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Generalized Ornstein-Uhlenbeck Processes
and Infinite Particle Branching
Brownian Motions

By

Richard A. HOLLEY*®®
and
Daniel W. STROOCK*®

Introduction

The origins of this paper lie in a question posed to us by Frank
Spitzer who, in fact, ended up solving most of his problem on his
own. His problem is the following. Consider an infinite system of
independent d-dimensional branching Brownian motions which at
their branching times disappear or double with equal probabilities,
and assume that the initial distribution of the system is a Poisson
point process. Denote by 7, (/7), t>0 and FE%’R,,, the number of
particles in I" at time ¢. The first question is to determine if #,(-)
has a non-trivial limiting distribution (as measure-valued random
variables) when t—oco. The answer is yes if d>3 and no if d=1 or
2 (cf. [2], [4], [6] and for a related situation [3]). The question
in which Spitzer was interested is what happens if (when d>3) one
appropriately rescales the limiting random variable 7.. To be precise,
given a >0, define for bounded FE.@RJ:

(M) = e (al’) —a |I|

a(d+2)/2 >

where |I'| denotes the Lebesgue measure of I"; and think of 7* as
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taking values among tempered distributions. Using some very pretty
moment calculations, Spitzer found that as a—oo the distribution of
7 tends to the Gaussian measure on tempered distributions whose

characteristic function is
exp[—1/2(p, (=47 )]

for test functions ¢. Independently, Dawson [2] recently discovered
the same result.

The idea in this paper is to study what happens if one reverses
the limit procedures just described (a similar but somewhat different
limit problem was studied by Martin-Lof in [7]. In fact a minor
modification of our procedure can be used to prove his result). That
is, consider

9, (al’) —a |I'|

a,(d+2)/2 >

7 (1) =

and think of %% as a continuous process with values in tempered
distributions. What we have shown is that, when d>3, the distribution
of 7@ as a—>co tends to the distribution of the Ornstein-Uhlenbeck

process N. determined by the relation:
N 124885,
0

where #  is the standard Siegel process on tempered distributions.
When d=2 the situation reduces to one which has been studied
extensively by Dawson (see [2], [13], and [14] and the remark
following Theorem (4.11) below.)

We next classify all the invariant measures for the process N. and
show that they are all closely related to the Gaussian measure found
by Spitzer et. al. Finally, we have isolated a dense F, subspace of
the tempered distributions on which N. is concentrated and for which
N. is ergodic.

Throughout this paper we will use & (R?) to denote the Schwartz
space of real-valued C~-function which together with all their deriv-
atives are rapidly decreasing. The space &' (R%) is then the space
of real-valued tempered distributions. At only one point (cf. Lemma
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(5.17)) will we need complex valued tempered distributions, and we
will then wuse the notation &,(R?). Also, l|-|| denotes L?*norm
throughout.

It should be obvious that we are deeply in debt to Frank Spitzer,
and we take this opportunity to thank him.

§ 1. Existence and Uniqueness of Generalized

0.-U. Processes

Throughout this section we will be using the following notation
and assumptions. Let A: #(R)H—>F(R*) be a bounded linear
operator which admits a non-positive definite self-adjoint extention
A on L*(R%. We further assume that there is a strongly continuous
semi-group {7T,;¢>0} of bounded linear operators on & (R?) into
itself such that

1. 1) N(T,0) —N() =§ N(AT.g)ds,  t>0,

for all Ne & (RY) and p= ¥ (R?). It is easy to check that T,p=e"4p
a.e. for pe P (R?) (here e denotes the semi-group of self-adjoint
contractions on L?*(R?) generated by A) and that AT, p=T,Ap. We
will often use the notation

(1.2) o.=T,p.

(1.8) Lemma: If t— X, is a continuous map from [0, o0) into &’ (R?)
and if oL (R?), then (s, t)— X, (¢,) is continuous on ([0, o))z

Proof: Let (s, %) be given. Since {X,:s<[0, s,+1]} is compact
in & (R*) and t—¢, is strongly continuous,

111'1'1 sup | X: (@t) - X: (90:0) I :O‘
>ty s€[0,5)+1]

Thus
im  |X.(e)—X, () | <Im|X.(p,) —X,(p,) | =O.

(s, t)-»(so.ro) s=sy

Q.E.D.
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Let 2=C([0, o), & (R%)). For t>0, set M,=0(N,(p): 0<s<¢
and o= ¥ (R%)) and put &£ =c(UA,). Finally, let B: L*(R*) - L?*(R?)
20
be a bounded linear operator. The next result is central to our

analysis.

(1.4) Theorem: Let P be a probability measure on (£, M) such
that

(1.5 fWNn o) = "N A0 (VL)) du -

ABAEL™ (N, ()

is a martingale relative to (2, M,, P) for all feCy(R?), o= & (R?) and

stopping times t such that sup sup |Ni.w (A@, @) |<oo. Then, for all
o 20

feCy(RY) and p= &L (R?),

AN = Noapyau) - IBAEL 7(N,0) - . (Apy s

is a martingale relative to (2, M,, P). Moreover, jor all 0<s<t,
pe ¥ (RY), and Feﬂkd:
(1.6) P(N.(pel'|4,)=

\&(\ IBerdu, y=N.(o))dy (s, P,

where g(t, y) = e='%. In particular, the condition (1.5) on

1
(Z;Z) 1/2
P plus a knowledge of P| M, uniquely determines P on (2, M). Finally,
P satisfies this condition if and only if the distribution of N,—T,N,

also satisfies it.

Proof: Given o= % (R?), define
r,=(nf {t=0: |N,(Ae) | =n}) N\n.

Then 7,1 o0 as n—oo and

Fo (0) = N0 £ L)) du =SB ()

0

is a P-martingale for each n. From this fact it is easy to see that
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tAt
Fop () ={ " N (Ag) du) —
L%?alﬁg'“" f"<N,(¢) —S" N.(Ap) ds>du
0 0

is a P-martingale for each n. But now we can let n—o0 and there-

by conclude that

A(N.o) = Mgy au) - B (w000 = N4y ds )

is a P-martingale. Using Theorem 2.1 in [12], we next see that for
any o= (R?) and s>0:

v N, (Ap) du> +E2§€m (t\/s ——s)]

s

X;(®) = expl i N (9) =N, (0) =

is a P-martingale. It is our plan to prove from this that for all 7>>0
and p= ¥ (R?) :

tAT
Y3(0) =exp| iNins (@r-sne) + 3" [1Bos-.lidu |

is a P-martingale. To this end, let 0<#<t,<T be given. Then, by
the continuity of (s, £)—>N,(g,), it is easy to show that

Yo@) _

n—1
v lim H X“n.k o,
Y:(IH) a—>o0 k=0 ‘Pr_,mﬁ( .k+1)
where 0,,,;,=t1+_f€,(t2__tl>_ Moreover, since that convergence is
1

bounded, it takes place in L'(P). Thus, if HE.//,I, then

YT t . n—1 -
B prte H|=lim BT X3 (0.0, H]
But if 1<m<n—1, then

EP[IL X3t (0,00), HI=E[ID X2t (0,40), H],
where it is understood that

X7t (@)=l
0 “uk

It follows that
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EP[Y:(tz)/Y:(tl): H] =P(H)9 HE-//ltls
which is to say that (Y?(¢), #, P) is a martingale. It particular, if
0<s<t, then
EP[e™® | ) = T Br Ly (1) ]
~1/2[1By (du +,
=Sty

iN (o, )+1/2 [t 0lBp (2a
S L (a.s., P),

and clearly (1.5) is an easy consequence of this.

The assertion about the uniqueness of P is obtained by standard
Markovian reasoning from (1.6). Finally, the statement about trans-
lating N, by T,N, is an easy consequence of standard manipulations
with martingales. Q. E.D.

(1.7) Corollary: Let P be as in Theorem 1.4 and assume in
addition that P(N,=0)=1. Then for each T>0 and p= ¥ (R?):

(L.8)  E[sup IN.(p) FT<BC+T)BI(lglf +IlAglP).
In particular,

(L9 fWN.) ~| N.(Ap)f W.(9))du— B 7 (N, ()
is a P-martingale for all feCi(R?) and o= % (R?).

Proof: The second part follows from the first part lapplied to
Agp. To prove (1.8), note that by Theorem 1.4,

(N = Nuagyaw) - B (N, (o) = V. (Ag) s )

is a P-martingale for all feCy(R?). From this fact it is not hard to
verify that the same is true for f€C?(R) which, together with their
first two derivatives, grow no faster than Cleczlxl for some finite C,
and C,. Thus

(o)~ N.(apyau

and
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(Mo = N.(Ag)duf —|1Bolie

are P-martingales. By Doob’s inequality, it follows that

E[ sup (N, (o) —g N.(Ag) duﬂ

0<t<T
s4EP[<N, (0) — STN (Ag) du>2]
—4||Bg|"T.
Thus
Bsup (o) <287 ({7 IN.(4g) 1du ) | +8)1BolPT

< T<2E[ST N.(Ag) IZdu] +8]|Bo| 12).
By (1.6)

{7 1V.0) pau | = aul 11BAg. a0

<B4

Hence

E"[OS;}SPT [N, (¢) "1<T|B|*(T?||Agil* + 8ol
<81 +T)°IBiF([|A¢l*+]el")-
Q.E.D.

