x) =lim^ F*k(x) \ Fk is well defined

because Fj=Fi+1=... on some neighborhood of x, for sufficiently

large i. F : MxK->N is smooth on (wWi) xK and F— / on MX
i

L. Moreover Fft is a ^-approximation to /A in C1 -topology, for each

Let T be a closed invariant neighborhood of MG in M such that

T is contained in wW,-. Fk(M— MG) is contained in N—NG, for
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each k, since Fh is a G-imbedding. Let F : (M-MG)/Gx K-*(N-

NG)/G be the orbit map of F. Then F is a smooth map on a
neighborhood of (T-MG)/GxK and F=f on (M-MG)/GxL, and
jF* is a ^-approximation to /* for each k^K, where fk is the orbit
map of fk. By the relative version of the argument of J. Munkres
[4, Chapter I, §4], we have a smooth map S: (M-MG}/GxK-^

(N-NG)/G such that H=F on (T-MG)/GxK and H is homotopic
to F relative to (T-MG)/GxK(J (M-MG)/GxL. Moreover Fk is
a ^-approximation to fk in C1-topology, for each kz=K. By the
covering homotopy property, we have a smooth G-map H : (M—
MG)xK-»N-NG whose orbit map is B. Define #=F on TxK
Then H : MxK-*N is a smooth G-map such that Hk is a ^-approxi-
mation to fk in C1-topology, for each k^K, and H=f on MxL.
This completes the proof of Lemma 1. 2.

Let / : SV-^SW be a G-imbedding. The fixed point set of Sv and
Sw are S" and *S^+* respectively. Let /G : 5n-^^n+*C^ denote an
imbedding which is a restriction of / to Sn. Let 7 : SV->SW be the
standard imbedding.

Proposition 1. 3. Let fQ : SV-*SW be a G-imbedding. Then there
exists a G-isotopy f : Sv xI->Sw between fQ and /x with ff=j on Sn.

Proof. Since dn+k>2n, we have an isotopy h : Sdn+k xI-»Sdn+k

such that hQ = l and h^fG=j. By the isotopy extension theorem,
there exists an isotopy H : Sw xI-*Sw such that HQ = l and H=h on
Sdn+kxl. Using a result of G. Bredon [1, Chapter VI, Theorem 3.1],
we have a G-isotopy K :SwxI-^Sw such that Xo = l and K=H on
HGxI, where HG={x<=Sw ; Ht(g-x)=g-Ht(x) for any *el and
g^G}. Note that Sdn+kc:HG. Let f:SvxI-*Sw be a G-isotopy
between /0 and / defined by ft = Kt-f0. Then /?=.;' and this completes
the proof of Proposition 1. 3.

Proposition 1.4. Let f : Sv X I-*SW be a G-isotopy with fG=j
for i =0,1. Then there exists a G-isotopy h:SvxI-»Sw such that
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.=/. for i=0, I and hf=j for Q^

a (x, t, s) =

Proof. Let / : SvxI-*SwxI be a G-imbedding defined by /(#, *)

= (/,(*), 0- Let /G: SnxI-*Sdn+kxI be an imbedding which is a

restriction of / to S"xL Let £(5", Sd9+t) denote the set of all

imbeddings of Sn into Sdn+k with C°°-topology. By a result of J. Dax

[2, Chapter VI, §3], ̂ (£(5", S r f"+*))=0 since dn+k>2n + 2. Then

we have a continuous map a : IxI^E(Sn, Sdn+k) such that, for a

sufficiently small £^>0,

7 for (£, s) e[0, e] X / U l x [1—e, 1] U [1 — e, 1J X I.

