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Classification of SO(3)-Actions
on Five Manifolds

By

Aiko NAKANISHI

Introduction

P. Orlik and F. Raymond showed that some invariants classify
smooth 3-manifolds with smooth S'-action, up to equivariant diffeomo-
rphism (preserving the orientation of the orbit space if it is orientable)
[6]. And R. W. Richardson JR. studied SO(8)-actions on S° [7].
Also, K. A. Hudson classified smooth SO(3)-actions on connected,
simply connected, closed 5-manifolds admitting at least one orbit of
dimension three [2].

In this paper, we discuss the equivariant classification of smooth
SO(3)-actions on closed, connected, oriented, smooth 5-manifolds such
that the orbit space is an orientable surface. We call oriented SO(3)-
manifolds M and N are equivalent if there is an equivariant homeo-
morphism between M and N which induces an orientation preserving
homeomorphism of the orbit spaces M* to N*. Since there exist
various types as the principal orbit, we classify SO(3)-manifolds about
each type. It is well known that every subgroups of SO(3) are
conjugate to one of the following [4], [5].

SO(2), 0(2), Z,, dihedral group D,={z, y; 2*=y"= (zy)*=1},
tetrahedral group T={z, vy ; 2= (xy)*=3*=1}, octahedral group
O={z, y; 2*=(xy)*=3*=1}, and icosahedral group I={z, y; 2’=
(zy)'=y"=1}.

T, I and O are isomorphic to the alternating groups 4,, 4; and

the symmetric group S,, respectively. And, as the principal isotropy
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group, we have these groups except SO(2) and O(2).

I want to express my gratitude to Professors F. Uchida and T.
Yoshida who gave me the right suggestions and read this paper
carefully.

§ 0. Preliminaries

Let G be a compact Lie group and M a smooth G-manifold. For
rzeM, we denote the orbit of =z, and the isotropy group at x by
G(z) and G,, respectively. If HCG, we write (H)={KCG ;K is
conjugate to H by an inner automorphism of G}, and M,={zeM;
G,=H}, My, ={zeM ;G,.€(H)}, and F(H, M) =M"={zcM ;gzx=
z for YgeH}.

The maximal orbit type (H) for orbits in M such that My, is
open dense in M is called the principal orbit type, and H the prin-
cipal isotropy group. For a principal orbit P and orbit Q, if dim P>
dim Q, Q is called a singular orbit. If dim P=dim ¢, but the
isotropy group K corresponding to @ is not conjugate to H, Q is
called an exceptional orbit. And for the orbit space M*=M/G, let
p; M——M* be a natural projection.

The normal bundle at x&G () has fibre V,=TM,/(TG(x)).. For
each geG,, the differential of g induces a linear map V,—V,
providing a representation G,——GL(V,) called the slice representa-
tion. And the following Theorem is given [1].

Slice Theorem. Some G-invariant open neighbourhood of the zero
section of GXV, is equivariantly diffeomorphic to a G-invariant tubular
neighbourhoocé’ of the orbit G(x) in M by the map [g, v]——gv so that
the zero section G/G, maps onto the orbit G(x).

In smooth case, we can choose a suitably small closed disk S, in
V. called a slice. And it is sufficient to discuss the representation
G,——0(»n) (n=dim S,) because M has a G-invariant metric. The
representation of each subgroup of SO(3) is the following.
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Slice representation
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For a finite group G., we considered the representation G,——
SO(2) because SO(3) xS, and SO(3)/G, are orientable.
Gs

Next, we outline some basic results we need for the proofs of

theorems in this paper.

1. Gactson a locally compact space M, and assume that all orbits
of G are equivalent. Let xeM, and let N={yeM ;G,=G,}. Then
N is a locally trivial principal fibre bundle with the group N(G,)/
G,.(N(G,) = the normalizer of G,). M is an associated fibre bundle
with G/G, as fibre.

2. We shall often quote the following Tube Theorem [1] V. 4.
2).

Tube Theorem. Let G be a compact Lie group and let W be a
G-space with orbit space I X B, where B is connected, locally connected,
paracompact, and of the homotopy type of a CW-complex. Suppose
that the orbit type on {0} XB is type (G/K) and that on (0, 1] XB is
type (G/H). Then there exists an equivariant map r ; G/H——G/K
and, with S=S(r), there exists a principal S-bundle X——B (unique
up to equivalence) and a G-equivariant homeomorphism M, X X=W
commuting with the canonical projection to IXB. Moreover, t;ze map
p=ntXX ;G/HXx X——>G/KxX X gives rise to a G-equivariant homeo-
morplszism f ;M:———>M>§X"='SW over I XB.

S(7) in this theorem is given as follows; any G-equivariant map
w; G/H——G/K is of the form RX¥¥ by RE¥(gH) =ga™'K for acG
satisfying aHa'C K ([1] I. 4. 2). Then we put S(z)=(N(H) Na™*
N(K)a)/H.

We shall use this theorem for HC K with K/H diffeomorphic to
St
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§1. Case of the Principal Orbit Type SO(3)

Let M be a closed, connected, oriented, smooth 5-dim. manifold
with smooth SO(3)-action whose principal isotropy group consists of
the identity element e. Such manifolds have at most three orbit
types, i. e. the principal orbit, exceptional orbit (SO(3)/Z,), and
singular orbit (SO(3)/S0O(2)) with the slice representations 1,5 and
3 respectively. The orbit space M* is a 2-dim. surface, and (Msoey) *
is the boundary of M*, and (M,)* consists of isolated points in M*.
Here, M,={zeM ;G, is a cyclic group}. From now on, we use M,
in this sense, and orient M* as follows; Since SO(3)/H is orientable
for a finite group H, we orient naturally the tubular neighbourhood
SO(8) xD*=V and V*=D?/H, and orient M* by V*CM*. Also, for
B= {siri{gular orbits} C M, the boundary B* is oriented so that it follow-
ed by an inward normal coincides with the orientation of M*.

For each boundary component B, p~'(Bf)——B¥ is an SO(8)/
SO(2)-bundle with the structure group N(SO(2))/SO(2)=Z, Let
f (or m) be the number of boundary connected components so that
p7'(Bf)——Bf is a trivial bundle (or non trivial). Then, My, has
2f+m connected components, and B* has f+m connected components.
Let a pair (g, v;) be the invariant uniquely determined for each
exceptional orbit SO(?))/Z,,i ([5], [10]). The purpose of this section
is to prove Theorem 1 (where g is the genus of M*).

