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Complex Analytic Construction of the Kuranishi
Family on a Normal Strongly Pseudo
Convex Manifold

By

Takao AKAHORI*

Introduction

Let (V, ) be an analytic subset of a domain in a complex
euclidean space with an isolated singular point xz. Then, we obtain a
real submanifold M by cutting the analytic set by a sphere of suffi-
ciently small radius centered at z. As is well known V defines a
subbundle of fibre dimension n—1, to be denoted by ‘T”, of the
complex tangent bundle CTM of M, where 7 is the dimension of V.
It is the set of all elements in CTM which are of type (0,1) in
CTV|y. If Vis normal and stein, V is completely determined by
(M, °T") (H. Rossi [6]). So M. Kuranishi considered a deformation
theory of isolated singularities (V, x) by means of a deformation
theory of pseudo-complex structures (M, °T") (M. Kuranishi [4]).
But his result is not definitive enough in the following sense : Since 9,
is not elliptic, he had to use the Nash-Moser inverse mapping theorem,
which does not preserve the analyticity. So he constructed only a C~
versal family, without putting a complex structure on the family. We
have to take a new approach to remedy this point.

In the previous paper (T. Akahori [1]), the author reformulated
an abstract almost pseudo-complex structure sufficiently close to the
given one by a tangent bundle valued form ¢ of a certain type and
rewrote the integrablity condition as a system of d,-equations. The

results are formulated in the following two propositions :
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Proposition 1.6.1. An almost partially complex structure T" at a
finite distance from °T" corresponds to ¢ in I'(M, T'"Q (*T")*) one to

one. The following formula determines the correspondence.

= (X X=X 4(X), X&'T")

Proposition 1.6.2. *T" is integrable if and only if the following
relation holds :

P(p) =3P ¢+ R,(¢) + R, ().

Here numbers given to propositions refer to those given in later

sections.

M. Kuranishi gives the condition equivalent to the above. He
looked for the solutions of corresponding differential equations in
I'(M, TQ(CT")*), where he made an essential use of the Nash-
Moser inverse mapping theorem. In this paper we try to look for
the solutions of P(¢)=0 in the subspace I'(M, ‘T"®(T")*) of
I'M, TQ(CT")*) in case where M is a compact normal strongly
pseudo-convex manifold. In §1, we shall also have the following

proposition :

Proposition 1.7.1. For all elements ¢ in I'(M, "T"Q (°T")*), the
relation P(p)=0 holds if and only if the following relations hold.

Dio+ Ry (9)=0
and
Le=0,
where L is an operator from I'(M, *T"® CT")*) to I' (M, FOA CT)*),

linear over the ring of the C=-functions and D, is a first order linear

differential operator from I' (M, *T'®Q (T")*) to I (M, °T”®/2\ T ™).

This proposition has nothing to do with normality. Normality
appears when we study the first order differential operator D, As
was defined by N. Tanaka a compact strongly pseudo-convex manifold
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M is said to be a compact normal strongly pseudo-convex manifold if
and only if M has a global real vector field & such that [§, I'(M,°T")] C
I'(M, °T") and &,&Re(T,@T;) for every point P of M. On a
compact normal strongly pseudo-convex manifold M there exists a

differential complex of the following form:
0—1"(M, *T") 2T (M, *T'® CT")*) —T' (M, “T"QA (T *).
Using the above fact, we shall solve the differential equation
D¢+ R,(p)=0
and
Le=0

in I'(M. *T"Q(°T")*). The following propositions assure that we
can construct a versal family likewise in the case of compact complex
manifold.

Proposition 3.13. Assuming that (M, §) is a compact normal
strongly pseudo-convex manifold and dim, M=2n—1=7, the following
relation holds.

INDF R, (0) |ty <010
uniformly for all ¢ in I'(M, *IT"Q (°T")*), where m is a non-negative

integer. (The author got the idea of this estimate through the
communication with M. Kuranishi.)

Proposition 4.1. Denote by I'(,y (M, TR (°T")*) (resp. I'(,, (M, FQ
/2\(°T”) *)) the Hilbert space obtained by completing I' (M, °T"R (°T") *)
(resp. T' (M, F®/Z\ ("T")*)) with respect to the norm || ||(,, introduced
in §3. Setting Z, = {¢: o= (H;—I—DD*N) @, pin 'y (M,"T"Q ("T") *)},
LZ, is closed in I'(,(M, FRN(CT")*).