Using Lemma 1. 2, we may assume that d : Sn XIX I-^Sdn+k x I is an

isotopy, where d(x, t, s)=(a(t, s)(x), t). Then we have an imbed-

ding a : SnxIxR-*Sdn+kxIxR defined by

for

for

d(x919 l),s) for 5>1.

a(Snx!xR) is a closed G-submanifold of SwxIxR, and a(Snx!xR)

intersects normally on 3(SnxIxR) with respect to a product G-in-

variant Riemannian metric on Sw x I x R. By using the proof of G.

Bredon [1, Chapter IV, Theorem 2. 2] with respect to the Rieman-

nian metric, we have an invariant open ^-tubular neighborhood N

of d(Snx!xR), where d is a G-invariant positive real valued func-

tion on d(Snx!xR).

The tangent vectors to the curves d(xxtxR) define an invariant

vector field X on d(Snx!xR) of the form X(a(x, t, s))=(X(x9s9

0, 0, 1) <=Ts(x,Stt)(S
wxIxR), where T(SwxIxR) is the tangent

bundle of Sw xlx R. Identifying N with a G-invariant normal bundle

to d(Snx!xR) in SwxIxR, we denote p : N-*d(SnxIxR) the

bundle projection. Let r: I-+R be a C°°-function such that r(t) =

1 for 0^^1/3, 0<r(0<l for l/3<K2/3 and r(0 =0 for 2/3^

^^1. Let Y be a G-invariant vector field on SwxIxR defined by

Y(v) =r( |M|/3(p(u)))-Z(p(v)) for weN and Y=0 on the outside of

N, where || || denote the G-invariant metric of SwxIxR.
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Since a(x> t,s) = (j(x), t, s) for Org^rgs and 1 — srgZfgl , and since
a(x, t, s)=(d(x, t, 0), s) for s<^0 and a(x, t, s)=(d(x, t, 1), 5) for
j^> 1, Supp(Y) is contained in 5^ X [s? 1 — e] x/ which is compact. We
can regard Y as a time-dependent G-invariant vector field on Swxl,
and 7 generates a G-isotopy J1 : SwxIxI-»SwxI (see M. Hirsch
[3, Chapter 8, Theorem 1. 1]). Since I component of Y is 0, each

Fs : SwxI-»SwxI is level preserving. Let h : SvxI-*Sw be a
G-isotopy defined by h=p1'F1-f, where p1:S

wxI->Sw is the projec-
tion on the first factor. Then ht=ft for £ = 0, 1 and ht=j on Sn for
each t. This completes the proof of Proposition 1. 4.

§ 2. Linearlity on a Neighborhood of the Fixed Point Set

In this section we shall prove that any G-imbedding of Sv into Sw

is G-isotopic to a G-imbedding which is linear on a neighborhood of
S* (see Proposition 2. 1), and if two G-imbeddings of Sv into Sw,
which are linear on a neighborhood of Sn, are G-isotopic, then there
exists a G-isotopy between them which is linear on a neighborhood
of Sn (see Proposition 2.3).

Since the fixed point set of Sv is Sn and since Sv is a G-subma-
nifold of Sw, we can regard Sn as a G-submanifold of Sw. Let U
and N denote invariant open tubular neighborhoods of Sn in Sv and
Sn in Sw respectively. We shall identify U and N with invariant
normal bundles to Sn in Sv and to Sn in Sw respectively. Let / : Sv

-^Sw be a G-imbedding with f°=j. We shall assume that f ( U ) is
contained in N. Let /' : U->N be a G-bundle monomorphism defined
by the differential of /.

Proposition 2.1. Let f : SV-*SW be a G-imbedding with fG —j.
Then there exists a G-isotopy h : Sv X I-*SW such that h0 —f and ^ =
f on some invariant neighborhood of Sn in Sv.

