A Common Fixed Point Theorem for a Sequence of Multivalued Mappings

By

Kenjiro YANAGI*

§ 1. Introduction

Recently, fixed point theorems for multivalued contraction mappings in metric spaces were obtained by many authors ([5], [2], [7], [1], [4], [6], etc). On the other hand, Dube [3] proved a theorem on common fixed points of two multivalued mappings.

In this paper, we shall give a common fixed point theorem for a sequence of multivalued mappings satisfying some conditions in complete metric spaces. In our theorem, we shall obtain an extension of the result of Itoh [4] to the case of a sequence of multivalued mappings.

§ 2. Preliminaries

Let (X, d) be a metric space. For any $x \in X$ and $A \subset X$, we define $D(x, A) = \inf \{d(x, y) : y \in A\}$. Let CB(X) denote the family of all nonempty closed bounded subsets of X. For $A, B \in CB(X)$, let H(A, B) denote the distance between A and B in the Hausdorff metric induced by d on CB(X). The following lemmas are direct consequences of definition of Hausdorff metric.

Lemma 1. If $A, B \in CB(X)$ and $x \in A$, then $D(x, B) \leq H(A, B)$.

Lemma 2. For any $x \in X$, $A, B \in CB(X)$, $|D(x, A) - D(x, B)| \le H(A, B).$

Lemma 3. Let $A, B \in CB(X)$ and $k \in (1, \infty)$ be given. Then for

Communicated by S. Matsuura, June 24, 1976. Revised July 1, 1977.

^{*} Department of Mathematics, Yamaguchi University.

 $a \in A$, there exists $b \in B$ such that $d(a, b) \leq kH(A, B)$.

(X, d) is said to be metrically convex if for any $x, y \in X$ with $x \neq y$, there exists an element $z \in X$, $x \neq z \neq y$, such that

$$d(x,z) + d(z,y) = d(x,y).$$

In Assad and Kirk [1], the following is noted.

Lemma 4. If K is a nonempty closed subset of the complete and metrically convex metric space (X, d), then for any $x \in K$, $y \notin K$, there exists $z \in \partial K$ (the boundary of K) such that

$$d(x,z) + d(z,y) = d(x,y).$$

§ 3. A Common Fixed Point Theorem

The following is a common fixed point theorem for a sequence of multivalued mappings $T_n: K \rightarrow CB(X)$ when K is a nonempty closed subset of a complete metrically convex metric space X.

Theorem. Let (X,d) be a complete and metrically convex metric space and K be a nonempty closed subset of X. Let T_n $(n=1, 2, \cdots)$ be a sequence of multivalued mappings of K into CB(X). Suppose that there are nonnegative real numbers α , β , γ with $\alpha + (\alpha+3)(\beta+\gamma) < 1$ such that

$$H(T_{i}(x), T_{j}(y)) \leq \alpha d(x, y) + \beta \{D(x, T_{i}(x)) + D(y, T_{j}(y))\}$$
$$+ \gamma \{D(x, T_{j}(y)) + D(y, T_{i}(x))\}$$

for all $x, y \in K$ and for all $i, j = 1, 2, \dots$. If $T_n(x) \subset K$ for each $x \in \partial K$ and each $n = 1, 2, \dots$, then the sequence T_n $(n = 1, 2, \dots)$ has a common fixed point in K.

Proof. Since X is metrically convex, there exists $x_0 \in K$ such that $T_1(x_0) \subset K$. If $\alpha = \beta = \gamma = 0$, any $z \in T_1(x_0)$ is a common fixed point. In fact, for $n = 2, 3, \dots, H(T_1(x_0), T_n(z)) = 0$ and then $z \in T_n(z), n = 2, 3, \dots$. Since $H(T_1(z), T_2(z)) = 0$, we have $z \in T_1(z)$. So we assume that

