Classification of SO(3)-Actions on Five Manifolds

Bv

Aiko NAKANISHI

Introduction

P. Orlik and F. Raymond showed that some invariants classify smooth 3-manifolds with smooth S^1 -action, up to equivariant diffeomorphism (preserving the orientation of the orbit space if it is orientable) [6]. And R. W. Richardson JR. studied SO(3)-actions on S^5 [7]. Also, K. A. Hudson classified smooth SO(3)-actions on connected, simply connected, closed 5-manifolds admitting at least one orbit of dimension three [2].

In this paper, we discuss the equivariant classification of smooth SO(3)-actions on closed, connected, oriented, smooth 5-manifolds such that the orbit space is an orientable surface. We call oriented SO(3)-manifolds M and N are equivalent if there is an equivariant homeomorphism between M and N which induces an orientation preserving homeomorphism of the orbit spaces M^* to N^* . Since there exist various types as the principal orbit, we classify SO(3)-manifolds about each type. It is well known that every subgroups of SO(3) are conjugate to one of the following [4], [5].

SO(2), O(2), Z_n , dihedral group $D_n = \{x, y; x^2 = y^n = (xy)^2 = 1\}$, tetrahedral group $T = \{x, y; x^2 = (xy)^3 = y^3 = 1\}$, octahedral group $O = \{x, y; x^2 = (xy)^3 = y^4 = 1\}$, and icosahedral group $I = \{x, y; x^2 = (xy)^3 = y^5 = 1\}$.

T, I and O are isomorphic to the alternating groups A_4 , A_5 and the symmetric group S_4 , respectively. And, as the principal isotropy

Communicated by N. Shimada, August 24, 1977.

^{*} Department of Mathematics, Internotional Christian University, Mitaka, Tokyo 181, Japan.

group, we have these groups except SO(2) and O(2).

I want to express my gratitude to Professors F. Uchida and T. Yoshida who gave me the right suggestions and read this paper carefully.

§ 0. Preliminaries

Let G be a compact Lie group and M a smooth G-manifold. For $x \in M$, we denote the orbit of x, and the isotropy group at x by G(x) and G_x , respectively. If $H \subset G$, we write $(H) = \{K \subset G ; K \text{ is conjugate to } H \text{ by an inner automorphism of } G\}$, and $M_H = \{x \in M ; G_x = H\}$, $M_{(H)} = \{x \in M ; G_x \in (H)\}$, and $F(H, M) = M^H = \{x \in M ; gx = x \text{ for } {}^{\forall}g \in H\}$.

The maximal orbit type (H) for orbits in M such that $M_{(H)}$ is open dense in M is called the principal orbit type, and H the principal isotropy group. For a principal orbit P and orbit Q, if dim P> dim Q, Q is called a singular orbit. If dim P=dim Q, but the isotropy group K corresponding to Q is not conjugate to H, Q is called an exceptional orbit. And for the orbit space $M^*=M/G$, let P; $M\longrightarrow M^*$ be a natural projection.

The normal bundle at $x \in G(x)$ has fibre $V_x = TM_x/(TG(x))_x$. For each $g \in G_x$, the differential of g induces a linear map $V_x \longrightarrow V_x$ providing a representation $G_x \longrightarrow GL(V_x)$ called the slice representation. And the following Theorem is given [1].

Slice Theorem. Some G-invariant open neighbourhood of the zero section of $G \times V_x$ is equivariantly diffeomorphic to a G-invariant tubular neighbourhood of the orbit G(x) in M by the map $[g, v] \longrightarrow gv$ so that the zero section G/G_x maps onto the orbit G(x).

In smooth case, we can choose a suitably small closed disk S_x in V_x called a slice. And it is sufficient to discuss the representation $G_x \longrightarrow O(n)$ $(n = \dim S_x)$ because M has a G-invariant metric. The representation of each subgroup of SO(3) is the following.

Slice representation

	G_s	Sx	representation	principal isotropy group
1	e	D^2	trivial	е
2	SO(3)	<i>D</i> ⁵	 (a) ρ+θ θ; trivial action on R² ρ; standard SO(3)-action on R³ (b) weight two representation ([1] p. 43) 	SO(2) D ₂
3	SO(2)	D^3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Z_s
4	0(2)	D^3	$O(2) = SO(2) \cup bSO(2)$ $b = \begin{pmatrix} 1, & 0, & 0 \\ 0, & -1, & 0 \\ 0, & 0, & -1 \end{pmatrix}$	
			(a) $O(2) \longrightarrow \eta_2 \longrightarrow O(3)$ $\eta_2/SO(2)$; trivial $\eta_2(b) = \begin{pmatrix} 1, & 0, & 0 \\ 0, & 1, & 0 \\ 0, & 0, & -1 \end{pmatrix}$ or $\eta_2(b) = \begin{pmatrix} -1, & 0, & 0 \\ 0, & -1, & 0 \\ 0, & 0, & 1 \end{pmatrix}$ (b) $O(2) \longrightarrow \eta_3 \longrightarrow O(3)$ $\eta_3/SO(2) = \eta_1$	SO(2)
			$ \eta_{3}\begin{pmatrix} -1, & 0, & 0 \\ 0, & -1, & 0 \\ 0, & 0, & -1 \end{pmatrix} = \begin{pmatrix} -1, & 0, & 0 \\ 0, & 1, & 0 \\ 0, & 0, & 1 \end{pmatrix} $	D_n
5	Z_n	D^2	$Z_{n} \longrightarrow Z_{n}/Z_{m} = Z_{q} \xrightarrow{\xi} SO(2) (mq = n)$ $\xi(r\theta) = (r, \theta + \nu\xi) \text{ for } \xi = 2\pi/q$ $(q, \nu) = 1,0 < \nu < q$ $(r, \theta) \text{ ; polar coordinates of } D^{2}$	Z_m
6	D_n	D^2	(a) $D_n \longrightarrow D_n/Z_n \cong Z_2 \xrightarrow{\xi} SO(2)$	Z_n
			(b) for $n=2k$, $D_{2k} \longrightarrow D_{2k}/D_k \cong Z_2 \xrightarrow{\xi} SO(2)$	D_k
7	A_5	D^2	trivial	A_5
8	A ₄	D^2	$A_4 \longrightarrow A_4/V_4 = Z_3 \xrightarrow{\xi} SO(2)$ $V_4 = \{(i, j) (k, l) ; i, j, k, l \text{ are each other different}\}$	D_2
9	S ₄	D^2	$S_4 \longrightarrow S_4/A_4 \cong Z_2 \xrightarrow{\xi} SO(2)$	A ₄

For a finite group G_x , we considered the representation $G_x \longrightarrow SO(2)$ because $SO(3) \times S_x$ and $SO(3)/G_x$ are orientable.

Next, we outline some basic results we need for the proofs of theorems in this paper.

- 1. Gacts on a locally compact space M, and assume that all orbits of G are equivalent. Let $x \in M$, and let $N = \{y \in M : G_y = G_x\}$. Then N is a locally trivial principal fibre bundle with the group $N(G_x)/G_x(N(G_x))$ the normalizer of G_x). M is an associated fibre bundle with G/G_x as fibre.
- 2. We shall often quote the following Tube Theorem [1] V. 4. 2).

Tube Theorem. Let G be a compact Lie group and let W be a G-space with orbit space $I \times B$, where B is connected, locally connected, paracompact, and of the homotopy type of a CW-complex. Suppose that the orbit type on $\{0\} \times B$ is type (G/K) and that on $(0, 1] \times B$ is type (G/H). Then there exists an equivariant map π ; $G/H \longrightarrow G/K$ and, with $S = S(\pi)$, there exists a principal S-bundle $X \longrightarrow B$ (unique up to equivalence) and a G-equivariant homeomorphism $M_{\pi} \times X \cong W$ commuting with the canonical projection to $I \times B$. Moreover, the map $\varphi = \pi \times X$; $G/H \times X \longrightarrow G/K \times X$ gives rise to a G-equivariant homeomorphism $f: M_{\varphi} \longrightarrow M \times X \cong W$ over $I \times B$.

 $S(\pi)$ in this theorem is given as follows; any G-equivariant map π ; $G/H \longrightarrow G/K$ is of the form $R_a^{K,H}$ by $R_a^{K,H}(gH) = ga^{-1}K$ for $a \in G$ satisfying $aHa^{-1} \subset K$ ([1] I. 4. 2). Then we put $S(\pi) = (N(H) \cap a^{-1}N(K)a)/H$.

We shall use this theorem for $H \subset K$ with K/H diffeomorphic to S^1 .

§ 1. Case of the Principal Orbit Type SO(3)

Let M be a closed, connected, oriented, smooth 5-dim. manifold with smooth SO(3)-action whose principal isotropy group consists of the identity element e. Such manifolds have at most three orbit types, i. e. the principal orbit, exceptional orbit $(SO(3)/Z_{\mu})$, and singular orbit (SO(3)/SO(2)) with the slice representations 1, 5 and 3 respectively. The orbit space M^* is a 2-dim. surface, and $(M_{(SO(2))})^*$ is the boundary of M^* , and $(M_e)^*$ consists of isolated points in M^* . Here, $M_e = \{x \in M : G_x \text{ is a cyclic group}\}$. From now on, we use M_e in this sense, and orient M^* as follows; Since SO(3)/H is orientable for a finite group H, we orient naturally the tubular neighbourhood $SO(3) \times D^2 = V$ and $V^* = D^2/H$, and orient M^* by $V^* \subset M^*$. Also, for $B = \{\text{singular orbits}\} \subset M$, the boundary B^* is oriented so that it followed by an inward normal coincides with the orientation of M^* .