Theorem 1. Let M be a closed, connected, oriented, smooth 5-dim
manifold with smooth SO(3)-action, and its principal isotropy group
e. Then the following orbit invariants

& (s m)s bEZ; (s ¥)5 s (s ¥)}
such that (1) b=0 if f+m+#0, beZ, if f+m=0
1 (g v) =1, 0oy
determine M up to an equivariant homeomorphism (which preserves
the orientation of M*).
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From now on, we say that some invariants determine M if they

determine M up to the above equivalence.

Lemma 1-1. If M,UMsowy =9, then {g, bEZ,} determine M.

Proof. A principal SO(8)-bundle M—"—M* is classified by g and
the obstruction class b H*(M* ; n,(SO(3)))=Z,. This lemma is

immediately proved. g. e. d.

For x&M with G,,=Z,,'_, G,-action on the slice S,=D% is the slice

representation 5, i. e.
&(r, 6) =(r, 0+v,8) §=2r/u (s v) =1, 0w, < p.

Let M have r exceptional orbits, then we have

Lemma 1-2. If M has no singular orbit, the following orbit invari-

ants determine M
{g> bEZzQ (,ul Y ): cees (/"n XJr)}
such that (i, v;) =1, 0<v,<p,

Proof. A pair (u, v;) specifies a cross section on the boundary
of the neighbourhood of the orbit SO(3)/Z, in the way of Raymond

([5], [6]1, [10]). We give the brief outline here. V,=S0(3) xD*D
Zp‘
SO(2) xD*=U, is a solid torus with SO(2)-action equivalent to
Z;l'.
0(r, 7, 0) =(r, r+v.0, 0+ p.0)

(the exceptional orbit G(x) corresponds to r=0). (See Fig. 1-1.)

Fig. 1-1
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If we give U, the orientation naturally induced from V,, then this
orients the boundary of the slice m. Let [ be an oriented curve on
0U; homologous to SO(2) /Z".- in U,, and so that the ordered pair (m, )
gives the orientation on 0U,. For a cross section ¢ of the bundle
o0U,——(@U,)*, we orient ¢’ so that the ordered pair (¢’, 2) gives the
same orientation as (m, [), where 2 is an oriented orbit SO(2) on
oU,. Then we have

m=pq +ph (>0), I=—vq" —ph, and fv,=1(mod p,)

and a suitable choice of ¢’ reduces 8 to 0<f<g. The pair (g, v;)
determines a cross section ¢; on 0U,, uniquely, (therefore on aV})
such that m=yp,q,4+8h, Bv,=1, 0<f< ;. Thus the pairs (g, v1),...,
(s v,) specify the cross sections ¢y, ¢p..., ¢, on dVy,..., V.
And we have an obstruction class in HZ(M*——Int(_U V), 3(_LrJ VE)
7, (SO(8)))=Z,, to extend the above cross sectf)lns overmll\/l*-Int
(.LrJ V#). Its class 1s identified with the mod 2 integer 6. Thus
L‘;lnma 1-2 follows. q. e. d.

Next, we consider the case of Moey) 9.
Lemma 1-3. If M,=¢, Mow), ¢, then {g, (f, m)} determine M.

Proof. By the Collaring Theorem, M* =MFU (meI X B¥) with
{0} x Bf identified with each boundary component ‘E* Since the
equivariant map SO(3) —>SO(3)/SO(2) is only a canomcal projec-
tion = up to equlvalence, M is constructed as E(p) U (U M, >< Q:) by
using the Tube Theorem. Here p is a principal SO(S) bundle over
M}, and Q,; a principal S=(N(e) NN(SO(2)))/e= O0(2)-bundle over
Bf. And each attaching map of E(p) to M, x @, is an SO(3)
equivariant map in Homeogoe (SO(3) X SY) (Hom(S:oGM for G-space
M, denote the group of self equivalences of M over M/G). Also, ¢,
EHomeosoi (SO(3) X.S5Y) is induced by an injection of S* to SO(3) xS

(1) Two equivariant maps f, g; SO(3)—>S0(3)/S0(2) are equivalent if there is an SO (3)
-equivariant map ¢; S0(3)—>S0(3) such that g-p=f.
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Thus Homeogoq (SO(3) X S) =x,(SO(8))=Z, Since SO(3)DS0(2)
represents a generator of m,(SO(3)), and the bottom of M,,>S<Q.- 1s
(SO(3)/S0(2)) XxQ:;, ¢; can be extended into M,XQ;,. Thus ¢,
may be consideried as the canonical identification. Arid we can say

M is determined by {g, (f, m)} because p is a trivial bundle.
q. e. d.

Now we prove Theorem 1.

Proof of Theorem 1. It is sufficient to see the case of M,#¢,
M 5oy #¢. (The other case is given by Lemma 1-1, 1-2 or 1-3.)
Let V, be a suitable small tubular neighbourhood of an exceptional
orbit SO(B)/Z,,‘. Then the cross sections ¢y, ..., ¢, on V...,
0V, determined by the pairs (g, v),..., (4, v,), can be extended
over M;‘:M*—Int(.LrJ V) ——fU[O, 1) x B¥. We denote this extended
cross section by s'.=1 Next,F;ve must investigate how to attach
7' ({1} xB¥) to E(p) where p is a principal SO(3)-bundle over M.
In Lemma 1-3, we investigated it with respect to a zero cross section
of p/({l} xB¥). Thus, taking the above section s/{l} XB¥ in place
of the zero cross section, Theorem 1 follows from the proof of Lemma
1-3. g. e. d.

§ 2. Case of the Principal Orbit Type
SO(8)/As, or SO(3)/S,

Let M be an oriented 5-dim. SO(3)-manifold with the principal
isotropy group A; or S,. (From now on, we suppose M is closed,
connected, smooth and the action is smooth.) Such a manifold M
has only principal orbits, and the orbit space M* is a closed 2-dim.
surface. Thus, we have the following theorem immediately because
of N(4;,) =A4,, N(S,) =S..

Theorem 2. Let M be a closed, connected, oriented, smooth 5-dim.
manifold with smooth SO(8)-action, and its principal isotropy group
As or S,. Then M is determined only by the genus g of M* up to
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equivariant homeomorphism which preseves the orientation of M*.
§3. Case of the Principal Orbit Type SO(3)/A,

A 5-dim. SO(3)-manifold M with the principal isotropy group A,
has at most two orbit types, i. e. the principal orbit and exceptional
orbit SO(3)/S, with the slice representation 9. And the orbit space
M* is a closed 2-dim. surface, and (M,)* consists of isolated points
in M*.