Then we have the main Theorem in this paper.

Main Theorem 5.2. Under the assumptions that HP =0, dim.M

=2n—1>7 and (M, &) is a compact normal strongly pseudo-convex
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manifold, there exists a deformation ¢(t), complex analytically para-
metrized by a neighborhood of the origin in the euclidean space H#
such that:

1) There exists an element ¢(t), a ['(M, "T"Q(CT")*) wvalued
function of t of C’~class such that the following relation holds:

?(0)=0
and
P(ep(2))=0.

2) The linear term of ¢ty ty .oy b,) 1S Zq] Bit;, where {B.} 1<z, 1S
a system of basis of # and dim H#=q.

In §6, we prove that this family is the versal family of isolated
singularities in the sense of M. Kuranishi.

The assumption of normality of M is not too restrictive, because
Tanaka has proved that the isolated singularity (V, z) defined by a
quasihomogeneous polynomial in a euclidean space has a compact
normal strongly pseudo-convex manifold M such that M=0V’,embedded
in a slightly larger open manifold V.

It is noted that H. Gravert and A. Douady constructed a versal
family of isolated singularities in another way. We hope that this
method gives a new insight into the problems of deformation of sin-

gularities (not necessarily isolated).

§1. The Boundary of a Complex Analytic Space

and Its Deformation

(1.1) In this section we shall study the boundary of a complex
analytic space and recall its deformation theory developed in [1].
Let Y” be a complex analytic space of complex dimension n. Let Y be a
relatively compact open subset of Y’ with strongly pseudo-convex
smooth boundary »Y. This means that in a neighbourhood of 5Y, we
can find a complex coordinate system (25, 25..., 2,) and a real
valued C” function r with the following properties: 7<0 in Y, >0
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outside of ¥, dr+#0 on bY and {r=.-5,~} is a positive definite hermitian
matrix on bY. Then Y defines a subbundle of fiber dimension n—1,
say 'T”, of the complex tangent bundle CTbY of bY, where n is the
dimension of Y. We call the subbundle obtained as above a partially
complex structure. It is the set of all elements in CTbY which are
of type (0,1) in Y, i.e., using the notation °7”, an element of °T”
is of the form

M=

a,(x)0/0z,

k=1

where = in bY and we require that
> a,(x)dr/oz,=0
k=1

on bY.

(1.2) J. J. Kohn has shown that the methods of harmonic integrals
work on such boundaries and describes the d,-equations. Thus we
can bring the techniques of harmonic integrals into the study of
isolated singularities. To do this we study the abstract strongly
pseudo-convex manifold owing to Tanaka.

Let M be a differentiable manifold. By a partially complex
structure on M, we mean a pair (M, °T") of M and a subbundle
°T" of CTM, where °T” satisfies the following conditions A.1) and
A.2):

A1) °T"'N°T"=0,
A.2) for any X, Y in I'(M, °T"), [X, Y] is in I'(M, °T").
M with °T” is also called a partially complex manifold. Let M be a

partially complex manifold. Then there exists the following exact

sequence of vector bundles.
0> T T"->CTM—CTM/ T"@®"T"—0.
Differentiably, this sequence splits and the splitting commutes with the

operation of complex conjugation. So there exists, differentiable vector

bundle isomorphism

p: T T ®CTM/ T' @ T"—CTM.
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We shall fix this splitting CTM="T"®"T"®F, where F=pu(CTM/
‘T"@®°T"). For each z in M, we define F-valued hermitian form
L, by

L.(X, V)=V-1[X, Y1,

for X, Y in I'(M, °T"), where by [X, Y], we denote the projection
of [X, Y] to F according to the above spliting CTM="T"@'T"@F.
The hermitian form L, is usually called the Levi form at z. We say
that (M, 'T") is a strongly pseudo-convex manifold (abbreviation:an
s. p. ¢. manifold) if dim F=1 and if the Levi form L, is definite at
each z, i e., the conditions z in °7” and [X, X];=0 imply X=0.
If there exists a complex analytic space Y and its boundary #Y such
that bY is strongly pseudo-convex, then the Levi form L, is definite
at each x. Conversely if the Levi form L, is definite at each £ and
Y bY is compact. bY is strongly pseudo-convex in Y. It is a theorem
of H. Rossi that if Y is normal and stein, Y is determined by the
pair (Y, °T"). (H. Rossi [6].)

