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Random Evolutions with Underlying
Semi-Markov Processes

By

Robert P. KERTZ*

Introduction

In [9] Griego-Hersh introduced random evolutions with underlying
finite-state Markov chains and formulated a representation of the
solution of an abstract Cauchy problem in terms of the expectation
of the random evolution. Extensions of the initial definition and

its uses have been completed by various authors and are reported
in the surveys of Hersh [13] and Pinsky [27]. In this paper we

extend the definition of random evolution to the case in which
the underlying process is a semi-Markov process. We prove new
representation theorems for solutions of various abstract integral
equations in terms of this generalized random evolution. In particu-

lar, we use a special type of random evolution with underlying
semi-Markov process to give a new representation for the solution
of abstract Cauchy problems of the type treated by Griego-Hersh
and, motivated through this representation, we generate new limit
theorems of 'generalized-central-limit-theorem type' for the abstract
Cauchy solutions.

In Section one we present background results on Markov renew-
al processes and semi-Markov processes which we need in this
development. In Section two we define the random evolution with
underlying semi-Markov process and related notions; we then prove

conditioning results for the random evolutions and representation

theorems for solutions of abstract integral equations in terms of

Communicated by K. ltd, August 1, 1976.
* School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, U. S. A.



590 ROBERT P. KERTZ

expectations of these random evolutions. We end this section with

a limit theorem which demonstrates how the operator structure of
the random evolution can be combined with the renewal structure
of the semi-Markov process, and then give an application of this
theorem in storage theory. In Section three we specialize the un-

derlying semi-Markov process to obtain the new representations of
the solutions of abstract Cauchy equations ; we compare our repre-

sentation to those in Pinsky [27] and Heath [13], [11]. Using trans-
form analysis and operator theory, we prove new perturbation theo-
rems for the Cauchy solutions with limit as a higher order diffusion.

In another paper [21] we extend Murman's semi-Markov model
for Brownian motion [25] by using the concepts in this paper to
define a family of random evolutions over the underlying semi-
Markov process.

Section 1

We introduce terminology used in the following sections. The
definitions and notations used here are similar to those in [5], [6],

[2], and [29]. Let N= {0, 1, 2, . . .}, P+ = [0, oo), and^ + =Bore l
sets on R+. A semi-Markovian kernel on measure space (E, £) is
any transition probability from (E, $} into (ExR+, £>x&+). On
probability space (Q9 IF, P), [Xn}nGN and {Tn}n€=N denote stochastic

processes, taking values in E and R+ respectively, and {^n}n^N denote
sub-tf-algebras increasing to J^. (X, T) = (Q, &, ^n,(Xn, TJ, P) is

a Markov renewal process (MRP) over (E, $) with semi-Markovian
kernel Q provided (Xn, TJeJ^/^ x^+ for each n<=N and

(1.1) P(Xn+1^A, Tn+1-Tn^B\^J=Q(Xn,AxB) a. e.

for each n<=N, A<= £ , and B<=& + . From (1. 1) we have that {Tn}

are increasing; we assume that T0 = 0, and

(1.2) supneNTn = oo.

For sufficient conditions giving (1.2), see [4] and p. 326, [6]. The

(minimal) semi-Markov process Y= [Yt] t^Q associated with MRP(X,T)
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is defined by

(1.3) Y(t, w)=Xn(<o) for T.(oO£*<T.+1(flO.

For each x,y<=Eand we R+ we let A^O) = E« :o<rB<;« I[xn_1=x,xn=y} =

number of transitions of X from x to y during (0,u]3 and N(u} =

Hx.yesNs ,y(u). Note that we are counting transitions from a state

to itself in the X process. For t^R+ we let U(f) =t — Ttf(0=time

elapsed since the last 'regenerative epoch5. For y^E, u^R+9 yy(u) =

Lebesgue measure of {0<s<u ; Y(s) =y] ^'occupation time5 of process

Y in state y during (0, w). The notation Pa(-) represents the

conditional probability P(- \X0=x) and £,(•) =£(• |X0=j;).

For n = l, 2, ... , let ^w : Q->Q denote shift operators satisfying

X^o^X^, Tm°6n = Tm+n-Tn, and ^+^ = 7,0^. For se£+, let

^s: Q—*Q denote shift operators for which on {Tk<s<^Tk+l} , Tno0s =

Tn+k-s, YTu°ff, = Xu°0. = XHoOk = Xn+k = YTm+t, and N(t)o0g=N(t+s) -

N(s) =N(t+s) —k. Such shift operators will exist, although enlarging

the space £? may be necessary [29], [2]. The following theorem and

corollary follow directly from (1.1) and (1.2) and standard Mono-

tone Class Theorem arguments as in [2].