Let T, be an oriented closed 2-dim. surface with the genus g, and
M, be a non trivial Z,-bundle over T,.

Lemma 3-1. Let M,=¢. Then M is equivariantly homeomorphic
to SO(8)/A,xS* if g=0, and to SO(3)/A,XT, or .S'O(3)/A§><Mo if

& A

g+0.

Proof. A bundle F(A,, M)——>M* is classified by an element of
H'(M* ;N(A)/A) =H'(M*;Z,).

Case 1. Suppose g=0. Clearly, M is equivalent to SO(3)/A, xS

Case 2. Suppose g=1. Let &, 5 be Z,-principal bundles (over M*)
corresponding to 0(§), o(p) eH' (M*; Z,). If there is an orientation
preserving homeomorphism f of M* such that f*(0()) =0(§), then &
is equivalent to » in the sense of our classification. And, we can
easily construct the homeomorphisms ¢,, ¢, of M* inducing automor-
phisms (@)« (@)« of H;(M*) (automorphisms of m,(M*) are
described in [4]).

(@2) « (@) =ab, (¢.)(B) =b, (¢5) (@) =b, (¢;),(b) =a™

where a, b represent the generators of H,(M*)=Z®Z. Now, we will
describe an element of H'(M*; Z,) by a pair (m, n) which maps a
and b into mod 2 integer m and 7, respectively. Let M, be a principal
Z,-bundle (over M*) corresponding to (I, 0). Then, by operating
0y sy, F(A,, M) is equivalent to SO(3)/A,x M* or SO(3)/A4S >/<A M,.

4" 7
Case 3. Suppose g=2. First, we construct homeomorphisms 4,, 4,

of M* as Fig. 3-1.
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Fig. 3-1
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nnr. T,=T$ T\=Y,UY, Y,=T,—IntD?
4,/ Y,=identity map

Then; o1 = (Ax) 3 §Dz=Azy §03=Afldzdxdzdfldzdxs¢4=§0341
induce the automorphisms (@)« (¢=1, 2, 3, 4) of H,(T,);

(Spl) %10, b1—_>bz a,—a, bZ—)bl
(¢s) %9 a,—a;b, b——>b, a,—a, b,—b,
(§03) £ a,—b, b,——ai? a,—a; b,—b,

(P x5, >a;'a;t b, >bi? a, >b7'b, b,—a,

By suitably operating ¢,(i=1, 2, 3, 4) on M*, each non-trivial bundle



SO (8)-AcTIONs ON FIVE MANIFOLDS 695

F(A, M)——M* is equivalent to M,——My. Here M,——M;
corresponds to (1, 0, 0, 0)€H'(T,;Z,). Thus M is equivalent to
SO(3)/A,xT, or SO(8)/A, X M,.

S,/4,
2g

Case 4. Suppose g=3. H(M*;Z,)=Z,®....PDZ, After applying
Case 3 to the last four direct summands, we repeat it to four direct
summands between 2g¢—5 th and 2g—2 th. Then an element of H*
(M*; Z,) 1s regarded as (., uyev05.,1,0,0,0,0,0) or (uyuseveye,0,
0,0,0,0,0) up to equivalence. Repeating this process, we can say
M is equivalent to SO(3) /A, X M*, or SO (3)/A§>§M° where M,——M¥

4

44

corresponds to (1,0,...,0).
This completes the proof of Lemma 3-1. q. e. d.

We define ¢=0 if a principal Z,-bundle over a closed surface is a
trivial bundle, and e=1 if it is not so.
Let (M(s‘))*= {z¥,..., z¥} (M(s4) has 7 isolated orbits).

Theorem 3. Let M be a closed, connected, oriented, smooth 5-dim.
manifold with smooth SO(8)-action, and its principal isotropy group
A, Then, {g, e€{0, 1}, r} determines M up to equivariant homeo-
morphism (which preserves the orientation of M*) provided (1) e=0

if g=0, and (i) r is even.

Proof. For a suitable neighbourhood D} of z} in M*, p~*(Df) is
equivariantly diffeomorphic to SO(3) §<D2. From S,-action on D’ an
equivariant sewing between F(A, p~1(aD¥)) and F(A, p~*(0M?)) is
only the identity map (up to equivalence) where MF=M* ——Int(ﬁ) Dy).
Also, M7 is regarded as M;UD(r). D(r) is given by removin;;lopen
r disks Int(.LrJ D¥) from a 2-dim. disk, and MF is an oriented surface
with one leundary and the genus g Then a Z,-principal bundle
over M} is a trivial bundle, and 0M; is homologous to (J&D?‘ in M.
Thus 7 is even because F(A,, p~*(0D})) ——D} is a non-tr'i=vlial bundle.
Therefore, if 7 is given, then the classification of M is reduced to that
of principal Z,-bundles over M}. Moreover, it is reduced to Lemma
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3-1 because F(A,, p~*(0M}))——s0M}¥ is a trivial bundle. Therefore,
{g, & r} determine M. q. e. d.

§4. Case of the Principal Orbit Type (SO(3)/D.) (n=3)

Let M be a 5-dim. SO(3)-manifold with the principal isotropy
group D,(n=3). Then M has at most three orbit types, i. e. the
principal orbit, exceptional orbit (SO(8)/D,,), and singular orbit
(SO(8)/0(2)) with the slice representations 6-(b) and 4-(b). The
orbit space M* is a 2-dim. surface, (Mey,)* becomes the boundary
of M*, and (M(Dh,)* consists of isolated points in M*.

F(D,, p7* ({1} x Bf))— {1} xBf is a principal N(D,)/(D,=Z,-
bundle when we denote the collar of each boundary component
By by IxB with {0} X B} identified with Bf. Let f (m) be the
number of boundary connected components such that F(D,, p7'({l] X
Bf))—— {1} xB¥ is a trivial Z,~-bundle (non-trivial Z,-bundle). Then
f+m is the number of connected components of Mg, And let M
have r exceptional orbits, and ¢ be the invariant to classify Z,-bundle
F(D,, My,)—>(Mp,)*, defined in §3. Then we have the following
Theorem 4, and the purpose of this section is to prove this theorem.