(1.3) In this paper, we shall study the deformation of partially
complex structures on a normal s.p.c. manifold and construct the
Kuranishi family on it. To do this, we shall recall the definition of

a normal s. p. ¢c. manifold.

Definition 1.3.1. An s.p.c. manifold (M, °T") is called a normal
s.p.c. manifold if and only if there exists a global real wvector field
& on M such that

[& I'(M, ‘THICT(M °T"), &,&Re(CT;@'T;) for any pof M.

Example. A typical example of a normal s.p.c. manifold is a
Brieskorn variety. Let f(2 2s..., 2,) be a weighted homogeneous
polynomial of type (a, ..., @,), where a,, @, ..., a, are positive
rational numbers (Milnor [5]). By definition the polynomial f satisfies
the equality

/ /
fe 2y ..., e 2) =€ (2. ., 2,)

for every complex number ¢. Clearly we have f(0)=0. We assume
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that the origin o is an isolated singular point of f. It is easy to see
that the origin is the only isolated singular point of f. We put
Y=7"1(0), and for every positive number ¢ we denote by M, the
intersection of the complex hypersurface f7'(0) with the sphere
S»7'(e). Then M is an s.p. c. real hypersurface of Y. We shall show
that this s.p.c. manifold M is normal. Define a one parameter

group of holomorphic transformations of C*, 7,, by

V—1/a,
7,(2)= (2., 20), 2i=e"" iz,

Clearly 7, leaves invariant Y, S*7'(¢) and hence M. Let & be a
vector field on M induced by the one parameter group. Then § is

a real vector field and satisfies the relation
L&, I'(M, *TH]cI'(M, °T"),

i.e., & is the real part of a holomorphic vector field and &,&Re ("T,@
°T,) for every point p on M.

(1.4) Let (M, §) be a normal s. p. c. manifold. Then there

exists the following bundle isomorphism.
p: TR T'PCE_~ ,CTM.
We shall fix the splitting CTM="T"@®'T"@F newly, where F= u(C¢).
Using this splitting, we define a first order differential operator
D:I'(M, *T")Y ->I'(M, *T"® ("T")*)
by
Du(X)=[X, u]oT”

for all  in I'(M, °T") and X in I'(M, °T”). This map is well
defined since the relation. [fX, ul,,,=f[X, u],,, holds for all C*
functions f, X in I'(M, °T") and u in I'(M,°T"). Here by [X, ulo,,s
we denote the projection of [X, u] to "I” according to the above
new splitting CTM="T"@"T"@PF. Then we have

B.1) X(fu)=Xfu+fXu,
B.2) [X, Ylu=X(Yu)— Y(Xu),
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where u in I'(M, °T"), fin ’'(M, C), X, Y in I'(M, °T") and we
put Xu=Du(X)=[X, u],,.
In fact, from the relation [X, fu]l= (X u+ f[X, u], we have
[X9 fu]oT,,: (Xf)u+f[X: u]oT,,-
So the relation B.1) is proven. From the Jacobi identity [[X, Y], u]=
[X, [Y, «]]1-[Y, [X, «]1], we have the relation [[X, Y], u].,T”=
[X, LY, «]l,,,— LY, [X, u]lo,, According to the new splitting, we

have the relation
[X, u]l=[X, ul,,+[X, ul,,,+[X, uls
and
LY, ul=LY, «],,+ LY, ul,,+ LY, «]-
So we have
[z, Y1, vl =[X, [Y, ull,,— Y, [X, «]],,
—[X, [V, ulo, +[Y; ulo, +[Y; ul:ls,
=LY, [X, ul,,+[X, ulo,+[X, ulelo,,
=X, [V, uloJop— Vs [X, w1, Tor,e

(From the relations [& I'(M, °T"]cI'(M, °T") and [['(M, °T"),
I'(M, °T")]c I’ (M, °T").) The relation B.2) is proven.