In order to prove Proposition 2. 13 we start with the following
lemma.
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Lemma 2. 2. Let M be a G-submanifold of a G-manifold N. Let

f : MxI-*N be a G-isotopy such that ft (dM) ddN and ft(M) intersects

transversally on dN for each t. Let A be an invariant subspace of M

such that A is compact. Then there exists a G-isotopy F : NxI-*N

such that FQ = l and F t - f 0 = f t on A for O^Z^L

Proof. Let / : MxR^NxR be a G-imbedding defined by

(/,(*),*) for O^^

/(*,*) = (7o(*),0 for t<0

,0 for

We can assume that G acts by isometrics in some product metric on

NxR. Let v be an invariant normal bundle of f(MxR) in NxR

and let/? : v->f(MxR) be the projection. Then the exponential

map is defined on some neighborhood of f(Mx R) in v and is an

equivariant immersion on a smaller invariant open neighborhood of

f(MxR) (see the proof of G. Bredon [1, Chapter VI, Theorem

2.2]). Let B be an invariant open neighborhood of A such that B

is compact. Since B is compact, the exponential map is a G-imbed-

ding on an invariant neighborhood of f(BxI) in vj/(5xl). By a

method of the proof of G. Bredon [1, Chapter VI, Theorem 2. 2]3

we have a G-imbedding <p: u\f(BxI)-+NxR. We shall identify

v\f(BxP) as the image of (p.

The tangent vectors to the curves f(x X R) (#eM) define an

invariant vector field X on f(MxK) of the form X(f(x9 t))=(X(x,

0, l )eT / U i 0 (JSTx-R). Note that Supp(X) is contained in /(MxJ).

Take an invariant C°°-partition of unity subordinate to the covering

{By M — A] of M3 and let u be the invariant function correspond-

ence to B. Let X' be an invariant vector fields on f(MxR) defined

by X'(/Cr, t))=u(x)-X(x, t) and X' = 0 outside of f(BxR).

Then Supp(X') is contained in /(5x7) and X7 = Z on f(AxR).

Let r : J?->[0, 1] be a C°°-function such that r (^=l for £^1,

0<r(0<l for 1<K2 and r(0 =0 for ^2. Let F be an invariant

vector field on Nxl defined by Y"(z;) =r(\\v\\) •X /(p(v)) on v\f(Bx

I) and F^O outside of v\f(BxI), where j| j| is an invariant Rie-
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mannian metric on v. Then we can regard Y as a time-dependent
invariant vector field on N. Note that Supp(Y) is contained in v(2)
\ExI which is compact, where ^(2) = {^ev; ||^||fg2}. Therefore Y

generates a G-isotopy F : NxI->N such that FQ = l and Ft*f0=ft on
A for O^jZ^l . This completes the proof of Lemma 2.2.

Proof of Proposition 2. 1. Let g: UxI-*N^-*Sw be a homo to py of

G-imbeddings defined by gt(v) =!/(! -0 -/((I -0*0 for 0^*<1 and
v^U, and gi=f. Note that g0=f\U, ]imt^1gt=f/ and ^ is a G-im-
bedding for each £. By Lemma 1.2 we can assume that g is a
G-isotopy between f\ U and /'. By Lemma 2. 2 there exists a G-iso-
topy G : SwxI—>Sw such that -F0 = l and Ft>gQ=gt on some neighbor-
hood of Sn. Let hi SvxI-*Sw be a G-isotopy defined by ht=Ft •/.
Then hQ=f and hl=f on some neighborhood of Sn. This completes
the proof of Proposition 2. 1.

By Proposition 1. 3 and Proposition 2. 1, any element of I(SV, Sw)
is represented by a G-imbedding /: SV-*SW such that fG=j and
/=/' on an invariant tubular neighborhood of SR.

Proposition 2.3. Let f: SvxI-^Sw be a G-isotopy such that
f f = j (O^^l) and fi=fi (i=Q, 1) on an invariant tubular neigh-
borhood U of Sn. Then there exists a G-isotopy h:Svx!->Sw such
that hi=fi (i = Q, 1) and ht=h't on an invariant neighborhood of Sn

for O^f^l .