Theorem 4. Let M be a closed, connected, oriented, smooth 5-dim.
manifold with smooth SO(3)-action, and its principal isotropy group
D,(n=8). Then the following orbit invariants determine M up to
equivariant homeomorphism (which preserves the orientation of M*)

{g,e€ {0, 1},(f; m), 7}
such that (1) =0 if g=0, (ii) m+r is even.

Lemma 4-1. If My # 9, M(Dz,,)=¢s then {g, e€ {0, 1}, (f, m)}

determine M up to equivalence. And m must be even.

Proof. By the Collaring Theorem, M*=M;U (f UI X B¥) with

i=1
{0} x B} identified with each boundary component BF. Then p ;
P (MF)—— My isan SO(8) /D,-bundle. There is only one simultaneous
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conjugacy class in SO(3) of pairs (H, K) where HCK, with H con-
jugate to D,, and K to O(2). Thus, the SO(3)-equivariant map
of SO(8)/D, to SO(3)/0(2) is only a canonical projection = up to
equivalence. (There is a one-one correspondence between the
simultaneous conjugacy classes of (H, K) and equivalence classes of
equivariant maps G/H——G/K ([1], V. 4. 3).)

Now we put S=(N(D,) NN(0(2)))/D,=Z, N=N(D,)/D,=Z,. By
the Tube Theorem, M can be constructed as

E(o) U (UM, x Q)

di i=1 s
where Q; is a principal S-bundle over Bf, and p is an SO(3)/D,-bundle
over M¥. If P, is the associated principal N-bundle to p/{1} XB¥,
then there is a one-one correspondence between classes of S-equivariant
maps of Q; to P;, and the classes of SO(8)-equivariant maps of
S0(3)/D,x Q; to SO(3)/D,xP; ([1], V.3.2). Let Q; be a trivial
S-bundle, sthen the S-equi\yariant map is either identity map or f;
given by
fi(1,y) =(b,y) for ye {1} xBf, Z,={1,b}.

Thus ¢, is either identity map or £, induced by f,. But i can be
extended into M, X Q; because the bottom of M, is SO((3)/0(2).
Thus ¢; may be csonsidered as the identity map (up to equivalence).
Similarly, the equivariant map may be considered as the identity map
when Q,, P; are non-trivial bundles.

From the same argument as §3, it is seen that m must be even,

and p is determined by e Then the lemma is proved. g. e. d.

Lemma 4-2. If Mye)=9¢, My, 7, then {g, e€{0, 1}, r} deter-
mine M up to equivalence. In particular, r is even.

Proof. For x,€M,,, by invesrtigating D,,-action on the slice D? at
xr;, M is constructed as E(p) B (,-L;JISO(?)) >;Df) where p is an SO(3)/
D,-bundle over M*~Int (UDi/D,). Since F(D,, SO(3) x aD)—
oD:/D,,=S" is a non-trivial'—Zz-bundle, r must be even. Thuz;, Lemma

is proved, q. e. d.
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In the similar way to §3, it is shown that r+m is even if Mo #9,
My, ,#¢. Then, Theorem 4 is immediately given from Lemma 4-1
and 4-2.

§ 5. Case of the Principal Orbit Type (SO(3)/Z,) (k=3)

Let M be a 5-dim. SO(8)-manifold with the principal isotropy
group Z,(k=3). Then M has at most four orbit types, i. e. the
principal orbit, exceptional orbits (SO(8)/D,), and (SO(3)/Z,,), and
singular orbit (SO(3)/SO(2)) with the slice representations 6, 5 and
3 respectively. The orbit space M* is a 2-dim. surface, (M (so0y)*
is the boundary of M*, and (M(Dk,)*U (M,)* consists of isolated points
in M*.

For boundary components U Bf, let f be the number of boundary
components so that F(SO(2), p~*(Bf))——>Bf is a trivial bundle, and
m of non-trivial bundle (i. e. Mo, has 2f+m connected components).
And let d be the number of exceptional orbits (SO(3)/D,), (t, v:)
be the invariant defined for SO(S)/Z,,‘,a in the same way as §l. And
let ¢ be the invariant defined in §3.

The purpose of this section is to prove the following theorem.

Theorem 5. Let M be a closed, connected, oriented, 5-dim. smooth

manifold with smooth SO(8)-action, and its principal isotropy group
Z,(k=8). Then the following orbit invariants determine M up to an

equivariant homeomorphism (which preserves the orientation of M*)
{g, e€ {01}, b€Z, (fim), d; (p, »1)s .-+ (U ¥}

such that (1) e=0 if g=0, G1) 6=0 if f+m=+0,
(i) (s vo) =1, 0<v, <y, (iv) m+d is even.

An integer b in this theorem, corresponds to the secondary obstruc-
tion class for a principal O(2)/Z,-bundle over M*. We will make its

details clear in the proof of Lemma 5-1.

Lemma 5-1. If M(D.)UMcUM(SO(z)):¢, then {g, e {0, 1}, bEZ}
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determine M up to equivalence. In particular ¢e=0 if g=0.

Proof. &; F(Z,, M)——M* is a principal O(2)/Z,-bundle, and

H(M* ; 7,002 /Z)=20,...,0%Z. Thus we may asume &
corresponds to e=0 or e=1. (See §3.) Clearly, if =0, then the
classification of & depends only on g, and an obstruction class b&
H*(M* ;7,(0(2)/Z))=Z. If e=1, then M* is considered as follows;

M*=T,=M}UM}, Mi=T,—IntD* M}=T, ,—IntD?
T,=cdcid. .. c;*d;Y, Ty=cdicrd?

e=1 means &/c; is a non-trivial and §&/c;(i#1), &/d; are trivial
O(2)/Z,-bundles. Then we can construct a double covering N of
F(Z,, p7'(M?¥)) such that N——-N/(0(2)/Z,) =N* is a trivial O(2) /Z,-
bundle, and N* is also a double covering of Mf. If we specify a
cross section §; N*——N, then § uniquely determines a cross section
s of §/0M7F. Thus, £ is determined by the genus g of M*, and the
obstruction class to extend the specified cross section s/0M; over M,
L e. by beH* (M5, oMy ;7,(0(2)/Z,))=Z. Clearly e=0 if g=0.
q. e. d.

