
Publ. RIMS, Kyoto Univ.
14 (1978), 731-739

Extensions of the Inner Automorphism
Group of a Factor
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Marie CHODA*

1. Introduction

Let M be the crossed product R(G, A, a) of a von Neumann
algebra A by a locally compact group G under a continuous action
a. By Aut(M, A) we shall denote the group of all automorphisms
of M, each of which is an extension of an automorphism of A. A
systematic attempt to study Aut(M, A) for a finite factor M by the
group measure space construction has been made in [11]. For the
crossed product Mof a von Neumann algebra A by a discrete countable
group G of freely acting automorphisms of A, some results concerning
the structure of an elment of Aut(M, A), which is inner on M, have
been obtained in [2], [3], [8] and [9], and generalized in [1],
Some relations between elements in Aut(M, A) and two-cocycles on
G have been studied for a general crossed product of a von Neumann
algebra A by a discrete countable group, or a locally compact group
G under an action ([6], [10], [12], [14]).

In this paper, we consider this generalized crossed product in
the form M=R(G, A, a, v) of a factor A by a locally compact
group G under an action a with a factor set [v(g, h) ; g, h^G} (cf.
Definition in below). In §2, we shall study the structure of the
normal subgroup K of Aut(M, A), each element of which acts on
A as an inner automorphism. Under a certain condition, the group K
is isomorphic to the direct product of Int(A) and %(G), where Int(A)
is the group of natural extensions Adw(weA) and x(G) is the character
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group of G (Theorem 1 and Corollary 4) . In § 3, we shall restrict

our interest to a discrete countable group G and study the structure

of the normal subgroup Int(M, A) of Aut(M, A), each element of

which is an inner automorphism of M. If the action under a of all

elements in G except the identity is outer on A, then Int(M, A) is

isomorphic to an extension group of Int(A) by G (Theorem 7).

2. Extensions of Inner Automorphisms

Let A be a von Neumann algebra acting on a separable Hilbert

space H. By Aut(A) we shall denote the group of all automorphisms

(*-preserving) of A and by Int(A) the group of all inner auto-

morphisms of A. For a locally compact group G, we denote by

K(H i G) the vector space of all continuous ^/-valued functions on

G with compact support. Considering the inner product in K(H\ G)

defined by

K(H\ G) is a pre Hilbert space, where dg is a fixed left Haar

measure of G. The completion of K(H\ G) with respect to this

inner product is denoted by L2(H ; G). A map a of G into Aut(A)

is called an action of G on A, if for each fixed a in A, the map :

g€E:G— *ag(a) eA is tf-strongly * continuous and a satisfies the following

condition (1) ;

(1) i(g, h} = a-k
iagahtElnt(A), g,

For such a map a, a family [v(g, h) ; g, h^G] of unitaries in A is

called a factor set associated with the action a, if the map : (g, h)^G

X G-*v(g, A) e A is a -strongly * continuous and the following conditions

(2) and (3) are satisfied ;

(2) i(g,

(3) v(g,

where Adw is an automorphism of A such that Adu(a)=uau* for

a in A. In the sequel, we assume that a1=c, where 1 is the identity
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of G and c is the identity automorphism of A. On the Hilbert space

L2(H"; G), we shall denote by xa the representation of A such that

(4) (

By p, we shall denote a map of G into the unitary group on L2(H\ G)

such that

(5)

By the direct computation, we have that

(6) p(g}p(V=p(gh-)^(v(g,h», g,

and 7Tff and /? satisfiy the covariance relation ;

(7) p(g)*.(rtp(gr=*Ma»,

The von Neumann algebra on L2(H\ G) generated by ?ra(A) and

io(G) is called the crossed product of A by G with the factor set

{v(g, h) ; g, h^G] respect to a. and denoted by R(G, A, a, v). If

the action a is a representation of G into Aut(A) and the factor

set {v(g, A) ; g, h^G] associated with the action a is the trivial set,

that is, t>(g5 h) is the identity for every g, h in G3 then jR(G, A, a, t;)

is the usual crossed product ([16]), which we shall denote by

£(G, A, a).

At first, we shall be concerned with the group of all extensions

to R(G, A, a, v) of the inner automorphism group of a factor.

Fix a von Neumann algebra A equipped with an action a of a locally

compact group G and a factor set [v(g, h} ; g, h<=G] associated

with the action a. Throughout this paper, we shall denote by M the

crossed product -R(G, A, a, v). By Aut(M, A), we shall denote the

group of automorphisms of M sending ?ra(A) onto itself:

Aut(M, A) = {/3eAut(M); 0(^(4)) =*. (A)}.