Proof. Let / : Sv X I-*SW XI be a G-imbedding defined by f(x, t) =
(ft(x), f). We can assume that ft(lT) is contained in N for each
t. Let / : UxI-»NxI be a G-imbedding defined by f (v, i) = (j't(v),
0- Let F: UxIxI-*NxI be a G-map defined by F,(v, t)=(l/(l-
O e / ,((l-^)^)3 0 for 0^5<1 and F,=f. Then F0=f and linw
Fs=f' and Fs is a G-imbedding for each 5. Note that, by the defini-

tion of G-isotopy, there exists a positive number e such that /t=/0

for O^J^e and /,=./; for 1-e^^l. Thus JF f =^xl for O^^s

and F,=flxl for 1-s^^l. By Lemma 1. 2 we can assume that F
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is a G-isotopy between f\UxI and /'. Let F : UxIxR-*NxIx

R--»SwxIxR be a G-imbedding defined by

F(x, *, 5) = • (F(x, t, 0), 5) for s<0
(F(x,t, 1),5) for *>1.

Let U and £72 be invariant open tubular neighborhoods of S*
such that C/idC/jjC U2dU. Let v be an invariant normal bundle of
F(UxIxR) in SwxIxR and let />: v-+F(Ux!xK) be the projec-

tion. Similarly as the proof of Lemma 2. 2, we have a G-imbedding
V ' v\F(U2xIxI)-*Swx!xR. We shall identify u\F(U2x!xI) as

the image of <p.

The tangent vectors to the curves F(x XtxR) (xxt<=UxI) define
an invariant vector field X on F(UxIx R) of the form X(F(x, t, 5)) =

( X ( x , t , s ) 9 0, 1) er,(Xi(i() (NxIxK). Note that Supp(X) is
contained in F(Ux [s, 1 —e] xl). Take an invariant partition of
unity subordinate to the covering {C723 C7—C/i} of [7, and u be the
invariant C°°-function corresponding to U2. Let X/ be an invariant
vector field on F(UxIxR) defined by X'(F(x, t, s^=u(x)-X(x,
t, 5) for (a;, t, s)^U2x!xR and X7 = 0 outside of F(U2xIxR).
Then Supp(X'} is contained in jF(t72x[e, 1—sjxl) and X' = X on

Let r : #->[03 1] be a C°°-function such that r(0=l for ^1,

0<r(0<l for 1O<2 and r(0 =0 for ^2. Let Y be an invariant
vector field on SwxIxR defined by Y(v) =r(\\v\\) -X'(p(v)) for v^
v\F(U2x!xI) and 7-0 outside of v\F(U2x!xI), where l| || is an
invariant Riemannian metric on u. Then we can regard Y as a
time-dependent invariant vector field on Sw xl. Note that Supp(Y)
is contained in v (2) \ F (& X [e, l-ejxl), where u(2) = {v<=v: \\v\\ ^

2}. Then Y generates a G-isotopy H: SwxIxI-^SwxI such that
#o = l and HS-FQ=FS on U.xl for 0^5^1. Since I component of
Y is 0, each Hs : SwxI-*SwxI is level preserving equivariant diffeo-
morphism. Let h : SvxI->Sw be a G-isotopy defined by h=pl*H1'f,
where pl : SwxI-^Sw is the projection on the first factor. Then
hf=ft for z' = 03 1 and ht=h't on L^. This completes the proof of
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Proposition 2. 3.

Definition 2.4. Let /, : SV-*SW (i=0, 1) be G-imbeddings such
that fi—fi on U. f0 and /i are said to be equivalent if there exists
a G-isotopy / : SvxI->Sw between /0 and /i such that ft=f't on some
neighborhood of Sn. Let IjGS7, Sw) denote the set of all equivalence

classes of these G-imbeddings.

Corollary 2.5. The natural map i, : I^S*, SW)->(SV, Sw) is
bijective.