From now on we will say that P, on (£, #) is the Ornstein-
Uhlenbeck process with characteristics A and B starting from M & %’ (R?)
if Py(N,=M) =1 and P, satisfies the conditions of Theorem 1.4. By
that theorem, we know that there is for each M at most one such
P, and P, is related to P, by the fact that N,—T,M has distribution
under P, equal to P,. Thus, if P, exists, then P, exists for each
Me % (R*) and the family {P,:ME ¥ (R*)} forms a strong Markov
Feller process. (The assertion about the Markov property is an easy
consequence of uniqueness or can be derived directly from (1.6).)
We now want to show that P, always exists.

For each multi-index a=(ay,..., ai), a;>0 for 1<;<d, let
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h,(x) =k,,1 (z)... h,d (z,) where h, denotes the k" Hermite function
(cf. A. 7). Given n>0, define II,: L*(R*)—-% (R*) by

(1.10) D= % (o hh,

It is well-known that Il,p—¢ as n—>o0 in L*(R?) for all ¢=L*(R?)
and that I],p—¢ in & (R?) for all o= % (R?) (cf. A.15).

In order to carry out our construction we proceed as follows.
For n>0, set D,=card{a: |a|<n} and define

(L.1D) A= ”Z,' (Bh,, h,) (Bh,, h,)
rl<n

and

(1.12) byy=(Ah, h;)

for |a|, |B|<n. Next let

1 0? 0
= 7 b —_—
) IaI.Zl,‘;ISnaa'p ayaayp + 2 (X a.py,s) 3

lal<n  |pl<n Ve

(1.1%) L™=

It is easily shown that there exists on C([0, o), R"") exactly one

probability measure Q™ such that Q™ (y(0) =0) =1, EQ(")[ sup |y (@) 7]
0<t<T

oo for all T>>0, and f(y(t))—S‘ L®f(y(s))ds is a Q"-martingale

for each f=C;(R™). (One can use, for example, Ité’s stochastic
differential equations as described in H. P. Mckean’s [8].) Next
define t—>N,€ %' (R%) by

(1.14) N.(p) =Iﬂén(gp, h)y. (), t=0 and p=F (RY).

Given a ¢ & (R?) and feCy(RY), define FeC*(R") by
F) =f(lalZS"(sD, h)yo-

Note that

LOFG) =5 (| % (s h) (o B)F (T (9 b3
(2 (@ 2) (2 bagy)) (2 (5 Ra) )
lal<n 181<n lal<n

and
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2 (@ h) (9 k)= % 5 (Bh,,h,) (Bhy, b)) (9, h.) (¢, hy)

lal, 181<n lal, 181<n I71<n

= 2 (B, h)*=|III,BI i

Ir1<n

Thus

LOF () =5 LBILgIS W (9))
+ 3 (0,5 (T b () (F.(9))-
la|<n 18l<n

But
Y (e k) Nboy (=Y (3 (Ah, k) (9, h))N.(R,)
lal<n 181<n 18i<n lel<n
=||Zs,. (All,p, k)N, (h,) =N, II,AILg).

From these calculations, we see that if P™ on (£, .#) 1is the distri-
bution of N. under Q®, then P“(N,=0)=1 and for all f€C:(R")
and o= L (RY) :

Fo) = N4 f (L)) ds—IBEEL £, 0)) s

is a P™-martingale, where
A,=II All, and B,=II BII,.

The next step is to show that {P®”:n>0} is weakly precompact.
To this end, note that because A is bounded from & (R into itself,

there is an m,>0 such that

(1.15) lAgll <Clligll™, e (RY),

for some C<oo(cf. A.18). For this m, set n,=m,+d~+1 and define
l[llll on &#"(R*) by

(1. 16) HINIE=X 2]al+d) ™ |N(h,) |*

It is easy to check that

(1.17) A, ={NE L (R |IN|||<eo}

is a complete separable Hilbert space under |||+||| and that the dual

of J#, can be identified in a natural way with the completion of
)

& (R?*) under |H-\lg("°. Certainly it is enough for us to show that
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P™ is concentrated on C([0, o), %,,0) (which is an F,-subset of
C((0, ), ¥ (RY))) for all n>0 and that {P™: n>0} is weakly
precompact subset of probability measures on C([0, o0), %,,0). Since
under P™ each N.(¢) is continuous and N.(k,) =0 a.s. for la|>n, it
is clear that P™ is concentrated on C([0, o), Ha) Furthermore,
by (l.6)

EP(")[ IN:Z(GD) —]\ft1 (so) 14]
t,=t 2 - , ,
=3<S: ”B"Mzdu) <3|IBiFllell*(t:— )
for n>0, 0<t,<t,, and o€ & (R?). Thus, for any m>0, T>>0, and

e>0:
lim sup P“( sup max |N, (h) —N,l(h,,) | >¢) =0.

30 n 0$t1<t2ST lal<m
tz—-tl<ﬁ
Since P™(N,=0)=1 for all #>0, it only remains to check that for
T>0 and ¢>0:

(1.18) lim sup P (sup |[{HIxN|||=¢e) =0
0<t<T

m=>o0 n

where II:N is defined so that
I:N@) = % (¢ h)N(h),  9EF (R,
But by (1.8) plus (1.15):
E*”[ sup |N,(h)|"]
0T

<8(14+T)%BIF(1 +]iA,k|[)

<8C(1+T)7|BIF (1 +|II,]|")

<8CU+T)YBIF(2|a|+d+1)"

and so
E*™[ sup |IITEN,]|F]
0L LT

< % @lal+d) B[ sup [N, ()]

lal>m

<8C(1+T)YB| 3 2 e | +d+1)"

m +d+1

e (2| +d)"
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This proves that

lim sup E*[ sup |[lIT*N,[|[F1=0
0<Lt<T

m=>00 n

which certainly implies (1.18).

The final step in the construction is to show that if P is the limit
of a convergent subsequence {P"’} of {P":n>0}, then P(N,=0) =1,
E"[Osslng IN,(¢) |]<co for all T>0 and o= ¥ (R?), and

1L19)  FWN.) = N f o) du—1BAL 7 (N, 0)

is a P-martingale for each feCy(RY) and =& (R%). But clearly
P(N,=0) >lim P*’(N,=0)=1 and, by (1.8),

(1.20)  E°[sup [N.(p) "1<sup E™[ sup [N, () [1<oo.

Thus it only remains to prove that the expression in (1.19) is a
P-martingale. Since the analogous expression, with A, replacing A
and B, replacing B, is a P,-martingale, it is easily seen that all we

must show is that
(1. 21) E?[N,(Ag)F] =lim E*"”[N, (A, ¢) F]

for all >0, =& (R?), and continnous F: C([0, oo0), Jf,,o)—>[——l, 1].
But, by (l.6),

E*™[|N,(4,0) —N,(Ap) 7] <t||A,0—Ag|?

and clearly [|A,¢—Ag||—0 as n—oco. Thus proving (1.21) reduces
to showing that

(1. 22) E*[N,(Ag)F] =lim E*"’[N,(Ag) F].

However N,(A@)F is continuous, and therefore (1. 20) together with
the assumption that P“”—P implies (1.22). One final comment is
in order. We have just seen that {P™: n>0} is precompact and
that every limit point satisfies P(N,=0) =1 as well as the hypothesis of
Theorem (1.4). Thus by the uniqueness assertion in that theorem,

we conclude that P”—P. We summarize our findings in the next
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theorem.

(1.23) Theorem: For each A and B there is a unique probability
measure P on (2, #) such that P(N,=0)=1 and P satisfies the
hypothesis of Theorem (1.4). Moreover, if A,=I[ All,, B,=IIBII,,
and P™ is the measure associated with A, and B,, then P™ tends

weakly to P.

(1.24) Remark: With very little alteration, the proof just given
to get existence can be used to show that if A, and B, are general
operators satisfying our basic hypothesis (not necessarily given by
A,=I All, and B,=II,BIl,) and if there exists m,>0 and C<oo
such that

sup || 4,0l <Cligll ™, pe# (R,
then the measure P™ associated with A, and B, tends to the P going
with A and B if A,—~A and B,—B strongly in L*(R?).

