Extensions of the Inner Automorphism Group of a Factor

By

Marie CHODA*

1. Introduction

Let M be the crossed product $R(G, A, \alpha)$ of a von Neumann algebra A by a locally compact group G under a continuous action α . By Aut(M, A) we shall denote the group of all automorphisms of M, each of which is an extension of an automorphism of A. A systematic attempt to study Aut(M, A) for a finite factor M by the group measure space construction has been made in [11]. For the crossed product M of a von Neumann algebra A by a discrete countable group G of freely acting automorphisms of A, some results concerning the structure of an elment of Aut(M, A), which is inner on M, have been obtained in [2], [3], [8] and [9], and generalized in [1]. Some relations between elements in Aut(M, A) and two-cocycles on G have been studied for a general crossed product of a von Neumann algebra A by a discrete countable group, or a locally compact group G under an action ([6], [10], [12], [14]).

In this paper, we consider this generalized crossed product in the form $M = R(G, A, \alpha, v)$ of a factor A by a locally compact group G under an action α with a factor set $\{v(g, h); g, h \in G\}$ (cf. Definition in below). In §2, we shall study the structure of the normal subgroup K of Aut(M, A), each element of which acts on A as an inner automorphism. Under a certain condition, the group Kis isomorphic to the direct product of Int(A) and $\chi(G)$, where Int(A)is the group of natural extensions Ad $u(u \in A)$ and $\chi(G)$ is the character

^{*} Communicated by H. Araki, October 31, 1977. Department of Mathematics, Osaka Kyoiku University, Osaka 543, Japan.

group of G (Theorem 1 and Corollary 4). In §3, we shall restrict our interest to a discrete countable group G and study the structure of the normal subgroup Int(M, A) of Aut(M, A), each element of which is an inner automorphism of M. If the action under α of all elements in G except the identity is outer on A, then Int(M, A) is isomorphic to an extension group of Int(A) by G (Theorem 7).

2. Extensions of Inner Automorphisms

Let A be a von Neumann algebra acting on a separable Hilbert space H. By Aut(A) we shall denote the group of all automorphisms (*-preserving) of A and by Int(A) the group of all inner automorphisms of A. For a locally compact group G, we denote by K(H; G) the vector space of all continuous H-valued functions on G with compact support. Considering the inner product in K(H; G)defined by

$$(\xi, \eta) = \int_{g} (\xi(g), \eta(g)) dg, \quad \xi, \eta \in K(H; G),$$

K(H; G) is a pre Hilbert space, where dg is a fixed left Haar measure of G. The completion of K(H; G) with respect to this inner product is denoted by $L^2(H; G)$. A map α of G into Aut(A) is called an action of G on A, if for each fixed a in A, the map: $g \in G \rightarrow \alpha_s(a) \in A$ is σ -strongly *continuous and α satisfies the following condition (1);

(1)
$$i(g, h) = \alpha_{gh}^{-1} \alpha_g \alpha_h \in Int(A), \quad g, h \in G$$

For such a map α , a family $\{v(g, h); g, h \in G\}$ of unitaries in A is called a factor set associated with the action α , if the map: $(g, h) \in G$ $\times G \rightarrow v(g, h) \in A$ is σ -strongly *continuous and the following conditions (2) and (3) are satisfied;

(2) $i(g, h) = Adv(g, h), g, h \in G,$

(3)
$$v(g, hk)v(h, k) = v(gh, k)\alpha_k^{-1}(v(g, h)), g, h, k \in G,$$

where $\operatorname{Ad} u$ is an automorphism of A such that $\operatorname{Ad} u(a) = uau^*$ for a in A. In the sequel, we assume that $\alpha_1 = \iota$, where 1 is the identity of G and ι is the identity automorphism of A. On the Hilbert space $L^{2}(H; G)$, we shall denote by π_{α} the representation of A such that

(4)
$$(\pi_{\alpha}(a)\xi)(h) = \alpha_{h}^{-1}(a)\xi(h), \quad h \in G, \ \xi \in L^{2}(H;G).$$

By ρ , we shall denote a map of G into the unitary group on $L^2(H;G)$ such that

(5)
$$(\rho(g)\xi)(h) = v(g, g^{-1}h)\xi(g^{-1}h), \quad h \in G, \ \xi \in L^2(H;G).$$

By the direct computation, we have that

(6)
$$\rho(g)\rho(h) = \rho(gh)\pi_{a}(v(g, h)), \quad g, h \in G$$

and π_{α} and ρ satisfy the covariance relation;