For each boundary component B_i^* , $p^{-1}(B_i^*) \longrightarrow B_i^*$ is an SO(3)/SO(2)-bundle with the structure group $N(SO(2))/SO(2) \cong \mathbb{Z}_2$. Let f (or m) be the number of boundary connected components so that $p^{-1}(B_i^*) \longrightarrow B_i^*$ is a trivial bundle (or non trivial). Then, $M_{SO(2)}$ has 2f+m connected components, and B^* has f+m connected components. Let a pair (μ_i, ν_i) be the invariant uniquely determined for each exceptional orbit $SO(3)/\mathbb{Z}_{\mu_i}$ ([5], [10]). The purpose of this section is to prove Theorem 1 (where g is the genus of M^*).

Theorem 1. Let M be a closed, connected, oriented, smooth 5-dim manifold with smooth SO(3)-action, and its principal isotropy group e. Then the following orbit invariants

$$\{g, (f, m), b \in Z_2; (\mu_1, \nu_1), \ldots, (\mu_r, \nu_r)\}$$

such that (i) b=0 if $f+m\neq 0$, $b\in \mathbb{Z}_2$ if f+m=0

(ii)
$$(\mu_i, \nu_i) = 1, 0 < \nu_i < \mu_i$$

determine M up to an equivariant homeomorphism (which preserves the orientation of M^*).

From now on, we say that some invariants determine M if they determine M up to the above equivalence.

Lemma 1-1. If $M_c \cup M_{(so(2))} = \phi$, then $\{g, b \in Z_2\}$ determine M.

Proof. A principal SO(3)-bundle $M \xrightarrow{p} M^*$ is classified by g and the obstruction class $b \in H^2(M^*; \pi_1(SO(3))) \cong \mathbb{Z}_2$. This lemma is immediately proved. q. e. d.

For $x \in M$ with $G_x = Z_{\mu_i}$, G_x -action on the slice $S_x = D^2$ is the slice representation 5, i. e.

$$\xi(r, \theta) = (r, \theta + \nu_i \xi)$$
 $\xi = 2\pi/\mu_i$ $(\mu_i, \nu_i) = 1, 0 < \nu_i < \mu_i$

Let M have r exceptional orbits, then we have

Lemma 1-2. If M has no singular orbit, the following orbit invariants determine M

$$\{g, b \in Z_2; (\mu_1 \nu_1), \ldots, (\mu_r, \nu_r)\}$$

such that $(\mu_i, \nu_i) = 1, 0 < \nu_i < \mu_i$.

Proof. A pair (μ_i, ν_i) specifies a cross section on the boundary of the neighbourhood of the orbit $SO(3)/Z_{\mu_i}$ in the way of Raymond ([5], [6], [10]). We give the brief outline here. $V_i = SO(3) \times D^2 \supset SO(2) \times D^2 = U_i$ is a solid torus with SO(2)-action equivalent to

$$\theta(r, \gamma, \delta) = (r, \gamma + \nu_i \theta, \delta + \mu_i \theta)$$

(the exceptional orbit G(x) corresponds to r=0). (See Fig. 1-1.)

If we give U_i the orientation naturally induced from V_i , then this orients the boundary of the slice m. Let l be an oriented curve on ∂U_i homologous to $SO(2)/Z_{\mu_i}$ in U_i , and so that the ordered pair (m, l) gives the orientation on ∂U_i . For a cross section q' of the bundle $\partial U_i \longrightarrow (\partial U_i)^*$, we orient q' so that the ordered pair (q', h) gives the same orientation as (m, l), where h is an oriented orbit SO(2) on ∂U_i . Then we have

$$m = \mu_i q' + \beta h$$
 $(\beta > 0)$, $l = -\nu_i q' - \rho h$, and $\beta \nu_i \equiv 1 \pmod{\mu_i}$

and a suitable choice of q' reduces β to $0 < \beta < \mu_i$. The pair (μ_i, ν_i) determines a cross section q_i on ∂U_i , uniquely, (therefore on ∂V_i) such that $m = \mu_i q_i + \beta h$, $\beta \nu_i \equiv 1$, $0 < \beta < \mu_i$. Thus the pairs $(\mu_1, \nu_1), \ldots$, (μ_r, ν_r) specify the cross sections q_1, q_2, \ldots, q_r on $\partial V_1, \ldots, \partial V_r$. And we have an obstruction class in $H^2(M^* - \operatorname{Int}(\bigcup_{i=1}^r V_i^*), \partial(\bigcup_{i=1}^r V_i^*); \pi_1(SO(3))) \cong Z_2$, to extend the above cross sections over M^* -Int $(\bigcup_{i=1}^r V_i^*)$. Its class is identified with the mod 2 integer b. Thus Lemma 1-2 follows.

Next, we consider the case of $M_{(so(2))} \neq \phi$.

Lemma 1-3. If $M_{\epsilon} = \phi$, $M_{(so(2))} \neq \phi$, then $\{g, (f, m)\}$ determine M.

Proof. By the Collaring Theorem, $M^* = M_1^* \cup (\bigcup_{i=1}^{f+m} I \times B_i^*)$ with $\{0\} \times B_i^*$ identified with each boundary component B_i^* . Since the equivariant map $SO(3) \longrightarrow SO(3)/SO(2)$ is only a canonical projection π up to equivalence, M is constructed as $E(\rho) \cup (\bigcup_{i=1}^{f+m} M_\pi \times Q_i)$ by using the Tube Theorem. Here ρ is a principal SO(3)-bundle over M_1^* , and Q_i a principal $S=(N(e) \cap N(SO(2)))/e=O(2)$ -bundle over B_i^* . And each attaching map of $E(\rho)$ to $M_\pi \times Q_i$ is an SO(3) equivariant map in $Homeo_{SO(3)}(SO(3) \times S^1)$ ($Homeo_GM$ for G-space M, denote the group of self equivalences of M over M/G). Also, $\phi_i \in Homeo_{SO(3)}(SO(3) \times S^1)$ is induced by an injection of S^1 to $SO(3) \times S^1$.

⁽¹⁾ Two equivariant maps f, g; $SO(3) \rightarrow SO(3)/SO(2)$ are equivalent if there is an SO(3) -equivariant map φ ; $SO(3) \rightarrow SO(3)$ such that $g \cdot \varphi = f$.

Thus $\operatorname{Homeo}_{SO(3)}(SO(3) \times S^1) \cong \pi_1(SO(3)) \cong Z_2$. Since $SO(3) \supset SO(2)$ represents a generator of $\pi_1(SO(3))$, and the bottom of $M_{\pi} \times Q_i$ is $(SO(3)/SO(2)) \times Q_i$, ϕ_i can be extended into $M_{\pi} \times Q_i$. Thus ϕ_i may be considered as the canonical identification. And we can say M is determined by $\{g, (f, m)\}$ because ρ is a trivial bundle.

q. e. d.

Now we prove Theorem 1.

Proof of Theorem 1. It is sufficient to see the case of $M_c \neq \phi$, $M_{(SO(2))} \neq \phi$. (The other case is given by Lemma 1-1, 1-2 or 1-3.) Let V_i be a suitable small tubular neighbourhood of an exceptional orbit $SO(3)/Z_{\mu_i}$. Then the cross sections q_1, q_2, \ldots, q_r on $\partial V_1, \ldots, \partial V_r$ determined by the pairs $(\mu_1, \nu_1), \ldots, (\mu_r, \nu_r)$, can be extended over $M_2^* = M^* - \operatorname{Int}(\bigcup_{i=1}^r V_i^*) - \bigcup_{j=1}^{f+m} [0, 1) \times B_j^*$. We denote this extended cross section by s. Next, we must investigate how to attach $p^{-1}(\{1\} \times B_j^*)$ to $E(\rho)$ where ρ is a principal SO(3)-bundle over M_2^* . In Lemma 1-3, we investigated it with respect to a zero cross section of $\rho/(\{1\} \times B_j^*)$. Thus, taking the above section $s/\{1\} \times B_j^*$ in place of the zero cross section, Theorem 1 follows from the proof of Lemma 1-3.

§ 2. Case of the Principal Orbit Type $SO(3)/A_5$, or $SO(3)/S_4$

Let M be an oriented 5-dim. SO(3)-manifold with the principal isotropy group A_5 or S_4 . (From now on, we suppose M is closed, connected, smooth and the action is smooth.) Such a manifold M has only principal orbits, and the orbit space M^* is a closed 2-dim. surface. Thus, we have the following theorem immediately because of $N(A_5) = A_5$, $N(S_4) = S_4$.