§ 2. Branching Brownian Motion Having Finitely

Many Particles

In this section we recast the theory of branching Brownian motion
in the setting of Lévy processes. To be precise, let (R?)™ be defined
for n>1 to be the space of equivalence classes of n-triples of
elements z& R* mod permutaticns (i.e. <{z%,...,2">={y',...,¥"> In
(R*)™ if and only if there is a permutation ¢ such that y*=z"®,
1<k<d). Use II™:(R*)"—(R*)™ to be the map taking (z',...,2")
into it’s equivalence class in (R*)™ and topologize (R?)™ so that /™
is open and continuous. Given a function f: (R?)™—R', we say that
FECH (R ™) (CL((R)™) or CL((RH) ™)) if foll & C*((R*)") (Ci((R*)"
or C:((R)™)). Let E={g} U G (R*)™, where ¢ is an abstract point
and topologize E so that {¢} ’ia—; well as (R*)™ for each n>1 is both
open and closed. Finally, let 2 (E) stand for the set of F:E—R!
such that F restricted to (R)™ is in CZ((R)™) for all n>1 and
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F=0 on (R%)™ for all sufficiently large #’s.

We are now nearly ready to describe the branching Brownian
motion with which we will be concerned. However, before doing so,
we need a little more notation. First, if FeC(E) has the property
that its restriction f, to (R)® is in C*((R)™) for all n>1, we
define 4F(¢$) =0 and

o) =5 A G @2, w2l

where 4, stands for the Laplacian with respect to z* (notice that 4F
is indeed well-defined on E). Next, define for n>1 and 1<k<n
zhy. ..,z e (R and (z2',..., 20, (RO (={4} i n=1) to
be, respectively, the element of E obtained by repeating or deleting z*.
With this convention we now define K on C(E) so that KF(¢) =0
and for all n>1:

KF(,. .. 2> :ﬁ(l‘l@z: o £>i;r,!’1(§3£‘_, C T

_F{a,. .. ,x"))).

=1

The branching Brownian motion which we want is the Lévy process
on E having “diffusion part” determined by 1/2 4 and “jump part”
governed by K. That is, ¢ is absorbing and for n>1 the process
restricted to (R?)™ consists of 7# indepedent d-dimensional Brownian
motions, each of which waits a unit exponential holding time and then
with equal probabilities splits into two independent copies of itself
(moving the process to (R*)“*?) or disappears (moving the process
to (RH)®™™).

For our purposes it is best to characterize the above process in
terms of a martingale problem. Let 2,=D([0, o), E) be the space
of right continuous functions [0, o) into E having left limits, and
endow £, with the usual Skorohod topology (this is possible since it
is clear that E admits a metrization in which it becomes a Polish
space). We will denote a generic element of E by 5 and for w2,
we will use 7(¢, ) to denote the position of w at time ¢>0. For
>0, set A, =0c(n(s) :0<s<t) and observe that ¢(U.#,) coincides

20



754 RICHARD A. HOLLEY AND DANIEL W. STROOCK

with Borel field # over 2, Given np€E, we say that the probability
measure P on (g, #) solves the martingale problem for

(2. 1) £L=1/2 4+ K
starting from » if P(»(0) =») =1 and

Fr0)—{ 2F()ds

is a P-martingale foral Fe 9 (E) (i.e.(F(5(¢)) —St LF(y(s))ds, M, P)
0
is a martingale). The following facts are easily deduced from the

techniques of [11]:

a) For each 7 there is exactly one solution P, to the martingale
problem for & starting from 7 and the family {P,:7<E} is Feller
continuous and strong Markov.

b) The process P, behaves in the manner described in the

preceding paragraph.

Alternatively, one can use the results of [5] to arrive at a) and b).

For future reference, we will spend the rest of this section deriv-
ing some facts and estimates satisfied by the Ps. In the first place,
it is not hard to see that if & ([0, o) XE) stands for the class of
";fec,,([o, o) xE) ; the
restriction of F(¢,¢) to (RY)™, ¢>0 and n>1, is in C2((R*)™) ; and
F restricted to [0, o) X (R*)™ is identically zero for all sufficiently

continuous F': [0, o) XE—C such that:

large »’s; then

F, 9(0) —S(% +$F> (s, 7(s))ds

is a P-martingale for all FE % ([0, ) XE). Next, define n:E—
{0,1,...,n,...} so that

0 if p=¢

2.2) n(n) :{n if pe(RY) &)

We then have the following estimate.

(2.3) Lemma: If T>0 and 2<log<l+%>, then
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Por anG(T)T — IPICE YR
Froof: Set u(®) =I+MH 0<t<T, and, for m>1, define
2—t(e*—1)
W@®) if n(p)<m
Fm(t9 v) ={ 0 .
if n(n) >m.

It is then clear that

Fu_gp,  0<s<T,
0s

so long as n(y) <m. Hence
F (T —=t/N\tw 7(t/\70))
1s a P-martingale, where
7,=nf {t=0:n(yp()) >m})AT.
In particular,
E"[e"™ ] <E"[F,(T—z, 7(z))]

_ _ 2(et—1) ()
=F.(T,7) _<1+ 2-—T(e‘—l)>

for all T>>0 and 2>>0 satisfying 2<log<1 +72,> From this we see
that if A< p<llog(1+ % ), then

2(6”— 1) n(n)

Pol ( panta())\ u/2
EN (e )p:lS(H_—————_Q—T(e”—I) ,

0<:<T,

and therefore {e"® :0<t<T} are umformly P -integrable. But this

means that we can let m 1 o in the equality

e, _ _ 2(81—1) n(y)
EN[F.(T—x,, n(rm))]—(l+m

and thereby arrive at (2.4) (since EP"[e‘"<T’]<oo for some 21>0
certainly implies that 7z, T T (a.s., P,) as m—o0). Q. E.D.

One easy and important consequence of (2.3) is the next theorem.
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(2.5) Theorem: Let F=C([0, o0) XE) have the properties that
%f;ecqo, o0) xE), F restricted to (RH)® is in C:((R)®) for each
n>1, and there is an M>0 and a C<co such that

max{|F G, ) |, [ 25 |, \DF 9 1} <C n(

for all t>0 and nEE, where D*F(t,¢)=0 and for € (R*)™, n>1
D’F denotes a generic second order spatial derivative of Foll”. Then

S, (@) —-S(%-}-o?F)(s,y(s))ds is a P-~martingale for all neE.

0

(2.6) Corollary: For all T>0 and l<log<1+%>

EP”[ sup €] < oo

0<t<T

Jor all nEE.

Proof: Take F(n) =n(n) in the preceding theorem and concluded
that n(7(?)) is a P,-martingale. Thus, if x<1og<1+ %) then e¢AD
is a non-negative P,-submartingale. But this means (by Doob’s

inequality) that

P, ane) /2 >”/1 Py apn(T)
Bl sup ¢ ]S<y/2—1 ErLerm]<eo,

where /1<y<log<1 —I—%) Q. E.D.

At this juncture we want to make a slight change in our point
of view. Namely, it is clear that E is homeomorphic to the set of
purely atomic integer-valued finite measures on R? given the topology
of weak* convergence. That is, given 7€E define for ¢&B(R?):

0 if 7]:¢
2.7 77(90)={u
et if p=<La, ..., 2™, n>1.

As a consequence of (2.6), we see that for all p=B(R?), T>0

z<1og<1 +%> :
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(2. 8) EP”[ sup elﬂ'(¢)]<00,

0Li<T
where 7, (w) is the measure associated with (¢, @) by the relation in
(2.7). We are now going to make exact computations of E" [, ()]
and E"[(7,(¢))"].

(2.9) Lemma: Set

(2.10) 7.(z) = e~z >0 and z= R,

S S
(27&'75)“'/2
and for p=B(R*) define

(2.1D O, =7 * Q.
Then
(2.12) E'[n(0)1=7(p), >0 and pek.

Moreover, if

0,6 ) =2, = () +| 712 (0%d5) + (1 (0))?
for t>0 and neEk, then

(2. 18) E[p(p)]1=v,(t,7), t>0 and y<E.
In particular, if p=<z>& (R*)V, then

(2.14) E L7 (9)] = (9),(@) +{ [0 ()] (2)ds

Proof: We will assume that o= C:(R?). Given T>0, set
F@, ) =n(pr-),  0=Zt<T,

and
G(t, p) =v,(T—t, p), 0<t<T.
Since
oF oG _
7+$F—7+$G—0, 0<<T,

it follows from (2.5) that FAT, n(/A\T)) and GGAT, nGAT))

are P -martingales. Thus
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E"[7.(p)1=E"[F(T, 7(T))1=F(0, 1) =n(¢p,)

and

E"[1(9)1=E"[G(T, 7(T))1=G(0, n) =v,(T, p).
Q. E. D.

For reasons which will not become apparent until the next section,

we need one more estimate.

(2.15) Lemma: Set
(2. 16) U(x)y=>0+ |z ]*), zrE R
Then for each T >0 there exists a constant A(T)< co such that

(2. 17) E[ sup 2(T)]1<A(T)¥2(z), xR
0<t<T

Proof: For each T>0 it is elementary to see that there exist
constants C,(T), C,(T), and C,(T)< o such that

1
—CT(T—)—W,SWSCZ(T)W,, OStST’

and
@, <C(T)7r, 0<t<T.