(7)
$$\rho(g)\pi_{\alpha}(a)\rho(g)^{*} = \pi_{\alpha}(\alpha_{g}(a)), \quad g \in G, \ a \in A.$$

The von Neumann algebra on $L^{2}(H; G)$ generated by $\pi_{\alpha}(A)$ and $\rho(G)$ is called the *crossed product of* A by G with the factor set $\{v(g, h); g, h \in G\}$ respect to α and denoted by $R(G, A, \alpha, v)$. If the action α is a representation of G into Aut(A) and the factor set $\{v(g, h); g, h \in G\}$ associated with the action α is the trivial set, that is, v(g, h) is the identity for every g, h in G, then $R(G, A, \alpha, v)$ is the usual crossed product ([16]), which we shall denote by $R(G, A, \alpha)$.

At first, we shall be concerned with the group of all extensions to $R(G, A, \alpha, v)$ of the inner automorphism group of a factor. Fix a von Neumann algebra A equipped with an action α of a locally compact group G and a factor set $\{v(g, h); g, h \in G\}$ associated with the action α . Throughout this paper, we shall denote by M the crossed product $R(G, A, \alpha, v)$. By $\operatorname{Aut}(M, A)$, we shall denote the group of automorphisms of M sending $\pi_{\alpha}(A)$ onto itself:

Aut
$$(M, A) = \{\beta \in \operatorname{Aut}(M); \beta(\pi_{\alpha}(A)) = \pi_{\alpha}(A)\}.$$

It is clear that all inner automorphisms of A admit natural extensions $\operatorname{Ad} u(u \in u(A))$ to M and the automorphisms α_{G} admit natural liftings $\operatorname{Ad} \rho(g)(g \in G)$, where u(A) is the group of unitaries in A. By the same notation $\operatorname{Int}(A)$ and $\alpha(G)$ we shall denote the set of such automorphisms of M:

$$Int(A) = \{Adu \in Aut(M) ; u \in u(\pi_a(A))\}.$$

Let K be the group of all extensions to M of the inner automorphism group of A:

$$K = \{\beta \in \operatorname{Aut}(M, A); \beta \text{ is inner on } \pi_{\alpha}(A)\}.$$

Theorem 1. Let A be a factor equipped with an action α of a locally compact group G and a factor set $\{v(g, h); g, h \in G\}$ associated with the action α . If α is such that $\pi_{\alpha}(A)' \cap M$ is the scalar multiples of the identity, then K is isomorphic to the direct product of Int(A) and $\chi(G)$, where $\chi(G)$ is the group of all continuous characters of G.

Proof. Take a β in K. Let u be a unitary in $\pi_{\alpha}(A)$ such that $\beta(a) = uau^*$ for all a in $\pi_{\alpha}(A)$. Then, for each a in $\pi_{\alpha}(A)$ and g in G, we have that

$$u\rho(g)a\rho(g)^*u^* = \beta(\rho(g)a\rho(g)^*) = \beta(\rho(g))\beta(a)\beta(\rho(g))^*$$
$$= \beta(\rho(g))uau^*\beta(\rho(g))^*,$$

so that $\rho(g)^* u^* \beta(\rho(g)) u$ is contained in $\pi_a(A)' \cap M$. Since $\pi_a(A)' \cap M$ is the scalar multiples of the identity *I*, we have a χ in $\chi(G)$ such that

(8)
$$\beta(\rho(g)) = \chi(g) u \rho(g) u^*.$$

In fact, put $\chi(g)I = \rho(g)^* u^* \beta(\rho(g)) u$, then we have that

$$\begin{split} \chi(gh)I &= \rho(gh)^* u^* \beta(\rho(gh)) u = \rho(gh)^* u^* \beta(\rho(g) \rho(h) \pi_{\alpha}(v(g,h))) u \\ &= \rho(gh)^* u^* \beta(\rho(g)) \beta(\rho(h)) u \pi_{\alpha}(v(g, h)) \\ &= \chi(g) \rho(gh)^* \rho(g) u^* \beta(\rho(h)) u \pi_{\alpha}(v(g, h)) \\ &= \chi(g) \chi(h) I. \end{split}$$

For each character χ of G, put

$$(u(\chi)\xi)(g) = \overline{\chi(g)}\xi(g), \quad g \in G, \ \xi \in L^2(H; G),$$

where $\chi(g)$ is the complex conjugate of $\chi(g)$. Then $u(\chi)$ is a unitary satisfying

(9)
$$u(\chi)au(\chi)^*=a, \quad a \in \pi_{\alpha}(A),$$

and

(10)
$$u(\chi)(\rho(g))u(\chi)^* = \overline{\chi(g)}\rho(g), \quad g \in G.$$

Let $\delta(\chi)$ be an automorphism of M induced by $u(\chi)$, then $\delta(\chi)$ belongs to the group K.