Theorem 1.1. Given MRP(X, T) = (fi, & ', & "„, (Xn, Tn)3 0H, P)

with state space (E, g) and associated SMP Y= {Yt ; ^>0}B

(1) The semi-Markov property is equivalent to each of the following

conditions, holding a. e. :

(1.4) Px((Xm) TJ oOn^C IJTJ =PXn((Xm, TJ ^Q=Q(Xn, C)

for each x^E, m>n>l, and Ce g X ^+ ;

(I- 5)

H(o))=G(a), 6na)) and G:Qx@-*R bounded, 2F n X & -measurable >

, n>\.

(2) The following are equivalent :

(1.6)

for each s^R+, n>\,
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(1.7) E l W o f f . \ r f - ] = E i

for n>l and W any real-valued, bounded, <f(Ys, s£zR+) -measurable

function.

Here &(•) denotes the a -algebra generated by ( • ) • Analogues of

(1.6) and (1.7) are also equivalent if we replace {Yt) t^R+}, by

the [Ut, t<=R+] process.

Corollary 1. 1. Given MRP (X, T) with SMP Y. Then for

t^R+, on the set {Tn<t} we have a. e. for Ae £ , m>n,

(1.8) P.l

(1. 9) P,[tf (*) =m I.F.] (co) =

We will need the following a-algebras associated with processes

(X, T) and Y. For n^N, Jtn=a (X0, . . . , XJ ; 9n=a(X» T0, . . . ,

Xn) TJ CJ^B ; and ^ f=u(F(0, t/(0 ; 0<^<5) =<r(N(s), T» . . . , TN(f),

X0, . . . , XW(I)). We set Jt»=o(Jtn, n(=N), ^00=a(^n, neAT)3 and

jfco=<j(^f f , s^R+). We remark that Theorem 1.1 and Corollary

1. 1 hold for J^n and J^ replaced by ^n and ^TC respectively.

Since the regenerative epochs {Tn} are stopping times with respect

to {<&,, s<=R+], we set ^f ̂  = {-4 e ^ ; An(Tn<t}^jft for each

^e,R+} (see [2], p. 32). From the characterization of JfT given in

p. 35 of [2] and p. 86 of [16], one easily sees that ^. = ̂ v Finally,

we set /s=a(N(s}, T19 . . . , TN(s}, XQ, . . . , XNW^).

We note that X= (133 ^oo? ^n3 Xn, P) is a Markov process with

state space (E, $ ) and transition probability Q (x, A)=Q(x)Ax R+),

for x^E, Ae<?[5].

Section 2

Let L denote a Banach space with norm ||-||L and topological

Borel field JSf. We let {r(x? y, u) ; a:, 3/e£3 u<=R+] denote bound-

ed, linear operators on L which satisfy P(x, y, 0) =/, P(x, y, u)

is strongly continuous in u, and F(x, y, u)f is strongly measurable
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in (x,y) with respect to g X g /&. Thus F(x9y, tt)/is g X g X
strongly measurable. We let [II (x9 y) ; .£, 3;^£} denote bounded,
linear operators on L for which IT(x9 y)f is $ X g /& strongly
measurable.

We define the random evolution (R. E.) with underlying MRP
(X, T) to be the random operators M= [M(t9 CD) ;
on L given by

(2.1) M(t)f=r(XQ, X19 TO/TCXo, Xjr(Xl9 X,, Tt-TJ...
r(xn, xn+1, t-Tjf

for

_19 x.)/
for * =

Assumption (1.3) guarantees that W(0<C°°; thus the product is
well-defined. For each /eL we have {M(t)f; t<^RJ is /f/JS?-
strongly measurable and is strongly continuous at t=£Tn, n>l. This
definition includes as special cases those definitions of c random evolu-
tions' in the literature with special underlying MRP given as a con-
tinuous-parameter, finite-state Markov chain [9], [19], conservative
regular jump process [27], and discrete-parameter Markov chain
[18].

Let L denote the Banach space L=®L and let L^ be the
~ ~ *e£

subspace of L given by L00= {/= (/Jx€EEeL ; xi->fx is g /& measurable
and sup*e£|i/Ji<C°o}. L^ is a Banach space of equivalence classes
with norm ||/||=sup,eeE||/.f||L. We define the expectation operators
of the random evolution M with underlying MRP (X, T) as the
family of operators {T(£), t^R+] on L^ given by

(2.2)

for /eloo, ^e£. Here 7= {3^(0* ^^^+} is the SMP associated with
(X, T). The expectation here is in the sense of Bochner integrabi-
lity [14], [1], [9], [28]. The expectation operators are thus well
defined if and only if we have for each

(2.3)
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(2.4) M(t, O/rc*,.) is strongly measurable.