Proof. By Proposition 1. 3 and Proposition 2. 2, h is surjective. By
Proposition 1. 4 and Proposition 2. 3, z\ is injective, and Corollary 2. 5
follows.

§ 3. Orthogonality on a Neighborhood of
the Fixed Point Set

In this section we shall prove that any G-imbedding from Sv into
Sw is G-isotopic to a G-imbedding which is orthogonal on a neighbor-

hood of S*. Moreover we shall prove that, if two G-imbeddings /0

and /13 which are orthogonal on C7, coincide on [7, then there
exists a G-isotopy /between /0 and / such that ft=f0 (O^^l) on

C/i, where U and Ul are invariant neighborhood of S".
As in § 2, let U and AT be invariant normal bundles of S* in Sv

and to Sn in 5^ respectively. Note that U and 2V are isomorphic to
product bundles SnxV1 and Sn X (dV^R^-1^) as a G-vector bun-

dles over Sn respectively. Let / : SV-^SW be a G-imbedding with f°=j.

Then / : U-*N induces a continuous map

where MmG(F13 J]/;©^-1^*) is the set of all G-module monomor-

phisms from Vl to ^71©^W"1)B+* with usual topology. By Schur's

lemma, MonG(V19 dV&R"-***') is isomorphic to MonG(Vl} dVl ).
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Proposition 3. 1. Let f : SV-*SW be a G-imbedding with fG=j.

Let h : SnxI-^MonG(V1) dVJ be a homotopy with hQ=f. Then there

exists a G-isotopy F : SvxI-*Sw such that F0=f and F1 = hl.

Proof. Let p: U-*S" be the bundle projection. Let F' : UxI-*N

be a homotopy of G-imbeddings defined by F't (u) — ht (p (u) ) (u) for

u^U. Then, by Lemma 1.2, we can assume that F' is a G-isotopy.

By Lemma 2. 2, we have a G-isotopy H: SwxI->Sw such that H0 = l

and Ht'f=F't on some invariant neighborhood of Sn for each t. Let

F : SvxI-*Sw be a G-isotopy defined by Ft=Ht-f. Then FQ=f and

Fi=h1} and this completes the proof of Proposition 3. 1.

Let OG(V^ dVJ denote the set of all G-module orthogonal mo-

nomorphisms from Vl to dV^ Let F denote the field of real numbers

R, complex numbers C or quaternionic numbers H. Let U(q, F)

denote the orthogonal group O(n), the unitary group U(n) or the

symplectic group Sp(n) in the case of F = R, C or H respectively.

Let HomG(Vl9 VJ denote the group of G-module endmorphisms of Vj.

Let V'Ttt(F) denote the Stiefel manifold (over F) of s-frames in Fr.

Lemma 3. 2. Suppose that V1 is isomorphic to © k{Wi9 where Wt

runs over the inequivalent irreducible real G-modules. Then

and

0G(Vly dV,} =UU(dki9

where Fi = R, C and H when dim Horn0 (Wi9 Wf) =1, 2 and 4 respec-

tively.

Proof. If Wi is a real restriction of an irreducible complex (resp.

quaternionic) G-module W'i9 then HomG(Wi9 Wf-) is isomorphic to

C (resp. H) given by the scalar multiplication of W'{. Otherwise

HomG(Wt, Wf-) is isomorphic to R given by the scalar multiplication

of W,. (see J. -P. Serre [6, 13.2]). Therefore MonG(kiWt9dktWi)
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and OG(kiWi, dk{WJ are identified with ViVft|(F,) and U(dkt, J?,)/

U((d-Y)k» F,.) respectively. By Schur's lemma HomG(V19 dVJ is

isomorphic to © HomG(kiW{9 dk.W^. Then MonG(Vly dV,} and

OG(F15 dVJ are identified with II Mwc(A,W;, <tt,Wf) and U OG

i i

respectively. This completes the proof of Lemma 3. 2.

