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and Infinite Particle Branching

Brownian Motions
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Daniel W. STROOCK*(1)

Introduction

The origins of this paper lie in a question posed to us by Frank

Spitzer who, in fact, ended up solving most of his problem on his

own. His problem is the following. Consider an infinite system of

independent (^-dimensional branching Brownian motions which at

their branching times disappear or double with equal probabilities,

and assume that the initial distribution of the system is a Poisson

point process. Denote by 5?,(-O, *^0 and r^<%Rd, the number of

particles in F at time t. The first question is to determine if ^ t (
e )

has a non-trivial limiting distribution (as measure-valued random

variables) when £->oo. The answer is yes if d>3 and no if d — \ or

2 (cf. [2], [4], [6] and for a related situation [3]). The question

in which Spitzer was interested is what happens if (when d>3) one

appropriately rescales the limiting random variable 5700. To be precise,

given tf^>0, define for bounded

where \F denotes the Lebesgue measure of F ; and think of 5?(a) as
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taking values among tempered distributions. Using some very pretty
moment calculations, Spitzer found that as a-^oo the distribution of
57°° tends to the Gaussian measure on tempered distributions whose
characteristic function is

for test functions <p. Independently, Dawson [2] recently discovered
the same result.

The idea in this paper is to study what happens if one reverses
the limit procedures just described (a similar but somewhat different
limit problem was studied by Martm-Lof in [7], In fact a minor
modification of our procedure can be used to prove his result). That
is, consider

and think of rfu} as a continuous process with values in tempered
distributions. What we have shown is that, when d>3, the distribution
of rfa} as a-»oo tends to the distribution of the Ornstein-Uhlenbeck
process N. determined by the relation:

where W is the standard Siegel process on tempered distributions.
When d = 2 the situation reduces to one which has been studied
extensively by Dawson (see [2], [13], and [14] and the remark
following Theorem (4. 11) below.)

We next classify all the invariant measures for the process N. and
show that they are all closely related to the Gaussian measure found
by Spitzer et. al. Finally, we have isolated a dense Fa subspace of
the tempered distributions on which N, is concentrated and for which
N. is ergodic.

Throughout this paper we will use £P (Rd) to denote the Schwartz
space of raz/-vaiued C°°-function which together with all their deriv-
atives are rapidly decreasing. The space £f' (Rd) is then the space
of rea/-valued tempered distributions. At only one point (cf. Lemma
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(5. 17)) will we need complex valued tempered distributions, and we

will then use the notation £fc(R
d}. Also, ! ' ,- | | denotes L2-norm

throughout.

It should be obvious that we are deeply in debt to Frank Spitzer,

and we take this opportunity to thank him.

§ 1. Existence and Uniqueness of Generalized

O.-U. Processes

Throughout this section we will be using the following notation

and assumptions. Let A: £f (Rd) -> S? (Rd) be a bounded linear

operator which admits a non-positive definite self-adjoint extention

A on L2(Rd)a We further assume that there is a strongly continuous

semi-group [Tt ;£>0} of bounded linear operators on £f (Rd) into

itself such that

(1. 1) JV(7» -N(9) =

for aU N^^'(Rd) and (p^ff>(Rd). It is easy to check that Tt<p=etAy

a. e. for (p^£f(Rd) (here etA denotes the semi-group of self -adjoint

contractions on L2(Rd) generated by A) and that ATt<p = TtA<p. We

will often use the notation

(1.2) ?>, = ?>.

(1. 3) Lemma : Ift-*Xt is a continuous map from [0, oo) into <?' (Rd}

and if cp^^(Rd), then (5, t)^>X,((pt) is continuous on ([0, oo))2.

Proof: Let (s03 O be given. Since [Xs \ 5e[03 50 + 1]} is compact

in £f'(Rd) and t^xpt is strongly continuous,

lim

Thus

lim |X f(^-X (Pf ) |<Iim|X f(Pf )-X.(ft0) 1=0.
••>-»(.„. V ° ° ^o

Q. E. D.
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Let 0 = C([0, oo), ̂ ' (#'))• For t>0, set Jtt=o(N,(<p) : 0<s<t

and pe^(U')) andputuf=*(Uur , ) . Finally, let 5 : L2(Rd)^L2(Rd)
feo

be a bounded linear operator. The next result is central to our

analysis.

(1. 4) Theorem : I/e£ P be a probability measure on (Q, ̂ ) such

that

(1. 5)

w a martingale relative to (Q, J[t9 P) for all f<=C~(Rd), <p(=<y(Rd) and

stopping times T such that sup sup \NtArM(A(p, of) |<C°°« Then, for all

and

is a martingale relative to (Q, Jt „ P). Moreover, for all
d), and

(1.6)

~5 (a. s., P),

where g(t, y) = — \T7re~y /2t- ^n particular, the condition (1.5) on
(27ft)

P plus a knowledge ofP\^0 uniquely determines P on (Q, ̂ ). Finally,

P satisfies this condition if and only if the distribution of Nt — TtN0

also satisfies it.

Proof: Given (ps=ff>(Rd)9 define

rn-(inf{;>0: \Nt(A<p} \>n}) /\n.

Then rn f oo as n-*oo and

is a P-martingale for each n. From this fact it is easy to see that
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is a P-martingale for each n. But now we can let n-^oo and there-

by conclude that

N,(9) -

is a P-martingale. Using Theorem 2. 1 in [12], we next see that for

any <pt=ff>(Rd) and s>0:

is a P-martingale. It is our plan to prove from this that for all

and <p^&>(Rd) :

i

is a P-martingale. To this end, let 0<^<if2<T be given. Then, by

the continuity of (5, t)-*Ns((pt), it is easy to show that

-=lim II -X"*"1^

where o >
B l t=^ i+— -(^ 2 ~"^i)« Moreover, since that convergence is

72

bounded, it takes place in Ll(P}. Thus, if H^Jlt, then

But if l<m<n — 1, then

0 T~"n,k

where it is understood that

n j
0

It follows that
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which is to say that (Yl(t), J( „ P) is a martingale. It particular, if

0<s<t, then

and clearly (1. 5) is an easy consequence of this.

The assertion about the uniqueness of P is obtained by standard

Markovian reasoning from (1.6). Finally, the statement about trans-

lating Nt by TtN0 is an easy consequence of standard manipulations

with martingales. Q. E. D.