Lemma 5-2. If Mp,UM,=¢, then {g, e {0, 1}, (f, m)} deter-
mine M up to equivalence. In particular, (1) e=0 if g=0, and

(11) m is even.

Proof. Let Bf (1=1,2,..., f+m) be a boundary component. Then,
M*=M}¥U (UIXB*) with {0} x Bf identified with B¥. We denote an
SO(S)/SO(Z) bundle p'(B¥)——B} by 0,, and an SO(8)/Z,-bundle
PH(MF)—>MF by p. p/{l} XBF is a trivial bundle iff o, is a tr1v1al
bundle. By the Tube Theorem, M can be constructed as E(p) U (U M )
where ¢; is an equivariant map of p7' ({1} XB}) to p~"(Bf). Also we
have precisely one (up to equivalence) as ¢,. (In fact, we may take
a natural projection.) This implies M, depends only on (f, m).
Thus M depends on p and (f, m). Now, we remove f+m open disks
from % and denote it by X. Then M}=T, # X=M;UM; where
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My =T,—1Int D?, M} =X—1Int D’ and p/M; depends only on ¢ and g,
o/M3 only on (f;, m). Moreover, we may regard p/0M; is attached
to p/0M; by the identity map. For, dX corresponds to f\jm{l} x B¥,
and M is unchanged up to equivalence even if we ex'c=111ange an
equivariant attaching ¢; of M,. Hence, o depends only on e and
(f; m) and M is determined by & g and (f, m). Also, it is seen m

is even in the same way as §3. g. e. d.

Let (M(D‘))* ={zf,..... , 2¥} CM*, 1. e. M has d exceptional orbits
of type SO(3)/D.,.

Lemma 5-3. If McUM(so(z))=¢, M(Dk)¢¢, then {g, ee {0, 1}, d,
beZ} determine M up to equivalence. Moreover (i) e=0 if g=0,

and (i) d is even.

Proof. For a suitable neighbourhood D} of =z, and a principal
d
0(2)/Z,-bundle p over Mf=M*—Int (.U D), F(Z,, M) is constructed

as
E(o)U(OF(Z, 57 (DD).

E(p) is attached to F(Z, p7*(D})) by ¢,=Homeosw,z (O(2)/Z,,>/<S‘).
L D,/2,

Since F(Z,, p7*(0D})) is a non-trivial O(2)/Z,-bundle, d is even by
the same reason as §3.

Now, if we remove d open disks from S° and denote it by Y,
then MF¥ =T, # Y=M}UM¥ where M} =T,—1Int D, M} =Y —Int D
Let M, be a double covering of F(Z, p~*(M*)) such that M,—
M,/ (0(2)/Z,) =M} is a trivial O(2) /Z,-bundle. Since ¢, is determined
by an injection f; of S* to O(2)/Z, X S', we can specify a cross section

D, k

§; M#——M, by extending the lifting {f;} of {f;}. Then § determines
a cross section s’ ; OMF N M} ——F (Z,, p~*(0M¥ N M})) uniquely (i. e. s’
depends only on {¢]}). Taking a specified cross section s over aM}
defined in §5-1, then we can see that M is determined by p/MJ, d
and how to attach p/0M; to p/0M; with respect to the specified cross
sections s, §', 1. e. by bEHomeoo(z)/z.(O(Q)/ZkXSI)EZ. Since p/M;y is
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classified by ¢=0 or 1, the lemma was proved. g. e. d.

If M, has r connected components, i. e. (M,)* has r isolated
points {z},...,z*}, then the following lemma is given in the similar

way to §1.

Lemma 5-4. If My,UMisow) =9, then the following orbit invari-

ants determine M up to equivalence ;
{g, e€{0, 1}, bEZ; (1, v), ... (1 v}
such that (1) e=0 if g=0, (1) (w, v) =1, 0<v,<p.

Now, we prove Theorem 5 from the above lemmas.

Proof of Theorem 5. It is sufficient to see the case of having at
least two orbit types except the principal orbit type. First, suppose
Msowy=9¢. And let Sy, be the space given by removing 3 open
disks from S§% Di(i=1, 2) a 2-dim. disk, and T, a 2-dim. surface with

the genus g and one boundary. Then we may regard M* as
Sty U T, U DU D;

by canonically identifying the boundaries of T, D} with three boundary
components of Sf%,, respectively. And we may suppose (M) *C D,
(M,)*cDi Then, p7'(D:) depends only on d, and p»7'(D;) only
on the invariants {(g, v),..., (4 v.)}, and p7'(T.) on {g, .
Moreéover, taking the cross sections on 0D3, 0D%, 07, defined in §5-3,
§1 and §5-1, we can see M is determined by the above invariants
and the obstruction class to extend this cross sections over S%,, i. e.
by be H?(S%,), 0S%;m,(0(2)/Z,))=Z. Also, if we suppose M sy # 9,
it is seen b is zero by the argument of §5-2. Thus, M is determined
by {g ¢ b, (i m), d; (thy v),---5 (¢4 v,)} such that 6=0 if
f+m+#0. Also we can easily seen that m+d is even.

§ 6. Case of the Principal Orbit Type (SO(3)/Z,)

An oriented 5-dim. SO(3)-manifold M with the principal isotropy
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group Z, has at most five orbit types, i.e. the principal orbit,
exceptional orbits (SO (3)/D,), (SO(3)/Z,), and singular orbits
(SO(8)/S0(2)), (SO(8)/0(2)) with slice representations 6-(a), 5, 3
and 4-(b), respectively. If M has not a singular orbit type (SO(3)/
0(2)), then we can apply the argument of §5 to this case in its entirety.
Thus, we shall discuss only the case of having orbit (SO(3)/0(2)).

It is easily seen that (M) * U (M(soey) * is the boundary of 2-dim.
surface M*, and (M,)*U (M‘Dz))* consists of isolated points in M*.
We put (Mpey)*=UBf where B¥ is a boundary component, and
denote the collar of each boundary component B} by IX B} with
{0} x B} identified with B}. Let 2 be the number of boundary
components so that F(Z,, p7* ({1} x Bf))—— {1} X Bf is a trivial bundle,
and n of a nontrivial bundle. (Then Myu, has 2+n connected

components.)

Lemma 6-1. If M=M<ZZ>UM(O(2,), then {g, e {0, 1}, (%, n), bEZ}
degermine M up to equivalence. In particular, (i) ¢e=0 if g=0, and

(1) n s even.