 $\alpha+\beta+\gamma>0$. Since $\alpha+(\alpha+3)(\beta+\gamma)<1$, there exists k>1 such that $(1+k\beta+k\gamma)(k\alpha+k\beta+k\gamma)/(1-k\beta-k\gamma)^2<1$. We choose sequences $\{x_n\}$ in K and $\{y_n\}$ in the following way. Let $x_1=y_1\in T_1(x_0)$. By Lemma 3, there exists $y_2\in T_2(x_1)$ such that $d(y_1,y_2)\leq kH(T_1(x_0),T_2(x_1))$. If $y_2\in K$, let $x_2=y_2$. If $y_2\notin K$, choose an element $x_2\in\partial K$ such that $d(x_1,x_2)+d(x_2,y_2)=d(x_1,y_2)$ by Lemma 4. By introduction we can obtain sequences $\{x_n\}$, $\{y_n\}$ such that for $n=1,2,\cdots$,

- (a) $y_{n+1} \in T_{n+1}(x_n)$,
- (b) $d(y_n, y_{n+1}) \leq kH(T_n(x_{n-1}), T_{n-1}(x_n)),$

where

- (c) if $y_{n+1} \in K$, then $x_{n+1} = y_{n+1}$, and
- (d) if $y_{n+1} \notin K$, then $x_{n+1} \in \partial K$ and

$$d(x_n, x_{n+1}) + d(x_{n-1}, y_n) = d(x_n, y_{n+1}).$$

We shall estimate the distance $d(x_n, x_{n+1})$ for $n \ge 2$. There arise three cases.

(i) The case that $x_n = y_n$ and $x_{n+1} = y_{n+1}$. We have $d(x_n, x_{n+1}) = d(y_n, y_{n+1})$ $\leq kH(T_n(x_{n-1}), T_{n+1}(x_n))$ $\leq k\alpha d(x_{n-1}, x_n) + k\beta \{D(x_{n-1}, T_n(x_{n-1})) + D(x_n, T_{n+1}(x_n))\}$ $+ k\gamma \{D(x_{n-1}, T_{n+1}(x_n)) + D(x_n, T_n(x_{n-1}))\}$ $\leq k\alpha d(x_{n-1}, x_n) + k\beta \{d(x_{n-1}, x_n) + d(x_n, x_{n+1})\}$ $+ k\gamma \{d(x_{n-1}, x_n) + d(x_n, x_{n+1})\}.$

Hence

$$(1-k\beta-k\gamma)\,d(x_n,x_{n+1}) \leq (k\alpha+k\beta+k\gamma)\,d(x_{n-1},x_n),$$

and

$$d(x_n, x_{n+1}) \leq \frac{k\alpha + k\beta + k\gamma}{1 - k\beta - k\gamma} d(x_{n-1}, x_n).$$

(ii) The case that $x_n = y_n$ and $x_{n+1} \neq y_{n-1}$. By (d) we obtain that $d(x_n, x_{n-1}) \leq d(x_n, y_{n+1}) = d(y_n, y_{n+1})$.

As in the case (i), we have

$$d(y_n, y_{n+1}) \leq \frac{k\alpha + k\beta + k\gamma}{1 - k\beta - k\gamma} d(x_{n-1}, x_n),$$

thus

$$d(x_n, x_{n+1}) \leq \frac{k\alpha + k\beta + k\gamma}{1 - k\beta - k\gamma} d(x_{n-1}, x_n).$$

(iii) The case that $x_n \neq y_n$ and $x_{n+1} = y_{n+1}$. In this case $x_{n-1} = y_{n-1}$ holds. We have

$$d(x_n, x_{n+1}) \leq d(x_n, y_n) + d(y_n, x_{n+1})$$

= $d(x_n, y_n) + d(y_n, y_{n+1})$.