(1. 7) Corollary : Let P be as in Theorem 1. 4 and assume in

addition that P(JV0=0) =1. Then for each T>0 and

(1.8) JE*[sup
0<t<T

In particular,

(i. 9)
M a P-martingale for all /eCJ(-R')

Proof : The second part follows from the first part lapplied to

A(p. To prove (1.8), note that by Theorem 1.4,

f(Nt (p) - f AT, (^p) du) - IKr /"(ATM (p) - (m N, (Ay) ds)du
\ Jo / Z, Jo \ Jo /

is a P-martingale for all f^C~(Rd). From this fact it is not hard to

verify that the same is true for f^C2(R) which, together with their

first two derivatives, grow no faster than C^ 2 * for some finite Cx

and C2. Thus

and
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(AT, (?) - \' NU
\ Jo

are P-martingales. By Doob's inequality, it follows that

Ep\ sup (Nt(<p)-{* Nu (A<p) du
Lo^^rX Jo /

Thus

By (1.6)

Hence

Q. E. D.

From now on we will say that PM on (Q, Jt} is the Ornstein-
Uhlenbeck process with characteristics A and B starting from M^£f' (Rd)

if PM(JV0=M)=1 and PM satisfies the conditions of Theorem 1.4. By
that theorem, we know that there is for each M at most one such

PM and PM is related to P0 by the fact that JV,-T,Mhas distribution
under PM equal to P0. Thus, if P0 exists, then PM exists for each
M<^<y'(Rd) and the family {PM:M^^'(Rd)} forms a strong Markov
Feller process. (The assertion about the Markov property is an easy

consequence of uniqueness or can be derived directly from (1.6).)

We now want to show that P0 always exists.
For each multi-index a = (aly...9 ad)9 a,->0 for l<j<d, let
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ha(x}=h, (X).../z,, (xd) where hk denotes the k'k Hermite function

(cf. A. 7). Given n>0, define #„: U(Rd~)->&(£*) by

(1. 10) nf9= Z (9, h,}ha
!«!£»

It is weU-known that IIn<p-^(p as n-*oo 'm L2(Rd) for all <p^L2(Rd)

and that IIn(p->y in ^(Rd) for all <pE^<9*(Rd) (cf. A. 15).
In order to carry out our construction we proceed as follows.

For n>0, set Dn = card{a: \a\<n} and define

(1.11) a..,=
I r l

and

(1-12) b

for |a|, | /31 <n. Next let

(1. 13) L-" c\ L-i *~a,

It is easily shown that there exists on C([03 oo)5 R
Dn) exactly one

probability measure QM such that QM(y(0) =0) =1, EQU)[sup \y(f) |2]

<oo for all T>05 and f(y (t)) -{' LMf(y (5))ds is a QM-martingale
Jo

for each f&C2
b(R

Dn). (One can use, for example, Ito's stochastic
differential equations as described in H. P. Mckean's [8].) Next
define t-^Nt^^'(Rd} by

(1. 14) Nt(9} = 2] (P, A.)y.(0, *>0 and
ui^»

Given a <p^ff>(Rd) and f<^C~(R1}, define

Note that

-
ol.lfl^n

(V, ha)(

and
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u|S J*.., (P, A.) (9, A,) = ^ E<n )rgM (Bh., Ar) (Bh,, Ar) (9, A.) (p, A,)

= E (Bnn(p,hry=\\nnBnn(p\\
2.

Thus

1 ~
2

+ (I] Jf, A.) ( g_6..^ (0)/' (#. (P)) •

But

L (P,A.) S6. lAy,(0= 2(2

From these calculations, we see that if Pw on (£?, Jf) is the distri-

bution of N. under Qw, then PW(N0=0)=1 and for all

and p

" (Ns (<p) ) ̂  — f (N,
Z Jo

is a P('l)-martingale5 where

An=nnAHn and Bn=nnBIIn.

The next step is to show that {PM : n>Q] is weakly precompact.

To this end, note that because A is bounded from ^ (Rd) into itself,

there is an ra0>0 such that

(1.15)

for some C<\oo(cf. A. 18). For this m0, set n0 = m0-\-d + l and define

| |1- | | | on #"(Rd} by

(1.16)

It is easy to check that

(1.17) Xmt

is a complete separable Hilbert space under |||-||| and that the dual

of ffln can be identified in a natural way with the completion of

<? (Rd) under H H I l " 0 . Certainly it is enough for us to show that
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P(n) is concentrated on C([0, oo), jf ) (which is an F,-subset of

C((0, oo), y" (£<))) for all n>Q and that {Pw : n>0} is weakly

precompact subset of probability measures on C([0, oo), j fB) . Since

under P(n) each N.(<p) is continuous and 2V. (AJ =0 a. s. for |a|>n, it

is clear that P(n) is concentrated on C([0, oo), j f B ) . Furthermore,

by (1.6)

for n>0, 0<^<^2, and <p^^(Rd). Thus, for any m>0, T>0, and

£>0:

lim sup P(w)( sup max |W( (Aa) -AT, (AJ | >e) =0.
5^0 n O^t^t^T lal^m 2 !

'2- fl<3

Since PU) (NQ = 0) = 1 for all n>0, it only remains to check that for

T>0 and £>0 :

(1. 18) lim sup P(M)( sup |j|/7iWf|||>e) =0
m-»oo n 0<.t<,T

where H^N is defined so that

But by (1.8) plus (1.15) :

and so

< L (2 a|+d)""»£'w[sup I^.CAJ
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This proves that

lim sup EpW[sup|l!/7;^V,j|n=0
m-»oo n Q<,t<T

which certainly implies (1. 18).

The final step in the construction is to show that if P is the limit

of a convergent subsequence {Pu/)} of {PU) : n>0} , then P(JVo = 0) =1,

Ep[sup \Nt(<p) |]<oo for all T>0 and <pSE^(Rd}, and
0<,t<ZT

(1. 19) f(Nt(9))-\N,(A<p}f'(Nu(<p)}du-^^\f(Nu(<p)}du
Jo Z Jo

is a P-martingale for each f<=C™(Rd) and <p<E.y(Rd). But clearly

P(Aro=0)>TIrn P<»'>(N0 = 0)=1 and, by (1.8),

(1. 20) E"\_ sup |JV,(?>) ]2]<supEPll[ sup |tf,(fO 2]<oo.

Thus it only remains to prove that the expression in (1. 19) is a

P-martingale. Since the analogous expression, with An replacing A

and Bn replacing B, is a P^-martingale, it is easily seen that all we

must show is that

(1. 21) Ep[_Nt(A<p}F-] =HmEp(n''[Nt(An/riF]

for all £>0, <pE^^(Rd), and continnous P:C([0, oo), ̂ )->[- 1, 1].

But, by (1.6),

and clearly | |AM^— A^||->0 as n->oo. Thus proving (1.21) reduces

to showing that

(1. 22) Ep[Nt(A<p}F~] -lim Ep(n'\Nt(A^F~\.

However Nt(A(p)F is continuous, and therefore (1. 20) together with

the assumption that P(n/)->P implies (1.22). One final comment is

in order. We have just seen that {PU) : n>0] is precompact and

that every limit point satisfies P(N0=Q) =1 as well as the hypothesis of

Theorem (1.4). Thus by the uniqueness assertion in that theorem,

we conclude that P(n)-*P. We summarize our findings in the next
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theorem.

(1. 23) Theorem : For each A and B there is a unique probability

measure P on (£?, ^) such that P(NQ=0) =1 and P satisfies the
hypothesis of Theorem (1.4). Moreover, if An=IJnAIIn, Bn=nnBHn)

and P(n^ is the measure associated with An and Bn, then PM tends
weakly to P.