Theorem 2. Let M be a closed, connected, oriented, smooth 5-dim. manifold with smooth SO(3)-action, and its principal isotropy group A_5 or S_4 . Then M is determined only by the genus g of M^* up to

equivariant homeomorphism which preseves the orientation of M*.

§ 3. Case of the Principal Orbit Type $SO(3)/A_4$

A 5-dim. SO(3)-manifold M with the principal isotropy group A_4 , has at most two orbit types, i. e. the principal orbit and exceptional orbit $SO(3)/S_4$ with the slice representation 9. And the orbit space M^* is a closed 2-dim. surface, and $(M_{(S_4)})^*$ consists of isolated points in M^* .

Let T_s be an oriented closed 2-dim. surface with the genus g, and M_0 be a non trivial Z_2 -bundle over T_s .

Lemma 3-1. Let $M_{(S_4)} = \phi$. Then M is equivariantly homeomorphic to $SO(3)/A_4 \times S^2$ if g = 0, and to $SO(3)/A_4 \times T_g$ or $SO(3)/A_4 \times M_0$ if $g \neq 0$.

Proof. A bundle $F(A_4, M) \longrightarrow M^*$ is classified by an element of $H^1(M^*; N(A_4)/A_4) = H^1(M^*; Z_2)$.

Case 1. Suppose g=0. Clearly, M is equivalent to $SO(3)/A_4 \times S^2$.

Case 2. Suppose g=1. Let ξ , η be Z_2 -principal bundles (over M^*) corresponding to $o(\xi)$, $o(\eta) \in H^1(M^*; Z_2)$. If there is an orientation preserving homeomorphism f of M^* such that $f^*(o(\eta)) = o(\xi)$, then ξ is equivalent to η in the sense of our classification. And, we can easily construct the homeomorphisms φ_2 , φ_3 of M^* inducing automorphisms $(\varphi_2)_*$, $(\varphi_3)_*$ of $H_1(M^*)$ (automorphisms of $\pi_1(M^*)$ are described in [4]).

$$(\varphi_2)_*(a) = ab, (\varphi_2)_*(b) = b, (\varphi_3)_*(a) = b, (\varphi_3)_*(b) = a^{-1}$$

where a, b represent the generators of $H_1(M^*) \cong Z \oplus Z$. Now, we will describe an element of $H^1(M^*; Z_2)$ by a pair (m, n) which maps a and b into mod 2 integer m and n, respectively. Let M_0 be a principal Z_2 -bundle (over M^*) corresponding to (1, 0). Then, by operating φ_2 , φ_3 , $F(A_4, M)$ is equivalent to $SO(3)/A_4 \times M^*$ or $SO(3)/A_4 \times M_0$.

Case 3. Suppose g=2. First, we construct homeomorphisms Δ_1 , Δ_2 of M^* as Fig. 3-1.

Fig. 3-1

Then, $\varphi_1 = (\mathcal{A}_1)^3$, $\varphi_2 = \mathcal{A}_2$, $\varphi_3 = \mathcal{A}_1^{-1} \mathcal{A}_2 \mathcal{A}_1 \mathcal{A}_2 \mathcal{A}_1^{-1} \mathcal{A}_2 \mathcal{A}_1$, $\varphi_4 = \varphi_3 \mathcal{A}_1$ induce the automorphisms $(\varphi_i)_*(i=1,\ 2,\ 3,\ 4)$ of $H_1(T_g)$;

By suitably operating $\varphi_i(i=1, 2, 3, 4)$ on M^* , each non-trivial bundle

 $F(A_4, M) \longrightarrow M^*$ is equivalent to $M_0 \longrightarrow M_0^*$. Here $M_0 \longrightarrow M_0^*$ corresponds to $(1, 0, 0, 0) \in H^1(T_{\mathfrak{x}}; Z_{\mathfrak{x}})$. Thus M is equivalent to $SO(3)/A_4 \times T_{\mathfrak{x}}$ or $SO(3)/A_4 \times M_0$.

Case 4. Suppose $g \ge 3$. $H^1(M^*; Z_2) \cong Z_2 \bigoplus \ldots \bigoplus Z_2$. After applying Case 3 to the last four direct summands, we repeat it to four direct summands between 2g-5 th and 2g-2 th. Then an element of $H^1(M^*; Z_2)$ is regarded as $(\ldots, \ldots, \ldots, 1, 0, 0, 0, 0, 0)$ or $(\ldots, \ldots, \ldots, 0, 0, 0, 0, 0, 0)$ up to equivalence. Repeating this process, we can say M is equivalent to $SO(3)/A_4 \times M^*$, or $SO(3)/A_4 \times M_0$ where $M_0 \longrightarrow M_0^*$ corresponds to $(1, 0, \ldots, 0)$.

This completes the proof of Lemma 3-1. q. e. d.

We define $\varepsilon=0$ if a principal Z_2 -bundle over a closed surface is a trivial bundle, and $\varepsilon=1$ if it is not so.

Let $(M_{(s_i)})^* = \{x_1^*, \dots, x_r^*\}$ $(M_{(s_i)})$ has r isolated orbits).

Theorem 3. Let M be a closed, connected, oriented, smooth 5-dim. manifold with smooth SO(3)-action, and its principal isotropy group A_4 . Then, $\{g, \varepsilon \in \{0, 1\}, r\}$ determines M up to equivariant homeomorphism (which preserves the orientation of M^*) provided (i) $\varepsilon = 0$ if g = 0, and (ii) r is even.

Proof. For a suitable neighbourhood D_i^* of x_i^* in M^* , $p^{-1}(D_i^*)$ is equivariantly diffeomorphic to $SO(3) \times D^2$. From S_4 -action on D^2 , an equivariant sewing between $F(A_4, p^{-1}(\partial D_i^*))$ and $F(A_4, p^{-1}(\partial M_1^*))$ is only the identity map (up to equivalence) where $M_1^* = M^* - \operatorname{Int}(\bigcup_{i=1}^r D_i^*)$. Also, M_1^* is regarded as $M_2^* \cup D(r)$. D(r) is given by removing open r disks $\operatorname{Int}(\bigcup_{i=1}^r D_i^*)$ from a 2-dim. disk, and M_2^* is an oriented surface with one boundary and the genus g. Then a Z_2 -principal bundle over ∂M_2^* is a trivial bundle, and ∂M_2^* is homologous to $\bigcup_{i=1}^r \partial D_i^*$ in M_1^* . Thus r is even because $F(A_4, p^{-1}(\partial D_i^*)) \longrightarrow D_i^*$ is a non-trivial bundle. Therefore, if r is given, then the classification of M is reduced to that of principal Z_2 -bundles over M_1^* . Moreover, it is reduced to Lemma

3-1 because $F(A_4, p^{-1}(\partial M_1^*)) \longrightarrow \partial M_1^*$ is a trivial bundle. Therefore, $\{g, \varepsilon, r\}$ determine M.

§ 4. Case of the Principal Orbit Type $(SO(3)/D_n)$ $(n \ge 3)$

Let M be a 5-dim. SO(3)-manifold with the principal isotropy group $D_n(n \ge 3)$. Then M has at most three orbit types, i. e. the principal orbit, exceptional orbit $(SO(3)/D_{2n})$, and singular orbit (SO(3)/O(2)) with the slice representations 6-(b) and 4-(b). The orbit space M^* is a 2-dim. surface, $(M_{(0(2))})^*$ becomes the boundary of M^* , and $(M_{(D_{2n})})^*$ consists of isolated points in M^* .

 $F(D_n, p^{-1}(\{1\} \times B_i^*)) \longrightarrow \{1\} \times B_i^*$ is a principal $N(D_n)/(D_n \cong Z_2$ -bundle when we denote the collar of each boundary component B_i^* by $I \times B_i^*$ with $\{0\} \times B_i^*$ identified with B_i^* . Let f(m) be the number of boundary connected components such that $F(D_n, p^{-1}(\{1\} \times B_i^*)) \longrightarrow \{1\} \times B_i^*$ is a trivial Z_2 -bundle (non-trivial Z_2 -bundle). Then f+m is the number of connected components of $M_{(0(2))}$. And let M have f exceptional orbits, and f be the invariant to classify f bundle f bundle f connected to f bundle f the following f and the purpose of this section is to prove this theorem.

Theorem 4. Let M be a closed, connected, oriented, smooth 5-dim. manifold with smooth SO(3)-action, and its principal isotropy group $D_n(n \ge 3)$. Then the following orbit invariants determine M up to equivariant homeomorphism (which preserves the orientation of M^*)

$$\{g, \varepsilon \in \{0, 1\}, (f, m), r\}$$

such that (i) $\varepsilon = 0$ if g = 0, (ii) m+r is even.

Lemma 4-1. If $M_{(0(2))} \neq \phi$, $M_{(D_{2n})} = \phi$, then $\{g, \epsilon \in \{0, 1\}, (f, m)\}$ determine M up to equivalence. And m must be even.