For a β in K, let u be a unitary in $\pi_{\alpha}(A)$ such that $\beta(a) = uau^*$ for all a in $\pi_{\alpha}(A)$. Take a χ in $\chi(G)$ satisfying the property (8), then we have that

(11)
$$(\beta\delta(\chi))(a) = \beta(a) = \operatorname{Ad} u(a), \quad a \in \pi_{\alpha}(A)$$

and

(12)
$$(\beta\delta(\chi))(\rho(g)) = \overline{\chi(g)}\beta(\rho(g)) = \operatorname{Ad} u(\rho(g)), \quad g \in G_{\mathfrak{g}}$$

so that $\beta \cdot \delta(\chi)$ belongs to Int(A). Thus every β in K has a form $\beta = Adu \cdot \delta(\chi)$ for some u in $\pi_{\alpha}(A)$ and χ in $\chi(G)$. Such a decomposition is unique. In fact, if

$$\operatorname{Ad} u \cdot \delta(\chi) = \operatorname{Ad} w \cdot \delta(\chi'), \qquad u, \ w \in \pi_{\alpha}(A), \ \chi, \ \chi' \in \chi(G),$$

then we have that on $\pi_{\alpha}(A)$, $\operatorname{Ad} w^* u$ is the identity automorphism. Since A is a factor, it follows that w is a scalar multiple of u, which implies that $\operatorname{Ad} u = \operatorname{Ad} w$ on M and that $\delta(\chi) = \delta(\chi')$.

By the property (10), we have that, for χ and χ' in $\chi(G)$, $\delta(\chi) = \delta(\chi')$ if and only if $\chi = \chi'$.

Therefore, defining a map σ of the direct product of $\operatorname{Int}(A)$ and $\chi(G)$ onto K by $\sigma(\gamma, \chi) = \gamma \cdot \delta(\chi)$, $(\gamma \in \operatorname{Int}(A), \chi \in \chi(G))$, we have an isomorphism of K onto the direct product of $\operatorname{Int}(A)$ and $\chi(G)$.

Let K_0 be the group of all extensions to M of the identity automorphism of A:

$$K_0 = \{\beta \in \operatorname{Aut}(M, A); \beta \text{ is the identity on } \pi_{\alpha}(A)\}.$$

Corollary 2. Let A, α , G and $\{v(g, h); g, h \in G\}$ be as in Theorem 1. The group K_0 is isomorphic to $\chi(G)$.

Denote by [G, G] the commutator group of G, that is, [G, G]

is the closed group generated by $\{ghg^{-1}h^{-1}; g, h \in G\}$. A group G is called perfect if [G, G] coincides with G.

Corollary 3. Let A, G, α and $\{v(g, h); g, h \in G\}$ be as in Theorem 1. The following three statements are equivalent:

- (a) K coincides with Int(A);
- (b) K_0 is the trivial group $\{t\}$;
- (c) G is perfect.

Proof. By Theorem 1 and Corollary 2, it is clear that the statements (a) and (b) are equivalent and that they are equivalent to the condition that $\chi(G) = \{1\}$. On the other hand, $\chi(G)$ is the group Hom(G, T) of all continuous homomorphism of G into T, where T is the unit circle of the complex plane. Since T is an abelian group, it follows that for each χ in $\chi(G)$, [G, G] is contained in the kernel of χ . Hence $\chi(G)$ is isomorphic to Hom(G/[G, G], T). Thus the condition that $\chi(G) = \{1\}$ is equivalent to G = [G, G], which is statement (c).

Especially, assume that G is a discrete countable group. If α_s is an outer automorphism of A for all g in G except the unit, then by [5, Corollary 3], we have that $\pi_{\alpha}(A)' \cap M$ is the scalar multiples of the identity. Therefore, we have the following corollary:

Corollary 4. Let A be a factor equipped with an action α of a discrete countable group G and a factor set $\{v(g, h); g, h \in G\}$ associated with the action α . Assume that α_g is an outer automorphism of A for all g in G except the unit. Then K is isomorphic to the direct product of Int(A) and $\chi(G)$, so that K_0 is isomorphic to $\chi(G)$. The three statements in Corollary 3 are equivalent.