(1.24) Remark-. With very little alteration, the proof just given
to get existence can be used to show that if An and Bn are general
operators satisfying our basic hypothesis (not necessarily given by
An=nnAnn and En=UnEUn} and if there exists ra0>0 and C<oo

such that

then the measure PM associated with An and Bn tends to the P going
with A and B if An-»A and Bn-*B strongly in L2(Rd).

§ 2. Branching Brownian Motion Having Finitely

Many Particles

In this section we recast the theory of branching Brownian motion
in the setting of Levy processes. To be precise, let (Rd)(n} be defined
for n>\ to be the space of equivalence classes of 72-triples of

elements x^Rd mod permutations (i. e. (x1, . . . , ̂ ">=<y, . . . ,y> in
(jRd) (n) if and only if there is a permutation a such that yk=xa(k\

\<k<d). Use n^ i (Rd)n-*(Rd)M to be the map taking (x\.. . ,xn)

into it's equivalence class in (Rd)M and topologize (Rd)M so that /7(n)

is open and continuous. Given a function/: (Rd)M->Rl, we say that
/eC*((#')w)(C*((l?')^^

or C{((^)"))- Let E={$} U U (Rd)(n\ where 6 is an abstract point

and topologize E so that {0} as well as (Rd)M for each n>\ is both
open and closed. Finally, let & (E) stand for the set of FiE-^R1

such that F restricted to (Rd)M is in C0°°((^)(n)) for all n>\ and
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F = 0 on (Rd)M for all sufficiently large w's.

We are now nearly ready to describe the branching Brownian

motion with which we will be concerned. However, before doing so,

we need a little more notation. First, if F^C(E) has the property

that its restriction fn to (Rd)M is in C 2 ( ( R d ) M ) for all n>l , we

define JF(0) =0 and

where Ak stands for the Laplacian with respect to xk (notice that AF

is indeed well-defined on JE). Next, define for n>\ and \<k<n

<*\ . . . , *•>*€= (£<)(»+1) and <x\. . . ,*->4e (I?-)-1 (EE{^} ifn = l ) t o
be, respectively, the element of E obtained by repeating or deleting xk.

With this convention we now define K on C(E) so that KF(<f>) =0

and for all n>l :

The branching Brownian motion which we want is the Levy process

on E having "diffusion part" determined by 1/2 A and "jump part"

governed by K. That is, <f> is absorbing and for n>\ the process

restricted to (Rd)M consists of n indepedent J-dimensional Brownian

motions, each of which waits a unit exponential holding time and then

with equal probabilities splits into two independent copies of itself

(moving the process to (^)(B+1)) or disappears (moving the process

to (fl')0"1')-
For our purposes it is best to characterize the above process in

terms of a martingale problem. Let i2£=D([0, oo)3 E) be the space

of right continuous functions [0, oo) into E having left limits, and

endow @E with the usual Skorohod topology (this is possible since it

is clear that E admits a metrization in which it becomes a Polish

space). We will denote a generic element of E by rj and for w^QE

we will use r)(t, o>) to denote the position of a) at time £>0. For

£>0, set Jit = G(T](S) : Q<s<t) and observe that a ( \ J J [ t } coincides
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with Borel field Jt over QE
m Given 5?e£, we say that the probability

measure P on (QE, ^) solves the martingale problem for

(2.1) J2? = l/2 A+K

starting from 37 if P(^(0) =37) =1 and

is a P-martingale for all F^ 3 (£) (i. e. ( F(i) (*) ) - J^F()? (5) ) <fc, uTf, P)
Jo

is a martingale). The following facts are easily deduced from the

techniques of [11] :

a) For each j] there is exactly one solution P, to the martingale

problem for & starting from T] and the family [P^irj^E] is Feller

continuous and strong Markov.

6) The process P, behaves in the manner described in the

preceding paragraph.

Alternatively, one can use the results of [5] to arrive at a) and b).

For future reference, we will spend the rest of this section deriv-

ing some facts and estimates satisfied by the P/s. In the first place,

it is not hard to see that if S([0, oo) x£) stands for the class of

continuous F: [0, oo) xE-*C such that: <EC6([0, oo) xE) ; the
ot

restriction of F(t, •) to (U')w, t>0 and n>l, is in C!((-R')W) ; and

F restricted to [0, oo) x (^)Cn) is identically zero for all sufficiently
large n's; then

is a P,-martingale for all Fe^([0, oo) x£). Next, define niE-

{0, 1,. . . , w,. . .} so that

0 if 3 = 0
(2.2) *(?)= .,

m if

We then have the following estimate.

(2. 3) Lemma : // T>0 and ^<log( 1 +~ ),
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Proo/: Set w(0 =1+ 2 -, 0<£<T, and, for m>l, define
4 £(£ 1)

It is then clear that

°^* ro — <y p 0<9<T-^ xrt., USJS^ ,

so long as n(rj)<m. Hence

Fm(T-t/\T.,

is a P,-martingale, where

In particular,

j5;p,[^n(,(T))j <E\Fm(T-rm, ^(

i 2(g' — 1)

for all T>0 and /i>0 satisfying ^<logf 1 + ™ -. From this we see

/ 0 \
that if ^</^<logf 1+^-J, then

and therefore {^w('(0) : 0<^<T} are uniformly P,-integrable. But this

means that we can let m t °° in the equality

and thereby arrive at (2.4) (since EP'|Vn(T)]<oo for some /!>0

certainly implies that rm | T (a. s., P,) as m->oo). Q. E. D.

One easy and important consequence of (2. 3) is the next theorem.
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(2.5) Theorem: Let FeC([0, oo) xE) have the properties that

-T=—eC([0, oo) x£), F restricted to (Rd)(n} is in C2
b((R

d')M) for each
ot

n>l , and there is an M>0 and a C<oo such that

3F ,,
, \D>F(t,ri\}<C n(rjr

for all t>0 and 5?e£, where D2F(t,<f>)=0 and for jye (U*)00, n>\

D2F denotes a generic second order spatial derivative of FoII(n\ Then

/(^^(O) "~\ \-^— + ̂ F)(sJ7](s)}ds is a P -martingale for all
Jo\ os J

(2. 6) Corollary : For all T>0 and ^<log( 1 +^

E '[ sup gin('(t-

/or a//

Proof: Take -F(^) =n(^) in the preceding theorem and concluded

that n(57(0) is a P,-martingale. Thus, if ^<logfl+|r\ then e^(fAT)

is a non-negative P,-submartingale. But this means (by Doob's

inequality) that

p
EP'[sup

O^^T

where J</<log(l +|r. Q; E. D.