Proof. By the Collaring Theorem, $M^* = M_1^* \cup \bigcup_{i=1}^{f+m} I \times B_i^*$ with $\{0\} \times B_i^*$ identified with each boundary component B_i^* . Then ρ ; $p^{-1}(M_1^*) \longrightarrow M_1^*$ is an $SO(3)/D_n$ -bundle. There is only one simultaneous

conjugacy class in SO(3) of pairs (H, K) where $H \subset K$, with H conjugate to D_n , and K to O(2). Thus, the SO(3)-equivariant map of $SO(3)/D_n$ to SO(3)/O(2) is only a canonical projection π up to equivalence. (There is a one-one correspondence between the simultaneous conjugacy classes of (H, K) and equivalence classes of equivariant maps $G/H \longrightarrow G/K$ ([1], V. 4. 3).)

Now we put $S = (N(D_n) \cap N(O(2)))/D_n \cong Z_2$, $N = N(D_n)/D_n \cong Z_2$. By the Tube Theorem, M can be constructed as

$$E(\rho) \underset{\phi_i}{\cup} (\underset{i=1}{\overset{f+m}{\cup}} M_{\pi} \times Q_i)$$

where Q_i is a principal S-bundle over B_i^* , and ρ is an $SO(3)/D_n$ -bundle over M_1^* . If P_i is the associated principal N-bundle to $\rho/\{1\} \times B_i^*$, then there is a one-one correspondence between classes of S-equivariant maps of Q_i to P_i , and the classes of SO(3)-equivariant maps of $SO(3)/D_n \times Q_i$ to $SO(3)/D_n \times P_i$ ([1], V. 3. 2). Let Q_i be a trivial S-bundle, then the S-equivariant map is either identity map or f_1 given by

$$f_1(1,y) = (b,y)$$
 for $y \in \{1\} \times B_i^*, Z_2 = \{1,b\}$.

Thus ψ_i is either identity map or \tilde{f}_1 induced by f_1 . But \tilde{f}_1 can be extended into $M_\pi \times Q_i$ because the bottom of M_π is SO((3)/O(2). Thus ψ_i may be considered as the identity map (up to equivalence). Similarly, the equivariant map may be considered as the identity map when Q_i , P_i are non-trivial bundles.

From the same argument as §3, it is seen that m must be even, and ρ is determined by ϵ . Then the lemma is proved. q. e. d.

Lemma 4-2. If $M_{(0(2))} = \phi$, $M_{(D_{2n})} \neq \phi$, then $\{g, \varepsilon \in \{0, 1\}, r\}$ determine M up to equivalence. In particular, r is even.

Proof. For $x_i \in M_{D_{2n}}$, by investigating D_{2n} -action on the slice D_i^2 at x_i , M is constructed as $E(\rho) \cup (\overset{r}{\bigcup} SO(3) \times D_i^2)$ where ρ is an $SO(3)/D_n$ -bundle over $M^*-\mathrm{Int}\,(\overset{r}{\bigcup} D_i^2/D_{2n})$. Since $F(D_n, SO(3) \times \partial D_i^2) \longrightarrow \partial D_i^2/D_{2n} = S^1$ is a non-trivial Z_2 -bundle, r must be even. Thus, Lemma is proved,

In the similar way to §3, it is shown that r+m is even if $M_{so(2)} \neq \phi$, $M_{(D_{2n})} \neq \phi$. Then, Theorem 4 is immediately given from Lemma 4-1 and 4-2.

§ 5. Case of the Principal Orbit Type $(SO(3)/Z_k)$ $(k \ge 3)$

Let M be a 5-dim. SO(3)-manifold with the principal isotropy group $Z_k(k \ge 3)$. Then M has at most four orbit types, i. e. the principal orbit, exceptional orbits $(SO(3)/D_k)$, and $(SO(3)/Z_{kq})$, and singular orbit (SO(3)/SO(2)) with the slice representations 6, 5 and 3 respectively. The orbit space M^* is a 2-dim. surface, $(M_{(SO(2))})^*$ is the boundary of M^* , and $(M_{(D_k)})^* \cup (M_c)^*$ consists of isolated points in M^* .

For boundary components $\bigcup B_i^*$, let f be the number of boundary components so that $F(SO(2), p^{-1}(B_i^*)) \longrightarrow B_i^*$ is a trivial bundle, and m of non-trivial bundle (i. e. $M_{SO(2)}$ has 2f+m connected components). And let d be the number of exceptional orbits $(SO(3)/D_k)$, (μ_i, ν_i) be the invariant defined for $SO(3)/Z_{\mu_i k}$ in the same way as §1. And let ε be the invariant defined in §3.

The purpose of this section is to prove the following theorem.

Theorem 5. Let M be a closed, connected, oriented, 5-dim. smooth manifold with smooth SO(3)-action, and its principal isotropy group $Z_k(k \ge 3)$. Then the following orbit invariants determine M up to an equivariant homeomorphism (which preserves the orientation of M^*)

$$\{g, \ \varepsilon \in \{0,1\}, \ b \in Z, \ (f,m), \ d \ ; \ (\mu_i, \ \nu_1), \ldots, \ (\mu_r, \ \nu_r)\}$$
 such that (i) $\varepsilon = 0$ if $g = 0$, (ii) $b = 0$ if $f + m \neq 0$, (iii) $(\mu_i, \ \nu_i) = 1, \ 0 < \nu_i < \mu_i$ (iv) $m + d$ is even.

An integer b in this theorem, corresponds to the secondary obstruction class for a principal $O(2)/Z_k$ -bundle over M^* . We will make its details clear in the proof of Lemma 5-1.

Lemma 5-1. If
$$M_{(D_i)} \cup M_{\varepsilon} \cup M_{(SO(2))} = \phi$$
, then $\{g, \varepsilon \in \{0, 1\}, b \in Z\}$

determine M up to equivalence. In particular $\varepsilon=0$ if g=0.

Proof. ξ ; $F(Z_k, M) \longrightarrow M^*$ is a principal $O(2)/Z_k$ -bundle, and $H^1(M^*; \pi_0(O(2)/Z_k)) \cong \widehat{Z_2 \oplus , \dots, \oplus Z_2}$. Thus we may assume ξ corresponds to $\varepsilon = 0$ or $\varepsilon = 1$. (See §3.) Clearly, if $\varepsilon = 0$, then the classification of ξ depends only on g, and an obstruction class $b \in H^2(M^*; \pi_1(O(2)/Z_k)) \cong Z$. If $\varepsilon = 1$, then M^* is considered as follows;

$$M^* = T_g = M_1^* \cup M_2^*, \ M_1^* = T_1 - \text{Int } D^2, \ M_2^* = T_{g-1} - \text{Int } D^2$$

$$T_g = c_1 d_1 c_1^{-1} d_1^{-1} \dots c_g^{-1} d_g^{-1}, \ T_1 = c_1 d_1 c_1^{-1} d_1^{-1}$$

 $\varepsilon=1$ means ξ/c_1 is a non-trivial and $\xi/c_i(i\neq 1)$, ξ/d_j are trivial $O(2)/Z_k$ -bundles. Then we can construct a double covering \tilde{N} of $F(Z_k, p^{-1}(M_1^*))$ such that $\tilde{N}\longrightarrow \tilde{N}/(O(2)/Z_k)=\tilde{N}^*$ is a trivial $O(2)/Z_k$ -bundle, and \tilde{N}^* is also a double covering of M_1^* . If we specify a cross section \tilde{s} ; $\tilde{N}^*\longrightarrow \tilde{N}$, then \tilde{s} uniquely determines a cross section s of $\xi/\partial M_1^*$. Thus, ξ is determined by the genus g of M^* , and the obstruction class to extend the specified cross section $s/\partial M_1^*$ over M_2^* , i. e. by $b\in H^2(M_2^*, \partial M_2^*; \pi_1(O(2)/Z_k))\cong Z$. Clearly $\varepsilon=0$ if g=0. q. e. d.

Lemma 5-2. If $M_{(D_s)} \cup M_c = \phi$, then $\{g, \varepsilon \in \{0, 1\}, (f, m)\}$ determine M up to equivalence. In particular, (i) $\varepsilon = 0$ if g = 0, and (ii) m is even.

Proof. Let B_i^* $(i=1,2,\ldots,f+m)$ be a boundary component. Then, $M^*=M_1^*\cup\bigcup_{i=1}^{f+m}XB_i^*$ with $\{0\}\times B_i^*$ identified with B_i^* . We denote an SO(3)/SO(2)-bundle $p^{-1}(B_i^*)\longrightarrow B_i^*$ by σ_i , and an $SO(3)/Z_k$ -bundle $p^{-1}(M_1^*)\longrightarrow M_1^*$ by ρ . $\rho/\{1\}\times B_i^*$ is a trivial bundle iff σ_i is a trivial bundle. By the Tube Theorem, M can be constructed as $E(\rho)\bigcup_{id}\bigcup_{i}^{f+m}M_{\phi_i}$ where ϕ_i is an equivariant map of $p^{-1}(\{1\}\times B_i^*)$ to $p^{-1}(B_i^*)$. Also we have precisely one (up to equivalence) as ϕ_i . (In fact, we may take a natural projection.) This implies M_{ϕ_i} depends only on (f,m). Thus M depends on ρ and (f,m). Now, we remove f+m open disks from S^2 , and denote it by X. Then $M_1^*=T_x \notin X=M_2^*\cup M_3^*$ where

 $M_2^* = T_s - \text{Int } D^2$, $M_3^* = X - \text{Int } D^2$, and ρ/M_2^* depends only on ε and g, ρ/M_3^* only on (f, m). Moreover, we may regard $\rho/\partial M_2^*$ is attached to $\rho/\partial M_3^*$ by the identity map. For, ∂X corresponds to $\bigcup_{i=1}^{f+m} \{1\} \times B_i^*$, and M is unchanged up to equivalence even if we exchange an equivariant attaching ψ_i of M_{ψ_i} . Hence, ρ depends only on ε and (f, m) and M is determined by ε , g and (f, m). Also, it is seen m is even in the same way as §3.