3. Extensions as Inner Automorphisms.

In this section, we shall be concerned with extensions of automorphisms of A to M which are inner on M.

736

Throughout this section, we shall treat a factor equipped with an action of a discrete countable group G and a factor set $\{v(g, h); g, h \in G\}$ associated with the action α . For $M = R(G, A, \alpha, v)$, we shall denote by Int(M, A) the group of inner automorphisms of M sending $\pi_{\alpha}(A)$ into iteself and by u(M, A) the group of unitaries in M normalizing $\pi_{\alpha}(A)$:

$$\operatorname{Int}(M, A) = \{\beta \in \operatorname{Int}(M) ; \beta(\pi_{\alpha}(A)) = \pi_{\alpha}(A)\},\$$

and

$$u(M, A) = \{u \in u(M) ; u\pi_{\alpha}(A)u^* = \pi_{\alpha}(A)\}.$$

We shall determine a relation among Int(M, A), Int(A) and G.

Theorem 5. Let A be a factor equipped with an action α of a discrete countable group G and a factor set $\{v(g, h); g, h \in G\}$ associated with the action α . Then each u in u(M, A) has a form; (13) $u = ww'\rho(g), \quad w \in u(\pi_{\alpha}(A)), w' \in u(\pi_{\alpha}(A)' \cap M), g \in G.$

By the same technique as [8; Corollary 1] or [9; Theorem], we can prove this theorem. For the sake of completeness, we shall give a proof of Theorem 5.

Proof. Take a u in u(M, A). Let

 $u = \sum_{g \in G} a(g) \rho(g)$ $a(g) \in \pi_a(A)$, (in the σ -strong topology)

be the Fourier expansion of u([5; Lemma 1]). By the property that $u\pi_{\alpha}(A)u^* = \pi_{\alpha}(A)$, we have that

$$\sum_{g \in G} a(g) \alpha_g(a) \rho(g) = \sum_{g \in G} uau^* a(g) \rho(g), \qquad a \in \pi_a(A),$$

so that

$$a(g)\alpha_{\mathfrak{g}}(a) = uau^*a(g), \quad a \in \pi_{\mathfrak{g}}(A), g \in G.$$

If $\alpha_s^{-1} \operatorname{Ad} u$ is an outer automorphism of $\pi_a(A)$, then we have that a(g) = 0. Since u is unitary, it follows that there exists a g in G such that $\alpha_s^{-1}\operatorname{Ad} u$ is inner on $\pi_a(A)$. Let w be a unitary in $\pi_a(A)$ such that on $\pi_a(A)$, $\alpha_s^{-1} \operatorname{Ad} u = \operatorname{Ad} w$. Put $w' = \rho(g)^* u w^*$, then w' belongs to $\pi_a(A)' \cap M$.

Corollary 6. Let A, G, α and $\{v(g, h); g, h \in G\}$ be as in Theorem 5. Each β in $Int(M, A) \cap Aut(A)$ has a form: (14) $\beta = \gamma \alpha_s, \quad \gamma \in Int(A), g \in G.$

Theorem 7. Let A, G, α and $\{v(g, h); g, h \in G\}$ be as in Theorem 5. Assume that α_g is an outer automorphism of A for all g in G except the identity. Then u(M, A) is isomorphic to an extension group of u(A) by G and Int(M, A) is isomorphic to an extension group of Int(A) by G. If M is the usual crossed product $R(G, A, \alpha)$, then these extensions are a semi-direct product.

Proof. If α_s is an outer automorphism of A for all g in G except the unit, then $\pi_s(A)' \cap M$ is the scalar multiples of the identity ([5; Corollary 3]). Hence, by Theorem 5, each u in u(M, A) has a form:

(15)
$$u = w \rho(g), \quad w \in u(\pi_{\alpha}(A)), g \in G.$$

If

(16)
$$w\rho(g) = w'\rho(h), \quad w, w' \in u(\pi_{\alpha}(A)), g, h \in G,$$

then we have that

(17)
$$w'^* w = \rho(h) \rho(g)^* = \rho(h) \rho(g^{-1}) \pi_a(v(g, g^{-1})^*)$$
$$= \rho(hg^{-1}) \pi_a(v(h, g^{-1})v(g, g^{-1})^*).$$