At this juncture we want to make a slight change in our point

of view. Namely, it is clear that E is homeomorphic to the set of

purely atomic integer-valued finite measures on Rd given the topology

of weak* convergence. That is, given r]EiE define for

(0 if v = <
(2.7) ? (? )=<

As a consequence of (2.6), we see that for all <p(=B(Rd), T>0
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(2.8) EP*[ sup eVf)]<oo,
Q^t^T

where ^t((o) is the measure associated with ^(t, <x>) by the relation in

(2.7). We are now going to make exact computations of E '[^

and £

(2.9) Lemma: Set

(2. 10) ?t(x) = l
 /2 g-'*|2/2*, £>0 and

and for <p(=B(Rd) define

(2.11) <pt=r**<P-

(2. 12)

Moreover, if

(2. 13) £

Jw particular, if )7-

(2. 14) ^'[^(^l-W^^+ Cr,-.' (ft)1] (*)<&•

Proo/: We will assume that <p^C2
b(R

d}. Given T>05 set

and

Since

it follows from (2.5) that F(t/\T, ij(t/\T)) and G(t/\T, y(t/\T))

are P,-martingales. Thus
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and

, ?(T))]=G(0, 7)=»f(T, 7).
Q. E. D.

For reasons which will not become apparent until the next section,

we need one more estimate.

(2.15) Lemma: Set

(2. 16) W(x) =(l+\x I"1)-1, xeR1.

Then for each T>0 there exists a constant A(T)<oo such that

(2. 17) £P<3:>[sup

Proof: For each T^>0 it is elementary to see that there exist
constants Q(T), C2(T), and C3(T)<oo such that

C(L ^<^<C2(T)f f, 0<t<T,

and

Since, by (2.5), ^Ar(^r-*Ar) is a P<x> -martingale, we have by Doob's
inequality and (2. 14) :

P<*1 sup
o^^r

<4C3 (T) F2 (j;) +4(C, (T)

At the same time, rft(W) <C2(T}rft(WT_t}. Combining this with the

preceding, we arrive at (2.17). Q. E. D.
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§ 3. Branching Brownian Motion Having Infinitely

Many Particles

In this section we again discuss processes of the sort introduced

in section (2), only now we allow there to be infinitely many particles

initially. The approach that we adopt mimicks, for our setting, the

construction by Durrett [3].

For each x^Rd let QX=QE and ^x=^. Given a probability

space (£?, ̂ , P) on which there is an .Revalued point process ^

satisfying

(3.1) £

for bounded F^^Rd (\F\ denotes the Lebesgue measure of /"*), let

P=Px UP, on (Q, Jt}, where Q=Qx U Qx and J=Jx UJtf.

If w^Q, we let QJX, x^Rd, denote the xth coordinate of ft) and define

7r..(0) =37«(^«)-

(3-2) Lemma: Let W be the function in (2.16). Then for all

T>0:

(3.3) £*[£ sup %
*e? o^t^r

In particular, if

(3.4) ft =

is a P-null set B^^ such that for all aJ&B the function

t-*fjt(<d) is right continuous and has left limits as a mapping from

[0, oo) into &"(Rd).

Proof: Suppose that (3. 3) has been proved. Then there is a

P-null set B<=^1 such that

converges uniformly on each bounded time interval for each

But if <p^Se(Rd), then \<p\<C,W for some C,<°°5 and therefore for
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each &&B 2 fy.xfa ^) converges uniformly and absolutely on each
x<=$

bounded time interval. Since yt,x((p, #) is right continuous and has

left limits for all x(=Rd, <p^^(Rd), and a><=Q, we conclude that for

all co^B t-*r}t(a>) has the desired properties.

To prove (3.3), observe that by (2. 17) :

Thus, by (3. 1) :

Q.E.D.

Define *Mt for t>0 to be the a-algebra of subsets of & generated

by 9, (0>) for 0<s<£ and <p£=£f(Rd). The next theorem plays a

crucial role in our future results.

(3.5) Theorem: Given f^C2
b(R

l) and

(3. 6)

w an (Q, J£t, P) -martingale.

Proof: What we must show is that if 0<t1<^t2 then

where

_ f ' / /(?. (y) + v (y) ) +/(g. (y) - p (y) )
Jo H 2
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and B is a set of the form

withn>l ;()<$!<. . .<5 W <^;^ , . . . ,^neE^(#«) ; and

Given ra>l, set

and define X (OT)(°) in terms of /, <p, and ^U). the same way as X(»)

is given in terms of /, 9, and 9. Then

where

and

Since (2. 5) applies to F, we know that

-0

for each d), and therefore we have now shown that

(XW(0, Jn P)

is a martingale. But, using (3. 3), it is easy to check that

as w-*oo in LX(P).

a- E. D.

We conclude this section with some preparations for the next two

sections. From now on we will be making the following assumption

about j] (in addition to (3. 1)) :
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(3.7)

for some l<C<oo. Notice that both (3.1) and (3.7) are satisfied

by a Poisson random field. Also, observe that, in view of (3. 1),

(3.7) is an estimate on the variance of

(3. 8) Lemma : For all t>Q and

(3.9)

and

(3. 10)

Proof: To see (3.9), note that by (3. 1) and (2. 12) :

Next, by (2. 12) and (2. 14) :

SO
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<(C+OIMI 2 . Q,E.D.

We next introduce a "central limit" type scaling of the process f).

Given #>0, we set

and define

(3. 12)

Observe that

(3.13)

and

That is:

(3. 14)

We next want to see what must be subtracted from /($"' (?0 ) to get
a P-martingale. First observe that by (3.5) for /

- r' ^ ( r /(^(^(

is an (fl, ^2^5 -P) martingale. Since

and
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we conclude that

,y-w+2)/2 rt

(?>W))— ̂  — \ ?,z, Jo a s

is an (<03 Ji 2t, P) martingale. Finally, because \A(jj(x}dx=Q for

all <p^y(Rd), we now have that for all f<=C2
b(R

d) :

(3. 15)

.M (y) + PW ( • ) ) +/(^(g) (y) - yu)

is an (A ^_2j, P) martingale for all f^CKR1*) and co

Our final task in this section is to estimate Ep[ sup (^"'(p))2]- To
o^jsr

this end first observe that (3. 14) together with (3. 15) shows that

is an (P, ^2 ? P) martingale. Thus, by Doob's inequality

£tr f ... r, .r /
\ sup(7
L 0<^T\

/2

and therefore :
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sup W(9-)W<Ef\ sup

f /f* \2~|

sup(\ 7«(l/2^)&)
Lo£t<£r\Jo / J

2~|l/2

1/2

We have therefore proved that

(3. 16) £?

Once one has (3. 16), it is easy to extend (3. 15) to the function

f ( x ) =xz and thereby conclude that

is an (Q9 JV 2> -P) martingale. If we now set

(3. 17) /2« (p) =7« (p)

then

Combining the martingale involving (^(a)(^))2 with the fact that
and therefore (cf. Lemma 2. 1 in [12])

are (Q9 Jt 2 , P) martingales, we arrive at the conclusion that

(3. 18) (/Z

is an (fi, ̂ 2 ? P) martingale. Equivalently,
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(3.19) (/z^p))2-«-w+a)/a\V^
Jo Jo

-a-*t\\\l79\\\*-t\\<p\\2

is an (Q9 ̂ av ^) martingale.