Proposition 3. 3. Let f : Sv X I-*SW be a G-isotopy such that

f?=j, /*=/; on U for each t and /„=/. // xn+1(MonG (V» dVJ) = 0,
then there exists a G-isotopy h:SvxI-*Sw such that hi=fi for z=0, 1

and f i t = f , for Q^t^l.

Proof. Let af : S" Xd(Ix7)->MonG(V19 FJ be a continuous map

defined by

/(#) for 5 = 0 and

i(;c) for 5 = 1 and

lOr) for £ = 0, 1 and 0^5^ 1.

Since xn+l(MonG(F13 <^y i))=0, the only obstruction to extend a/ to

S B x7x7is a well defined cohomology class o(af) ^H2(Sn xlxl, Sn X

9(7x7) ; ^1(AfonG(F1, rfFJ) =nl(MonG(V1, dVJ). If

(F15 dFx) is 2-connected by Lemma 3. 2, and o(<z/) =0.

Now we will consider the case of d = l. In this case MonG(Vly <

is a group AG(V-^, where AG(Fi) is the group of all G-module
automorphisms of Fx. Let 67 : 3(7x7) -^M0nG(F13 JFJ =^LG(F!) be

a continuous map defined by b f ( x ) =af(*, x) for x^d(lxl), where *

is a point of Sn. Then the above obstruction class o(af} is repre-

sented by bf. Note that an element of AG(V^ can be regarded

as an equivariant linear diffeomorphism of Sw in the natural way.

Let g : SvxI-*Sw be a G-isotopy between /0 and fl defined by

gt = /o(*) •/« (*)~ la/ t- Then bg(x)=/Q(*} for any x^d(lxl), and
0(<z,) =0. Replacing the G-isotopy / between /0 and /x by g, we can
assume o(ag) =0.

We now turn to the case d = 2. If Vl is isomorphic to © &,-W,-, then

M?nG(F13 2FJ =nFJ f t ,k (F,) by Lemma 3. 2. Note that ^(F^ ,, (71,))
» • • » »

is 0 beside the case Ff = R and k{ = l. Let J be the set of index z
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such that F, = R and *, = !. Let p :U V'lk , (**,)-» II V2l(K) be the
"

natural projection. Then p* : ^(Ti V'ak k (-F,.))->^i(II VJi( l?)) is iso-
'" ' »e/

rnorphic. Let r : I-»II T/^.iC-R) be a continuous map defined by
tej

r(J) =/>•/(*)• Since TT: II GL(2, U) ->n K.i is a product bundle,
?ej ;ej

there exists a continuous map f : /->!! GL(2, jR) such that x*r = r
iGJ

and f (0) =f (1). Note that, for each z'eJ, GL(2,^) can be regarded

as the automorphism group A(2WQ of G-module 2W£ whose element

defines an equivariant linear diffeomorphism of Sw. Let g : Sv X I->SW

be a G-isotopy between /0 and /i defined by g»=f(0) * r ( t } ~ l ' f t . Since

TT is identified with the natural map II AG(2 ̂ )-^n MonG(Wi:> 2WJ,
,-GJ «ej

p*gt(*} =/>-/0(*) and o(^/) =0. Replacing the G-isotopy / between /0

and /! by ^", we can assume o(af) =0.

Therefore we can assume that af can be extended to Snxlxl.

Let F : UxIxI-^NxI be an equivariant map defined by F(v, t, s) =

( a f ( q ( v ) , t, s ) ( v ) , 0? where q: U-*Sn is the bundle projection. Then

each F(», t, s) is a G-imbedding, and F0(u9 t) = ( f t ( u ) 9 t) = ( f t ( u ) 9 t)

and F^u, t ) = ( f Q ( u ) , t) = (f'Q(u), t) for (u, t^UxI. By Lemma

1. 2 we can assume that F is a G-isotopy. In the same way as the

proof of Proposition 2. 3, we have a G-isotopy h : Svxl— >SW such that

hi=fi (i = Q, 1) and ht=f'Q (O^^l) on some invariant neighborhood

of Sn. Therefore ht=/Q for each t, and this completes the proof of

Proposition 3. 3.