See Theorem 3. 7.4 of [14]. A sufficient condition for (2.3) to hold

is

(2.5) [F(x, y, w)L.ye=E.M6E*+ and [II (x9 y)} ,,,** are contractions;

another sufficient condition is the combination of (2. 6) and (2. 7) :

(2.6) \\F(x, y, u}\\<Ke» and \\U(x, y)\\<K

for each x, y^E, u^R+ and for some constants K, A independent
of x, y, u ; and

(2. 7) PAN® =n] < 03(0)7(07"!

for each x^E, n^N and for finite functions f)(t), j-(f) independent
of x, n. Condition (2. 7) holds, in particular, for MRP's which are
either finite-state Markov chains [9] or certain renewal processes
[7]. The strong continuity and measurability assumptions on M give
(2.4) [9]. In what follows we assume that either (2.5) or (2.6)
— (2. 7) hold, and hence (2. 3) — (2. 4) hold. For special operators
F and MRP's (X, T), [T (0, t<=R+] form a semigroup and hence
have been called the 'expectation semigroup5 of the R. E. M[9],

We define the discrete-parameter expectation semigroup of the
R. E. M with underlying MRP (X, T) as the operators [fn ; n<= N}
on LTO given by

(2.8) (?./),=

for /eLoo, x&E. A uniform-boundedness condition such as (2.6)
guarantees existence and boundedness of the operators Tn ; strong
measurability of Tnf with respect to ^ ' n/& follows as before. We
observe that for special types of MRP's such as discrete-parameter
MRP's, the discrete-parameter expectation semigroup will be a subset
of the expectation operators of M. The semigroup appellation will
be justified in Theorem 2. 2.

We give two structure theorems and a limit theorem : Theorem
2. 1 gives a conditioning result for R. E. M; Theorem 2.2 uses this
result to obtain renewal-type equations satisfied by the expectation
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operators and discrete-parameter expectation semigroup associated

with R. E. M; Theorem 2.3 gives a limit theorem for a special

type of R. E. associated with R. E. M.

Theorem 2.1. For the random evolution M={M(t), t^R+} with
underlying MRP (X, T) we have a. e.

(2. 9)

and on {Tn<t} we have a. e.

(2. 10)

Proof. We give the proof of (2. 10) ; the proof of (2. 9) is
analogous. For each x^E, t&R+) n^N, we have on [Tn<t] that

a. e.

^xr^l I ^ J W

, xj...

J (fl))

Here we have used that the operators {r(x, y, u}} and {II(x, y)}
are bounded and linear, and hence are distributive with conditional
expectation [28] ; that (X, T) satisfies (1. 5) ; and that F(x,y, 0) =1
for each x, y^E. Q)

Remark. From Theorem 2. 1 we essentially have also that the
process [Z(t), t^R+} given by

(2. 11) Z(f) =F(Xn, XM t-TJfY(t)

for Tn<t<^Tn+19 is a Markov renewal process with auxiliary paths
(MRPAP), where for this concept it has been required that E is
countably additive [29], or equivalently, a semiregenerative process
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[6] or cumulative process [30].

Theorem 2.2. Given the R. E. M= (M(t), t<=R+] with underly-
ing MRP (X, T) having state space (E, &) and semi-Markovian

kernel Q. Then we have

(1) the L^-valued function w ( « , t)=¥(i)f, t<=R+, satisfies

(2. 12) u(x, t}= Q(x, dyx(t, oo)) F(x9 y5 O/.

, dyxds)T(x, y, s)II(x, y)u(y, t-s)

/or

(2) the family of operators [Tn) n^N] is a discrete-parameter semi-

group for which the L^-valued function w(« , n) =Tnf, n = l, 2 , . . . ,
satisfies

(2. 13) w(x> n)={ Q(x, dyxdt^T(x, y, t)II(x, y}w(y, n-1)
JEXR

for each xE^E, n>l ; and

(3) the L ̂ -valued function v(* ; n, s) =TnT(s)f satisfies

(2.14) t;(x, n, 5)= Q(^3 dyxdr)r(x,y, r)II(x,y)v(y ; n- 1,5)
JEXR +

for each x E, s^R+, and n = \, 2, - . . .

Proof. (1) For x&E, t^R+, f^.Lm, we have

u(x, 0 =

First,

E

Second, we obtain from (2. 10) that

5 ^<^] =E.[M(T1) • (a.)
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Thus (2. 12) follows.
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Q(x,dyxds)r(x,y>s)II(x,y)E,\M(t-s)fr(t-.'>'\
[0,O

Q(x, dyxds^r(x, y, 5)77 (x, y}u(y, t-s).