§4. Tightness of the Processes ^(a)

Let (O9 j?9 P), {^/t:t>Q}, and rf°\ be as in section (3) and
denote by P(tt) the distribution on D([0, oo), &' (Rd)} of ^(a). under
P (cf. Lemma (3. 2)). What we are going to do in this section is show
that {P(tt) : a>l} is a tight (i.e. pre-compact) family, and then we
will show that for d>3 the limit lim P(a) exists and is the Ornstein-

«-»oo

Uhlenbeck process with characteristics 1/2^ and I. Although it is in
conflict with the notation in section (1), we will use in this section Q
to denote D([0, °o)3 &" (Rd)) and then define Nt, £>0; Jl ; and
{Jtt : £>0} correspondly as in section (1) (only now for our new
choice of £). Finally, define the Hilbert space Jfd+3 with norm |||-|||
as in (1. 16) and (1. 17) (i. e. take nQ=d + 3 in those equations). The
next lemma shows that the P(fl° are concentrated on D([0, 00), Jt?d+3).

(4. 1) Lemma : // T>0 and a> 1, then

(4.2) ^U)[sup(Ar t(/i,))
o^t^r

In particular, for all T>0 :

(4. 3)

(4. 4) lim sup £pG° [ sup 1 1 \H±Nt\ 1 12] - 0
n-»oo «^i O^t^r

where Un is defined as in section (1).

Proof-. Clearly all that we have to do is prove (4.2). But (4.2)
is an immediate consequence of (3. 16) plus the inequality (cf. A. 9)

Q.E.D.
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In view of (4.4) we will have shown that {P(a) : a>l} is tight

and that any limit, as a->oo, lives on C([0, oo), jj?d+3) once we show

that for all n>l , £>0, and T>0 there is an a0 and a <5>0 for which:

(4.5) s u p P w ( s u p \\\nnNt-

Since IInN. is finite-dimensional, this reduces to studying each coor-

dinate N.(hp), \fi\<n, separately. Precisely what we need is proved

in the next lemma.

(4.6) Lemma: For all fl, s>0 and T>0 there is an aQ>l and a

d^>0 such that

(A 7\ SUP P^( sup \Nt(hp) — Ns(hp) i >s)<£.
a^a° °^-1<^r

Proof: Given any right-continuous function /: [0, T]-*^1 having

left limits define

°^W<3
"a-a^Vi50

( sup |/(0 -/(O) |) V( sup |/(T) -/(T-0 |)

and

^(«)= sup

Under the assumption that sup |/(^ + ) ~~/(^~) ^r? it is well-known
O^f^T

(cf. Parthasarathy [10] Lemma 6. 4) that wf(d) <2o)f(5) +r- Thus in

order to prove (4.7), all that we have to do is choose a0>l so that

JB)(#) |<e/2 whenever a>a0 and then show that

(4. 8) lim sup PM (ti.N(hft} (5) >s/4) =0.

The reason that this suffices is because one can easily show (cf. [11])

from (3. 15) that

(<p)-Nt_(& |<sup|f0wGr) | for all
X

To prove (4. 8) we proceed as follows. By (3. 16) we can find
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for each p^>0 an A<^oo such that

sup P«(sup (\Nt
«£i o<Zt£T

Thus if

then P(a)(V<T)O for all a>\. Now define

Clearly, since p was arbitrary, (4. 8) will follow once we show that

(4. 9) lim sup Pw (0Z (<5) >s/4) -0.
5-»0 a^l

Using Censov's criterion (cf. Theorem 15.6 in [!])> we will have

(4. 9) if we can prove that

sup £?w[(X(t3) -X(tJY(X(t2) -Xa)2]<52(^3-O2

«ai

for some B<^oo and all 0<^<^2<^<T. But we saw in section (3)

that (X(0, ̂ ,, -Pw) is a martingale; and, by (3. 19), it is clear that

is a supermartingale when 5 =.4 + 1+111^^1 If. Thus

Q. E. D.

We have now proved the next theorem (the details here, given

(4. 4) and (4. 5), are essentially the same as those given in preparation

for Theorem 1. 23)

(4.10) Theorem: The family {P(a) : a>\] is precompact on

£>([0, oo)? JfJ+3). Moreover, if aM-»oo and P=limP("") then P is
n-»oo

concentrated on C([0, oo)3 jfJ+3) and therefore on C([0, oo)5 y'^))-
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We are now ready to prove the main result of this section.

(4.11) Theorem: If d>3 then P(a)-*P as a-»oo where P is the

Ornstein-Uhlenbeck process with characteristics l/2d and I starting

from 0.

Proof: Because of Theorem (4. 10) and Theorem (1.4), it suffices

to show that if an->oo and P(%)-*Q, then Q(]V0=iO) =1, and for all

5 T>0
0£t£T

and

is a Q-martingale whenever
We first note that Q(JV 0=0)=1 and that

sup^CjN.Cp) |]<°°3 T>0 and
0£t£T

Indeed, each of these facts is an immediate consequence of (3. 14).
Now let (p^^(Rd), /eQ0^1) and 0<^<^2 be given and suppose

that 0 : £)([0, oo)5 Jfd+3)-^[05 1] is a continuous J?t -measurable function.
i

We must show that

(4. 12)

Let

Then, by (3. 15) :
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i

where

Since sup £pU)[ sup (N,(^))2]<oo for all T>0 and ^e^(JZ'), it
a£l OilfiT

is clear from the preceding that all we need do is show that (in the

notation of section (3)) :

(4. 13)

But, since /eCJ°(-Rrf), there is an A<oo such that :

where A=A s u i ^ ( ^ ) |. Thus

at a rate which is independent of 5. Thus we need only show that

as a-^oo3 uniformly on bounded ^-intervals. But to do this reduces to

proving

uniformly on bounded s-intervals. To this end, note that
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and

Hence

and so, by (3. 14) :

11/2

We have therefore proved (4.13). Q. E. D.

The reader should remark that it is only in the derivation of
(4. 13) that we have used the assumption that d>3. When d = 2
one can proceed as follows. Denote by PU), a>l, the distribution
under P of f) 2 (^(a)). Observe that P(a) is concentrated on paths

as

with values in the space of "tempered measures" (i. e. non-negative
elements of ^'(P2)). One can then use the preceding to show that
[Pa: «>1) is precompact and that any limit P as a-^-oo has the
properties that

P(iV0=Lebesgue measure) =1

and

(4. 14)

is a P-martingale for all <pe^(P2) and /eQ0^1)- G. Papanicolau
has pointed out to us that if [PN : N a tempered measure) is a family
of measures satisfying PN(NQ=N) =1 and (4.14) is a P^ martingale
for all ^e^(P2) and /eCr(P2) then it is the Markov family of
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measures studied by Dawson in [2], [13], and [14], To see this let

g(t, x) solve the equation -^-=-^-^g — ̂ -g2 with g(Q, x)=<p(x)>Q.

Then setting f ( x ) =e~x in (4. 14) one sees that for all tempered
measures N, exp[— Nt (g(T— t, - ))] is a P^ martingale for 0<t<T.
(A careful proof of this uses critically the positivity of (p and hence
of g(t, .) and Nt(g(T-t, • ))). Thus

This proves uniqueness of the solution to the martingale problem in
(4. 14) and identifies the process.