Let $(M_{(D_k)})^* = \{x_1^*, \ldots, x_d^*\} \subset M^*$, i. e. M has d exceptional orbits of type $SO(3)/D_k$.

Lemma 5-3. If $M_{\epsilon} \cup M_{(so(2))} = \phi$, $M_{(D_k)} \neq \phi$, then $\{g, \epsilon \in \{0, 1\}, d, b \in \mathbb{Z}\}$ determine M up to equivalence. Moreover (i) $\epsilon = 0$ if g = 0, and (ii) d is even.

Proof. For a suitable neighbourhood D_i^* of x_i^* , and a principal $O(2)/Z_k$ -bundle ρ over $M_1^* = M^* - \text{Int} (\bigcup_{i=1}^d D_i^*)$, $F(Z_k, M)$ is constructed as

$$E(\rho) \cup (\bigcup_{i=1}^{d} F(Z_{i}, p^{-1}(D_{i}^{*})).$$

 $E(\rho)$ is attached to $F(Z_k, p^{-1}(D_i^*))$ by $\varphi_i \in \operatorname{Homeo}_{O(2)/Z_k}(O(2)/Z_k \times S^1)$. Since $F(Z_k, p^{-1}(\partial D_i^*))$ is a non-trivial $O(2)/Z_k$ -bundle, d is even by the same reason as §3.

Now, if we remove d open disks from S^2 , and denote it by Y, then $M_1^* = T_g \sharp Y = M_2^* \cup M_3^*$ where $M_2^* = T_g - \operatorname{Int} D^2$, $M_3^* = Y - \operatorname{Int} D^2$. Let \widetilde{M}_3 be a double covering of $F(Z_k, p^{-1}(M_3^*))$ such that $\widetilde{M}_3 \longrightarrow \widetilde{M}_3/(O(2)/Z_k) = \widetilde{M}_3^*$ is a trivial $O(2)/Z_k$ -bundle. Since φ_i is determined by an injection f_i of S^1 to $O(2)/Z_k \times S^1$, we can specify a cross section \widetilde{s} ; $\widetilde{M}_3^* \longrightarrow \widetilde{M}_3$ by extending the lifting $\{\widetilde{f}_i\}$ of $\{f_i\}$. Then \widetilde{s} determines a cross section s'; $\partial M_3^* \cap M_2^* \longrightarrow F(Z_k, p^{-1}(\partial M_3^* \cap M_2^*))$ uniquely (i. e. s' depends only on $\{\varphi_i\}$). Taking a specified cross section s over ∂M_2^* defined in §5-1, then we can see that M is determined by ρ/M_2^* , d and how to attach $\rho/\partial M_2^*$ to $\rho/\partial M_3^*$ with respect to the specified cross sections s, s', i. e. by $b \in \operatorname{Homeo}_{O(2)/Z_k}(O(2)/Z_k \times S^1) \cong Z$. Since ρ/M_2^* is

classified by $\varepsilon=0$ or 1, the lemma was proved.

q. e. d.

If M_c has r connected components, i. e. $(M_c)^*$ has r isolated points $\{x_1^*, \ldots, x_r^*\}$, then the following lemma is given in the similar way to §1.

Lemma 5-4. If $M_{(D_k)} \cup M_{(SO(2))} = \phi$, then the following orbit invariants determine M up to equivalence;

$$\{g, \ \varepsilon \in \{0, 1\}, \ b \in Z; \ (\mu_1, \nu_1), \ldots, (\mu_r, \nu_r)\}$$

such that (i) $\varepsilon = 0$ if g = 0, (ii) $(\mu_i, \nu_i) = 1$, $0 < \nu_i < \mu_i$.

Now, we prove Theorem 5 from the above lemmas.

Proof of Theorem 5. It is sufficient to see the case of having at least two orbit types except the principal orbit type. First, suppose $M_{(SO(2))} = \phi$. And let $S_{(3)}^2$ be the space given by removing 3 open disks from S^2 , $D_i^2(i=1, 2)$ a 2-dim. disk, and T_g a 2-dim. surface with the genus g and one boundary. Then we may regard M^* as

$$S_{(3)}^2 \cup T_{\pi}' \cup D_1^2 \cup D_2^2$$

by canonically identifying the boundaries of T'_s , D^2_i with three boundary components of $S^2_{(3)}$, respectively. And we may suppose $(M_{(D_k)})^* \subset D^2_1$, $(M_e)^* \subset D^2_2$. Then, $p^{-1}(D^2_1)$ depends only on d, and $p^{-1}(D^2_2)$ only on the invariants $\{(\mu_1, \nu_1), \ldots, (\mu_r, \nu_r)\}$, and $p^{-1}(T'_s)$ on $\{g, \varepsilon\}$. Moreover, taking the cross sections on ∂D^2_1 , ∂D^2_2 , $\partial T'_s$ defined in §5-3, §1 and §5-1, we can see M is determined by the above invariants and the obstruction class to extend this cross sections over $S^2_{(3)}$, i. e. by $b \in H^2(S^2_{(3)}, \partial S^2_{(3)}; \pi_1(O(2)/Z_k)) \cong Z$. Also, if we suppose $M_{(SO(2))} \neq \phi$, it is seen b is zero by the argument of §5-2. Thus, M is determined by $\{g, \varepsilon, b, (f, m), d; (\mu_1, \nu_1), \ldots, (\mu_r, \nu_r)\}$ such that b = 0 if $f + m \neq 0$. Also we can easily seen that m + d is even.

§ 6. Case of the Principal Orbit Type $(SO(3)/Z_2)$

An oriented 5-dim. SO(3)-manifold M with the principal isotropy

group Z_2 , has at most five orbit types, i.e. the principal orbit, exceptional orbits $(SO(3)/D_2)$, $(SO(3)/Z_{2q})$, and singular orbits (SO(3)/SO(2)), (SO(3)/O(2)) with slice representations 6-(a), 5, 3 and 4-(b), respectively. If M has not a singular orbit type (SO(3)/O(2)), then we can apply the argument of §5 to this case in its entirety. Thus, we shall discuss only the case of having orbit (SO(3)/O(2)).

It is easily seen that $(M_{(o(2))})^* \cup (M_{(so(2))})^*$ is the boundary of 2-dimsurface M^* , and $(M_{\epsilon})^* \cup (M_{(D_2)})^*$ consists of isolated points in M^* . We put $(M_{(o(2))})^* = \bigcup B_i^*$ where B_i^* is a boundary component, and denote the collar of each boundary component B_i^* by $I \times B_i^*$ with $\{0\} \times B_i^*$ identified with B_i^* . Let k be the number of boundary components so that $F(Z_2, p^{-1}(\{1\} \times B_i^*)) \longrightarrow \{1\} \times B_i^*$ is a trivial bundle, and n of a nontrivial bundle. (Then $M_{(o(2))}$ has k+n connected components.)

Lemma 6-1. If $M=M_{(Z_2)}\cup M_{(O(2))}$, then $\{g, \varepsilon\in\{0, 1\}, (k, n), b\in Z\}$ degermine M up to equivalence. In particular, (i) $\varepsilon=0$ if g=0, and (ii) n is even.

Proof. First, we show there exists only canonical projection as equivariant map of $SO(3)/Z_2$ to SO(3)/O(2), because we want to use the Tube Theorem. For $H \subset K \subset G$, it is known there is a natural one-one correspondence between the equivalence classes of equivariant maps $G/H \longrightarrow G/K$ and orbits of the action of $N(H)/H \times N(K)/K$ on F(H, G/K) where N(H)/H acts on the left and N(K)/K acts on the right ([1], p. 245). Now we take subgroups of SO(3) which consist of the following matrices.

$$H = \left\{ 1, \begin{pmatrix} 1, & 0, & 0 \\ 0, & -1, & 0 \\ 0, & 0, & -1 \end{pmatrix} \right\} \text{ and } K = \left\{ \begin{pmatrix} * & 0 \\ - & | \pm 1 \end{pmatrix} \in SO(3) \right\}.$$

(K is conjugate to 0(2), and H to Z_2 .)

Then $F(H,SO(3)/K)/(N(H)/H\times N(K)/K) = \{eK \cup AK \cup A^2K\}$ where

$$A = \begin{pmatrix} 0, & 1, & 0 \\ 0, & 0, & 1 \\ 1, & 0, & 0 \end{pmatrix} \in SO(3), \qquad A^{3} = 1$$

These orbits correspond to SO(3)-equivariant maps,

$$\varphi_i$$
; $SO(3)/H \longrightarrow SO(3)/K$ by $\varphi_i(gH) = gA^iK$ ($i = 0, 1, 2$).