(2) The operators {T,, n^N} form a semigroup since (Tr
0/)*=/.

from F(x, y, 0) =/, and since we have from (2.9) that for m, n

Equations (2. 13) and (2. 14) are proved through application of

(2.9) with the tf-algebras ̂ i and &n and ^ respectively. H

We give a limit theorem which demonstrates how the operator

structure of the random evolution may be combined with the renewal-

theoretic property of the Markov renewal process. We let p>0

be parameters; we use ,04,0. For each |0>0, {Yf(f)> £>0} denotes

a semi- Markov process over (E, £) with semi- Markov kernel Qp

and associated MRP(X% Tp). We let TP denote an ^-stopping

time and introduce iterates rg^O, T{=TP and rp
n=Tpod p +r^_ le For

Tn-l

each £>0, we define Np (0 = sup [n > 0 ; ?p
n<t} and assume

a. e. We let {M'(0, *>0} denote a R. E. on Banach space L with

underlying MRP(X', T"), as in (2.1). We define the operator Sp

on Loo by

(2-15) (^A^CM'Cf)/^]

for /= (/r)3:e£eL00. We observe that from the semi- Markov property

we have (Sk
pf)y=Ey\_Mp(rp

k)fYp^~\. When writing / to denote an

element of L^, we mean f=(f)x^E for /GEL.

Theorem 2. 3. We wa&e £Ae following assumptions.

(i) There exists &>>0, M>1 constants for which

(2.16) ||S;||£Me-" 4 = 1 ,2 , . . . ;
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(ii) For some dense subset D of L, we let

(2.17) lim,toio-l(5,-Jf)/=V/

for every f^D. We assume that

(2. 18) (Jo- V)D is dense in L

for some AQ with Re

Then there exists a strongly continuous semigroup U(f) on L with

infinitesimal operator V, the closure of V, and with \ U(t)\\<Memt,

We have that

(2.19)

where p J, 0 so that t/p takes integer values,

If, in addition, we have

(iii) Sp is a contraction operator and

(2.20) El(Nf(t)-t/py-] = 0(t/p) as p^

or

(iii)' (2. 20) holds and E[V"p«>o] <B e", as p 4 0 ; then

(2.21) l

Proof. For existence of the semigroup U(t), use (2. 18). For

(2.19), apply Theorem 5.3, p. 93 in Pazy [26] or equivalently,

Theorem 3. 6, p. 511 in Kato [17]. We prove (2.21) under (i),

(ii)5 and (iii)' by using an argument similar to one in Theorem

3.4. 4 of Pinsky [27]. The proof of (2.21) under (i), (ii), (iii)
similar. On {Np(t)<^t/p} , we have

<M e-'w'

=M e"«'

<M e"
= M*e«'\t/p-Nf(t)

Similarly, we have on {N"(t)>t/p},

"»'w |N'(0 -t/p\
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Thus

and (2.21) follows from (2.2) and (2.19). 11

Remark. We prove a similar result under less restrictive operator

bounds in Lemma 3. 5. This type of convergence result is used as

a basis for proving perturbation theorems for solutions of integral

equations tending to solutions of diffusion or higher-order-diffusion

type equations. See Theorem 2. 2, Application 3. 1, and [13], [27].

Application 2. 1. We present an application of Theorem (2. 3)

to storage theory. We are given the following data :

(2. 22)

(i) (X, T) = (0, &, &n9 (X,, TJ, P) is an MRP over (R+, B(*+))

with semi-Markovian kernel Q and associated semi- Markov process

(ii) r:R+xR+-^R+ is a jointly continuous function with r and

-~— bounded and such that, for each x^R+, r(x90)=09 r(x^ •) is

non-decreasing, and -^— (x, •) is continuous;

(iii) k : R+xR+->R+ is a function with k, -=— , and -^- jointly

$£ 32&
measurable, with -^— and -^-z- bounded, and such that, for each

^y ^V
92^.r£=jR+, ^(^c, 0) =0 and -=-^-(5:, •) exists and is continuous and
oy

(iv) element za in R±.

Consider the following equation :

(2.23)

for tEiR+. This equation is used in storage theory to model the

content of the reservoir of a dam ; Z(f) is the content of the

reservoir at time t\ z0 is the initial content of the reservoir ;

^»+i) represents input during time [0, t] ; and

\ r ( X N ( s } , Z(s~}}ds represents output during time [0, t] under release

rule (r(-) . For a special case of (2.23) see Qinlar ([5], p. 435).
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We let q(x, z, £)> for x, z, t^R+, denote the unique solution of

the equation

(2.24) q(x, z, t)=z — \ r(x, q(x, z,
Jo

for x, z, t^R+. We take L = £(R+), the continuous /unctions on

R+ which vanish at infinity, and define families of contraction

operators [II (x, x}} Xt£^R and families of strongly continuous semi-

groups [F(x, x, r) ; T<=R+}Xi£eR+ on L by

(2. 25) H(x, *)/(*) =f(z+k(x, x))

(2. 26) F(x, x, r)/(*) =f(q(x, z, r))

for each x, x^R+. Under the conditions imposed on r and k, II

and F satisfy the measurability conditions of Section two. The

R. E. M= [M(t, a!) ; t<=R+, O><E£}, defined through (2. 1) from (2. 25)

and MRP (X, T), satisfies M(t)f(z) =/(Z(0), where Z(0) =*.

