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An IMT-Type Double Exponential Formula
for Numerical Integration
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Masatake MORI*

Abstract

A quadrature formula for evaluation of improper integrals over ( — 1 , 1 ) is presented,
which is obtained in such a way that the interval of integration (—1, 1) is transformed
into (—°°, °°) by x=tanh(A sinh 2Bu/(l — M2)) and that the trapezoidal rule with an
equal mesh size is subsequently applied to the transformed integral. Asymptotic error anal-
ysis is made by means of the method of contour integral and a comparison with the IMT-
rule and the double exponential formula is given along with some numerical examples.

§1. The IMT-ruIe and the Double Exponential Formula

In 1969 Iri, Moriguti and Takasawa [4] presented a formula for
numerical integration which is useful in particular in evaluating

integrals with end point singularities. Their idea is to apply a varia-
ble transform to the given integral such that the function values of

the transformed integrand vanish at the both end points of the
transformed integral together with all its derivatives. This formula
is known as the IMT-rule [2, p. 114] and is thought to be one of
the most efficient formulas for integrands with end point singulari-
ties [3].

On the other hand, Takahasi and Mori [9] proposed a family of
formulas using a different kind of variable transform based on the

asymptotic optimality of the trapezoidal rule for integrals over the

infinite interval ( — 00, oo) [8, pp. 74-76]. Consider an integral

(1-1) /=
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where f(x) is assumed to be analytic on (a, &). Then take a

monotone increasing analytic function <j>(u) which maps ( — oo, oo)

onto (a, b). Carrying out the variable transformation x = <j>(u), we

have

(1.2) 7=\" /(0 («))#' (u)du.
J-oo

Application of the trapezoidal rule with an equal mesh size h leads

to a formula

(1.3) Ih=h Z f($(nhM(nK).
n = — oo

By choosing appropriate functions for <$>(u) we obtain a variety of

formulas. Similar investigations have been made by Schwartz [6]

and Stenger [7], and by Sag and Szekeres [5] for multi- dimensional

integrals.

Since \J(^(nh^^f (nK) \ decays rapidly as | T Z | — >oo by suitable

choice of <l>(u), we truncate the infinite summation (1.3) into a

finite one, i. e. we replace (1.3) by

(1.4) I™=h 2 /(0(nA))0'(nfc), N=N++N--\.
n=-N

It is evident that, in error analysis, one should take into account

both the discretization error

(1.5) M*=I-Ik

and the truncation error

(1.6) *,=Ik-IP

produced by truncation of the infinite summation, and the total

error should be expressed in terms of the number N of the sampling

points actually used. Then it has been shown [10] that the mapping

x = <j)(u} is optimal with respect to the economy of N, i. e. the

highest precision is obtained with the least number of function

evaluations, when the transformed integrand behaves asymptotically

in a double exponential way, i. e.

(1.7)
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where C is some positive constant. A formula constructed in this

fashion is called a double exponential formula. In the case, for

example, where the given integral is

(1.8) I=\' f(x)dx,
J-l

the transformation

(1.9) .r =tanhf ^sinh u

gives a double exponential formula

cosh n h/i m\ T ^7 rA t T • i(1.10) /*=-«-& E /( tanhf— sinh - ?
2 "— ' V V2 /y cosh2(|sinh

Although the IMT-rule has an advantage that it has no truncation

error et mentioned above, it is rather difficult to compute the

sampling points since each of them is defined by an integral of

exponential function, while it is easy to compute the points and the

weights of the double exponential formula, e.g. those of (1.10).

Furthermore, it is shown that the asymptotic error expressions of

the IMT-rule and the double exponential formula in terms of the

number N of the sampling points actually used are given as

(1.11) M/

and

(1-12) M/z^|

respectively, so that for large N the latter is much better than the
former.

§ 2. An IMT-Type Double Exponential Formula

It is natural to ask if there exists a formula which has both merits

of the IMT-rule and of the double exponential formula, i. e. in which

the number of points is finite, the points and the weights are easy

to compute and the asymptotic error term behaves approximately as

(1. 12). The answer is affirmative, although there is a slight difference
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in the asymptotic error expressions.