Since, by (2.5), %ar(@r-iar) is a P,-martingale, we have by Doob’s
inequality and (2. 14) :

E[ sup 7 (V)1 <4E"[7(D)]
=4 ()1 (2) +4{ [re-r W) @) s
4G (DT @) +4(CD)YY D2 D7 (@) ds

<4(C(T) + (C(T))*C(T) D ¥* ().

At the same time, 72(¥)<C,(T)7}(¥,_,). Combining this with the
preceding, we arrive at (2.17). Q.E.D.



GENERALIZED ORNSTEIN-UHLENBECK PROCESSES 759

§ 3. Branching Brownian Motion Having Infinitely
Many Particles

In this section we again discuss processes of the sort introduced
in section (2), only now we allow there to be infinitely many particles
initially. The approach that we adopt mimicks, for our setting, the
construction by Durrett [3].

For each z&=R? let 2,=2, and #,=4#. Given a probability
space (2, ., P) on which there is an R%valued point process 7
satisfying

3. 1) Effcard(I' N 1=1T"|

for bounded I'e# R* (|I'| denotes the Lebesgue measure of I"), let
P=Px I1 P, on (@, M), where 9=0x 112, and M=Mx I M..

zer? zer? cerd

If cbef!, we let w,, x& R¢ denote the z* coordinate of @ and define

7,2(@) =7, (@,).

(8.2) Lemma: Let ¥ be the function in (2.16). Then for all
T>0:
(3.3) E*LY sup 7..(¥)]1<oo.

z€y 0<t<T
In particular, if
3.4) 7= 5 Mo
then there is a P-null set Be M such that for all ®&EB the function
t—7,(®) is right continuous and has left limits as a mapping from
[0, o) into & (R?).

Proof: Suppose that (3.3) has been proved. Then there is a
P-null set BeA4 such that
Z v:,z(?p" CD)
zE€Ey

converges uniformly on each bounded time interval for each @&B.
But if =& (R%), then |¢|<C¥ for some C,<oo, and therefore for



760 RICHARD A. HOLLEY AND DANIEL W. STROOCK

each d&€B ) 7, .(¢, ®) converges uniformly and absolutely on each
z€y

bounded time interval. Since 7, .(p, @) is right continuous and has
left limits for all ze R4, o= & (R?), and a")ef?, we conclude that for
all w&B t—7,(®) has the desired properties.

To prove (3.3), observe that by (2.17):

E’[ sup 7, (D) ]<C*(TH¥ (x).

0<t<T

Thus, by (3.1):
E'[ X sup 77”(1”')]SCVZ(T)EP[;E:,T(JC)]

z€yp 0<:<T
=C‘/2(T)S T (z)dz< oo.
Q. E.D.
Define ., for t>0 to be the o-algebra of subsets of 2 generated

by 7.(¢) for 0<s<t and ¢=%(R?). The next theorem plays a

crucial role in our future results.
(8.5) Theorem: Given feC:(R') and p= ¥ (R?),
3.6) S -\ 2.01/240)f (1.(9))ds

—172 2,070 107 (. (0 ds

_S‘ 7 (f(fi,(so) +o @) +f@.(e) —e )
‘ 2

0

—F7.(9)) )ds
is an (2, M,, P)-martingale.

Proof: What we must show is that if 0<¢,<¢, then
Ef[X(%) —X(t), B]=0
where

X =f@.@) = 2.0/240)7 (.00 ds

—1/2\ 2,070 197 (3. (0)) ds

_S‘ 7 (f(ﬁ:(so) o) +/@.(9) —e ()
' 2

0
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—f.(9)) )ds
and B is a set of the form
m,(enely,..., 5 (p)El}

withn>1;0<5,<...<s,<t,50,...,0. €% (RY) ;and [,,..., [, =B R".
Given m>1, set

ﬁt("'): Z 77:,:.

zE}

lz|<m
and define X™ (<) in terms of f, ¢, and 7. the same way as X(-)
is given in terms of f, ¢, and 7. Then

E[X"™t,) — X" (3,), B] =
S Ef"er F(5,) —F@.) - Stz ZF (3,)ds, B™ (@)]1P(da),

where

7™ =N {z: |z|<m},
F(p) =f(n(e)),

and

B™ (@) = {n™ (¢;) + Zg 7 (g @) EL;, 1<j<n}
7 zEp(a)

1z]>m

Since (2.5) applies to F, we know that
P,(m), _ . ‘2 . ™ ()] —
B0 (G,) ~F ) - 2P ()ds, B @)]=0

for each @, and therefore we have now shown that
(X" @), M, P)
is a martingale. But, using (3. 3), it is easy to check that

X" (t)—>X () as m—oo in L'(P).
Q. E. D.

We conclude this section with some preparations for the next two
sections. From now on we will be making the following assumption
about 7 (in addition to (3.1)):
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3.7) E(e) ~{e@d)1<Clllr, pe o (R,

for some 1<C<oo. Notice that both (3.1) and (8.7) are satisfied
by a Poisson random field. Also, observe that, in view of (3.1),
(8.7) is an estimate on the variance of 7(¢).

(8.8) Lemma: For all £>0 and p= % (R?):

(3.9) 2l.1={o@dz
and
(3. 10) ELau(9) ~{o@dz < (C+DlIglr.

Proof: To see (3.9), note that by (3.1) and (2.12):
Ef[n.(p)] =E’[¢§ 7..(9)]
=E'[1(0)] =p(@)dz.
Next, by (2.12) and (2.14) :

E?[5.(0))"] =E”[(§77h.:(¢))2]
ZEP[E, (7., (@))*] +EP[I,§‘5., 72 (©) 7., (9) ]

7y
=B ()01 +| B D1 (r-v (9)) 1ds
+EL 3 0.@)0. )]

=E' () )1+| B Gem (00D 1as
+E ()1 E [ (@)1,

SO

(1.6 ~{o@dz)]
<Cligl+liglr+{ llg.lids

<(C=Dllel+A+D) eIl
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< (C+1)|olP. Q,E.D.

We next introduce a “central limit” type scaling of the process 7.
Given a >0, we set

310 o (2)= L)
and define
(3.12) 70 (9) =75, (9) — | (2)d.

Observe that
(3.13) E'[7 (9)] =0
and
E* 72 )1 =F| (1,,0) = {0 (@) dz ) |
<(C+an)ilp®lF=( S+t
That is:

(3. 14) E L )<t gl

We next want to see what must be subtracted from f(7® (¢)) to get
a P-martingale. First observe that by (8.5) for feC*(R")

F@, 090 =4\ 072 10 (0. (99))ds
—5\ 0.7 G0 ds

_ g Y ECACRRTLIONES CXCQETLION
0 2

£ () 7.

Is an (Q, “/Z,.Z;’ 2 martingale. Since

ngD(u) |z(x) za—(d+6)/2( |‘7¢ |2) (@ (x)

and
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e () =a™*(dp) @ (x),
we conclude that

0,69 =25 0 (7o 1Y) £ 11, (090 ds

2., (/24009 1 5, (0 ds
PN CCACRET I OIRSMCOETIO)
0 77“2’ 2

—f(74,()) )ds

is an (Q, "/Za%’ =) martingale. Finally, because Sdgb(x)dx =0 for
all g= & (R?), we now have that for all f&C?(R?) :

B.15)  fO @) =T 1., ((Te YO F (2 () ds

.72 (17240 F (2 (9)) s
<f(v§"> (9) +¢ () +f( (9) = (-))
2

<
—F(7 (9)) )ds

is an (2, jﬁ.’ )2 martingale for all f€C:(R") and p=& (R?).
Our final task in this section is to estimate E°[ sup (9 (¢))?]. To
0<t<T
this end first observe that (3.14) together with (3.15) shows that

7 (9) — S 7 (1/240) ds

is an (2, jﬂzt, P) martingale. Thus, by Doob’s inequality

2| sup (17 9) = 72 (1/240025) |

0<t<T

= QEPR*?%") () — S: 7 (1/249) dsﬂ"”
ot 128§ 1) |

<2 E 1) (ol + (4 7) 1401,

aZ

and therefore :
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t 271/2
E'Lsup (1 (9)'1 <P sup (1 (9) = 12 (1/24¢)ds) |
0Lt<T 0T 0
t 27)1/2
+EP[ sup <S 7 (1/24¢) ds) j|
0<t<T\Jo
C 1/2
<2(S+T)" lgll+ Tl
We have therefore proved that
C 2 2 2
(3.16)  ELsup (7 (0)1<8(-5+T ) gl + T dgl).