It is clear that all inner automorphisms of A admit natural extensions

Adu(u^u(A)) to M and the automorphisms aG admit natural liftings

Adp(g) (g-eG), where u(A) is the group of unitaries in A. By the

same notation Int(A) and a(G) we shall denote the set of such

automorphisms of M :
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Let K be the group of all extensions to M of the inner auto-
morphism group of A :

K={p<=Aut(M, A) ; 0 is inner on na(A)}.

Theorem 1. Let A be a factor equipped with an action a of a
locally compact group G and a factor set [v(g, K} ; g, h^G] associated

with the action a. If a is such that 7ca(Ayr[M is the scalar multiples

of the identity, then K is isomorphic to the direct product of Int(A)

and %(G)5 where %(G) is the group of all continuous characters of

G.

Proof. Take a ft in K. Let u be a unitary in xa(A) such that

/3(a) =uau* for all a in na(A). Then, for each a in xa(A) and g in

G, we have that

so that p(g)*u*fi(p(g~))u is contained in jr. (A)' r\M. Since jr.C-A/

is the scalar multiples of the identity /, we have a 7 in %(G) such

that

(8)

In fact, put %(g*)I = p(g)*u*fi(p(g)}u, then we have that

(v(g, h))

«(v(g, h))

For each character % of G, put

H; G),

where %(#) is the complex conjugate of %fe). Then w(%) is a

unitary satisfying

(9) u(x)au(%)*=a9
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and

(10)

Let d(%) be an automorphism of M induced by #(%), then

belongs to the group K.

For a ft in X, let w be a unitary in ?ra(A) such that ft (a) =uau*

for all a in xa(A). Take a 7 in %(G) satisfying the property (8),

then we have that

(11) (/M(jf))(a)=j8(a)=Ad«(a),

and

(12)

so that /3"d(%) belongs to Int(A). Thus every ^ in K has a form

/3— Adw-<5(%) for some w in ?ra(A) and % in %(G). Such a decom-

position is unique. In fact, if

then we have that on 7ra(A)3 Adw*u is the identity automorphism.

Since A is a factor, it follows that w is a scalar multiple of u, which

implies that Adu=Adw on M and that <5(%) — ̂ (%')«

By the property (10), we have that, for % and / in %(G)5

3(X)=3(% /) if and onlY if % = X7-
Therefore, defining a map a of the direct product of Int(A) and

X(G) onto K by <rfo %) -r^(%)3 (relnt(A), %e 7 (G)), we have an

isomorphism of K onto the direct product of Int(-A) and %(G).

Let K0 be the group of all extensions to M of the identity

automorphism of A :

KQ= {/3eAut(M, A) ; /3 is the identity on ?ra(A)}.

Corollary 2. Le£ A, a, G arcJ {^fe A) ; g, h^G] be as in

Theorem 1. The group KQ is isomorphic to %(,G).

Denote by [G, G] the commutator group of G, that is, [G, G]
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is the closed group generated by [ghg~lh~l; g, h ^G}. A group G

is called perfect if [G, G] coincides with G.

Corollary 3. Let A, G, a and [v(g, h) ; g, h^G} be as in

Theorem 1. The following three statements are equivalent:

(a) K coincides with Int(A) ;

(b) K0 is the trivial group {c} ;

(c) G is perfect.

Proof. By Theorem 1 and Corollary 2, it is clear that the state-

ments (a) and (b) are equivalent and that they are equivalent

to the condition that %(G) = {1}. On the other hand, %(G) is

the group Hom(G, T) of all continuous homomorphism of G into

T, where T is the unit circle of the complex plane. Since T is an
abelian group, it follows that for each % in %(G), [G, G] is contained

in the kernel of %. Hence %(G) is isomorphic to Hom(G/[G, G], T).

Thus the condition that #(G) = {1} is equivalent to G = [G, G], which
is statement (c).

Especially, assume that G is a discrete countable group. If ag is

an outer automorphism of A for all g in G except the unit, then

by [5, Corollary 3], we have that 7ra(A)'nM is the scalar multiples

of the identity. Therefore, we have the following corollary :

Corollary 4. Let A be a factor equipped with an action a of a

discrete countable group G and a factor set {v(g, h) ; g, h^G}

associated with the action a. Assume that ag is an outer automorphism

of A for all g in G except the unit. Then K is isomorphic to the

direct product of Int(A) and %(G), so that K0 is isomorphic to %(G).

The three statements in Corollary 3 are equivalent.