Proof.  First, we show there exists only canonical projection as
equivariant map of SO(8)/Z, to SO(8)/0(2), because we want to use
the Tube Theorem. For HC KCG, it is known there is a natural
one-one correspondence between the equivalence classes of equivariant
maps G/H——G/K and orbits of the action of N(H)/HxN(K)/K
on F(H, G/K) where N(H)/H acts on the left and N(XK)/K acts on
the right ([1], p. 245). Now we take subgroups of SO(3) which

consist of the following matrices.

12 0: 0 1 * : 0
H={1l 0,-1, 0 |} and K={| --—— | SO(3)
0, 0,1/ 0 |+1

(K is conjugate to 0(2), and H to Z,.)

Then F(H,S0(3)/K)/(N(H)/HxN(K)/K)={eKUAKUA*K} where
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0, 1, O
A=| 0, 0, 1 |=S50(3), A=1.
I, 0, O

These orbits correspond to SO(3)-equivariant maps,
¢ 3 SO0(8)/H——S0(3)/K by ¢;(gH) =gA’K (i=0, 1, 2).

But, by Bredon ([1] p. 200, Cor 6-3), N,/H must be homeomorphic
to S* where N, is the isotropy group A‘K(A")™* of A’K. This implies
that there exists only the canonical projection ¢,(gH) =gK. We
depended on K. A. Hudson [3] for this argument.

We rewrite @ for ¢,. Let @, be a principal S-bundle over B}
for S=(N(H) NN(K))/H=Z,, and let p be an SO(8)/H-bundle over
M;“::M*——(_’G:[O, 1) xBf). Then, by the Tube Theorem, M is equi-

valent to
k+n
E(p)U (UM Q).

Also, ¢; is an equivariant homeomorphism of p/{l} X Bf to the top of
M, xQ; i.e. SO(8)/KxQ,. Since Q,; is a trivial bundle iff P; is so,
S S

¢, € Homeosow,xz (SO (8) /H x 5*) =Homeoyun/z (N(H) /H X .S")
or ¢.€ Homeoyu,s (N(H)/HxSY).

In §4-1, such a ¢, was uniquely determined (up to equivalence), but

in this case we have various types. In fact,
¢i(eH, z) = (g;(x)H, z) = (78:(2), z) for j€EZ

is an equivariant homeomorphism in Homeosow,x (SO (3) /H X S*) where
g.(x) generates m(N(H)/H)=Z. And

(Ep) U (UM X Q) U (M. X Q)

%

is not equivalent to
k—1+n
(E(p) U (UM, XQ))U (M,,XSQO
i i=1 ¢’g’
if t#s. Thus an obstruction element b&Z is determined by how to
attach p/ {1} XBf to SO(3)/HX Q;, in the same way as §5-3.
S
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Strictly speaking, if we put
f+m
M¥=M;UY, M} =T,—Int D%, Y=D*—Int(UDj),
i=1

then, b=Z is determined by how to attach po/dM; to p/0Y N M; with
respect to two specifying cross sections, 1. e. the cross section on
0YN M7 induced from the above attaching maps {¢.}, and the cross
section on 0M; determined in the similar way to § 5-1. Here o/M}
depends only on {g, ¢. Then Lemma is proved. q. e. d.

Let invariants {g, ¢, b, (f,m), d; (thy ¥1)s.e... , (., ¥.)} be the
same as in Theorem 5. Since it is easily checked that m+4-n+4d is

even, Lemma 6-1 and Theorem 5 gives the following theorem.

Theorem 6. Let M be a closed, connected, oriented, smooth 5-dim.
manifold with smooth SO (3)-action, and its principal isotropy group Z,.
Then the following orbit invariants determine M up to an equivariant

homeomorphism (which preserves the orientation of the orbit space M*)
{g, e {0, 1}, b€Z, (f, m), (ky n), d; (thy v)s--+s (th ¥}

such that
(1) e=0 if g=0, (i1) m+n+d is even,
@) b6=0 if f+m+0, (v) (s v) =1, 0<p,<pee.

§7. Case of the Principal Orbit Type (SO(3)/Ds)

In this section, we treat SO(3)-manifold M whose principal orbit
type is (SO(3)/D,). Such a manifold has at most five orbit types, i. e.
principal orbit, exceptional orbits (SO(3)/D,), (SO(3)/A,), singular
orbit (SO(3)/0(2)) and fixed point SO(8)/SO(8), with the slice
representations 6-(b), 8, 4-(b) and 2-(b) respectively. Then
(M(D4))*U (M(A4>)* consists of isolated points in a 2-dim. surface M*,
and (Mpey) *U (Mgoi))* is the boundary of M*, and the fixed points
set (Mgo))* consists of isolated points in dM*. (We shall detail the
case of having fixed points in the latter half of this section.)

First, we consider the case M has only principal orbit. Then
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F(D,, M)——M?* is a principal N(D,)/D,= D,-bundle. According to
the Classification Theorem ([9], 13. 9), the usual bundle equivalence
classes of D,-principal bundles over M* are in one-one correspondence
with the equivalence classes (under inner automorphisms of D) of
homomorphisms of m (M*) into D,. Let D,-bundles § and » correspond
to homomorphisms f and g, respectively. If there is an orientation
preserving homeomorphism ¢ of M* such that ¢*o f=g, then & is
equivalent to 7 in our classification (even if & is not equivalent to 7
as the usual bundle equivalence). So, we shall say f and g with
such a homeomorphism are equivalent, too.

Now we put
7z'1(1\4*) = {(11, ﬁl; e sy az’ £ ; [als ﬁlj e [au ABg] =1}

by the canonical generators. (Here g is the genus of M*, and [«;, 8]
is the commutator of a; and j3;,.) Then there is a relation;

f(Lay, Bulas, 8] ... [@, 8,1) =1 for feHom (m (M*);D;)

First, we investigate the equivalence classes of Hom (#,(M*);Z,)
for a prime number p. For a generator x of Z, we use a symbol
y tyeeny 2, 2,000, ) In place of f with f(a,) =z, f(B;) =z
Then, it is easily seen that there are the following relations for ¢;
(z=1, 2, 3, 4) constructed in §3.

(1) (&, 2)— (@™, )=/ —— (27, )

v v *
(l,xx) R —— (2, z) —— (2, Sx)
o ’ "2
(z, D

(1) (z, 1, 2, 1) ——>veen s sz, 1, x4 D)

P4

(1, 1, z, D—(1, 1, 1, z).