From (b) it follows that

$$\begin{split} d\left(y_{n},y_{n+1}\right) & \leqq kH(T_{n}(x_{n-1}),T_{n+1}(x_{n})) \\ & \leqq k\alpha d\left(x_{n-1},x_{n}\right) + k\beta \{D\left(x_{n-1},T_{n}(x_{n-1})\right) + D\left(x_{n},T_{n+1}(x_{n})\right)\} \\ & \quad + k\gamma \{D\left(x_{n-1},T_{n+1}(x_{n})\right) + D\left(x_{n},T_{n}(x_{n-1})\right)\} \\ & \leqq k\alpha d\left(x_{n-1},x_{n}\right) + k\beta \{d\left(x_{n-1},y_{n}\right) + d\left(x_{n},x_{n+1}\right)\} \\ & \quad + k\gamma \{d\left(x_{n-1},x_{n}\right) + d\left(x_{n},x_{n+1}\right) + d\left(x_{n},y_{n}\right)\}. \end{split}$$

Hence we obtain

$$\begin{split} d\left(x_{n}, x_{n+1}\right) & \leq \left(1 + k\gamma\right) d\left(x_{n}, y_{n}\right) + \left(k\alpha + k\gamma\right) d\left(x_{n-1}, x_{n}\right) \\ & + k\beta d\left(x_{n-1}, y_{n}\right) + \left(k\beta + k\gamma\right) d\left(x_{n}, x_{n+1}\right) \\ & \leq \left(1 + k\gamma\right) d\left(x_{n-1}, y_{n}\right) + k\beta d\left(x_{n-1}, y_{n}\right) + \left(k\beta + k\gamma\right) d\left(x_{n}, x_{n+1}\right), \end{split}$$

which implies

$$d(x_n, x_{n+1}) \leq \frac{1 + k\beta + k\gamma}{1 - k\beta - k\gamma} d(x_{n-1}, y_n).$$

Since $x_{n-1} = y_{n-1}$ and $x_n \neq y_n$, it follows from (ii) that

$$d(x_{n-1}, y_n) \leq \frac{k\alpha + k\beta + k\gamma}{1 - k\beta - k\gamma} d(x_{n-2}, x_{n-1}).$$

Thus it follows that for every $n \ge 2$,

$$d(x_n, x_{n+1}) \leq \frac{(1+k\beta+k\gamma)(k\alpha+k\beta+k\gamma)}{(1-k\beta-k\gamma)^2} d(x_{n-2}, x_{n-1}).$$

The case that $x_n \neq y_n$ and $x_{n-1} \neq y_{n+1}$ does not occur. Since

$$\frac{k\alpha+k\beta+k\gamma}{1-k\beta-k\gamma} \leq \frac{(1+k\beta+k\gamma)\left(k\alpha+k\beta+k\gamma\right)}{(1-k\beta-k\gamma)^2} ,$$

we proved the following; for $n \ge 2$,

$$d(x_{n}, x_{n+1}) \leq \begin{cases} pd(x_{n-1}, x_{n}), & \text{or} \\ pd(x_{n-2}, x_{n-1}), \end{cases}$$

where $p = (1 + k\beta + k\gamma) (k\alpha + k\beta + k\gamma) / (1 - k\beta - k\gamma)^2$. Put

$$\delta = p^{-1/2} \max \{d(x_0, x_1), d(x_1, x_2)\},\$$

then by induction we can show that

$$d(x_n, x_{n+1}) \leq p^{n/2} \delta$$
 $(n = 1, 2, \dots)$.

It follows that for any $m > n \ge 1$,

$$d(x_n, x_m) \leq \delta \sum_{i=1}^{m-1} p^{i/2}$$
.

This implies that $\{x_n\}$ is a Cauchy sequence. Since X is complete and K is closed, $\{x_n\}$ converges to some point $z \in K$. From the definition of $\{x_n\}$, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} = y_{n_i}$ $(i=1,2,\cdots)$. Then for $n=1,2,\cdots$, we have