Consider an integral

(2.1) 7=\ l f(x)dx,
J-i

where f(x) is analytic in a certain domain in the complex plane

including the line segment ( — 1,1) except possibly at #=±1. /(#)

may have algebraic or logarithmic singularities at x = ±l provided

that it is integrable. Then the transforming function

(2.2) * = 0(tO
U

where A and B are certain positive constants, maps ( — 1, 1) onto

itself and gives

(2.3) I= g(u)du,

where

(2.4) g

Dividing ( — 1,1) into N equal subintervals and applying the trape-

zoidal rule, we have a formula

(2.5) 7^=2 2/(#(-l+»A))^(-l+nA), A=|,
IV n=l IV

This formula is similar to the IMT-rule in the sense that the

function values of the transformed integrand together with all its

derivatives vanish at u = ±l and that the number of points is finite,

while it is similar to the double exponential formula in the sense

that the decay of |/(^(w))0'(w) | as M->±! is approximately double

exponential. Hence we call the formula (2. 5) obtained by (2. 2)

the IMT-type double exponential formula. It is evident that one

can compute the points and the weights easily using exponential

function.

§ 3. Intrinsic Error of the Formula

We shall give here an asymptotic error analysis of (2. 5) briefly
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by means of the contour integral method. Since /(z), z=x + iy is

assumed to be analytic in the neighborhood of ( — 1, 1) except possibly

at 2 = ± 1, g(w)9 w = u + iv of (2. 4) is also analytic in the neighborhood

of ( — 1,1) except at w = ± l , so that the discretization error

(3.1) 4IN=I-IN

can be expressed in terms of a contour integral as follows :

(3.2) J^= 1
ZJtl

where the path C is a curve shown in Fig. 1 and is taken in such a

way that there exists no singular point of g(w) inside itself. When

N is sufficiently large, the characteristic function @N(w) of the error

[8] is given approximately by

(3.3) 0N(w)^±2m exp(±inNw)9 Im w^Q

except in the close neighborhood of w=±l where the end point

effect cannot be neglected [1,8].

w-plane

Fig. 1

Formulas obtained by a nonlinear transform usually do not inte-

grate constants exactly, and the error produced when integrating a

constant function can be regarded to be intrinsic to each formula.

We generalize the idea of the intrinsic error of the present formula

by defining it as the discretization error AIN which is produced when

we integrate

(3.4)
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Now we shall derive an asymptotic representation for this intrinsic

error from (3. 2) by means of the saddle point method. For a general

integrand that has singularities in the finite 2-plane, the error other

than the intrinsic one can be estimated by making use of the level

map of the modulus of the characteristic function @N(z) as we shall

discuss in the next section.

If we substitute (2.2) and (3.4) into (2.4), we have

,3. 5, ,(., -

In order to apply the saddle point method for approximate evaluation

of the contour integral (3.2) we need to find saddle points of

g(w}®N(w). It is evident that the location of these saddle points is

symmetric with respect to the real and the imaginary axes, so that

we confine ourselves to the first quadrant (Re w^Q, Im ze>>0).

Now the saddle points of g(w) are closely related to the singular-

ities of g(w)9 i. e. the zeros of coshf Asinh- j. They are nothing

but the images of z = oo by (2.2), i. e. by

(3. 6) z = <b(w} =tanh(^Lsinh-
\

and z — co is mapped onto an infinite array of singularities which

accumulate to w = l. Note that w = l is the essential singular point

of g(w). Take A =B=—, for example. Then the singularities, in

particular those which we are most interested in, are given as

(3.7) A

in the first quadrant. The family of points {pk} corresponds to the

multi-valuedness of artanh in £=artanhf -^-sinh C)> i- e. to

(3.8) ^sinh C*=y(2* + l)i, £-0,1,...

The principal singular points p0 = i for k=0 is isolated, while the

others are quite close to each other as shown in Fig. 2. Let F be a

smooth curve ending at w = l on which all the singularities pQ, p19 p29 • • •
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lie, i. e.

(3a 9) F:
lC=-yi+arcosh(2* + l), 0^*<oo.

In view of the fact that \$N(u + iv) \ given by (3. 3) decreases very

rapidly as v increases while g(w) has an array of singularities {plsp2, • - •}

accumulating to w = l along F and decays very rapidly as w-»l

along the w-axis, it is intuitively clear that there exists a saddle point

5 located on the left side of the curve F in the neighborhood of pl

or p2.