On the other hand, by [4; Theorem 6], there exists a faithful normal expectation e of M onto $\pi_a(A)$ such that $e(\rho(g)) = 0$ for all g in G except the unit. Therefore, if the relation (16) is satisfied for g and h in G such that $g \neq h$, then we have that $w'^*w=0$ by (17), which is a contradiction. Thus the decomposition of u in u(M, A) with the form (15) is unique. We shall define a map σ on the set $u(\pi_a(A)) \times G$ by $\sigma(w, g) = w\rho(g), w \in u(\pi_a(A)), g \in G$. Define a multiplication on $u(\pi_a(A)) \times G$ by

(18)
$$(w, g)(w', h) = (w\alpha_g(w')\alpha_{gh}(\pi_a(v(g, h))), gh),$$

then σ is an isomorphism of the extension group $E(G, u(\pi_{\alpha}(A)), \alpha, v)$ of $u(\pi_{\alpha}(A))$ by G under the multiplication (18) onto u(M, A). If *M* is the usual crossed product $R(G, A, \alpha)$, then we may always take v(g, h) = I for all g, h in G, so that mapping σ gives an isomorphism of a semi direct product of $u(\pi_{\alpha}(A))$ by G onto u(M, A).

Similarly, define a multiplication in the set $Int(A) \times G$ by

(19)
$$(\operatorname{Ad} u, g) (\operatorname{Ad} w, h) = (\operatorname{Ad} (u\alpha_{g}(w)\alpha_{gh}(\pi_{\alpha}(v(g, h))), gh)).$$

The group $\operatorname{Int}(A)$ is isomorphic to the factor group $u(\pi_{\alpha}(A))/TI$ of $u(\pi_{\alpha}(A))$ by the normal subgroup $\{\mu I; \mu \in T\}$. The extension group $E(G, \operatorname{Int}(A), \alpha, v)$ of $\operatorname{Int}(A)$ by G under the multiplication (19) is isomorphic to the factor group $E(G, u(\pi_{\alpha}(A)), \alpha, v)/TI \times \{1\}$ of $E(G, u(\pi_{\alpha}(A)), \alpha, v)$ by the normal subgroup $TI \times 1 = \{(\mu I, 1); \mu \in T\}$. On the other hand, $E(G, u(\pi_{\alpha}(A)), \alpha, v)/TI \times 1$ is isomorphic to the factor group u(M, A)/TI of u(M, A) by the normal subgroup TI, which is isomorphic to $\operatorname{Int}(M, A)$. Thus $\operatorname{Int}(M, A)$ is isomorphic to the extension group $E(G, \operatorname{Int}(A), \alpha, v)$ of $\operatorname{Int}(A)$ by G under the multiplication (19).

References

- [1] Behencke, H., Automorphisms of crossed product Tohoku, Math. J., 21 (1969), 580-600.
- [2] Choda, H. and Choda, M., On extensions of automorphisms of abelian von Neumann algebras, Proc. Japan Acad., 43 (1967), 295-299.
- [3] Choda, H., On freely acting automorphisms of operator algebras, Kodai Math. Sem. Report, 26 (1974), 1-21.
- [4] Choda, M., Some relations of II_1 -factors on free groups, Math. Japonicae, 22(1977) 383-394.
- [5] Choda, M., A characterization of crossed products of factors by discrete outer automorphism groups, To appear in J. Math. Soc. Japan, 31.
- [6] Feldman, J., and Moore, C. C., Ergodic equivalence relations, cohomology and von Neumann algebras, II, Preprint.
- [7] Hewitt, E. and Ross, K. A., Abstract Harmonic Analysis, I, Springer-Verlag.
- [8] Haga, Y. and Takeda, Z., Correspondence between subgroups and subalgebras in a cross product von Neumann algebra, *Tohoku Math. J.*, 19 (1967), 315-323.
- [9] Nakamura, M. and Takeda, Z., On inner automorphisms of certain finite factors, Proc. Japan Acad., 37 (1961), 31-32.
- [10] Nakamura, M. and Takeda, Z., On extensions of finite factors, I, Proc. Japan Acad., 35 (1959), 149-154.
- [11] Singer, I. M., Automorphisms of finite factors, Amer. J. Math., 17 (1955), 117-183.
- [12] Sutherland, C.E., Cohomology and extensions of von Neumann algebras, I, Preprint.
- [13] Takesaki, M., Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math., 131 (1974) 249-310.
- [14] Zeller-Meier, G., Produits croisés d'une C*-algèbra par un groupe d'automorphisms, J. Math. Pures et Appl., 47 (1968), 101-239.