$$\begin{split} D(x_{n_{i}},T_{n}(z)) & \leqq H(T_{n_{i}}(x_{n_{i-1}}),T_{n}(z)) \\ & \leqq \alpha d(x_{n_{i-1}},z) + \beta \{D(x_{n_{i-1}},T_{n_{i}}(x_{n_{i-1}})) + D(z,T_{n}(z))\} \\ & + \gamma \{D(x_{n_{i-1}},T_{n}(z)) + D(z,T_{n_{i}}(x_{n_{i-1}}))\} \\ & \leqq \alpha \{d(x_{n_{i-1}},x_{n_{i}}) + d(x_{n_{i}},z)\} \\ & + \beta \{d(x_{n_{i-1}},x_{n_{i}}) + d(z,x_{n_{i}}) + D(x_{n_{i}},T_{n}(z))\} \\ & + \gamma \{d(x_{n_{i-1}},x_{n_{i}}) + D(x_{n_{i}},T_{n}(z)) + d(z,x_{n_{i}})\}. \end{split}$$

Thus

$$D(x_{n_i}, T_n(z)) \leq \frac{\alpha + \beta + \gamma}{1 - \beta - \gamma} \{ d(x_{n_i-1}, x_{n_i}) + d(z, x_{n_i}) \}.$$

Therefore, $D(x_{n_i}, T_n(z)) \to 0$ as $i \to \infty$. By the inequality $D(z, T_n(z)) \le d(x_{n_i}, z) + D(x_{n_i}, T_n(z))$ and the above result, it follows that $D(z, T_n(z)) = 0$. Since $T_n(z)$ is closed, this implies that $z \in T_n(z)$, $n = 1, 2, \cdots$. Q.E.D.

Remark. If $\alpha, \beta, \gamma \geq 0$, then $\alpha + (\alpha + 3)(\beta + \gamma) < 1$ if and only if $(1+\beta+\gamma)(\alpha+\beta+\gamma)/(1-\beta-\gamma)^2 < 1$. Hence putting $T_n = T$ for $n = 1, 2, \cdots$ in our theorem, we obtain the result of Itoh [4].

Since every Banach space is metrically convex, we have the following corollary for singlevalued mappings.

Corollary. Let E be a Banach space and K be a nonempty closed subset of E. Let f_n $(n=1, 2, \cdots)$ a sequence of singlevalued mappings of K into E. Suppose that there are nonnegative real numbers α , β , γ with $\alpha + (\alpha + 3) (\beta + \gamma) < 1$ such that

$$||f_{i}(x) - f_{j}(y)|| \leq \alpha ||x - y|| + \beta \{||x - f_{i}(x)|| + ||y - f_{j}(y)||\}$$
$$+ \gamma \{||x - f_{j}(y)|| + ||y - f_{i}(x)||\}$$

for all $x, y \in K$ and for all $i, j = 1, 2, \cdots$. If $f_n(\partial K) \subset K$ for each $n = 1, 2, \cdots$, then there exists an unique common fixed point $z \in K$.

We conclude this paper by stating an open problem whether our theorem holds when nonnegative real numbers α , β , γ satisfy $\alpha + 2\beta + 2\gamma$ <1 instead of $\alpha + (\alpha + 3)$ $(\beta + \gamma) < 1$.

Acknowledgement. The author wishes to thank the referee for his critical and helpful comments.

References

- [1] Assad, N. A. and Kirk, W. A., Fixed point theorems for set-valued mappings of contractive type, *Pacific J. Math.*, **43** (1972), 553-562.
- [2] Dube, L. S. and Singh, S. P., On multivalued contraction mappings, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 14 (1970), 307-310.
- [3] Dube, L. S., A theorem on common fixed points of multivalued mappings, Ann. Soc. Sci. Bruxelles, 89 (1975), 463-468.
- [4] Itoh, S., Multivalued generalized contractions and fixed point theorems, Research Reports on Information Sciences, Tokyo Institute of Technology, A-21 (1975).
- [5] Nadler, S. B. Jr., Multivalued contraction mappings, Pacific J. Math., 30 (1969), 457-488.
- [6] Ray, B. K., Some fixed point theorems, Fund. Math., XCII (1976), 76-90.
- [7] Reich, S., Kannan's fixed point theorem, Bollettino U. M. I., 4 (1971), 1-11.