Remark. I don't know whether Proposition 3. 3 is valid without

the assumption 7rn+1(MonG(F1, dF1))=0.

Now we shall assume 7rn+1(MonG(F1, dVj)) =0. Choose a contin-

uous map ax : S"-*OG(Vly dV^, which represents an element A, for

each element X of 7rn(OG(F15 dVJ). Let A- {a, ; ^e7rn(OG(F1?

Definition 3.4. Let ft : SV-*SW, f=0, 1, be G-imbeddings, which

represent elements of Ii(Sv, Sw), such that /-, z=0, 1, are elements

of A. f0 and /i are said to be equivalent if there exists a G-isotopy

/: SvxI-*Sw between /0 and/! such that /,=/0 for O^^l. Let
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I2(S
V, Sw) denote the set of equivalence classes of these G-imbeddings.

Corollary 3.5. // nn+1(MonG(V19 dV^} = 0, the natural map

i2 : I2(S
V, ^)->I1(5

F
3 Sw) is bijective.

Proof. Let / : SV-*SW be a G-imbedding which represents an

element of I^S7, Sw). By Lemma 3.2 OG(Vl)dV1) is a deformation

retract of MonG(V19 dVJ. Therefore, by Proposition 3. 1, we can

assume that / is an element of A, and i2 is surjective. By Proposition

3. 3, z'2 is injective, and this completes the proof of Corollary 3. 5.

§4. Proof of Theorem A and Theorem B

In this section we shall prove that, if G is a finite group and

icn+1(MonG(V19 dVi))=0, then the G-isotopy class of a G-imbedding

/ : SV-+SW is determined by the homotopy class of the orbit map of

f\(Sv — U) relative to the boundary, where U is an invariant open

neighborhood of S". And, using the obstruction theory, we shall prove

Theorem A and Theorem B.

In this section we shall assume that G is a finite group and

7un+1(MonG(V19 dVl))=Q. Let /, : S7-^SW
9 z=0, 1, be G-imbeddings

which represent elements of I2(S
V, Sw). Let U be an invariant open

e-tubular neighborhood of Sn in Sv. We can choose a sufficiently small

positive number s such that /]— /• on U and ft (Sv — U) dSw — T for

z=0, 1. By Corollary 3.5, we have the following :

Lemma 4. 1. With the above notations, f0 and fl are G-isotopic if

and only if there exists a G-isotopy f : Sv xl— >SW such that ft(S
v—U)

is contained in SW — T and ft =/05 Q^t^*l, on U.

It is clear that free G-manifolds Sv — [/and Sw ~ T are equivariant

diffeomorphic to S(VJ xDn+1 and S(dVJ xDdn+k+1 respectively. Let

L and L' denote the orbit spaces S(Vj)/G and S(dV1)/G respectively.

Then the orbit spaces (SV—U)/G and (SW — T)G are diffeomorphic

to L X Dn+l and L' x Ddn+k+1 respectively. Let /, : L x Dn+1->Z/ x Ddn+k+\
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i = Q, 1, be imbeddings defined by the orbit maps of f{ \ (Sv — U) .

Proposition 4. 2. With the above notations, f0 and /i are G-isotopic

if and only if fQ and /x are homotopic relative to LxSn.