Once one has (3.16), it is easy to extend (3.15) to the function
f(x) =2* and thereby conclude that

(%(a) (90))2 _a,—(d+z)/2S: 7702, (( |V(/>)2 l(a))ds
. 72 gy (ords
—a| 7, (e ds
1S an (.Q, .//Zagt, P martingale. If we now set
(3.17) A2 () =12 () = 7 (1/240)ds,

then

(a0 @) +({ 70 (/240 ds)
= (72 (9))" =23 (9) | 72 (1/24) s,

Combining the martingale involving (7 (¢))* with the fact that 4 (¢)
and therefore (cf. Lemma 2.1 in [12])

a2 @) 10 (172400 as = g0 ()12 (1/240) s
are (Q, ./Zﬂz‘, P) martingales, we arrive at the conclusion that

(.18 @@ —a e 'y, (o @)ds—at] 7, (e ds

t
0

is an (4, M ,, P) martingale. Equivalently,



766 RICHARD A. HOLLEY AND DANIEL W. STROOCK

(3.19) (@2 @) —a e g0 (P ds—ame | g0 () as
—atl| [Pl =gl

is an (Q, -/an,, ) 2)) martingale.

§4. Tightness of the Processes 7

Let (2, A, P), {#,:t>0}, and 7®. be as in section (3) and
denote by P® the distribution on D([0, o), & (R%)) of 7*“. under
P (cf. Lemma (3.2)). What we are going to do in this section is show
that {P®: a>1} is a tight (i.e. pre-compact) family, and then we
will show that for d>3 the limit lim P“ exists and is the Ornstein-
Uhlenbeck process with characteriﬂs—t’;cs 1/24 and I. Although it is in
conflict with the notation in section (1), we will use in this section £
to denote D([0, o©), &' (R?)) and then define N, (=>0; 4 ; and
{#,: t>0} correspondly as in section (1) (only now for our new
choice of £2). Finally, define the Hilbert space #,,, with norm |||-|||
as in (1.16) and (1.17) (i.e. take n,=d+3 in those equations). The

next lemma shows that the P“ are concentrated on D([0, ), #s).

(4.1) Lemma: If T>0 and a>1, then
(4.2 ELsup (N, ()1 <8(C+T) (1+T*(218 | +)?)

In particular, for all T>0:

(4.3) sup E*[ sup |IIN||F]< oo
a>1 0<t<T
and
(4. 4) lim sup E*“[ sup ||lIT+N,)|]=0
n—»o0  4>1 05T

where II, is defined as in section (1).

Proof: Clearly all that we have to do is prove (4.2). But (4.2)
is an immediate consequence of (3.16) plus the inequality (cf. A. 9)

4R, < (2181 +d)? Q. E.D.
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In view of (4.4) we will have shown that {P®: a>1} is tight
and that any limit, as a—oco, lives on C([0, o0), #,,,) once we show
that for all n>1, ¢e>0, and T >0 there is an a, and a 6 >0 for which:

(4. 5) sup P@( sup IW,N,—II ,N,||>¢) <e.

0<s<t<
t:<d

Since II,N. is finite-dimensional, this reduces to studying each coor-

dinate N.(k,), |B|<n, separately. Precisely what we need is proved
in the next lemma.

(4.6) Lemma: For all B, >0 and T >0 there is an a,>1 and a
0>0 such that

4.7 sup P®( sup |N,(h;) —N,(h,) |>¢) <e.
. aza OS:S<;‘<5

Proof: Given any right-continuous function f: [0, T]—R' having
left limits define

6,0)= sup (1St —f(&) I () ~f@) 1}V
(ca—tz)l\/(t:—tj)<5
(sup [f(&) =f(0) DV (sup [f(T) —=f(T—2)])
0=t<3 0<t<3

and

w,@) = sup_|f(t) —f(&) .

172

= ¢<5

Under the assumption that sup |f(¢+)—f(—) |<7, it is well-known
(cf. Parthasarathy [10] Lerr:rsrtlzT 6. 4) that 0,(0) <2&,(0) +7. Thusin
order to prove (4.7), all that we have to do is choose a@,>1 so that
sup |A{” (z) |<e/2 whenever a>a, and then show that

(4. 8) lim sup P“ (@ )(5) >e/4) =

80 aZa

The reason that this suffices is because one can easily show (cf. [11])
from (3.15) that

P (N, (p) =N.- () | <sup|¢ (z) | for all t>0)=L.

To prove (4.8) we proceed as follows. By (3.16) we can find
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for each p>0 an A<{oco such that
sup P“"(qssltlg (IN, (PR, |?) |+ |N,(1/24R,) | + |N.(h2) |) = 4)<p.
Thus if
r=inf {t>0: |N,(|Ph|?) | + |N,(1/24h,) |+ |N,(h}) | = A},
then P® (z<T)<p for all a>1. Now define

X)) =Nop, () ={ " N.C1/24m) s,

Clearly, since p was arbitrary, (4.8) will follow once we show that

4.9 lim sup P“(@x () =>¢/4) =0.

50 a>1
Using Censov’s criterion (cf. Theorem 15.6 in [1]), we will have

(4.9) if we can prove that
sup B"7[(X(t) — X (8))*(X(t) — X (t) ] <B*(ts—1)*
for some B<{co and all 0<<t,<t,<T. But we saw in section (3)
that (X(¢), 4, P“) is a martingale ; and, by (3.19), it is clear that
(Xz(t) _Bta -/ﬂu P(a))
is a supermartingale when B=A+1+4+|||4A,|F. Thus
EFPIX(X(t) — X (8,))*(X(8,) — X(#))*]
=B L ELX (1) |, ] - (X())) (X(t) — X(8))7]
<B(t,—t) EF L (X(8) — X(8))’]

<P (ts _tz) (tz _t1) <B (ts _tl)z’
Q. E.D.

We have now proved the next theorem (the details here, given
(4.4) and (4.3), are essentially the same as those given in preparation
for Theorem 1.23)

(4.10) Theorem: The family {P“: a>1} is precompact on
D([0, ), #4s). Moreover, if a,—>co and P=lim P“’ then P is

n—»oo

concentrated on C([0, o), #,,,) and therefore on C([0, ), & (R?)).
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We are now ready to prove the main result of this section.

(4.11) Theorem: If d>3 then P“—>P as a—>oo where P is the
Ornstein-Uhlenbeck process with characteristics 1/24 and I starting
Jrom 0.

Proof: Because of Theorem (4.10) and Theorem (1. 4), it suffices

to show that if a,—c0 and P“’—@Q, then Q(N,=0)=1, and for all
pEL (R?)

sup R[N, (9) [1<o0, 120
and

[2

SN = N.(1/240) £ (NG00 ds— 12 N 00y s

is a Q-martingale whenever feCy(RY).
We first note that Q(N,=0) =1 and that

iupE"[iN,(so) |J<<oo,  T>0 and ¢ (R%).
0St<T

Indeed, each of these facts is an immediate consequence of (3. 14).

Now let o= & (R?), feCy(R') and 0<t,<¢, be given and suppose
that @: D([0, o0), #,;.,)—[0, 1] is a continuous .4, -measurable function.
We must show that 1

(4.12) B (G, () —FN, () ={* N.(1/249) £ (N1 ds

IR avenae]=o.
Let
Ne @) =N.@+{¢@dr, e @)
Then, by (3.15):
BTG, (00) ~F, (0) = N.1/240) f (N, (649 2]

(G Rle e AONEST]
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a,—(d+2)/2

7B (e e v as)o],

where

Kfa) == +“>2+f(x ~4) _f(z), acR.

Since sup E*“[sup (N,(¢))*]<oo for all T>>0 and ¢=& (RY), it
a2l 0<t<T
is clear from the preceding that all we need do is show that (in the

notation of section (8)):

(4.13) tim 2| (7., (K o, 01 (0))

a=»oo
1

(g 09) )as 1 =0.
But, since feCy(R?), there is an A<oo such that:
1K 0, f(@) =5 @) (6 (5))* A9 ) I
< Ao

where A=A suplo(z)|. Thus

o] |

7o K oo /02 (00) =5 f (12 (9)) (62 (-))?)

(d+2)/2EP[77 2 ((p*)"]

Aatt

- a(sd+e)/z

Sgoz (x)dx—0

at a rate which is independent of s. Thus we need only show that

ox}

as a— o0, uniformly on bounded s-intervals. But to do this reduces to

azEP[ ol ]_90
a

7, (o)) —12]
uniformly on bounded s-intervals. To this end, note that

£ @)1, =18 o (o)) |-

proving
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1 2Y (a
(So(a))Z =_a_(m)/_2(¢ )( )

and

lell — 1 g(¢z)<a) (z)dz.

al a(d+2)/z

Hence

“2<ﬁazs((90("))2) — llell >: a(dl—z)/z 77 (),

aZ

and so, by (3.14):

o’E? [

ﬁazs((go(a))z) _ Hgyz :I

< ELG (9)

1 1/2
S?G:W(C-HS) |g]|.

We have therefore proved (4.13). Q. E.D.