We wish to apply Theorem 2. 3 to determine the behavior of

the content process as the magnitudes Xa and the time increments

Tn+i — Tn of the MRP (X, T) approach zero. More precisely, for

each <0>0, we let (X% Tp) be the MRP with semi-Markov kernel

given by Q?(x, [0, r] x [0, *]) = Q(x, [0, r/p] X [0, t / p ] ) , so that, for

h measurable, \ Qp (x, dy X ds) h (x, y, s) = \ Q (x, dy X ds) h (x, py, ps) ;

and, for each /0>0, we define the content process {Zp(t) ; t^R+]

as in (2. 23) from r, k, z0, and MRP(X", TO- We wish to investigate

the behavior of Zp (£) as p | 0.

We give the background for application of Theorem (2. 3) in

this setting. For each io>0 we define R. E. M f = { M f ( t ) ; t^R+} as

in (2.1) from (2.25) and MRP(X", T") and we let rp
n = Tp

n, for all

n^N. We observe that Mp(t)f(z) =f(Zp(t)), for Zp(Q)=z, and

that (£,/),(*) =\Q(*> dyxds)f(q(x, z, ps)+k(x, py}}. It is clear

that 5P is a contraction operator and thus satisfies (2. 16). We assume

in what follows that the following condition is satisfied :

(2.27) given any e>0, there is a compact set AdR+xR+ for

which sup*eK+ \ Q(x, dyX ds) (s+y) <e.
J A
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We let D=\f; /, /e(?(U+)} and define (Vf} x for /eD by

(2.28) (V»,(*) = (-K*, z)b(x)+^(x, 0) /£(*))/'(*)

where

:, dyxds)y and & C r ) = \ Q C r , dyxds)s.=\

Then under the conditions on r(-) and & ( • ) together with (2.27),

we have that (2. 17) and (2. 18) hold. We obtain from (2. 19)

that Hmp^upx,z\Exlf(Z"(T^']-u(x) z, *) | =0 where Z'(0)=* and

z) satisfies

(2.29) -fe z, 0 = (-r(*, z)b(x)+(x, 0) ̂  ) (*, *, 0

(2.30) u(x, z, 0) =/(*)•

Hence Zp (Tp
t/p) converges weakly as /? 4, 0 and t/p\ °° (through the

integers) to the solution w(x, z, £) of (2.29) satisfying the initial

condition w(x, z, Q}=z. If, in addition, Ex[(Nf(t)-t/pY]=O(t/p)

as p I 03 we obtain

where wfe 2;, 0 satisfies (2. 29) - (2. 30).

In the analysis of the solution of (2. 29) - (2. 30) for fixed x<=R+,

three cases arise: z;(.r)>0, v(x) =0, and t;(.r)<0 where v(x) =

inf,[ — r(x9 z)b(x) +^-(^,0) u(x)} . In each case, £(#, •) = — r(03;
^> 7 ^ 7

is a non-increasing function with -^—(^

= £(x9 0)>f(^3 2)>v(a:); the characteristics of the equation fill
the region R+ X R+, are defined by the equation z= — £ (x, z)3

and vary sharply from one case to another. It is of interest to

note that in the special case of Q(x, dyxds)=G(ds) ^(dy) and

k(x, y)—y Qinlar [5] shows that the behavior of the content

process Z(£), as t-^oo, separates into the same three cases

t; = 0, or t<0 where v = 'mfz{-r(z}b + $). If t;>0, P^lirn^

+ 00) =1; if z;<0, lim^00P,[y(r2,(0)eA]=y(A), where ^ is an
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invariant measure for a Markov chain formed from Z(-) ; and if
v = Q, he conjectures that a ^-finite, non-finite invariant measure exists,
but that limwP,[y(OeA]=0 for all bounded AeE<^(^ + ) .

We note that for the content process with Q(x, dyxds)=r(dy)
Ae~ds ds and k(x, y) =y the analogue of (2. 29) was given as Expres-
sion (2.18) in ([19], p. 38).