Dawson [14] has shown that in 2 dimensions

for all £>0 and all (p with compact support. This corresponds to the
situation when d = 2 mentioned in the first paragraph of the introduc-
tion.

If d = l, the Pws are again tight. Moreover Ep * [^(^)] =— ^W

and so any limit of the ^(a)'s must be concentrated at 0. Thus
P(a^d0 as a f oo.

§ 5. Ergodic Theorems for Generalized Ornstein-
Uhlenbeck Processses

In this section we consider O-U processes with characteristics A
and /. Throughout this section we assume that the semi-group, Tt

generated by A satisfies, in addition to the assumptions in Section 1,

the following :

(5. 1) p->\ \\Tt<p\\2dt is a continuous function on
Jo

Note that if there is a distribution R^&"(Rd) and

(5.2)

then (5.1) is satisfied. If A=~d and d>3 then (5.2) holds with

R(x) = constant/ | x\d~\ If A = -A2 and d>5 then (5.2) holds with
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= constant/ \x \d~\ If A=A- \x \2 then

and so (5.1) holds (but not (5.2) since A—\x\2 is not translation
invariant.)

We rely heavily on the following fact :

(5.3) Levy Continuity Theorem (see [9]) : // {CB(0 \n>\} are
characteristic functions of measures {/4;n>l} on <$?' (Rd) and for
each <p^^(Rd) Cn(^)— >C(^) where C(°) is continuous, then C is the
characteristic function of a measure /j. and fjtn converges weakly to fj..

(5.4) Lemma: Let {PM : M^^(Rd)} be the O-U process with
characteristics A and I. Then there is a probability measure /j, on
^' (Rd) with characteristic function

and (JL satisfies

(5.5) \Pu(Nt^r)[t(dM)=n(.r) for all measurable rc#"(

(i.e., ft is stationary for [PM : Mey '(#*)})•

Proof: From Theorem (1. 4) (with Af = 0) we see that for all

is the characteristic function of a measure. Hence the existence of
fjt with characteristic function C follows from (5. 1) and (5.3). To
check (5. 5) it suffices to show that

(5.6)

But this follows immediately from Theorem (1.4). Q. E. D.

Now if f J t ^ ^ ' ( R d ) we define /*M to be ft shifted by M. Then
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HM has characteristic function

Our next theorem shows that all stationary measures of the O-U

process with characteristics A and / must be a special kind of average

of the /*M
5s.

(5. 7) Theorem : Let v be a stationary measure for the O-U process

with characteristics A and I. Then

(5.8) i>

where m satisfies

(5. 9) m(N^r) = m(TtN<=r)

for all £>0 and measurable rc^'(^).

Conversely any such measure m defines a stationary measure v by

(5. 8).

Proof: Suppose v is stationary. Then for all

(5. 10)

Hence \e** fV i>(d{jt), which is the characteristic function of a measure

»„ is equal to e*^''{f''(e™Vi>(dN). As t goes to infinity

(5. 11) \e^\ (dN) ^e*S~l[T*9{

which is continuous by (5. 1) ; and hence by (5. 3) is the characteristic

function of a measure m. Thus

(dM}
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and therefore v = \fjtMm (dM) . Also

f iN(T «>) / 7 A T x T f *
\ e 'ra ( rfJV) = lim \ e
J 5->00 J

- lim

which proves (5. 9) .

Conversely suppose (5.9) holds and define v by (5.8). Then

=̂ f g«(T|f)-i-/^V"a''-*/X^'

and so v is stationary. Q. E. D.

The next few lemmas are concerned with measures satisfying

(5.9).

(5.12) Lemma: If for all <p^^(Rd), Tt(<p)-*Q in & (Rd) as t^oo

then the only measure satisfying (5. 9) is the one concentrated on

zero. In this case, for all starting points M, PM°N~l converges weakly

to fji as t goes to infinity.

Proof: The first part of this lemma follows from (5. 3) and the

second part follows from (5.3) and Theorem (4. 1). Q. E. D.

(5.13) Example: If A=A— \x\2 then the hypotheses of Lemma

(5.12) are satisfied (see (A. 10) and (A. 15)).

(5. 14) Lemma : If m satisfies (5. 9) and is such that

m({N: there is an n such that AnN=Q}) =1

then m({N: TtN=N for all *})=!.

Proof: Using induction on (1. 1) one can easily show that for
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all N^y'(Rd} and all

Thus if N is such that AnN=0 for some n, then N(Tt(p) -N(y>) as

a function of t is a polynomial with zero constant term. In particular

if N(Tt<p)±N(<p) for some t then \N(Tt<p) -N(<p) \ goes to infinity as

t goes to infinity. From this observation it is an easy exercise to show

that since N(Tt<p) and N(<p) have the same law under m for all t,

N(Tt<p) must equal N(<p) with m probability one. Since Tt(p is con-

tinuous in t and (p separately and [0, oo) and y (Rd) are separable,

it follows that

m(N=TtN for all
Q. E. D.

We want to show that the hypotheses of Lemma (5. 14) are

satisfied by A =-~-4 but first we need the following result about tem-

pered distributions.

(5. 15) Lemma : Let ffE=C°°(Rd) and assume that a and its derivatives

grow no faster than polynomials. Let N be a tempered distribution

with support S and assume that Sd{x:a(x} = 0}. Then there is an

integer m such that amN = 0.

Proof: Suppose first that S is compact. Then AT is a distribution

with compact support and hence there is a number C>0 and an

integer n such that for all (p

(5.16) \N(<p)\<C
lal^n y

We take m=n + l and show that amN=Q.

Let p$E:C~(Rd) with support in [x : \x \ <!}, ^>0 and (p(x)dx = l.

Define ps (x) =e~dp(—} and ^s (x) =p.*I 2e, where 5e = [x : dist (x, S) <e] .
\ e / s

Note that <p<(x) =1 if x^S* and thus, since supp amNdS, </>ea
mN=amN.

Next note that \Da<f>.(y) | <e~ | a l\ \Dtp(x) \dx and that sup \o*(x)\ is
J xGS36

bounded by a constant times ey. Thus if 0<^s<l and \a\<^m, then
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sup \Daam(x} | is bounded by a constant times sm~ | a l. Since <J)t(x) =0
*eS3e

if x^S3e it follows easily that sup | Da$s(j
m (y ) is bounded by a

y _

constant times eTO~ Ia |. Thus there is a constant C such that for all

0<e<l

<p) I <C 2 sup |

that is, amN=Q.

If *S is not compact let ?n^C~ be such that

1 if
r 3; =

10 if

Then ynN has compact support and satisfies the hypotheses of the

lemma. Thus by the above there is an m, which depends only on

the order of N, such that j-na
mN = 0. (Here we rely on the assump-

tion that N is tempered.) In particular the support of 0mN does not

intersect [x : \x\<n}. Since this is true for all n, amN=0.

Q. E. D.

We want to apply the above lemma to the following situation.