The reader should remark that it is only in the derivation of
(4.13) that we have used the assumption that d>3. When d=2
one can proceed as follows. Denote by P®, a>1, the distribution
under P of 72 (p). Observe that P® is concentrated on paths
with values in the space of “tempered measures” (i. e. non-negative
elements of & (R?)). One can then use the preceding to show that
{P,: @>1} is precompact and that any limit P as a—>oco has the
properties that

P(N,= Lebesgue measure) =1

and

(4.1 FWN.(0) =\ N a0)r (L) ds— 5 | N f (V. (09 ds

s a P-martingale for all p= ¥ (R?) and feCy(RY). G. Papanicolau
has pointed out to us that if {P,: N a tempered measure} is a family
of measures satisfying Py(N,=N)=1 and (4.14) is a P, martingale
for all =¥ (R*) and feCy(R*) then it is the Markov family of
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measures studied by Dawson in [2], [13], and [14]. To see this let
g(t, x) solve the equation g—f=%4g—%g2 with g(0, z) =¢(x) =>0.
Then setting f(x) =e™* in (4.14) one sees that for all tempered
measures N, exp[ —N,(g(T—t, -))] is a P, martingale for 0<z<T.
(A careful proof of this uses critically the positivity of ¢ and hence
of g(t, -) and N,(g(T—t, +))). Thus

EPN [e—NT(P)] — e_N(g(T. .))'

This proves uniqueness of the solution to the martingale problem in
(4. 14) and identifies the process.
Dawson [14] has shown that in 2 dimensions

lim P (|N,(¢) |>0) =0

for all £>0 and all ¢ with compact support. This corresponds to the
situation when d=2 mentioned in the first paragraph of the introduc-
tion.

If d=1, the P“’s are again tight. Moreover, EP(")[p,(go)] =ﬁ8go,
and so any limit of the P®s must be concentrated at 0. Thus

P@ 5, as at oo,

§ 5. Ergodic Theorems for Generalized Ornstein-
Uhlenbeck Processses

In this section we consider O-U processes with characteristics A
and I. Throughout this section we assume that the semi-group, 7T,
generated by A satisfies, in addition to the assumptions in Section 1,

the following :

(5. 1) (p—>S:HTtgoH"dt is a continuous function on & (R4).
Note that if there is a distribution Re %’ (R?) and

(5.2) | To@dt=Rep(@),

then (5.1) is satisfied. If A=%A and d>3 then (5.2) holds with

R(x) =constant/ |z |*% If A=—4 and d>5 then (5.2) holds with
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R(z) =constant/ |z |** If A=4—|z|* then
ITglrde= 3 £ @181+ (A )

and so (5.1) holds (but not (5.2) since 4— |z|* is not translation
invariant.)

We rely heavily on the following fact:

(5.3) Levy Continuity Theorem (see [9]): If {C,(:);n=>1} are
characteristic functions of measures {p,;n>1} on ¥ (R*) and jor
each o= ¥ (R?) C,(¢)—>C(p) where C(e) is continuous, then C is the

characteristic function of a measure pand p, converges weakly to p.

(5.4) Lemma: Let {Py,: Me% (R} be the O-U process with
characteristics A and 1. Then there is a probability measure p on

S (R%) with characteristic function
Clp) =exp| =5 IT.glpas],
and p satisfies
(5. 5) SPM(N,EI’) w(dM) =p(I') for all measurable I'C % (R).

(. e., p is stationary for {Py: Mc% (RY)}).

Proof: From Theorem (1.4) (with M =0) we see that for all £>>0

exp| — 4 {ITgllas ]

is the characteristic function of a measure. Hence the existence of
£ with characteristic function C follows from (5.1) and (5.3). To
check (5.5) it suffices to show that

(5.6) [E™1e" 1 uamn = (o).

But this follows immediately from Theorem (l.4). Q. E.D.

Now if g%’ (R?) we define yy, to be g shifted by M. Then



774 RICHARD A. HOLLEY AND DANIEL W. STROOCK

tx has characteristic function
Cu(p) =ezp| i (9) — 3\ IIT.glds .

Our next theorem shows that all stationary measures of the O-U
process with characteristics A and I must be a special kind of average
of the ps.

(5.7) Theorem: Let v be a stationary measure for the O-U process
with characteristics A and 1. Then

(5. 8) ng taem (M),

where m satisfies
5.9 m(Nel')=m(T,NeIl')
for all t>0 and measurable I' T %’ (R?).

Conversely any such measure m defines a stationary measure v by

(5. 8).

Proof: Suppose v is stationary. Then for all >0
(5. 10) Se"“*’)y(dN) =SEPM[e"”r(“”]u(dM)
_ S FHTPE il ST eias @m.
Hence Sei"(T“’)v(dp), which is the characteristic function of a measure
v,, is equal to Al 3”T"WZ(“Se”"(”y(dN). As t goes to infinity
(5. 11) Se”"(“”v, @N)—e* e "T'““d‘gem% @n,

which is continuous by (5.1) ;and hence by (5. 3) is the characteristic
function of a measure m. Thus

Sem@”(dN) zgeiM(tp)—'}f;gUT‘?HZdtm (dM)

=Sgem<¢> e (AN) m (dM),
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and therefore vzgme(dM). Also

S &Y 1 (AN = lim S NIy (AN

s=»oo

— lim S YT (AN = Semwm (N,

s=>00

which proves (5.9).
Conversely suppose (5.9) holds and define v by (5.8). Then

SEPM [e‘N,(w)]v(dM) :SWL (dM)ge"N(T,w)—%-f(‘:HT,?(lzds#M(dN)

: L 2 2
_ e:M(Trw)—-!-fo 7,7 ol ds—%fsllT‘tp(t d:m (dM)
={emn(ann)
and so v is stationary. Q. E.D.

The next few lemmas are concerned with measures satisfying

(5.9).

(5.12) Lemma: If for all o€ % (R?), T,(p)—0 in ¥ (R?) as t—oo
then the only measure satisfying (5.9) 1is the ome concentrated on
zero. In this case, for all starting points M, P,oN;' converges weakly

to p as t goes to infinity.

Proof: The first part of this lemma follows from (5.3) and the
second part follows from (5.3) and Theorem (4.1). Q. E.D.

(5.18) Ezample: If A=4—|z|* then the hypotheses of Lemma
(5.12) are satisfied (see (A.10) and (A.15)).

(5.14) Lemma: If m satisfies (5.9) and is such that
m({N: there is an n such that A"N=0}) =1
then m({N: T,N=N for all t})=1.

Proof: TUsing induction on (1.1) one can easily show that for
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all Ne&' (R%) and all p= ¥ (R?)

N(Tg) ~N@) = 5 £ N@e) + Lo a—gmNarTpyas.

Thus if N is such that A"N=0 for some 7, then N(T,p) —N(p) as
a function of ¢ is a polynomial with zero constant term. In particular
if N(T,p)#N(¢p) for some ¢ then |[N(T,p) —N(¢) | goes to infinity as
t goes to infinity. From this observation it is an easy exercise to show
that since N(T,¢) and N(¢) have the same law under m for all i,
N(T,p) must equal N(¢) with m probability one. Since T,p is con-
tinuous in ¢ and ¢ separately and [0, o) and & (R?) are separable,
it follows that
m(N=T,N for all :1>0) =1.
Q.E.D.

We want to show that the hypotheses of Lemma (5.14) are

satisfied by Azid, but first we need the following result about tem-

2

pered distributions.

(5.15) Lemma: Leto=C~(R?) and assume that ¢ and its derivatives
grow no faster than polynomials. Let N be a tempered distribution
with support S and assume that SC {z:0(x) =0}. Then there is an
integer m such that o™N=0.

Proof: Suppose first that S is compact. Then N is a distribution
with compact support and hence there is a number C>0 and an
integer 7z such that for all p= % (R?)

(5.16) N@) [<C 3 sup Do) |
We take m=n+1 and show that ¢”"N=0.

Let peCr(R?) with support in {z: |z|<1}, 0>0 and Sp(x)dx:l.
Define p, () =6“’p<%> and ¢, (x) =,o.*Isz,, where §*= {z : dist (z, S) <e}.
Note that ¢,(z) =1 if z&S* and thus, since supp 6"NCS, ¢.0"N=0"N.

Next note that |Dg,(y) lée"""g |D*p(z) |dz and that sup  |o’(z) | is
zE8°¢
bounded by a constant times &. Thus if 0<e<1 and |a|<m, then
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sup, |D*6™(x) | is bounded by a constant times ¢"~'*l. Since ¢,(z) =0
zES°*
if z&S* it follows easily that sup|D*¢.0™(y)| is bounded by a

constant times ¢"~'*l. Thus there is a constant C such that for all

0<e<1
lo"N () | = |N(¢.0™p) |£Cl é sup | D*¢.0mp |
SeC—'I IZ sup | D¢ |;
al<n y

that is, o"N=0.
If S is not compact let 7,C; be such that

1if |z]<n

7,,(x)={0 if |z >n+l1.