Section 3

In this section we let {(Xn, TJ, n<=N} be a MRP for which
X= {Xn, n^N] is a Markov chain with state space E= {1, 2, ... , m]
and transition probabilities {pij}i<.i,j^m and for which

(3. 1) P{Tw+1-Tn>|^4 =exp(-?(X l l)0

for each n^N, t^R+ and 5?G")>0, j

Theorem 3. 1. Given the MRP (X, T) as above with associated
SMP Y={Y,; t^R+}. Then Y=(Q, #„, tf '„ Y,9 P) is a standard
Markov process. In particular, Y satisfies

(3. 2) P,[y(o0feA |jfj =Prw[y, eA]

Tor eacA s, t^R^9 A& £ , x^E. The regenerative epochs {Tn, n^N]
are Jf .-stopping times and the strong Markov property for Y with
respect to a-algebras jfs, s^R+ holds at these times.

Proof. With slight modifications, the proof is that for regular
step processes as given in [27]. See also [23]. H

An important point to note here is that the random variables
{TJ are stopping times with respect to the (7-algebras {yfj but not
necessarily with respect to the tf-algebras 0(Yr, 0<r<s). In our
setting we are able to distinguish behavior at those epochs at which
a 'transition' is made from a state to itself.

Theorem 3. 2. Given MRP (X, T) as above and operators
{r(x9y,u} ; x9 y^E, u^R+} and {II (x, y) ; x, y^E] as in Section
two with the additional restrictions that for each xE^E, u
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(3.3) F(x, y, u)=r(x, w), independent of y,

and for each x^E9

(3.4) F(x, •) is a semigroup.

Then

(1) the random evolution M={M(t) ; t^R+] satisfies

(3. 5)

5 , t ^ +

(2) £Ae expectation operators {T(£) ; £Ei.R+} jform a strongly contin-

uous semigroup on !/«, ; anrf

(3) the L^-valued functions u(*, t)=T(t)f satisfy the initial-value

problem (IVP)

(3. 6) |^-(z, 0 =Aiu(i, 0 -^(f, 0 + Tj-iPtflflvuV, 0

u (f, 0)=/,

/or l<i<m, t^ R+ where fj e ^ (Ay, /7f.y ; z"e£)3 ^ domains of

AJ, nfj) l<i} j<n, and Ai generates the semigroup F(i, •).

Proof. (1) The necessary measurability and the proof for (3. 5)

follows from our choice of ^-algebras [3? s ; ^e^+}, the form of

M(£)5 the assumption (3.1), and the Markov-type property (3.2)

for the Y process.

(2) From the definition of {¥ (t), t^R+} we have that T(0) =7.

The semigroup property follows from

where we have used (3. 5) the ffl J& measurability of M(s)gs pro-

perties of the shift operator 6S, and the semigroup property of

(3) We obtain that u(i, t) = (T(t)f)i=Ei[M(t)fY(t}~] satisfies (3.6)

as in [27] . This method of proof uses (2. 12) to obtain

(i, 0) =AJi~r]ifi + ̂ J=1
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and that £?(£), t^R+] is a semigroup, which leaves invariant the

domain of its infinitesimal generator. H

Corollary 3. 1. Given strongly continuous semigroups {F{ (u} ;u e R+]

with infinitesimal generators Ai} l<i<m. Suppose fw,-(05 t^R+} is

the L^-valued solution of the initial-value problem

(3. 7) ? =A|tt|(0 + 27.^^(0

+) and real constants {<z,-/}i<;«, ;<;»»

(3. 8) M|(o =

where the real parameters {TT|V} ^ _,.£„ an<i ^A^ parameters {)?.}, {/>fV},

l<*9 j<m, for the MRP (X, T) with associated SMP 7 are chosen

so that

(3. 9) a,v = 57, (£,.,.*:„ - 1) for i' =j

= yiPi*ij for

Remarks. There are two other representations of the solution
(w.-(O) to IVP's of form (3.7). In the setting of (3.7) with

At = Vf^-, l<i<m, D. Heath [11], [13] shows that (w,-(0) has

representation

(3. 10) M<(0 =

where MRP (X, T) has parameters />,-.- = 0>

and hence the associated SMP Y= [Yt ; ^eJ^+} is a Markov process
with respect to (7-algebras ^(^ s; 0<5<r), re^+ ; here d(i)=aii +

Zjfe;*^« l^.ft I? l^^^s and /oI.J=sign(aiJ-), l<i^j<m. In the setting
of (3. 7), with general A,., l<i<m, M. Pinsky [27] shows that (
has representation (3. 10) where the MRP has parameters
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chosen along with the {ft-/} i^^-^m so that f]ipijpij=aij, l<i^j<ms

and d(i'}=aii + r]i. In Pinsky's representation there is a wider pos-

sible choice of parameters for the MRP, although again the associat-

ed SMP Y is Markovian with respect to <r(Y,; 0<s<r), r^R+ and

essentially the same multiplicative functional is used. In the Heath-

Pinsky representation (3. 10), the form of the equations (3, 7) is

essentially being changed so that the coefficients in the ( coupling'

part compose an infinitesimal generator of a Markov process, with the

compensation for this causing additional growth in the 'streaming'

part. In the representation (3. 8) there are more possibilities for

the effect of the underlying MRP on the total evolution, because

here a multiplicative factor can also be introduced at regenerative

epochs at which 'passage' from a state to itself occurs, and there is

no carry-over to the 'streaming' part.