But, by Bredon ([1] p. 200, Cor 6-3), N_i/H must be homeomorphic to S^1 where N_i is the isotropy group $A^iK(A^i)^{-1}$ of A^iK . This implies that there exists only the canonical projection $\varphi_0(gH) = gK$. We depended on K. A. Hudson [3] for this argument.

We rewrite π for φ_0 . Let Q_i be a principal S-bundle over B_i^* for $S = (N(H) \cap N(K))/H \cong Z_2$, and let ρ be an SO(3)/H-bundle over $M_1^* = M^* - (\bigcup_{i=1}^{k+n} [0, 1) \times B_i^*)$. Then, by the Tube Theorem, M is equivalent to

$$E(\rho) \bigcup_{\phi_i} (\bigcup_{i=1}^{k+n} M_{\pi} \times Q_i).$$

Also, ψ_i is an equivariant homeomorphism of $\rho/\{1\} \times B_i^*$ to the top of $M_{\pi} \times Q_i$, i. e. $SO(3)/K \times Q_i$. Since Q_i is a trivial bundle iff P_i is so,

$$\begin{aligned} & \phi_i \in \operatorname{Homeo}_{SO(3)/H}(SO(3)/H \times S^1) = \operatorname{Homeo}_{N(H)/H}(N(H)/H \times S^1) \\ & \text{or} \quad \phi_i \in \operatorname{Homeo}_{N(H)/H}(N(H)/H \times S^1). \end{aligned}$$

In §4-1, such a ϕ_i was uniquely determined (up to equivalence), but in this case we have various types. In fact,

$$\phi_i^j(eH, x) = (g_i(x)H, x) = (jg_1(x), x) \text{ for } j \in \mathbb{Z}$$

is an equivariant homeomorphism in $\operatorname{Homeo}_{SO(3)/H}(SO(3)/H \times S^1)$ where $g_1(x)$ generates $\pi_1(N(H)/H) \cong Z$. And

$$(E(\rho) \underset{\phi_i}{\cup} (\underset{i=1}{\overset{k-1+n}{\bigcup}} M_{\pi} \underset{S}{\times} Q_i)) \underset{\phi_s^s}{\cup} (M_{\pi} \underset{S}{\times} Q_k)$$

is not equivalent to

$$(E(\rho) \bigcup_{\phi_i}^{k-1+n} (\bigcup_{i=1}^{k-1} M_{\pi} \times Q_i)) \bigcup_{\phi_k^i} (M_{\pi} \times Q_k)$$

if $t \neq s$. Thus an obstruction element $b \in Z$ is determined by how to attach $\rho/\{1\} \times B_i^*$ to $SO(3)/H \times Q_i$, in the same way as §5-3.

Strictly speaking, if we put

$$M_1^* = M_2^* \cup Y$$
, $M_2^* = T_g$ —Int D^2 , $Y = D^2$ —Int $(\bigcup_{i=1}^{f+m} D_i^2)$,

then, $b \in Z$ is determined by how to attach $\rho/\partial M_2^*$ to $\rho/\partial Y \cap M_2^*$ with respect to two specifying cross sections, i. e. the cross section on $\partial Y \cap M_2^*$ induced from the above attaching maps $\{\phi_i\}$, and the cross section on ∂M_2^* determined in the similar way to § 5-1. Here ρ/M_2^* depends only on $\{g, s\}$. Then Lemma is proved. q. e. d.

Let invariants $\{g, \varepsilon, b, (f, m), d; (\mu_1, \nu_1), \ldots, (\mu_r, \nu_r)\}$ be the same as in Theorem 5. Since it is easily checked that m+n+d is even, Lemma 6-1 and Theorem 5 gives the following theorem.

Theorem 6. Let M be a closed, connected, oriented, smooth 5-dim. manifold with smooth SO(3)-action, and its principal isotropy group Z_2 . Then the following orbit invariants determine M up to an equivariant homeomorphism (which preserves the orientation of the orbit space M^*)

$$\{g, \ \varepsilon \in \{0, \ 1\}, \ b \in \mathbb{Z}, \ (f, \ m), \ (k, \ n), \ d \ ; \ (\mu_1, \nu_1), \ldots, \ (\mu_r, \nu_r)\}$$
 such that

(i)
$$\varepsilon = 0$$
 if $g = 0$, (ii) $m+n+d$ is even,

(iii)
$$b=0$$
 if $f+m\neq 0$, (iv) $(\mu_i, \nu_i)=1, 0<\nu_i<\mu_i$.

§ 7. Case of the Principal Orbit Type $(SO(3)/D_2)$

In this section, we treat SO(3)-manifold M whose principal orbit type is $(SO(3)/D_2)$. Such a manifold has at most five orbit types, i. e. principal orbit, exceptional orbits $(SO(3)/D_4)$, $(SO(3)/A_4)$, singular orbit (SO(3)/O(2)) and fixed point SO(3)/SO(3), with the slice representations 6-(b), 8, 4-(b) and 2-(b) respectively. Then $(M_{(D_4)})^* \cup (M_{(A_4)})^*$ consists of isolated points in a 2-dim. surface M^* , and $(M_{(O(2))})^* \cup (M_{SO(3)})^*$ is the boundary of M^* , and the fixed points set $(M_{SO(3)})^*$ consists of isolated points in ∂M^* . (We shall detail the case of having fixed points in the latter half of this section.)

First, we consider the case M has only principal orbit. Then

 $F(D_2, M) \longrightarrow M^*$ is a principal $N(D_2)/D_2 \cong D_3$ -bundle. According to the Classification Theorem ([9], 13. 9), the usual bundle equivalence classes of D_3 -principal bundles over M^* are in one-one correspondence with the equivalence classes (under inner automorphisms of D_3) of homomorphisms of $\pi_1(M^*)$ into D_3 . Let D_3 -bundles ξ and η correspond to homomorphisms f and g, respectively. If there is an orientation preserving homeomorphism φ of M^* such that $\varphi^* \circ f = g$, then ξ is equivalent to η in our classification (even if ξ is not equivalent to η as the usual bundle equivalence). So, we shall say f and g with such a homeomorphism are equivalent, too.

Now we put

$$\pi_1(M^*) = \{\alpha_1, \beta_1, \ldots, \alpha_r, \beta_r ; [\alpha_1, \beta_1] \ldots [\alpha_r, \beta_r] = 1\}$$

by the canonical generators. (Here g is the genus of M^* , and $[\alpha_i, \beta_i]$ is the commutator of α_i and β_i .) Then there is a relation;

$$f([\alpha_1, \beta_1][\alpha_2, \beta_2] \dots [\alpha_g, \beta_g]) = 1$$
 for $f \in \text{Hom}(\pi_1(M^*); D_3)$

First, we investigate the equivalence classes of Hom $(\pi_1(M^*); Z_p)$ for a prime number p. For a generator x of Z_p we use a symbol $(^*, ^*, \ldots, ^*, x^i, x^i, ^*, \ldots, ^*)$ in place of f with $f(\alpha_i) = x^i$, $f(\beta_i) = x^i$. Then, it is easily seen that there are the following relations for φ_i (i=1, 2, 3, 4) constructed in § 3.

$$(i) \quad (x^{s}, x^{t}) \xrightarrow{\varphi_{2}^{s}} (x^{s+t}, x^{t}) \xrightarrow{\varphi_{2}^{*}} \cdots \longrightarrow (x^{p-1}, x^{t})$$

$$\downarrow \varphi_{3}^{s}$$

$$(1, x) \xrightarrow{\varphi_{2}^{*}} \cdots \cdots \longrightarrow (x^{t-1}, x) \xrightarrow{\varphi_{2}^{*}} (x^{t}, x)$$

$$\downarrow \varphi_{3}^{s}$$

$$(x, 1)$$

(i i)
$$(x, 1, x, 1) \longrightarrow \cdots \longrightarrow (x, 1, x^{-1}, 1)$$

 $\downarrow^{\varphi_{4}^{*}}$
 $(1, 1, x, 1) \xrightarrow{\varphi_{3}^{*}} (1, 1, 1, x).$

From these relations (i), (ii), it is seen that the equivalence classes of Hom $(\pi_1(M^*); Z_p)$ are exactly two classes, i.e. (1, 1, ..., 1, 1) and $(1, 1, ..., 1, 1, x, 1) = f_1$.

Let π ; $D_3 \longrightarrow D_3/Z_3 \cong Z_2 = \{1, x\}$ be a natural projection where

$$D_3 = \{x, y ; x^2 = y^3 = (xy)^2 = 1\} \supset Z_3 = \{1, y, y^2\}.$$

Since $\varphi_i^* \cdot \pi_* = \pi_* \cdot \varphi_i^*$ (i = 1, 2, 3, 4) for π_* ; Hom $(\pi_1(M^*); D_3) \longrightarrow$ Hom $(\pi_1(M^*); D_3/Z_3)$, the equivalence classes of Hom $(\pi_1(M^*); D_3)$ are given by computing the classes of $\pi_*^{-1}(1)$ and $\pi_*^{-1}(f_1)$. By the above argument,

$$\pi_*^{-1}(1) = \text{Hom } (\pi_1(M^*); Z_3) \subset \text{Hom } (\pi_1(M^*); D_3)$$

has only two classes, i. e.

$$(1, 1, \ldots, 1, 1) \cdots (1)$$
 and $(1, 1, \ldots, 1, 1, 1, y) \cdots (2)$.