Then 7,N has compact support and satisfies the hypotheses of the
lemma. Thus by the above there is an m, which depends only on
the order of N, such that 7,0"N=0. (Here we rely on the assump-
tion that N is tempered.) In particular the support of ¢”"N does not
intersect {zx: |x|<n}. Since this is true for all n, ¢"N=0.

Q. E.D.

We want to apply the above lemma to the following situation.
Suppose 6=C~(R?), ¢<0, o(z) =6(—x), and ¢ and its derivatives
grow no faster than polynomials. If o= (R?) let ¢ denote its
Fourier transform. Define an operator A on & (R%) by ﬁ?ozogb.
Since ¢<0 A is non-positive definite ; and, since o¢(z) =0(—x), Ao
is real valued if ¢ is real valued. A generates a self-adjoint semi-
group, T,, given by 7/1,\90=e“’¢.

If N is a tempered distribution N(p) =N (¢).

(5.17) Lemma: Let A and T, be as above and let m be a probability
measure on &' (R?) satisfying (5.9). Then

m(T,N=N for all ¢) =1.

Proof: By Lemma (5.14) it suffices to show that
(5.18) m({N: there is an m such that A"N=0})=1.
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A~ .
But A"N=0¢"N, and thus by Lemma (5.15), (5.18) will follow if

we can show that
(5.19) m({N: supp NCzeros of a})=1.

To see (5. 19) let p= &L (R?) be such that support ¢ N {z:0(x) =0} =4¢.
Then as ¢ goes to infinity e”¢ converges to 0 in &;(R?). Now since
for all t>0 the laws under m of N and T,N are the same, it follows
that the laws of N and ﬁ are the same. Hence N(go) and
ﬁ(go) =N(e"’gp) have the same law for all :£>0. But N(e"’go)——>0
as t—oo for all Ne¥'(R%). (5.14) follows easily from this.

Q. E.D.

(5.20) Ezample: If A=—é«d and o(x) :—%]x]z, then A and ¢
are related as in Lemma (5.17). Thus it follows from Lemmas (5. 17)
and (5.7) that all stationary measures for the O-U process with

characteristics fl—A and I are convex combinations of {uz: H a har-

monic function2in S (R*)}. It is also easy to see that the gy are
the extreme points of the set of stationary measures.

If v is a stationary measure given by (5.8) with m satisfying
(5.9), then whether or not v makes the process time reversible seems

to be closely related to whether or not m satisfies
(5.21) m({N: T,N=N}) =1

for all £=0. One direction of this relation is made clear by the

following lemma.

(5.22) Lemma: If v is given by (5.8) and m satisfies (5.21) then
v makes the process time reversible, i.e., for all 0<s<t and ¢, ¢
& (R?)

(5. 23) SEPM[ei(N’(¢)+N,(«IJ))]v(dM) :SEPM[ei(N‘(¢)+Nt(¢))]v(dM).

Proof: By making use of Theorem (1.4) it is a straightforward

computation to check that
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SEPM [ei(N‘(tp)+N'(¢))] v(dM)

: oo 2 oo 2 oo
=Se=M(w,+¢,)-+fo lip, 2= [ g IPau—[[g Cutimse D (M)

and

SEPM[ei(N'(¢)+N'(¢))]v(dM)

: oo 2 oo 2 )
:Se.M(¢‘+¢,)~+f‘, llo, I 2au—% [§Clio, Pau— [0, _ 24 (M),

Since T, is self-adjoint Sw (@us gb,_sﬂ)du:SN(got_,ﬂ, d)du. I m
satisfies (5.21) then M(¢,) =M (¢) and M(p,) =M(¢) for all ¢ and
s(a. s. m). and we have the desired result. Q. E.D.

(5.24) Remark: From the proof of Lemma (5.22) we see that
the condition on m that is equivalent to v being time reversible is
that for all 0<s<¢ and all ¢, gL (R?), the law of (M(p,), M(¢,))
under m is the same as the law of (M(¢,), M(¢,)) under m. Clearly
(5.21) implies this, but we are unable to decide if the opposite
implication holds.

The final goal of this section is to find a Banach space (X, ||-]|x)
contained (topologically) in &'(R?) such that: i) X is a dense F, in
L’ (R%) ; i1) for each MeX the O.-U. process P,, with characteristics
é—d and [ starting from M is concentrated on C([0, o), X); and
i) for each MeX and all 9=C,(X), EP“[(D(N,)]—»SQ)d‘uo as 100,
where p, is the probability measure on &’ (R?) with characteristic
function

exp| —3{ llelids],  pez (R,

Observe that if we prove iii), then automatically g, (X) =1. Moreover,
we will have shown that X is a state space for the (Feller continuous)
Markov family {P,: M X} and that {P,: Me X} is ergodic with
U as its unique stationary measure. (The Feller continuity is irrele-
vant for these considerations but will follow from our estimates below

plus the uniqueness which we have already proved in Theorem



780 RICHARD A. HOLLEY AND DANIEL W. STROOCK

(1. 4)).

In view of our characterization of the stationary measures for
{Pu: M (R}, it is clear that what has to be done is find a
Banach subspace X of &’(R?) such that 7,*M—0 strongly as t—oo
for all MeX. At the same time, this subspace must be chosen so
that P, is concentrated on C([0, o), X) and in addition that t—>7,*M
is strongly continuous into X for all MeX (this latter condition is
needed in order to assure that P, is also concentrated on C([0, o),
X)). Finally, X must have the property that the one-dimensional
time marginals PooN;* of P, are tight. Considering all the conditions
that must be met, it is somewhat surprising that X is so easy to describe.

Given p>0 and m >0, define ||+||, . on & (R?) by

INIlmy = X 2 (llps N =Nl a2 Nl o),

and let X, .,={NeZ (R?): |IN||logn<e}. (See (A.19) for the
definition cf |l[||ls.) It is easy to see that each X . is a dense F,
in &' (R?) (density comes from the inclusion Cy(R?) €X,,.) and
that (X, m> Il*ll¢.m) 1s a Banach space.

(5.25) Lemma: For all MeX,, ,, t—r.*N is strongly continuous
on [0, o) into X, ., and ||7,*N||,m—0 as t—oco. Moreover, for all
0<p<o and m=0, bounded closed subsets of X . are compact as
subsets of X, ni1-

Proof: Since 7,.,=7.*7., we need only check that t—7+N is
continuous from [0, 1) into X, .. To this end, note that by (A.23):

sup lrya*7e* N —71% NIty < Co (D lr1/a* N — Ny

and
sup [[[7.#7:* Nllom < Co (DN 7% Nl my-
0<e<1

Thus, in order to prove that

lim|l7,*N —7,#Nl|¢, m =0
>0
for Ne X,,.., and s€[0, 1), it suffices to show that
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lim||ly,* N —7,*Nilies =0.
>0

When >0, this is obvious from (A.24). When s=0, we argue as
follows. Since N& X, ., it is clear that 7,,*N—N in X, as n—>co

because i 7*|lyy.* N — N|l|y<oo. Thus if ¢>0 and we choose 7, so
1
that 2C,/n,<e and ||lfy.*N—Nl|lm<e for n>=n, then, by (A.24),

1 1
- = >n
for all te[n-l-l , n] where n>n,

Hlr:* N — Nl <Hlre* N —11/,# Nl [y +¢
1
SC,,(;—t—}-(l—nt))-l—s

1 1
SC’"(?(}Z-{-I)”‘_ n+1 >+e£26'

The proof that {[7,#Nll,.»—0 as t—oco for NeX,, Is an easy
consequence of the definition of X, . together with (A.23). Finally,
the assertion that bounded subsets of X, ., are compact subsets of
X(,.m+n 1s proved in exactly the same way as one shows that a bound-
ed self-adjoint operator is compact if it has a completely discrete

spectrum having zero as its only accumulation point. Q. E. D.

(5.26) Lemma: For all 0<p<1/2 and m>d-+6 the measure P, is
concentrated on C([0. o), X, ) and

(5.27) sup E[|IN.Jl. ] < co.

Proof: First note that for 0<s<¢

E"[(N,(¢) —N,(¢))1<2(t—5)llplf,

and that if X is a normal random variable with mean zero, then
E[X*1=15(E[ X?])®. Thus

(5. 28) E™[(N,() —N,(9))*1<120(t—5)*l¢|I"
Applying (5.28) to 7,-,#¢ we have
ERL(N, (7,-1%9) =N, (1,-1%0)) T <120 (¢ —5)°l 7,100l
S12086"”'Zd0(t—s)3|}¢]|“ o/ (=D,

L% (R



782 RICHARD A. HOLLEY AND DANIEL W. STROOCK

Also

1 —e—tlol?