From these relations (i), (ii), it is seen that the equivalence classes of
Hom (m,(M*) ; Z,) are exactly two classes, i.e. (1, 1,..., 1, 1) and
a i,..., 1, 1, z, 1) =f.

Let n ; D,——D,/Z,=Z,= {1, x} be a natural projection where
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D= {z,y; 2*=y*= (zy)'=1} DZ,;= {1, y, ¥}.

Since @fm,=m,-0F (i=1, 2, 3, 4) for n,; Hom (x,(M*) ; D,)—
Hom (=, (M*); D,/Z,), the equivalence classes of Hom (7, (M*) ; D,)
are given by computing the classes of #3'(l) and =3'(fi). By the

above argument,
7' (1) =Hom (7, (M*); Z,) CHom (x,(M*); D,)
has only two classes, i e.
(1, I,..., 1, 1)---(1) and (1, L,..., 1, 1, 1, y)---(2).

Also, every elements of z3'(f;) take the form of

(yila yjl’ ceey yil_la ng_ls xyi" yjl )+ (3)
04, 7:=22).

Applying the above argument (p=3) to the first 2(g—1) components
of (3), the classes of #3'(f;) are in either

(I 1,.eny 1, 1, 2y 9 or (1, L,..., I, v, xy%, 5.

Moreover, considering that f([ea, 8]...[a,, 8,]1) =1 and D, is not
abelian, we can say that 73'(f;) has only classes in the following forms.

(1, 19'--, 1: 1, Z, 1)(4’) (1’ 1,"': l’ 13 ZYs 1)(5)
a, L,..., 1, I, zy% (6 A, 1,..o, L, 1, 1, y, 2, 1)---(7)
(1> 1"--5 1; 1, 1; ¥, ZY, 1)(8) (13 ly-'-3 1, la l’ysyxza l)(g)-

But (4), (5) and (6) are in the same class under some inner auto-
morphisms. Similarly, (7), (8) and (9) are in one class.

So, we define the number ¢ to determine M as follows; ¢=0, 1, 2
or 3, if F(D,, M)——M* corresponds to homomorphism (1), (2),
(4) or (7) respectively.

Consequently we have

Lemma 7-1. Let M have only principal orbits. Then {g, ¢
{0, 1, 2, 3}} determine M up to equivalence. If g=1, then e {0, 1, 2}
and if g=0, then ¢=0.
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Now, suppose ZVI(D4);/:¢, M(AR UM ey UMsoe =9, and put (M(D4>)*=
{x¥,..., z¥}. By the Slice Theorem, for a suitable neighbourhood
Dy of zf, F(D,, p7*(D¥)) is equivalent to O/D, x D’. Then it is not

D4/D2
difficult to see that equivariant attaching maps between F(D,, p~*
(@(M*—1Int Df))) and F(D,, p~' (@Df)) can be extended over
F(D,, p7(Df)). Thus M is equivalent to

7 (M) Y (USO3)/D, X D)

D42

where M¥=M*—Int LrJD,* Here, O is isomorphic to S, and D, to
V.cA, (V,is deﬁneglin p- 3.) Thus O/D,=S,/V,=S,. Moreover,
D,={z, y; 2’= (zy)*=y*=1} is isomorphic to S, by corresponding x
to (12) and v to (123) (where (12) and (123) are cycles in
S;). We remark, under this isomorphism, D,/D, is identified with
Z,=1{1, (13)}. Then we can see that the principal O/D,= D,-bundle
F(D,, p“(aD,?"))=O/D2D>§DS’~——>SI=8D?‘ corresponds to (13), i e.
zyeHom (7, (S ;Dy). T?htis r must be even.

Next, suppose M(A4)¢¢, M{D4>UM(0(2)>UMSO(3)=¢: and put (M(A4))*
={y}, ..., y*. Then, F(D, p~'(D})) is equivalent to O/D, X D?

4,/D,

for a suitable neighbourhood Df of y*. And we have two types as
F(D,, p~*(0D¥)), which arise from two different A,/D,=Z,~actions on
the slice D* at y;, (1) and (2).

D & O =0 0+@2/Dn), (2 & 0)=(r, 0+ (4/3)n)

where (r, ) 1s the polar coordinate of D?. By the same reason as
the case of My,#¢, it 1s seen M is equivalent to
d_+d
P U CU P D).

Here d, is the number of points in (M(A4))* so that the D,-bundle
F(D,, p~*(8D}))——0D} corresponds to type (1), and d, to type (2).
And the bundle of type (1) corresponds to y& Hom (x,(S");D, ), and
the bundle of type (2) to y*. (A,/V.CS,/V,=S;and A,/V,={1, (123),
(132)} where (123) corresponds to y.)

Suppose Moy # 9, M(A4)UM(D4>UMSO(3)=¢. We denote each
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connected component of (Me,)* by B¥ (i=1,..., f), which is a
boundary component of M*. Applying the argument in §6-1 to this
case, the orbit of the action of N(D,)/D,xN(0(2))/0(2)=0/D, on
F(D,, SO(8)/0(2)) is exactly one. So, there exists only the canonical
projection = as the equivariant map of SO(3)/D, to SO(8)/0(2).
Therefore M is equivalent to p7*(M;) U (‘L_leM,,?Q,-) where S=
(N(O2))NN(D,))/D,=D,/D,, and Q, is : principal S-bundle over
B¥, and M{“=M*—.ij ([0, 1) xBf). And by investigating SO(3)-
equivariant attachinglmaps {¢:} of p~t(aM}) fto iEJlSO(3)/D2>S< Q;, we

can see M is equivalent to
£
pTHME) U (UM, X Q)

(because the attaching map ¢; can be extended over M, X Q,).
Here, D,-bundle F(D,, p7*({1} xBf))——> {1} xB}=8§" corzs'esponds to
ryeHom (x,(SY) ;D,) if Q; is a non-trivial S=Z,-bundle.

Finally, we shall consider the case of Msow#¢, MuyUMp,=9¢.
The results we mention here are the extension of the work of K. A,
Hudson [2] (where she treats the case of the orbit space being simply
connected), and we make use of her idea.