Also, every elements of $\pi_*^{-1}(f_1)$ take the form of

$$(y^{i_1}, y^{j_1}, \dots, y^{i_{\ell-1}}, y^{j_{\ell-1}}, xy^{i_{\ell}}, y^{j_{\ell}}) \cdots (3)$$

 $(0 \le i_k, j_k \le 2).$

Applying the above argument (p=3) to the first 2(g-1) components of (3), the classes of $\pi_*^{-1}(f_1)$ are in either

$$(1, 1, \ldots, 1, 1, xy^{i_g}, y^{i_g})$$
 or $(1, 1, \ldots, 1, y, xy^{i_g}, y^{i_g})$.

Moreover, considering that $f([\alpha_1, \beta_1] \dots [\alpha_s, \beta_s]) = 1$ and D_3 is not abelian, we can say that $\pi_*^{-1}(f_1)$ has only classes in the following forms.

$$(1, 1, \ldots, 1, 1, x, 1) \cdots (4)$$
 $(1, 1, \ldots, 1, 1, xy, 1) \cdots (5)$

$$(1, 1, \ldots, 1, 1, xy^2, 1) \cdots (6)$$
 $(1, 1, \ldots, 1, 1, 1, y, x, 1) \cdots (7)$

$$(1, 1, \ldots, 1, 1, 1, y, xy, 1) \cdots (8) \quad (1, 1, \ldots, 1, 1, 1, y, yx^2, 1) \cdots (9).$$

But (4), (5) and (6) are in the same class under some inner automorphisms. Similarly, (7), (8) and (9) are in one class.

So, we define the number ε to determine M as follows; $\varepsilon = 0, 1, 2$ or 3, if $F(D_2, M) \longrightarrow M^*$ corresponds to homomorphism (1), (2), (4) or (7) respectively.

Consequently we have

Lemma 7-1. Let M have only principal orbits. Then $\{g, \varepsilon \in \{0, 1, 2, 3\}\}$ determine M up to equivalence. If g=1, then $\varepsilon \in \{0, 1, 2\}$ and if g=0, then $\varepsilon=0$.

Now, suppose $M_{(D_4)} \neq \phi$, $M_{(A_4)} \cup M_{(O(2))} \cup M_{SO(3)} = \phi$, and put $(M_{(D_4)})^* = \{x_1^*, \ldots, x_r^*\}$. By the Slice Theorem, for a suitable neighbourhood D_i^* of x_i^* , $F(D_2, p^{-1}(D_i^*))$ is equivalent to $O/D_2 \times D^2$. Then it is not difficult to see that equivariant attaching maps between $F(D_2, p^{-1}(\partial(M^* - \operatorname{Int} D_i^*)))$ and $F(D_2, p^{-1}(\partial D_i^*))$ can be extended over $F(D_2, p^{-1}(D_i^*))$. Thus M is equivalent to

$$p^{\scriptscriptstyle -1}(M_{\scriptscriptstyle 1}^*) \underset{\scriptscriptstyle id}{\cup} (\overset{\scriptscriptstyle r}{\underset{\scriptscriptstyle i=1}{\cup}} SO(3)/D_{\scriptscriptstyle 2} \underset{\scriptscriptstyle D_4/D_2}{\times} D^{\scriptscriptstyle 2})$$

where $M_1^* = M^* - \operatorname{Int} \int_{i=1}^r D_i^*$. Here, O is isomorphic to S_4 and D_2 to $V_4 \subset A_4$. (V_4 is defined in p. 3.) Thus $O/D_2 \cong S_4/V_4 \cong S_3$. Moreover, $D_3 = \{x, \ y \ ; \ x^2 = (xy)^2 = y^3 = 1\}$ is isomorphic to S_3 by corresponding x to (12) and y to (123) (where (12) and (123) are cycles in S_3). We remark, under this isomorphism, D_4/D_2 is identified with $Z_2 = \{1, (13)\}$. Then we can see that the principal $O/D_2 \cong D_3$ -bundle $F(D_2, p^{-1}(\partial D_i^*)) = O/D_2 \underset{D_4/D_2}{\times} S^1 \longrightarrow S^1 = \partial D_i^*$ corresponds to (13), i. e. $xy \in \operatorname{Hom}(\pi_1(S^1); D_3)$. Thus r must be even.

Next, suppose $M_{(A_4)} \neq \phi$, $M_{(D_4)} \cup M_{(O(2))} \cup M_{SO(3)} = \phi$, and put $(M_{(A_4)})^* = \{y_1^*, \ldots, y_m^*\}$. Then, $F(D_2, p^{-1}(D_i^*))$ is equivalent to $O/D_2 \underset{A_4/D_2}{\times} D^2$ for a suitable neighbourhood D_i^* of y_i^* . And we have two types as $F(D_2, p^{-1}(\partial D_i^*))$, which arise from two different $A_4/D_2 \cong Z_3$ -actions on the slice D^2 at y_i , (1) and (2).

(1)
$$\xi_1(r, \theta) = (r, \theta + (2/3)\pi),$$
 (2) $\xi_2(r, \theta) = (r, \theta + (4/3)\pi)$

where (r, θ) is the polar coordinate of D^2 . By the same reason as the case of $M_{(D_r)} \neq \phi$, it is seen M is equivalent to

$$p^{-1}(M_1^*) \bigcup_{id} (\bigcup_{i=1}^{d_1+d_2} p^{-1}(D_i^*)).$$

Here d_1 is the number of points in $(M_{(A_4)})^*$ so that the D_3 -bundle $F(D_2, p^{-1}(\partial D_i^*)) \longrightarrow \partial D_i^*$ corresponds to type (1), and d_2 to type (2). And the bundle of type (1) corresponds to $y \in \text{Hom}(\pi_1(S^1); D_3)$, and the bundle of type (2) to y^2 . $(A_4/V_4 \subseteq S_4/V_4 \cong S_3 \text{ and } A_4/V_4 = \{1, (123), (132)\}$ where (123) corresponds to y.)

Suppose $M_{\scriptscriptstyle (O(2))}\!\neq\!\phi$, $M_{\scriptscriptstyle (A_4)}\cup M_{\scriptscriptstyle (D_4)}\cup M_{\scriptscriptstyle SO(3)}\!=\!\phi$. We denote each

connected component of $(M_{(o(2))})^*$ by B_i^* $(i=1,\ldots,f)$, which is a boundary component of M^* . Applying the argument in §6-1 to this case, the orbit of the action of $N(D_2)/D_2 \times N(O(2))/O(2) = O/D_2$ on $F(D_2, SO(3)/O(2))$ is exactly one. So, there exists only the canonical projection π as the equivariant map of $SO(3)/D_2$ to SO(3)/O(2). Therefore M is equivalent to $p^{-1}(M_1^*) \cup \int_{i=1}^f M_i \times Q_i$ where $S=(N(O(2)) \cap N(D_2))/D_2 = D_4/D_2$, and Q_i is a principal S-bundle over B_i^* , and $M_1^* = M^* - \bigcup_{i=1}^f ([0, 1) \times B_i^*)$. And by investigating SO(3)-equivariant attaching maps $\{\phi_i\}$ of $p^{-1}(\partial M_1^*)$ to $\bigcup_{i=1}^f SO(3)/D_2 \times Q_i$, we can see M is equivalent to

$$p^{-1}(M_1^*) \underset{id}{\cup} (\underset{i=1}{\overset{f}{\bigcup}} M_{\pi} \times Q_i)$$

(because the attaching map ψ_i can be extended over $M_x \times Q_i$). Here, D_s -bundle $F(D_s, p^{-1}(\{1\} \times B_i^*)) \longrightarrow \{1\} \times B_i^* = S^1$ corresponds to $xy \in \text{Hom}(\pi_1(S^1); D_s)$ if Q_i is a non-trivial $S \cong Z_s$ -bundle.

Finally, we shall consider the case of $M_{so(3)} \neq \phi$, $M_{(A_4)} \cup M_{(D_4)} = \phi$. The results we mention here are the extension of the work of K. A. Hudson [2] (where she treats the case of the orbit space being simply connected), and we make use of her idea.

Let $x \in M$ with $G_x = SO(3)$. Then SO(3)-action on the slice D^5 at x is given by the weight two representation (Bredon [1], p. 43). O(2) has three different conjugate groups N_0 , N_1 , N_2 where $N_0 = O(2)$, $N_1 = A^{-1}N_0A$, $N_2 = A^{-1}N_1A$, for A in §6-1. Using this notation, $D^5/SO(3)$ can be illustrated below (Fig. 7-1), and B_i (i=1, 2) is in the boundary of M^* . Thus the neighbourhood in M^* of a boundary component having two orbit types, (SO(3)/O(2)) and fixed points can be illustrated as Fig. 7-2. According to Richardson ([8], 5-2), $p^{-1}(S_i)$ is homeomorphic to $S^4 = \partial D^5$. And it is clear that there is no boundary component with exactly one fixed point (by reason of $j_i \neq j_{i+1}$).