E [N, @)1 =15({ 1755 ) 16 (@) pao):
<15( 2% 10l m o+l
and for n>2:
E[(N, (r,.-l*so>)‘]S15ll¢ll‘*uma,<g—el;,—“l;d0>3/(n—1)3""2”2.
Using (A.11) and (A.12) together with the above, we get:
(5.29) B[S wllirsioN, ~ st Nlll] A, (65)"
and

(5.30)  E"[3 wlllfa-r* Nl 0] <Bua,

for some A, ,, and B, ,, so long as m>d+6 and O<p<%.
Next, from (5.28) we have

1

nG

E[(N, (19 —¢) =N, (rx¢ —9))*1<120(t —5)°

1 6
—dol|.
2 “’”
Also, taking s=0:
P 1/n
Bl Gt =00 T <15 (7| ruvan (5 )0
1 (e (= 1
S(ZSO d'vgo 7,‘_”*(740)

<(gurlell gl

)
ED

a
0

Since, by (A.14), ||4h|F<dC(0, 2) (2|a|+d)?, we can use the pre-
ceding to find C,,, and D, ,, such that

(5.3 E°[E Il (rynr N, =N = (e N, = N 0] <Co, (=5’
and

(5.32)  ELY #llira*Ne—Nilllt] <D,
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for all 0<<p<{1/2 and m>d+6.
Combining (5.29) and (5.30), we arrive at

(5. 33) E[|IN, =Nl 1< (A ap+Cran) (E—5)°,

which implies that P,(C([0. o), X, .»)) =1 (since we already know
that ¢—N,(¢) is continuous for all p= % (R?)). Finally, (5.30) and
(5.31) yield:

sup E*[||N;/ff, ] < oo
Q.E.D.

We now have all the necessary facts to complete our program. Let
m>d~+7 and 0<p<1/2 be given. By the preceding we know that
P,(C([0, o), X,.))=1. Since for every MeX,, Py coincides
with the distribution of 7,#M+ N, under P,, it follows from Lemma
(5.25) that P, (C([0, o), X ) =1 and that for any 2=C, (X, n)

lim |[E"[@(N,)]—E™[@(N,)]|=0.

Finally, by Lemmas (5.25) and (5.26) we know that the measures
{P,oN;*: t>0} are pre-compact on X, . and we have already seen
that PooNy'—p, on &' (R%) ; and therefore PyoN;*—py, on X . for
all Me X, ,. With these remarks we have now proved our final
theorem.

(5.34) Theorem: If m>d—+7 and 0<p<l/2, then the collection
{Py: MeX, .} forms a strong Markov, Feller continuous family on
C([O! OO), X(p.m)) and

lim E*[0(N)]1 =0 dp,

Jor all O=C (X, m)-

Appendix

The purpose of this appendix is to catalogue some facts about

Hermite functions. We do not pretend that these facts are unknown,
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in fact many of them have become part of the standard folklore
among experts in distribution theory. All that we want to do is
compile them here for the convenience of our readers.

Given k>0, define g,: R'—>R' by

(A D & (z) =(—1)'e*Die~="

An obvious and basic fact is that

(A.2) i-kl—:g, (z) =e=="12+2a3-" z€R! and ieC.
0 .

From (A.2) it is not hard to derive:

(A.3) g, (x) =—§—gk+l<x> +hg,(2)
and
(A.4) gi(x) =kg,_,(x) — 9 glz-H.(x)

where g_,=0. Combining (A.3) and (A.4), one can easily arrive

at
(A.5) (=Di+2")g(x) =(2k+1)g.(2).

Starting once again with (A.2), one sees that

0if kI
(A. 6) (&0 g»-{nww i
Thus if
(A7) hy(z) = (22 1) Vg, (z),

then f{h,: #>0} forms an orthonormal sequence in L?(R'). The
function A, is called the %" Hermite function. A well-known fact is
that {h,: >0} is a basis in L*(R*). From (A.3), (A.4) and (A. D),
we obtain :

)i “<>+(k§1-) B ()5

(A. 8) zh,(z) = (2
k (+ 1)
~2) @) =D @),

(A.9) B () (
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and

(A. 10) (=Di+ax*)h(x) =(2k+1) A, (x).
Another consequence of (A.2) is

(A. 11) hi=i*h, k>0,

where

7 1 ifzx
£ EWS F(@)e=dz.
Thus, by the Fourier inversion formula and (A. 8):

() | = (2;})W|Sh,,<a)e—"“d0i

< comyrr] @i+ 2) 1oml]

for each ¢>0. Taking ¢/*=(2k+1)"%, we arrive at:

2 1

(A. 12) ih,,(x)!£<-n—>/2(2k+l)‘“, k>0 and z€R..

Next define for a= ({0, 1,..., &4,...})¢ the function A,: R‘—> R?
by
(A. 13) h,(x) =h"1 (z)... h"a (z,), z & R
Properties of the A,/s are easily read off from the corresponding
properties of the A,’s. In particular, from (A.8) and (A.9), we can

use induction to show that for all g, ve ({0,1,...,4,...})? there is
a C(y, v) such that

(A.14) lxtD2h JE<Cpy v) (2 |a|+d)'H+0,

Also, if €& (R?), then integration by parts shows that {(e, A,):
a>0} is rapidly decreasing (i.e. |a|"{(g, A,)|—0 as |a|—>co for all
n>0). Thus if o= (R?), then from (A.14) we have:

llz*Dz (o — 2 (@, h)RIN< 23 (@, ho) | Hiz*Dih||>0
lal<N lal>N
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as N1 oo, In other words:
(A.15) D (@ k)RS0 in # (RY

for all p= ¥ (R?). In particular, we can again use (A.8) and (A.9)
to show the existence of K(g,v) such that

(A-16) Iz DiplP < K(p,») L2l +d) " (o, h)*

for all p= ¥ (R%). In view of (A.10) and (A.16), we come to the
important conclusion that for each m>0 there exist 0<2,<4,<co
such that

A1 Allglii<C 2 = D) < 4llell™, =& (RY,
pl+bvlsm

where
(A. 18) (el (@, (—4+ |z [H)"p) =;(2 la | +d)" (o, b))%

We now want to derive some slightly less standard facts about
&’ (R?). Namely, let

(A.19) Hw={NES(R) :{[INllw= 2 (2]a]+d) ™ (N(H)) <o}

It is obvious that 4, is a complete separable Hilbert space. In fact
# m can be identified as the dual of the completion #™ of ¥ (R?)
with respect to i|-||” (for this identification one uses (A.15)); and
the action of Ne#, on #™ is given by:

(A.20) N(p) =2 (¢, k) N(h).

Of course, if o= & (R*) then N(¢) given by (A.20) coincides with
the action of N as an element of & (RY) on ¢ (this fact justifies
our use of the notation N(¢p) in (A.20).) As a consequence of these
considerations we see that

(A. 21) N[l = sup N(OIL
¢€F R\ (0} [lell]

We are at last ready to prove the next estimate.

(A.22) Theorem: Define 7,xN, t>0 and Ne %' (R?), by 7,+*N(p) =
N(y,#¢). Then for all m>0 and T >0 there is a C,(T)<oco such
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that :
A.23) s Nl SCo(DIWNllews  NEF .

Moreover, there is a C,<oco such that for all 0<s<t<1:

A 28) |l N=7o Nl <Cot=s+(1=5))INllws  NEF 0.

Proof: In view of (A.21), (A.23) and (A.24) will follow from
(.25 supllnedlll" <C.DII,  pes (RY,

and
A.26)  lireo—reall <Ce—s+(1=5)ligll™,  pes (R,

respectively.
To prove (A.25) let p¢ and v be multi-indices satisfying |p|+
lv|<m. Then

e Dipegll =I1Die~" (B ) | = 5 (DI ") D5 (@ )|
2
=2 OP, (2, ) D=2 (69) ||
B<p
where P,(t,0) is a polynomial in (¢,0) of degree 8 such that P,(0,8)
=0 if 8#0. Using (A.18), we see from this that
lz# D2y ol | < C,, (1 +2) [,

Since |||l =i{l¢|[|”, (A.25) is now obvious. Applying (A.18), we
arrive at (A. 26).
The proof of (A.26) is similar:

2Dz (740 — 1,2 0) || =| | Ds (e~ +1 —e=+101) () |!

<z ® e~ 19 (P, (£,0) — P, (s, 0)) Di~? (6°¢) ||
B0

+Z Ol (e~ *191* —e=#19) P (5, ) D+ (6°¢) ||
B0

]| (e 4 =) Dy (0°9)

The first term is bounded by C,(—9)|llgll|™. As for the last two
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2 2 . . .
terms, note that |e ¥V —e~*"| achieves its maximum at any 6,

_ 2 _ 2
such that se O e Thuys

—+lo |2 —+0,12 s
v —e LK1 ——,

le=#101® —g=tl0® | <
) - t

s
e
t

Hence the last two terms are bounded by

o(1-%) ZiEpI=c(1-5) DllaDzgll.

Applying (A.17) we arrive at (A. 26).
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