Suppose 0^C°°(Rd), 0<Q} a(x)=a(—x),> and a and its derivatives

grow no faster than polynomials. If <p^,9y
c(R

d) let 0 denote its
/\

Fourier transform. Define an operator A on £fc(R
d) by A<p=a<p,

Since 0"<0 A is non-positive definite; and, since a(x)=a(—x), A<p

is real valued if <p is real valued. A generates a self -adjoint semi-
/\

group, T0 given by Tt<p=eta(p.

If AT is a tempered distribution N (<p) = N (iff) .

(5. 17) Lemma : Let A and Tt be as above and let m be a probability

measure on <?' ' (Rd) satisfying (5.9). Then

m(T,N=N for all 0=1-

Proof: By Lemma (5. 14) it suffices to show that

(5. 18) m([N: there is an m such that AmN = 0} ) = 1 .



778 RICHARD A. HOLLEY AND DANIEL W. STROOCK

But 'A"*N=amN, and thus by Lemma (5. 15), (5. 18) will follow if

we can show that

(5. 19) m({N: supp #czeros of <?}) =1.

To see (5. 19) let <p<=3*c(R
d) be such that support £?n [x : o(x} =$} = <f>.

Then as t goes to infinity eat<p converges to 0 in £fc(R
d). Now since

for all £>0 the laws under m of N and TtN are the same, it follows

that the laws of N and TtN are the same. Hence N(<p) and

T\N((p)=N(eta(p} have the same law for all t>0. But #(*"p)-*0

as t-*oo for all N^9"(Rd). (5. 14) foUows easily from this.

Q. E. D.

(5.20) Example: If A=-L/ and a(x) = -y \x |2, then A and a

are related as in Lemma (5. 17). Thus it follows from Lemmas (5. 17)

and (5. 7) that all stationary measures for the O-U process with

characteristics -^-J and I are convex combinations of {{JLH ' H a har-

monic function in £?'(Rd)}. It is also easy to see that the //H are

the extreme points of the set of stationary measures.
If v is a stationary measure given by (5. 8) with m satisfying

(5. 9), then whether or not u makes the process time reversible seems

to be closely related to whether or not m satisfies

(5.21) m({N: TtN=N})=l

for all £>0. One direction of this relation is made clear by the

following lemma.

(5. 22) Lemma : // v is given by (5. 8) and m satisfies (5. 21) then

v makes the process time reversible^ i. e.5 for all 0<s<^t and <p,

(5. 23)

Proof: By making use of Theorem (1.4) it is a straightforward

computation to check that
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r w(f.+v-*JoM|^||2rf«-*/^^

and

r oo TOO

Since Tf is self -adjoint \ (^tt, ^_s+u)<^ = \ (^_^M3 $u)du. If m

satisfies (5. 21) then M(&)°=M (0) and M (p,°) =M(p) for all £ and

s(a. 5. ra). and we have the desired result. Q. E. D.

(5. 24) Remark : From the proof of Lemma (5. 22) we see that

the condition on m that is equivalent to \> being time reversible is

that for all 0<s<£ and all p, <p^ff>(Rd), the law of (Af(p,), M(&))
under m is the same as the law of (M(<^)5 M(^,)) under m. Clearly

(5. 21) implies this, but we are unable to decide if the opposite
implication holds.

The final goal of this section is to find a Banach space (X, ||-||z)
contained (topologically) in &*' (Rd) such that: i) X is a dense Fff in

£f'(Rd) ; ii) for each MeX the O.-U. process PM with characteristics

-^A and I starting from M is concentrated on C([0, oo), X) ; and

iii) for each MeX and all $eC6(X), £ M [ ^ ( A T J ] - > ^ 0 as

where //0 is the probability measure on &' (Rd) with characteristic

function

[—^
exp

Observe that if we prove iii), then automatically /^0(X) =1. Moreover,

we will have shown that X is a state space for the (Feller continuous)

Markov family [PM : MeX} and that [PM : MeX] is ergodic with

fjtQ as its unique stationary measure. (The Feller continuity is irrele-

vant for these considerations but will follow from our estimates below

plus the uniqueness which we have already proved in Theorem
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(1. 4)).

In view of our characterization of the stationary measures for

{PM: M<=y'(jRJ)h it is clear that what has to be done is find a
Banach subspace X of &" (Rd) such that 7-,*Af-»0 strongly as £-»oo

for all M^X. At the same time, this subspace must be chosen so
that P0 is concentrated on C([0, oo)3 X) and in addition that t->yt*M

is strongly continuous into X for all M^X (this latter condition is
needed in order to assure that PM is also concentrated on C([0, oo),
X)). Finally, X must have the property that the one-dimensional
time marginals P^N^1 of P0 are tight. Considering all the conditions
that must be met, it is somewhat surprising that X is so easy to describe.

Given p>0 and w>0, define ||-||(,.»> on ff" (Rd) by

and let X(p,m, = {N^ff"(R*} : ||N||(,..)<oo}. (See (A. 19) for the

definition cf | l | - | | l ( » )« ) It is easy to see that each X(,I|B) is a dense Fa

in &"(Rd) (density comes from the inclusion C%(Rd)<^X^tm^ and

that (X(pifB), | | - | l ( p , m ) ) is a Banach space.

(5.25) Lemma: For all M^.X(pifn^ t-*ft*N is strongly continuous

on [0, oo ) into X(/,iJB) and ll^*2V|| ( />fW)->0 as t-*oo. Moreover, for all

Q<^p<^a and w>0, bounded closed subsets of X(0im^ are compact as

subsets of X(,iBI+1).

Proof: Since rt+t=rt*T*9 we need only check that t-*7t*N is
continuous from [0, 1) into X(/,tm). To this end, note that by (A. 23) :

and

supll lr^r
Q£t£l

Thus, in order to prove that

]im\\rt*N-r,*N\\<,.*=U
t-*s
f£Q

for WeX(/,§m) and 5e[0, 1), it suffices to show that
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When s>0, this is obvious from (A. 24). When 5=0, we argue as

follows. Since N^X(pim^ it is clear that Yi/n*N-*N in X(,I|B) as n->oo
00

because 2 ra'lll7'i/.*-N— Nl'lw^00- Thus if s>0 and we choose n, so

that 2C./».<« and |||ri/.*Mr--N'lllw<e for n>n,, then, by (A. 24),

for all te.\ - — . — where n>n, :
L n+l nj

\\\r,*N-N\\\M<\\\rt*N-ri,a*N\\\w+e

The proof that \\Tt*N\\(pim)-*Q as t-*oo for N^X(pim^ is an easy

consequence of the definition of X(ptm^ together with (A. 23). Finally,

the assertion that bounded subsets of X(ffim^ are compact subsets of

X(p>OT+1) is proved in exactly the same way as one shows that a bound-

ed self-adjoint operator is compact if it has a completely discrete

spectrum having zero as its only accumulation point. Q. E. D.