>
1-T

w-plane

0 1
Fig. 2

In Appendix it is shown that, when N is large, the saddle point

5 is located approximately at

(3. 10) s = l +r exp ifr-O),

where

r = — i — 2 1"B'

(3.11)

28= 2+4
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and

and that the intrinsic error, together with the contribution from the
saddle points in the other three quadrants is expressed asymptotically
as

Take, for example, A=B=-?-, a=0, AT=40. Then we have r^O. 442

and 0-0.283, so that | AIN |«1. 7 X 10~9. The observed error, on the
other hand, is 1. 9xlO~ 9 . When N is large, o behaves approximately
as log N and r^B/log N, and hence the intrinsic error is given
asymptotically as

(3. 14) M/J

At first sight a larger value of B seems to favor the present
formula because then the absolute value of the exponent in (3. 13)

becomes larger. But it is not the case. Choose A—— for simplicity.

As B becomes large, the contribution from the pole

(3.15) /V=-

increases. When B=-^, we see that pQ = i and that the contribution

from p0 can be neglected, but when B = 7r} for example, we have

p0=(2 — ̂ 3)i and the value of |$#(/>„) I is quite large. Hence we
see that it is not profitable to make B too large and that a value

around -^- is suitable for B if we take into account the contribution

both from s and from p0.

§4. Level Map of the Characteristic Function \@M(z)\

If we transform the error integral (3. 2) by means of (3. 6), we
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have another form of error integral

(4.1) J^=-J

and a characteristic function expressed in terms of the variable z

(4. 2) 0*(*) =0*(0(w)) =#*(w).

The path C is the image of C mapped by (3.6). A level map

of \$N(z) | is very useful for practical error estimation in particular

when the given integrand has singularities in the finite z-plane other

than z = ±l [8]. We obtain a level curve corresponding to

(4.3) s=^\$N(z)\=^\<i>

by drawing an image of the line

(4.4) \lrnw \=

mapped by (3. 6). In Fig. 3 we show a level map of -^— \®N(z) \ in
"

Fig. 3 The level map of -~-\®N(Z) [for x^tanh(^-sinh~-( _ — ]_ jj, JV=32
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the case of A=B=^- and N=32.

Although the numbers specifying the curves are the values of

-Q— |0jr(*0 I for AT=32, we can also use this map for estimating errors
zjt

when N= 2", m = l, 2, 3, Take a level curve of e = 10~M, then

we have

(4.5)

and hence, when the mesh size is halved (N-*2N),we should specify

the level curve to be of e = lQ~2M. For example, the level curve of

ID'16 in Fig. 3 should be read as of 10"32 when N=64, and 10~8 when

2V=16, etc.

For comparison a level map of -~—\<l>h(z) \ for the proper double
2jt

exponential formula (1. 10) is shown in Fig. 4. Although the num-

bers specifying the curves are values of -~— \Qh(z) \ when h=0. 25,

this map can also be used for other values of h provided that

-4
Fig.4 The level map of y-|#»(z)| for ^=tanh(-^-sinh u\h=0.25.
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A = 1/2-, ™ = 1,2,.. . .

§ 5o Numerical Examples

In this section we shall give some numerical examples. Throughout

this section we take A=B=-^ for the IMT-type double exponential

formula. We also give results obtained using the double exponential

formula (1. 10).
The first integrand is

(Z. ]\ /Yr\ _ / 1 __ T 2 \a fy—_ 0 _JL_
W- -U J V*V — V1 ^ / 3 u — n ? u ? n?

id20

r 1 1 1Fig. 5 Absolute errors observed when \ (1 — x2)adx,a=--,Q, — -^ is computed.

the double exponential formula
the IMT-type double exponential formula

=-
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and the absolute errors which we obtained by subtracting the computed
value from the exact value of the integral are shown in Fig. 5. They

are intrinsic errors. Since the decay of g(u) =f(6(u))<fi'(u) as w— >±1

is generally very rapid, the points which lie very close to u = ±l are

not sampled, i. e. the summation in (2. 5) is truncated as

(5.2)

Hence the abscissas Ns of Figs. 5, 6 and 7 are the numbers of points

actually sampled in the computation. In fact, for any integrand, the

truncation must be done as in (5. 2) in actual computation in order

to avoid overflow in the evaluation of <f>( — l+nh} and $'( — l+nh).

Moreover, in order to obtain smooth plots in Figs. 5, 6 and 7, the

truncation points were adjusted carefully so that the highest precision

was obtained with a minimum number of sampling points for each

h = 2/N. The situation is the same in the case of the double

exponential formula (1. 10).

In Fig. 6 we show the absolute errors observed when

(5.3) /(*)=- l+x2

is integrated. The errors in this case can be estimated very easily

from Figs. 3 and 4 by means of the residue theorem applied to (4. 1),

i. e. by

(5.4) ^=-S*A(*,),y
where zj is the j-th pole of f ( z ) and Rs is the corresponding residue.