(1.5) From the relation B.1) and B.2), we can define an
operator D, for each p>1 from I'(M, °T”®/\(°T”) *Y to I'(M, "T"®
+1 -

P/\(“T")*) as follows. For any ¢ in I'(M, °T"®;\(°T") *), we set

Dyp(Xyy Xpyovoy X,)=L (D" Xe0(Xy .., Xty X
+§(— 1)-‘+i€0([Xi’ Xi])'--; Xi:"': Xi:"-: XPH)

where X; are in I'(M, 'T") and we put Xu=Du(X)=[X, u],,.

Then we have the following differential complex.
0 (M, *T") — I (M, TR CT) ) —T (M, T'RACT)*)

— T TRACT) ) =T (M, T ONCT) ) —.
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Especially we have

Dip(X, V) =[p(X), Y], +[X, oD, — (X, YD.

(1.6) Now we shall recall results obtained in [1]. Let (M, °T")
be an abstract s. p. c. manifolds. Then we have

Proposition 1.6.1. Setting T'="T"Q@F, an almost partially complex
structure *T" at a finite distance from °T" corresponds to ¢ in
I'M, TQ(CT")*) bijectively. The following formula determines a
bijective correspondence.

T = (X+¢(X): Xe'T"}.

Proposition 1.6.2. *T” is integrable if and only if satisfies the
following relation.
P(p) =09+ R,(¢) + R;(p) =0,

where

R,(9) (X, N =[0(X), o(N]r—o([X, ¢(V)]o,+[¢(X), Y],,,)

and

Ra(#’) (Xa Y) = SD([SD(X)’ SD(Y)]OT,,)-

For the proof, see Proposition 1.1 and Proposition 2.1 in [1].

(1.7) We shall solve this first order non-linear differential equa-
tion p(¢)=0. But it is difficult to solve this in I'(M, T'"QR("T")*)
since ;. is not elliptic.  We shall look for the solution of p(¢)=0 on
a restricted space.

Proposition 1.7.3. P(¢) =0 holds for all ¢ in I' (M, "T"Q ("T")*)
if and only if Do+ R,(¢) =0 and L=0, where we put Lo(X, Y)=
[p(X), YI:+[X, (V)]s

Proof. The relation P(p)=0 holds if and only if (P(9)),,=0

I
and (P(¢))z=0, where by (P(¢)),,, we denote the projection from

4

(M, TRACT)*) to I'(M, “T"®A CT")*) according to the splitting



798 TAKAO AKAHORI

CTM="T"®"T"DF and by (P(¢)), we denote the projection from
I'(M, TOACT)*) to I'(M, FOACT")*) according to the splitting
CTM="T"@®"T"@®F. We shall compute the relations (P(#))o,,=0 and
(P(¢))r=0 for ¢ in I'(M, "T"Q (°T")*).
(P(9))o,, (X, ¥)=([o(X), Y]+ [X, (VN ]Ir—e([X, YD
+Le(X), (N 1r—e([e(X), Yo,
+[X, o(N],,) +e([e(X), ¢(Y) Do,

TV

=Dp(X, Y)+R.,(p) (X, Y)
(PN (X, V)= [e(X), Y]o+[X, o(N)]r—o([X, YD)»r
=Lp(X, Y).

So Proposition 1.7.3 is proven. Q. E.D.

§2. The Complex (/"(M, F®/’\(°T")*),6_§.~">)

(2.1) In this section we shall define a differential complex
(I'(M, FQACT")*), 3»). By I'(M, FQA(CT)*) we denote the
following

? ?
I'(M, FQNACT)*)={¢: ¢=9¢&¢, ¢l (M, QACT")*)}.

We define a first order differential operator 0, from I'(M, F) to
I'(M, FQ(°T")*) as follows: For any element u ['(M, F) we set

du(X)=[X, uls,

for X in I'(M, °T"), where by [X, u]; we denote the projection of
[X, u] to F according to the splitting CTM="T"@"T"@F introduced
in §1.

(2.2) Then we get the following relations C.1) and C.2).