The following application demonstrates the usefulness of the

concept of a R. E. with underlying MRP in generating and analyz-

ing limitt heorems for Cauchy problems.

Application 3. 1. We first define the R. E. M with underlying

MRP(X, T) of interest, on the Banach space L = CB(R) = uniformly

continuous, bounded functions on R. We let A be the generator

of the strongly continuous, contraction semigroup r(u)} defined on

L by

(3. 11) r(u)f(x) = f(y)k.(x-y)dy
J-oo

where

(3. 12) *.(*) =-JL= exp(-*V2tO.

For i=l,2 we let F{ (u) — F(aiu)) having generator Al=aiA) where

a,., z = l, 2, are positive parameters with each a,. -> + 00, anda1=o(a2).

We let II.j, l<z", j<2, denote multiplication operators defined on L

by Hi.f(x)=icljf(x), where O,v) is given by
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4 —2
(3.13) '

We use the MRP's (X% 7>) with state space E= {1, 2}, defined as

those MRP5s with parameters ^{=alai/a9 z = l, 2, a>0, and (/>,-,•)

given by

/- -
(3.14) (/>„) = 2 2

\ 1 0

Through definition (2. 1) and the form of the operators and process

defined through (3. 11) — (3. 14) we obtain the random evolution

M on L given by

(3. 15) M(0/=/>i7l(0 +«,«(*))/• (4)Jr!l(f)(-2)*i(l)

where plCO and N^(t) are 'occupation-time5 and cnumber-of-jumps5

random variables defined in Section one.

We give a limit theorem for R. E. M defined in (3. 15).

Theorem 3.3. Let (ws(x9 f ) ) j s s l i 2 denote the solution of

/Q ic\ dwi ai(3.16) _L=

Wy(0)=/-

TAew wy Aa5 representation Wj(x, t) = Ej\_M(t)f(x)~] where M(t) is

the R. E. defined in (3. 15). Moreover, we have

(3. 17) lmBi..roo||w,(0-*

^or M(^, 0 satisfying

/o ION 3" _ ^94u
w- 1B^ ^r — "~a~^ir

^Or, 0)=/(o:).
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Proof. From Theorem 3. 2 we have that the solution (Wj(x, £))j==li2

has representation w,(x9 f) =Ej{M(t)f(x)~\ for M(t) given in (3.15).

The limiting result (3. 17) is given as an application of abstract

semi-group theorems in [20] for /e^(A2), and is proved by trans-

formanalysis techniques for a smaller class of functions / in [24].

Using techniques from transform analysis, we show in Theorem

3. 4 that a random evolution related to R. E. M has expectation

semigroup, satisfying (3.34), which also converges to the solution of

(3.18).

We let r' = inf {w>7\; Y"(u)=\}. Then f is an <5f,-stopping

time. We define the operator S, : L-»L by

(3. 19)

We prove representation and limit theorems for Sa. First, we state

the following lemma.

Lemma 3.1. Let 7*: R->R denote the function

(3.20) r(n,)=^_(3- |w |)<ri.i.

Then the Fourier transform of 7- is given by

(3.21) 0(M) =

In particular, <j> satisfies

(3.22) (i) 0<0(u)<l, 0(0) =
(ii) ^ ( 0)=o,y=l,2,3

Lemma 3.2. Given R. E. M with MRP(X', T'), f, and Sa as

above. Let [R^l /*>0] denote the resolvent of [F (u) ; u>0} and

A^AjjiR^ fjt>0. Then Sa has the following representations:

(3.23) S./=2J£,/-(W/

(3.24) S.f=(I-*A?)f

(3.25) 5./(a:)
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where % = aja and ?(w) is given in (3.20).

Proof. For (3.23) we observe that, for l =

=r -i 9lr
f 'f(4)r(ai5)/£&+r r 4- ̂ "fivv(-2)

Jo / Jo Jo Z

u)f dsdu

For (3. 24) use the defining property of resolvents, i. e., (U—A)Rxf=f.

To prove (3.25), we need that

and that

(see Pazy [26]). We obtain

-

= 2* \~ e-»
Jo

-
a/

=\"
J— o

For the concepts from transform analysis used in the following
lemmas see Zemanian, Chapter 7 [31]. In particular we let

£P = {/: R->C; /is infinitely differentiable and, as \t\-*oo, f
and all its derivatives decrease to zero faster than every
power of I/ \t\]

^R= {/<=& ; / is real-valued}
yr = {continuous, linear functional on &}

SP is the class of functions of rapid descent and £fr is the collection
of distributions of slow growth, the tempered distributions. Note
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that £fR contains all real-valued infinitely-difFerentiable functions of

compact support on R.