Now, we put

$$A = S_1 \cup \ldots \cup S_n \cup L_1 \cup L_2 \cup \ldots \cup L_n$$

$$N^* = M^* - (A \cup \bigcup_{i=1}^n D_i^*)$$
 (see Fig. 7-2).

$$\begin{array}{lll} G_x = N_i & \text{if} & x^* \in B_1 \\ G_x = N_j & \text{if} & x^* \in B_2 & (i, j \in \{0, 1, 2\} \text{ and } i \neq j) \\ G_x = SO(3) & \text{if} & x^* \in B_1 \cap B_2 \\ G_x = D_2 & \text{if} & x^* \in X - (B_1 \cup B_2) \end{array}$$

Fig. 7-2

 $j_i \in \{0, 1, 2\}$ $j_i \neq j_{i+1}, j_1 \neq j_n$

Then, principal D_3 -bundle $F(D_2, p^{-1}(B)) \longrightarrow B = A \cap N^*$ is a trivial D_3 -bundle or a bundle corresponding to $xy \in \operatorname{Hom}(\pi_1(S^1); D_3)$. For, this bundle is equivalent to $I \times D_3 / \sim$, with $\{0\} \times D_3$ identified with $\{1\} \times D_3$ by a D_3 -equivariant map ϕ which induces an equivariant map of $M_{\pi_{j_n}}(\pi_{j_n}; SO(3)/D_2 \longrightarrow SO(3)/N_{j_n}$ projection). Since we can assume $N_j = N_0$, ϕ must be

$$\psi(gD_2) = gaD_2$$
, $a \in (N(D_2) \cap O(2))/D_2 = D_4/D_2 = \{1, xy\}$

In both cases, the equivariant attaching map of $p^{-1}(B)$ over B is only identity map (up to equivalence).

We denote the above B by B_i $(i=1,\ldots,f)$ for each component. Here B_j means $\{1\} \times B_j^*$ in § 6 when there is no fixed point on this boundary component. And we define $\delta(i)=0$ if $p^{-1}(B_i) \longrightarrow B_i$ is a trivial bundle, and $\delta(i)=1$ if it corresponds to $xy \in \text{Hom}(\pi_1(B_i);D_3)$. $(B_i$ is a component of $\{1\} \times \partial M^*$ for the collar $I \times \partial M^*$ of $M^* = \{0\} \times \partial M^*$.)

For the open neighbourhoods $\bigcup_{i=1}^r \operatorname{Int} D_i^*$, $\bigcup_{j=1}^d \operatorname{Int} D_j^*$, $\bigcup_{k=1}^f [0, 1) \times B_k^*$ in M^* of $(M_{(D_4)})^*$, $(M_{(A_4)})^*$ and $(M_{SO(3)})^* \cup (M_{(O(2))})^* = \bigcup_{k=1}^f B_k^*$, let $(M')^*$ be a subspace which is given by removing these open neighbourhoods from M^* . Then we put $\varepsilon=4$, 5, 6 or 7 if $\varphi(\alpha_1, \beta_1, \alpha_2, \beta_2, \ldots, \alpha_g, \beta_g)$ $= (1, 1, \ldots, 1, x, y)$, $(1, 1, \ldots, 1, 1, y, x, y)$, $(1, 1, \ldots, 1, x, y^2)$ or $(1, 1, \ldots, 1, y, x, y^2)$ for $\varphi \in \operatorname{Hom}(\pi_1((M')^*); D_3)$. Given r, (d_1, d_2) , $\delta(1) + \ldots + \delta(f)$, we can see each equivalence class of homomorphisms of $\pi_1((M')^*)$ to D_3 , is represented by one of the above four types. That is, $\{r, (d_1, d_2), \delta(1) + \ldots + \delta(f), \varepsilon\}$ determine $M_{(D_2)}$ up to equivalence. Moreover, $\delta(1) + \ldots + \delta(f) + r$ must be even because of

$$\underbrace{(xy)\dots(xy)}_{r+\delta(1)+\dots+\delta(f)}, y^{d_1+2d_2} = \varphi([\alpha_1, \beta_1]\dots[\alpha_s, \beta_s]) = y^k \quad (k=0, 1, 2).$$

Let B_i^* be a boundary component with n fixed points $\{p_1, \ldots, p_n\}$ $(n \neq 1)$ which are arranged in this order. And let $C_{k(i)}$ be the closed are on B_i^* joining p_k and p_{k+1} . (if k=n, then $p_{n+1}=1$) As Fig. 7-2, $C_{k(i)}$ is the orbit space of $SO(3)/N_{j_{k(i)}} \times I/\sim$ given by collapsing $SO(3)/N_{j_{k(i)}} = (\{0\} \cup \{1\})$ to $SO(3)/SO(3) \times (\{0\} \cup \{1\})$.

Here, $N_{j_{k(i)}}$ is conjugate to O(2), and $j_{k(i)}$ values in $\{0, 1, 2\}$. Then, by corresponding each $C_{k(i)}$ to $j_{k(i)}$, B_i^* gives an ordered *n*-tuple $(j_{1(i)}, \ldots, j_{k(i)})$ such that $j_{k(i)} \neq j_{k+1(i)}$, $j_{1(i)} \neq j_{n(i)}$ (because SO(3) acts on the slice at each fixed point by the weight two representation).

Then we obtain the following theorem.

Theorem 7. Let M be a closed, connected, oriented, smooth 5-dim. manifold with smooth SO(3)-action, and its principal isotropy group D_2 , then the following orbit invariants determine M up to equivariant homeomorphism (which preserves the orientation of M^*)

$$\{g, \varepsilon, r, (d_1, d_2), (\delta(i); (j_{1(i)}, \ldots, j_{n(i)})), i=1, \ldots, f\}$$

such that

- (i) $\varepsilon \in \{0, 1, 2, 3, 4, 5, 6, 7\},\$
- (i i) $\delta(i) \in \{0, 1\},$
- (iii) $j_{k(i)} \in \{0, 1, 2\}, n \neq 1,$
- (iv) $\delta(1) + \delta(2) + \ldots + \delta(f) + r$ is even,

 $(g=0, d_1+2d_2\equiv 1, or g=0, d_1+2d_2\equiv 2 \ do \ not \ appear).$

Proof. First, if $d_1+2d_2\equiv 0\pmod 3$. Then the classification of $p^{-1}((M')^*)\longrightarrow (M')^*$ is reduced to Lemma 7-1, i. e. $\varepsilon\in\{0,1,2\}$ and g determine $p^{-1}((M')^*)$.

Next, if $d_1+2d_2\equiv 1\pmod 3$, then we have to compute the equivalence classes of $\operatorname{Hom}(\pi_1(M')^*);D_3$ which satisfy the condition

$$\varphi([\alpha_1, \beta_1][\alpha_2, \beta_2]...[\alpha_g, \beta_g]) = y.$$

The similar argument to Lemma 7-1, concludes that the equivalence classes are $(1, 1, \ldots, 1, 1, x, y)$ and $(1, 1, \ldots, 1, 1, y, x, y)$.

Similarly, if $d_1+2d_2\equiv 2 \pmod{3}$, then

$$\varphi([\alpha_1, \beta_1][\alpha_2, \beta_2], \ldots, [\alpha_g, \beta_g]) = y^2,$$

and the classes are only $(1, 1, ..., 1, x, y^2)$ and $(1, 1, ..., 1, y, x, y^2)$.

Thus ε satisfying the condition (v) determines p^{-1} ($(M')^*$) up to equivalence. Since $M_{(D_2)}$ determine M if r, (d_1, d_2) , $(\delta(i); (j_{1(i)}, \ldots, j_{n(i)})$ are given, these invariants and g, ε classify M up to equivalence.

q. e. d.

References

- [1] Bredon, G. E., Introduction to Compact Transformation Groups, Academic Press, 1972.
- [2] Hudson, K. A., Classification of SO(3)-actions on five manifolds, (to appear).
- [3] Jänich, K., Differenzierbare G-mannigfaltigkeiten, Lecture Notes in Math., 59, Springer-Verlag, 1968.
- [4] Karrass, A., Magunus, W., and Solitar, D., Combinatorial Group Theory, Interscience Publishers.
- [5] Orlik, P., Seifert manifolds, Lecture Notes in Math., 291, Springer-Verlag.
- [6] Orlik, P., and Raymond, F., Action of SO(2) on 3-manifolds, Proc. Conf. Transformation Groups, New Orleans, 1967, 297-318, Springer-Verlag.
- [7] Richardson. JR. R. W., Action of the rotation group on the 5-Sphere, Ann. of Math., 74 (1961).
- [8] _____, Groups acting on the 4-Sphere, Illinois J. Math., 5 (1961), 474-485.
- [9] Steenrod, N.E., The topology of fibre bundles, Princeton University Press, 1951.
- [10] Raymond, F., A classification of the actions of the circle on 3-manifolds, Trans. Amer. Math. Soc., 131 (1968), 51-78.