C.1) X(u)=Xfru+fXu,
C.2) [X, Ylu=XYu)—Y(Xu),

where u is in I'(M, F), f is a C° function on M, X, Y are in
I'(M, °T") and we put Xu=du(X)=[X, ul,.
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Proof. In fact from the relation [X, ful=Xf-u+f[X, ul, we
have
LX, fule= Xf u+f[X, u]s
So we get the relation C.1). From the Jacobi identity, we have
[[X, Y], ule=[X, [Y, u]l.— LY, [X, u]].
(M. &) being a normal s. p. c. manifold, we have the relation
LY, u1=1Y, ul:+L[Y, ul,,

forall Y in I'(M, °T") and u in I'(M, F). (In fact for each # in
I'(M, F) there exists a C* function %’ on M such that

7e

u=u'ét,
Therefore we have the relation
LY, u]=1Y, «'¢]
=Yu &4+ u'lY, &}
=LY, ul+LY, ul

T

because the relation [I'(M, °T"), &lcl' (M, °T") holds.) So we
have the following relation :
[[X’ Y]) u]F: [X; [Y3 u]]F_[Y5 [Xs u]]F
Z[X: [Y’ u]F'{‘[Ya u]OT,,]F_[Y: [X3 u]F
+[X, u]oT,,]F
=[X, LY, ul:1:— LY, [X, ulels
for all X, Y in I'(M, °T").
So we have the relation C. 2).

(2.3) From C.1) and C. 2), we can define a first order differential
operator 0¥ from I'(M, F@/p\(“T") *y to I'(M, F®P/+\l(°T”) *) as
follows : for any ¢ in I'(M, F®/’\(°Tﬂ)*)a

p+1 X “
PP (X, ..., X,+1)=§(—1)‘+1X;-¢(X1,.. y Xipeowy X,u0)
+;(—'1)'+1¢([Xu Xj]) Xla--'s Xi’-"a
Xin"': Xp+1)9
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where XJs are in I'(M, °T") and we put
X (Koo, Xyoor) X,0)=0:(0(Xyyoovy Xiyoony X,0) (X)),

Then we have the following differential complex
0 ow 2
0->I'(M, F)—>I' (M, FQ (°T")*)——I'(M, FQA(CT")*)
3;1:—1) » ';g) 1
——I'(M, FQNACT")*)——I' (M, FACT)™)

> e

(2.4) We shall study the d¥’-cohomology group. We set a linear
map 7, from I'(M, ;\(“T")*) to I'(M, F®;\(°T")*) as follows: For

each ¢ in I' (M, /P\(°T") *), we set
7,(¢) =9 RE.

Then the following diagram commutes:
r o 1
I'(M, \NCT")*) — I'(M, \NCT")™)

()

» 04 pt1
I'(M, FQA(CT")*) — I'(M, FQN(T")*).

!Tp+1
v

(In fact for any ¢ in I'(M, ACT")*), we have
0P (¢RE) (Xiy Xoyo vy Xpir)
X's ety XP-H)E]F

:Z<—l)jfl[Xn ¢(X1> Xz,---: i
+;(_1):+1¢([X” Xj]>"'5 Xi:"'s Xj:'°': Xp+1)s

=S (—DMXP(Xy Xpyoooy Xpyoony X008
+§(_1)'+J¢([Xu Xi]"-': Xi:"') Xja'-'a Xp+1)E

= (31(7”90) (X, Xppen s Xp+1) 3
X

= (55P)¢®$) (X, Xz: vees p+1)3
For the details see T. Akahori [2].)

for any X, in I'(M, °T").
(2.5) TUnder this situation, we have the following Proposition

2.5. 1.
The map t, induces the following isomorphism

Proposition 2. 5. 1.
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Ker 0 /Im 0¢>——sKer 0¥ /Im 0%~>.

Proof. From the fact that 7, is an isomorphism from I (M, ;\
CTH*) to I'(M, F®;\(°T”) *) and from the relation 0¥’ -z,=7,,,-0%,
we have our Proposition. Q. E. D.

(2.6) Now we shall introduce a first order derivation L, on
I'(M, FQACT)*). For each u=u'®¢E in I'(M, FQACT)*) with
v in I'(M, /P\("T")*), we set

L(w'®8& (X, X..., X,)
=& (X Xpouny X,)
(=D X Xy X, X,))QE
We consider #’ as an element of I"(M, ;\(CTM) *) according to the
splitting CTM="T"@®°’T"@®F. Then the above definition of L. is
rewritten as

L (@'®8) (Xyy Xpp..., X,)=du'(§, X, X,,..., X)),

Therefore L, is nothing but the Lie derivation in differential geometry.
Then N. Tanaka proved that there exists a hermitian metric g on M
such that

Lg=0
in [3]. So we have the relation
V=1 &u, w>=—1 Lau, u">—<u, V=1 Lu">

for all w, «’ in I'(M, F®/P\(°T”)*), where by < , > we denote the
inner product defined by the above metric g.