In the present example with N=32 this reduces to

(5.5) l

which agrees well with the result in Fig. 6.

Comparing Figs. 5 and 6, we see that the proper double exponen-

tial formula is better when the integrand has end point singularities,
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id"

r1 iFig. 6 Absolute errors observed when * —dx=l. 570796... is computed.

O • the double exponential formula
D the IMT-type double exponential formula
X Simpson's rule
A Gauss rule

while the IMT-type double exponential formula is better when the

integrand is regular at the end points. We understand this situation

intuitively because the sampling points of the former are distributed

more densely in the neighborhood of the end points than those of

the latter. In fact, one can take as many points as one wishes for

the proper double exponential formula, while the number of the

points of the IMT-type one is finite. Therefore, when one integrates
functions with end point singularities, one should use the proper

double exponential formula. On the other hand, it is known that the
Clenshaw-Curtis formula whose distribution of the sampling points is
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somewhat similar to our formulas in the sense that it is rather dense

in the neighborhood of the end points [2, p. 68], is efficient when the

integrand is regular on the interval of integration including the end

points, while it is quite inefficient when the integrand has end point

singularities. In conclusion, we can locate the IMT-type double

exponential formula between the proper double exponential formula

and the Clenshaw-Curtis formula.

Finally in Fig. 7 the absolute errors produced when

(5" 6)

10°

tr. fo Irr
m
yj
i-
3
-J

CD

id20

0 50 NS _^ 100

Fig. 7 Absolute errors observed when \ — ——-— * »,, xT7r-= 1- 9490. • • isJ-i (*+2)(l—xr'*(i-±-xr
computed.

O the double exponential formula
D the IMT-type double exponential formula
X the IMT-rule
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is integrated are shown. It is seen from Fig. 4 that the contribution

from the pole at x=— 2 to the error is dominated in the case of the

proper double exponential formula, while the main contribution in the

case of the IMT-type double exponential formula comes from the

intrinsic error.

We obtain various kinds of IMT-type double exponential formulas

not only for integrals over a finite interval but also for integrals over

(0, oo ) or ( — 00, oo) if we replace u in the proper double exponential

transforms [10] by Wu/(l-u2).

Appendix

In a region where the end point effect of $N(w) around w = l

can be neglected and, at the same lime, the term !/(!+«;) in g(w)

can be neglected compared with l/(l—w), we can approximate

) as

^A IN B \V B(A. 1)

where

(A. 2) $ (w) = inNw -

and

(A. 3) ^

Then the saddle point s which is a solution of — = — ®N(w^)g(w) —0 is
aw

approximated by the corresponding solution of

(A. 4)

We express the solution s of (A. 4) in terms of the polar coordinate

system as

(A. 5) 5 = l+

Then (A. 4) reduces to



728 MASATAKE MORI

/ B \ / 7? \
BZ exp(—cos0)cos( 20 + —sin0)=0,

\ r / \ r /
(A. 6)

5^ expf —cos 0 sinf 20 + —sin <9 ) =xNr\
^\ r / \ r /

From the first equation of (A. 6) we have

(A. 7) ^sin 0=|-20,

while from the second one we have

(A. 8) exp^cos 0\ = (exp (j)r2

where <7 is given by (3. 12). Assuming that 6 is small, we have from

(A. 8)

(A. 9) -|-~<7+21og r

;r

and from (A. 7)

(A. 10)

In order to solve (A. 9) or (7 — 5/r+21og r = Q for r, we first guess

r=B/ff and apply the Newton's method once. Then we have

/ A i i \
(A- ID ^

as an approximation of the radial part of the saddle point. On the

other hand, we have from (A. 2)

(A. 12) Re $(s) = -xNr sin 0-1 expf-y-cos ̂ cos^sin 0\

Then by (A. 8), (A. 7) and (A. 10), Re </>(s) reduces to

(A. 13) Re $(s) « -nNr sin 6—

sin 0\ + - c o s 0
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Since

,A ... ( B V B xBN .(A. 14) (_) „!>__=__,

from (A. 4), the contribution of the integral (3. 2) in the neighbor-

hood of the saddle point s is given as

(A. 15)

by the formula of the saddle point method. Substituting (A. 13)

and

(A. 16) #- (,) = -

(1-S)2

into (A. 15) and taking into account also the contribution from the

saddle points located in the other three quadrants, we have finally

(A. 17) \AIN\:

and (3. 13).
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