Proof. By Lemma 4. 1, if /0 and /i are G-isotopic, then /0 and

/! are homotopic relative to L x Sn. Conversely if fQ and /2 are homo-

topic relative to LxSn, then f0 and / are isotopic relative to LxSn

because dim (I/ X Ddn+k+r) > 2 dim (L xD"+1) +1. Since G is a finite

group, S7-U-*(SV-U)/G and SW-T-^(SW-T)/G are covering

spaces. By the covering homotopy property, there exists a G-isotopy

ht: SV-U-*SW-T (Or^rgl) relative to d(Sv-U) such that A0=/0

and £=/f for O^f^ l . Since A, \d(Sv- U) =f,\ d(Sv- IT) and £=/„

by the property of the covering space, we have hl=f1 on SV—U.

Therefore /0 and /i are G-isotopic and this completes the proof of

Proposition 4. 2.

G

Proof of Theorem A. Suppose that V1 = ®kiWi) where W{ runs

over the inequivalent irreducible real G-modules. If ^^>2, Mon

(V19 dVJ=U Fj4|ii|(C) by Lemma 3.2. Since KV4|(C) is 2(d-l)*r

connected, ^(Mw^Vu dVO) -0 if rf^(n + 3)/2. If q = 2, V,=

(m-ri^W, and MonG(V1} dVJ =V'd(n_n^m_n(R) , where ^ is the non-

trivial 1 -dimensional real representation of Z2. Since Vi(«-»), „-„

is (rf-l)(7w-7z)-l-connected, 7rn+1(M^G(713 rfFJ) =0 if d^ (

(m — ri). Therefore, combining Corollary 2. 5 and Corollary 3.5, the

set I(SV, Sw) can be identified with the set I2(S
V, Sw). Let fs : 57-^^

be the standard imbedding. Let / : SV-^SW be a G-imbedding which

represents an element of I2 (S
v, Sw) . Since Kn(MonG(V19 dVJ) =0,

we can assume f=/s. With the notation of Proposition 4. 2, / and fs

are G-isotopic if and only if / and fs are homotopic relative to Sn X L.

Note that L (resp. L7) is an m — n — 1 (resp. d(m — ri) —^-dimen-

sional lens space or real projective space. Since d^ (m + 2)/(m~ 1),

ni(L'xDd*+k+1) =0 for 2^i^m. By the obstruction theory of P. Olum

[5, Theorem 9. 10 and Theorem 16. 5], / and fs are homotopic

relative to L x Sn. This completes the proof of Theorem A.



672 KOJUN ABE

Proof of Theorem B. By Lemma 3. 2, MonG ( V19 dVJ = V'd(m_n^2t u_n)/2

(C). Thus MonG(Vl9 dV,) is (d - 1) (m - w) -connected, and if

d^ (m + l)/(m-n), nn+l(MonG l(V19 dV^) = 0. Combining CoroUary 2. 5

and Corollary 3.5, the set I(SV, Sw) can be identified with I2(S
V,SW).

Let / : SV-+SW be a G-imbedding which represents an element of

I2(S
V, Sw). Similarly as the proof of Theorem A, we can assume

f\LxSn=fs\LxSn, and in the case of d>(m+l)/(m-n), f is G-

isotopic to the standard imbedding fs.

Now consider the case of d=(m + \}/ (m — ri). Since Hl(LxDn+l,

LxS" ; ni(L'xDdn+k+1))=Hi-n-1(L ; ^(L7))=0 for i<m and f f ' 1

(LxDn+l, LxSn; w l(L /xD'-+ '+1))=ff~'"a(L; ^(L /))=0 for f<m, by
the obstruction theory, the homotopy classes of maps /: LxDn+1->

L'xDdn+k+1 relative to LxSn are in one to one correspondence with

the elements of

Hm(LxD*+1, LxS"; xm(

Since dim Lf — d(m — ri) — 1 =m in the case of d=(m + l) /(m — n), by

Proposition 4. 2, we have I(SV
9 Sw) =Z. This completes the proof of

Theorem B.

Remark. Suppose that Vl=@kiWt and k^3 for each / if dim
j

HomG(Wt, W;)=l, where W"f runs over the inequivalent irreducible

real G-modules. Then Theorem A is valid when G is a finite group.
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