(2.7) We shall define an L*norm on " (M, F®/p\ ('T")*) by the
above inner product. Then V—1 L, is a self adjoint operator by
Proposition 3.1 in [3]. Moreover we have the following Proposition.

Proposition 2.7.1. If we put

e= 8}") ,5; ® 4 3; (p+1), a;pﬂ)’
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then we have
V=1 Ly Oe=0,V—1 L,

where 05 denotes the L*-adjoint operator of 0¥ and p denotes a non-

negative integer.

Proof. Since L, is a Lie derivation, we have
L,.09=0®-L,
Therefore it suffices to prove that
L0 P=05?.L.=(p, 0V—1 L) = (=1 L3t?Pp, ¢)

In fact we have
(5}‘(’)\/_———1 Le% &) = (‘/__—T Le% 3;1’)9[;): (903 V=1 Lﬁ;f')gb)

for all ¢ in I'(M, FOACT)*) and ¢ in ['(M, FQACT")*). This
proves the proposition. Q. E. D.

(2.8) We speak of the harmonic theory on I'(M, F®;\(°T”) *)
by J. J. Kohn. In particular there exist the Neumann operator Ny
and the harmonic operator H; with the relation I=Hy+ (1N, From
Proposition 2. 7.1 it follows that L, preserves the space of harmonic

forms, and the following Corollary 2. 8.1 holds.

Corollary 2.8.1. The following relation holds.
Nee L= L;* Ny.

§3. A Priori Estimates for D,

We shall prove some a priori estimate in order to construct the
versal family. The proofs of the estimates are very complicated
exercises in integration by parts. To write down equations rather
shortly, we shall state some notations.

For any >0 there exists K>0 such that for all positive numbers
a and b, ab<s’+ Kb*. We shall write this relation as
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ab< (s.c)a*+ (L. c.)b,

“small

where (l.c¢.) stands for “large constant” and (s.c.) stands for
constant” with the understanding that (s. ¢.) may be chosen as small
as it is necessary if we take (L c.) sufficiently large. If A and B are
real-valued functions on a set S, we use the notation A<<B to mean
that for some ¢ >0, A(¢) <cB(s) for all ¢ in S. If A and B also
depend on other parameters, we shall say A<<B uniformly for ¢ in S
to indicate that the constant ¢ is independent of ¢, although not of
the other parameters. Further, we write A~B to mean that A<B
and BZA.

As usual let Cy(R™) denote the space of C* functions with
compact supports on a euclidean space R*7'. For each non-negative

integer m, we define the Sobolev norms || ||y on C7(R*™') by
fllo= 2§ ., 00 f@) iz,
l11<m JR

where by / we denote a multi index (7y, y..., ¢,), 1<6,<0,<...<
i,<2n—1 and by 0'/0z' f we denote

&' /dx, 0z, . .. 0z, f,

where by {2,}i<i<;a-n we denote a real coordinate system of R*™

Let {U,, hi}icx be an atlas of M such that K is a finite set and
such that each U, is homeomorphic to R*7'. (We are assuming that
M is compact s. p. ¢.) Let {0} be a partition of unity subordinate
to the atlas. For each %, take a moving frame (e, ei, ..., ¢'_)) of
"T"|y, and a moving frame (&, &,..., &_,) of °T”|Uk such that
Lel, e]r=V—10,,6 4, j=1, 2,...,n—1. By J* we denote the setof
all ordered sets (Zy, 25 ..., %) of integers with 1 <7,<7,<...<i,<n—1.
For any ol (M, "T'QA CT")*), I€J* and I (1<I<n—1), define C
functions ¢;; on U, by

(efls e?z’ veey e?q) = Z (Pf,léllk,
7

where I= (f;, %5 ..., %,). Using these functions, we define the Sobolev
m-norm || || in (M, OT/I@/‘I\(OT”)*) by

Il =33 llGore ¢h.2) ohi o
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Moreover we define norms || ||ty and || ||(m on I'(M, °T"®/‘\(°T”)*)
by

HSDH(m): lloxet (5. 1) oA omy

i, Ik

+ 2 [0 (@50) o | [im + ol e

i 7.1, k

x.