Lemma 3.3. Suppose that p(u) is defined as

I f 0 0 *p(u}-=—~ \ e~iuxe~x dx, — oo<w<oo.
ZTT J-oo

Let $(=&" satisfy properties (3.21), (i) and (ii), with

Then

(3.26)
772-

for each h£z£fR, where fi*m denotes the mth convolution of £1.

Proof. We use transform analysis for tempered distributions and

test functions of rapid descent. In particular, we use Parseval's

equation and a Taylor expansion of <f>(u) to obtain for hEi<yR that

(3.27)

Since h^^R implies ^e^, we know that\ \h(u) \du<^oo ; thus the

integrand is majorized by the integrable function 2 | A | . From the

assumptions on <p we obtain for each

ni'

'TO.ln0( " H-e-
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= 0.

We thus can apply the Lebesgue dominated convergence theorem

to obtain (3.26) from (3.27). B

In [15], Hochberg mentions that he has obtained the result
f °° / w \ f °°limro_l>00\ h(—Ift}p*m(w')dw = \ h(u)p(u)du for functions h of rapid
J— oo \Tn / J— oo

descent with h of compact support. Since his proof is not easily

accessible at this time, we included our own proof in some detaiL

Miyamoto [24] and Krylov [22] also give theorems closely related to

Lemma 3. 3.

Lemma 3. 4. For each /e & 'R, we have

(3.28) lim,_pf-/-T(0/iNO

where X=al/a-^>oo with %at taking integer values. Here u(x> t) =

T(t)f(x) satisfies the initial value problem (3. 18).

Proof. We have the representations

(3.29) S

(3.30) T(0/(o:)= f(x+s)g,(s)ds

For (3. 29) we use function 7- given in (3. 20) ; the verification of

(3. 29) uses (3. 25) and an induction argument. For (3. 30) we

use

where $t(x) =exp(— ax*t). The representation (3.25) is given in
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Hersh [12] and Donaldson-Hersh [8] ; transform techniques give

the second form. (3. 28) now follows directly from Lemmas (3. 1)

and (3.3). •

Lemma 3. 5. For each /e £fR, we have

(3. 31) lim^J|£l[Sr'w/] - T(0/|| =0

where X — aJa-^oo with % at taking integer values^ Nx(f) = number of

times Y9 enters state one before time t = NlilL(t) +Ni
2>1(t)} and T(t)f

is given in Lemma 3. 4.

Proof. From (3.29) and Parseval's equation we have for

that

(3.32) \Ettft" f(xK-S?«f(x)\

As in Lemma 3.3, the last integrand is majorized by 2 |/(w) |. We

also have that the integrand goes to zero pointwise as 1— >oo, since

u
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Here we have used that El(N,(t) —Xaty^ffat as ^-»oo (see [7]).

Thus by the Lebesgue dominated convergence theorem we have
from (3.32)

1(3. 33) l i m ^ l ^ C ] -SJ1"/!! =0

From (3. 33) and Lemma 3. 5, we have (3. 31) follows.

Theorem 3.4. Suppose (vj(x, 0) .7=1,2 denotes the solution of

(3. 34) -|̂ = --g-W + yfctt + yfcCSa

dvz . /c 7N

where ^1=aJ/a, y2
==(Xi(X2/a, and A = a1/a and u(x, t) denotes the

solution of (3. 18).
Then for f£E<?R we have that

lima iB -»oo||^/(0 — tt(£)ll =0
1' 2

./for j'= 1,2.

Proof. We observe that (3.34) can be written in the form of
(3.6) by taking (/>,.,.) as in (3.14), A(.=0 for i = l,2, nil=H2l=Si

and IJ12=II22=L Hence from (2. 1) and part (3) of Theorem 3.2
we have that the solution (Vj(x, £ ) ) y = l i 2 for (3.31) has representation

Vj(x, t) =Ej[_S *'/(#)] for 7 = 1,2. From Lemma 3.5 we have that

limB iB^oo|bi(0 ~ " W ( O I I = 0 « Finally we have that

v2(x, t}=

' tf-VSvAx, t-r)dr.
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Thus

-v,(x, t^dr-e'^v^x, £).

By using transform analysis on the integral on the right-hand side as

in Lemma 3. 3 and 3. 5, we obtain

lim.^^lWCO-^(011=0.

From Lemma 3.5 we conclude that limtt , a _»J 1^(0 ~~w (011= 0- HI
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