(5.26) Lemma: For all 0<io<l/2 and m>rf + 6 the measure PQ is

concentrated on C([0. oo), X (p>m)) and

(5.27)
<SO

Proof: First note that for 0<s<£

and that if X is a normal random variable with mean zero, then

E[X6]=15(E[X2])3. Thus

(5.28) E

Applying (5. 28) to f,-i*<p we have
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Also

and for n>2 :

Using (A. 11) and (A. 12) together with the above, we get:

(5. 29) E\% n'||!r.-,*JV1-r.-l«N.|||«w]^A..,.,(«-*)'
n = l

and

(5. 30) £P°[Z n'HIr.-.-N.IH?.,] <Bm,d,f
n = l

for some Amidi? and Bm.rf,p so long as m^>d + 6 and

Next, from (5. 28) we have

Also, taking s=Q;

2 \ 3

du

2

du

Since, by (A. 14), \\Aha\\*<dC(Q, 2)(2|«|+^)2, we can use the pre-

ceding to find Cm:dif and Dm:dif such that

(5.31) ^e[f:

and

(5. 32) £P°[i;
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for all 0<><l/2 and m>d+6.

Combining (5.29) and (5.30), we arrive at

(5. 33) E

which implies that P0(C([0. oo), X (,, t JB)))=l (since we already know

that t-+Nt(<p) is continuous for all ^e^(^))- Finally, (5.30) and

(5.31) yield:

Q. E. D.

We now have all the necessary facts to complete our program. Let

and 0<10<l/2 be given. By the preceding we know that

oo)3 X ( j B i m ) ) )=l . Since for every MeX(,>BO PM coincides

with the distribution of ft*M+Nt under P0, it follows from Lemma

(5.25) that PM(C([0, oo)5 X(,. „)))=! and that for any @<=Cb(X(pim^

=0.

Finally, by Lemmas (5. 25) and (5. 26) we know that the measures

{P0oN~l: t>0} are pre-compact on X(/,>m) and we have already seen

that P0°N~l-*/ji0 on &"(Rd} ; and therefore jPjfOJVr1-*/^ on X(pim^ for

all M"eX(p>m). With these remarks we have now proved our final

theorem.

(5.34) Theorem: If m>d + 7 and 0<><l/2, then the collection

[PM : M^X(pim^} forms a strong Markov, Feller continuous family on

C([0, oo), X(,.m)) and

for all

Appendix

The purpose of this appendix is to catalogue some facts about

Hermite functions. We do not pretend that these facts are unknown,
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in fact many of them have become part of the standard folklore

among experts in distribution theory. All that we want to do is

compile them here for the convenience of our readers.

Given k>0, define gh: Rl-*Rl by

(A.I) gk(x)=(-iye*'*Die-*\

An obvious and basic fact is that

(A. 2) E-£-g*(x) =e-*2/*+2**-*\ x^R1 and
o k\

From (A. 2) it is not hard to derive :

(A. 3) xgk (*) =±gk+l (x) +kgk_1 (x)

and

(A. 4) &(x) =kgk_l(x) -

where #_! = (). Combining (A. 3) and (A. 4), one can easily arrive

at

(A. 5)

Starting once again with (A. 2), one sees that

rO if
(A. 6)

Thus if

(A. 7)

then {hk: k>0} forms an orthonormal sequence in L2(R^. The

function hk is called the kth Hermite function. A well-known fact is

that {hk: k>0} is a basis in U(R1}. From (A. 3), (A. 4) and (A. 5),

we obtain:

(A. 8) xht(x)

(A. 9) h\(x)
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and

(A. 10) (-D2
x+x2)hkW=

Another consequence of (A. 2) is

(A. 11) hk=ikhk, k>0,

where

Thus, by the Fourier inversion formula and (A. 8) :

1/2

for each e>0. Taking £1/2 = (2& + l)1/4, we arrive at:

(A. 1 2) i hk O) | < C-?- Y/2 (2k + 1 ) 1/4, A > 0 and x e ^'.
\ 7T /

Next define for «e({0, 1, . . . , ^,...}) i the function h, : Rd^R"

by

(A. 1 3) hm (x) = h« (xj ...h. (xd) , x<=Rd.
1 d

Properties of the ha's art easily read off from the corresponding
properties of the hk's. In particular, from (A. 8) and (A. 9), we can

use induction to show that for all //, ye({0, 1 , . . . ,k,...})d there is
a C((JL, v) such that

(A. 14) \\x*D:ha\f<C(& p ) (2 | a |+d )W + M .

Also, if <p^<Sf(Rd), then integration by parts shows that {(^?, Aa) :

a:>0} is rapidly decreasing (i.e. |a|"|(^, htt) |— >0 as | a | — >oo for all

n>0). Thus if 9?e^(-R r f), then from (A. 14) we have:

\\x'DX<p- Z C ^ A J A J I I ^ E l(pA)|
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as 2V t °°. In other words:

(A. 15) E (MJ^— ? in ST(Rd)
\a\£N

for all <p^<9y(Rd). In particular, we can again use (A. 8) and (A. 9)

to show the existence of K([JL, i/) such that

(A. 16) \\x«D:9\\
2<K([jt, i,) E (2 k I

for all <p<^y (Rd). In view of (A. 10) and (A. 16), we come to the

important conclusion that for each m>0 there exist

such that

(A. 17)

where

(A. 18)
a

We now want to derive some slightly less standard facts about

&"(Rd}. Namely, let

(A. 19)

It is obvious that 3? (OT) is a complete separable Hilbert space. In fact

Jf(m) can be identified as the dual of the completion Jf(OT) of Sf (Rd)

with respect to iHIU ) (for this identification one uses (A. 15)) ; and

the action of JV(Ejf(m) on JfU) is given by:

(A. 20)

Of course, if (p^^(Rd} then N(p) given by (A. 20) coincides with

the action of A^ as an element of Sf* (Rd} on <p (this fact justifies

our use of the notation N(<p) in (A. 20).) Asa consequence of these

considerations we see that

(A. 21) |||tf|||w= sup

We are at last ready to prove the next estimate.

(A. 22) Theorem : Define r.*N, ^>0 and N^^f(Rd}, by -{t*N(<p) =

N(r,*<p)- Then for all m>® and T>0 there is a COT(T)<oo such
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that:

(A. 23) sup \\\rt*N\\\M<Cm(TmN\\\M,
O^t^T

Moreover, there is a Cm<^oo such that for all

(A. 24) l!!n*^-

Proof: In view of (A. 21), (A. 23) and (A. 24) will follow from

(A.25) sup | i [
0<£*£T

and

(A. 26) ||lr,^

respectively.

To prove (A.25) let ^ and v be multi-indices satisfying \fi\

\v\<m. Then

where Pp(t,0) is a polynomial in (t,0) of degree (3 such that

= 0 if j8^=0. Using (A. 18), we see from this that

Since |||^l||(")=ilMH("), (A.25) is now obvious. Applying (A. 18), we

arrive at (A. 26) .

The proof of (A. 26) is similar :

<£ OD
»<.?
f-t-o

The first term is bounded by Cw(it—5)|||p|||('"). As for the last two
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terms, note that \e~~fl(?|2 — e~'fm | achieves its maximum at any

such that se * °°l =te + *0' . Thus

«" - - t
Hence the last two terms are bounded by

Applying (A. 17) we arrive at (A. 26).
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