~..

and
el = i o€t (@ ) o oy
+_ 2 llefiei (g bl
+i'j_lZ_I'prk eses (o ) ohi | ltm
+ % (et ohi i+ gl

(From now on, we omit p, and A;' for brevity.)

J- J. Kohn [3] has shown that the methods of harmonic integrals
work on an abstract s. p. c. manifold. In this section we assume that
(M, &) is a normal s. p. c. manifold of dimgM=2n—1>7. Then we

have the following Proposition 3.1 by Kohn’s arguments.

Proposition 3.1. The following estimate
D10l + [1Diellt + el = lell6

holds uniformly for all o=I" (M, °T”®/i\(°T")*), where D} is an
adjoint operator of D, with the above Sobolev 0-norm, i=1 or 2 and

we put Df = D*

Proof. We only deal with the case i=1. The case i=2 can be
shown analogously. For ¢ in I'(M, *T"® (*T") *), we have the relations

(3.1) (D) (e}, ep) =lel, o(ed)],,,+Loled), el,,— o (el &1
= Z (eg(Pf.j"“ef'SD,ze,i'i" Z Sf' i I,m,n(,pfn.n é?;
H m,n
where st;, .. denote C~ functions on U,, and
(3' 2) (D*SD),! Z( Z ekgol l+ Z tl m, nspm n)eﬁ’

where t},, denote C” functions on U, by a simple computation using
integration by parts. From (3.1) and (3.2) combined with the rela-
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tion ab< (s.c.)a’+ (L. c.)b* we have the following.

(3.3) D5 o[t + [ Dl + el
?,IZ{_<ZIkH(6590?.f“e'}90?.;)||2<o>
+1i(—= 2 i) It}
We shall recall Kohn’s argument. The right hand side of (3.3)
becomes
(3.4) Z[] {_<Zlk (llefot il + sl ;1o — 2Releler 5, €5t )
+ Lleerid P+ .<Zlk2Re<éf-€0’{, i €LY

While from the relation [et, &],=V—134, £,
(3.5) lelgl; espriy=<eot ;s eipl>+ 0 (lellwllelw)
holds integrating by parts, where ¢#j. From (3. 3), (3.4) and (3. 5),

we have

(3.6) D7l +|IDiglltn+ (L c) ol
Z ZAZ(Qllebel Mo + 115 silo) } -

Furthermore from the relation [ef, éf]r=\/jf 3 &,

(3.7 (bt ;, ehot >=<E¢%,, et >+ —1 &0}, o>
+ 0 (llellwleliom)

and

(3.8) (&gt ;, Gt Y=Leboh ;, ol >— =1 &0k, o >
+ 0 (ll@llwllellw)-

From (3.6), (8.7) and (3.8), we have our Propositon. (For the
details see Proposition 5.1 in J. J. Kohn [3].)

In this section we shall give more detailed estimates to comstruct

the versal family.

Proposition 3.2. The following estimate

NDE il om + 1Dl o + 181 [t Z 11 |5y
holds uniformly for all ¢ in I' (M, °T”®/\(°T”) *), where m is a non-

negative integer and i=1 or 2.
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Proof. 1t suffices to prove the inequality for forms ¢ supported
in a patch U, Let {z}.<i<.,-n be a real coordinate system of U,

We define a differential operator P, on I',(U, °T”®/\(°T”)*) to
itself as follows: For ¢ in I'y(Uy, "T"QACT")*), we put
(Pd)} =0/0x* ¢} 4,

where I denotes a multi index (4, 7..., ¢,). Further we put

s=1I|= Zl,‘ik of course
gt~ SHED I ILI<s

We only deal with the case i=1. The case =2 can be shown
analogously. From Proposition 3.1, we have the estimate :

(3.9) IS Podhi iy + 1Dy Pt + 1| Peglin Z [ 1Pofl )

uniformly for all ¢ in I',(U, “T"®(°T")*). From the relation D¥P,=
P,D¥+[D¥, P.], we have that

(3.10)  [I1PD3dlltn+ U e IP 2D Pudlls, L ]=5,

uniformly for all ¢ in I'y(U, *T"®(CT")*) by using the Schwarz
inequality. Similarly we have that