3. Extensions as Inner Automorphisms.

In this section, we shall be concerned with extensions of auto-

morphisms of A to M which are inner on M.
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Throughout this section, we shall treat a factor equipped with an

action of a discrete countable group G and a factor set [v(g, h) ;

g, h^G} associated with the action a. For M=R(G, A, a, i>), we

shall denote by Int(M, A) the group of inner automorphisms of M

sending ?ra(A) into iteself and by u(M, A) the group of unitaries in
M normalizing 7ra(A) :

Int(M, A) = {/3EElnt(M) ; 0(

and

We shall determine a relation among Int(M, A), Int(A) and G.

Theorem 5. Let A be a factor equipped with an action a of a

discrete countable group G and a factor set (v(g, h) ; g, h^G}

associated with the action a. Then each u in u (M, A) has a form ;

(13) u = ww'p(g), weEw(7r a(A)) , z£/EEw(7ra(A)'nM), g^G.

By the same technique as [8 ; Corollary 1] or [9 ; Theorem],
we can prove this theorem. For the sake of completeness, we shall

give a proof of Theorem 5.

Proof. Take a u in u(M, A). Let

u = 'EgGGa(g)p(g) a(g)<=7ia(A), (in the a -strong topology)

be the Fourier expansion of w([5; Lemma 1]). By the property
that UKa(A)u* =7ra(A)3 we have that

^g*Ga(g}ag(a}p(g) =Zg*Guau*a(g) p(g), a£E7ra(A),

so that

If a'1 Adu is an outer automorphism of 7rf l(A), then we have that
a(g) —0. Since u is unitary, it follows that there exists a g in G such

that a"1 Adu is inner on zra(A). Let w be a unitary in ?ra(A) such that

on ?ra(A)? a;1 Ad^^Adw. Put w' = p(g)*uw*, then w' belongs to
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Corollary 6. Let A, G, a and {v(g, h) ; g, h^G] be as in

Theorem 5. Each /3 in Int(M, A) nAut(A) has a form:

(14) p=T«g, relnt(A), seG.

Theorem 7. Let A, G, a and [v(g, h) ; g, h&G} be as in Theorem

5. Assume that ag is an outer automorphism of A for all g in G

except the identity. Then u(M, A) is isomorphic to an extension

group of u (A) by G and Int(M, A) is isomorphic to an extension

group of Int(A) by G. // M is the usual crossed product R(G, A, a),

then these extensions are a semi-direct product.

Proof. If ag is an outer automorphism of A for all g in G except

the unit, then na(AYr\M is the scalar multiples of the identity

([5; Corollary 3]). Hence, by Theorem 5, each u in u(M, A) has

a form :

(15) u=wp(g),

If

(16) wp(g)=w'p(h), w, w/ettOr.CA)), g,

then we have that
l)*.(r>(g, r1)*)

On the other hand, by [4 ; Theorem 6], there exists a faithful normal

expectation e of M onto na(A) such that e(p(g))=Q for all g in G

except the unit. Therefore, if the relation (16) is satisfied for g

and h in G such that g^h} then we have that w'*w = Q by (17),

which is a contradiction. Thus the decomposition of u in u(M, A)

with the form (15) is unique. We shall define a map o on the set

u(xa(A))xG by a(w, g)=wp(g), w^u(na(A)), g^G, Define a

multiplication on u (?ra (A) ) x G by

(18) (w, g) (wf, h} = (was(w'}ash(n,(v(g, h))), gh),

then a is an isomorphism of the extension group E(G9 u (jza (A) ) , ct, v)

of u(na(A)) by G under the multiplication (18) onto u(M, A). If
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M is the usual crossed product R(G, A, a), then we may always

take v(g, h) =1 for all g, h in G5 so that mapping a gives an iso-
morphism of a semi direct product of w(rca(A)) by G onto u(M,A).

Similarly, define a multiplication in the set Int(A) X G by

(19) (Adw, g) (Ad^? h)=(Ad(uag(w)agh(xa(v(g, A ) ) ) ,

The group Int(A) is isomorphic to the factor group u(ica(A))/TI of
u(ita(A)} by the normal subgroup {//I; //eT}. The extension group
E(G? Int(A), a, 77) of Int(A) by G under the multiplication (19)
is isomorphic to the factor group E(G, u(7ra(A)), a, v)/TIx {1} of
£(G, w(7r a(A)), a, 77) by the normal subgroup TYx 1 = {(jwl, 1) ; fi^T} .
On the other hand, £(G, w(?ra(A)), a, u) /T7xl is isomorphic to the
factor group w(M, A)/TI of w(M3 A) by the normal subgroup 77,
which is isomorphic to Int(M, A). Thus Int(M, A) is isomorphic to
the extension group E(G9 Int(A), a, v) of Int(A) by G under the
multiplication (19).
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