Let zeM with G,=S0(3). Then SO(8)-action on the slice D® at
z is given by the weight two representation (Bredon [1], p. 43).
O(2) has three different conjugate groups N,, N;, N, where N,=0(2),
N,=A"'N,A, N,=A"'N,A, for A in §6-1. Using this notation, D*/SO(3)
can be illustrated below (Fig. 7-1), and B; (=1, 2) is in the
boundary of M*. Thus the neighbourhood in M* of a boundary
component having two orbit types, (SO(3)/0(2)) and fixed points
can be illustrated as Fig. 7-2. According to Richardson ([8], 5-2),
»7'(S;) 1s homeomorphic to S*=adD° And it is clear that there is no
boundary component with exactly one fixed point (by reason of
it':'&jt'-i‘l)'

Now, we put

A=SU...US,UL,UL,U...UL,

N*=M*—(AU U D¥) (see Fig. 7-2).

i=1
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Fig. 7-1

G.=N, if x*eB,

G.,=N; if sx*<B, (i,j€ {0,1,2} and i=j)
G.=80(3) if x*<B,NB,

G,:Dz if x*EX—' (BluBz)

Fig. 7-2

M*
S

/

(SO(3)/N; xIy* (S0(3)/N;, xD*

fixed points — 5,

Y

(SO(3)/N;,xD*

Ji€{0, 1,2} ji#jfiss, 1% Ja
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Then, principal D,-bundle F(D,, p~'(B))—B=ANN* is a trivial
D.,-bundle or a bundle corresponding to zyeHom(r, (S*);D,). For,
this bundle is equivalent to IXxD,/~, with {0} XD, identified with
{1} xD, by a D equivariant map ¢ which induces an equivariant
map of M,j”(ﬂj” ; SO(?))/Dz————>SO(3)/N,~" projection). Since we can

assume N,-n=No, ¢ must be
¢(gD,) =gaD,, ac (N(D,)NO0(2))/D,=D,/D,= {1, zy}

In both cases, the equivariant attaching map of p~'(B) over Bis only
identity map (up to equivalence).

We denote the above B by B; (i=1,..., f) for each component.
Here B; means {1} XxB} in §6 when there is no fixed point on this
boundary component. And we define d(2) =0 if p7'(B,)—B,; is a
trivial bundle, and 6(¢) =1 if it corresponds to xyeHom (x,(B;);D;).
(B; is a component of {1} xoM* for the collar I xoM* of M*=
{0} x aM*.)

dl+dz

r f
For the open neighbourhoods UIntD}, U IntD¥, U [0, 1) x B}
=1 k=1

i=1
in M* of (Mg)* (M)* and (Mie)* U (M) * = U B, let (M)*
be a subspace which is given by removing these open neighbourhoods
from M*. Then we put e=4, 5, 6 or 7 if ¢(ay, B, a5 Boy ..., @, B,)
=, L....,Lz,y), 4, L...,1, 1, v, =z, ), (I, 1,..., 1, =, ¥*) or
a1, 1,...,1, v, z, ¥°) for p€Hom (z,((M")*);D,). Given r, (d,, d,),
0(1)+...+d(f), we can see each equivalence class of homomorphisms
of m((M")*) to D,, is represented by one of the above four types.
That is, {r, (d, d»), 6(1)+...+d(f), ¢§ determine M‘Dz) up to

equivalence. Moreover, (1) + ... +0(f) +r must be even because of

(@y) ... (@y). ¥y e=p([a, ]...[a, B,1) =y (*=0, 1, 2).
r+o()+ ... +0(f)

Let Bf be a boundary component with 7 fixed points {p, , ..., p.}
(n#1) which are arranged in this order. And let C,, be the
closed are on B} joining p, and ps.. @f 2=#n, then p,,,=1) As
Fig. 7-2, C,, is the orbit space of SO(B)/’N,.’.(..)
collapsing SO(B),/Njk(i)z ({oyu {1}) to SO(8)/SO(3) x ({0} U {1}).

xI/~ given by
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Here, N;
by corresponding each Cu, to jiw, BF gives an ordered n-tuple
(rys » = 5 Jay) such that juo /iy Ji Fiaw (because SO(3) acts on

the slice at each fixed point by the weight two representation).

is conjugate to O(2), and j,s values in {0, 1, 2}. Then,

Then we obtain the following theorem.

Theorem 7. Leit M be a closed, connected, oriented, smooth 5-dim.
manifold with smooth SO(3)-action, and its principal isotropy group
D,, then the following orbit invariants determine M up fto equivariant

homeomorphism (which preserves the orientation of M*)
{g, & 1, (dn dz), (5(i);(jl(i)3"'3 jn(i)))’ i=1,..., f}
such that
(i) {0, 1, 2, 3, 4, 5, 6, 7},
i) o e{0, 1},
(111) jle(i)E {05 1, 2}9 n$19
Gv) o) 402D +... +0(f)+r is even,

(v) e=0 i g=0, d,+2d,=0 (mod 3)
e {0, 1, 2} if g=1, d+2d,=0 (mod 3)
e {0, 1, 2, 3} if g2, d,+2d,=0 (mod 3)
e=4 if g=1, di+2d,=1 (mod 3)
ec {4, 5} if g=2, di+2d,=1 (mod 3)
e=6 if g=1, di+2d,=2 (mod 3)
ec {6, 7} if g=2, di+2d,=2 (mod 3)

(g=0, d,+2d,=1, or g=0, d,+2d,=2 do not appear).

Proof. First, if d,4+2d,=0 (mod 3). Then the classification of
PH(M)*)——>(M")* is reduced to Lemma 7-1, i.e. e {0, 1, 2} and
g determine p ((M')*).

Next, if d,4+2d,=1 (mod 3), then we have to compute the equiva-
lence classes of Hom (7,(M")*);D,) which satisfy the condition

o([ay, Billaz Bl .. [a, B.1)=y.

The similar argument to Lemma 7-1, concludes that the equivalence

classes are (L, 1, ..., 1, I, z, ) and (1, 1, ..., 1, 1, v, z, ¥).
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Similarly, if d,+2d,=2 (mod 3), then
?([au ‘81] [azy ﬁz] ----- [ag! leg]) =y’

and the classes are only (1, 1,...,1,2,%") and (1, 1, ..., 1, 3, z, ¥°).

Thus ¢ satisfying the condition (v) determines p™* ((M)*) up to

equivalence. Since M(Dz) determine M if r, (dyy &), (0(2); Uiy e- -

Jay) are given, these invariants and g, ¢ classify M up to equivalence.
q. e. d.
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