(3. 11)  [[PD gty + U c) gl R INDPidlls | L]=s,

uniformly for all ¢ in I',(U, ‘T'RCT")*). From (3.9), (3.10) and
(3. 11), we have

(3.12) [|P.Ds iy + [ PoDighliy + (L c) Doy =Pl Gys
uniformly for all ¢ in I',(U,, *T"®(T")*). Therefore we have that
(3.13) (1D ¢ [my + || Drp| [ty + (L c) 1o = Z [1P.911%

uniformly for all ¢ in I',(U,, *T"® (T")*). And from the relations
e}+P,=P,-¢}+[e}, P.] and é-P,=P,-é;+[¢é}, P.], we have

(3. 14) Z |IPL¢II<0)+ (L. e) 14l =111 Gns
uniformly for all ¢ in [,(U,, *"T"Q(CT")*). From (3.13) and (3. 14),
we have our Proposition. Q. E.D.

From Proposition 3.2, we shall prove the key estimates.
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Proposition 3.3. For any non-negative integer m, the following
estimate

1l =11l [tm + 11t

holds uniformly for all ¢ in I'(M, "T"®(CT")*), where [] denotes
D¥.D,+ D,-D¢.

In order to prove this proposition, we shall prove some lemmas.

Lemma 3.4. For any non-negative integer m, the following estimate

D1 eSOy 1] [my
holds uniformly for all ¢ in I'(M, *T"Q ("T")*).

For the proof see Theorem 2.4 in [2]. In [2] the estimate of
the above type is proved for scalar valued forms. The proof for

*T"-valued forms is similar.

Lemma 3.5. Under the above situation, the following estimate holds
uniformly for all ¢ in I',(U,, "T"QCT")*) :

191+ L e 191Fmsn~ 2 1Pagillin + (L € s

Proof. From the definition, we have

Il 2 2 [1(Pef) il

From the relation P,[(0=OP,+[P,, O] and that [P;, (1] is a differ-
ential operator of order |L|+1, we have

o 1Py o+ (L eIz
~ 2 L IEP) ¢l + (L e)1@llize:

by using Schwarz inequality and the relation ab< (s.c.)a’+ (L c.)b%
Therefore we have Lemma 3. 5. Q, E. D.

Using Lemma 3.4 and Lemma 3.5, we shall prove Proposition
3.3. It suffices to prove the inequality for forms ¢ supported in a
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patch U, By Lemma 3.4 and Lemma 3. 5, if the following inequality
(3.15) holds, our Proposition 3.3 is proven.

(3.15) PG I1T¢llt +1¢11ws

uniformly for ¢ =I',(U,, *"T"Q(T")*).
In fact setting ¢=P;¢ in this inequality, we have the following
inequality with ¢I'y(U,, “T"Q(CT")*)

(8.16) PG =||O Pty + || PPl [ty
And so
3.17) 1Pl IO Prdllty+ 1Pl 12141+

On the other hand, the following relation (3.18) holds for all ¢ in
LU, "T'QCT)*).

(3.18) o 2 lI(eesPud)i P+ eIl
~ . L Pueleld) [P+ L el lnrn-

In fact from the relation ef-e:P,=P etet+ [eiel, P.] and Schwarz

inequality, (3.18) follows. Similarly we have

(3.19) T TP o+ e[
~ T TP o+ (1 lIgiinro

(3. 20) I B @Pu) il + (L el
~ 2 D@2 Lo+ Ledllgltuss

and

3. 21) I T @P) o+ (L c)lglfas

~ o, L 1P o+ (L e 1llmsn

for all ¢ in I',(U,, ‘T"®(CT")*). From (3.18), (3.19), (8.20) and
(8. 21), we have

(3.22) o PG+ (e e
~@lm+ (L ) 1Pl lemrn

From these relations and Lemmas 3.4 and 3.5, we have Proposition
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3.3.
We shall prove the estimate (3.15). From Proposition 3.1 applied
to D, and taking into account the relation D,D,=0 as follows from

the normality of (M, °T”), we have the relation:

(3.23) 1D:¢l & <<!|D{ D1¢l [ty + || Drol s
for all pI'(M, ‘T"R(CT")*).
We put

p(eh) =2 ¢, eel'(M, "T'Q(CT)*).
1
Then

(D) y=eshi— €105+ O (9]l @)

From this and (8.23), we have
(3. 24) S et (elgh.i—elgh, o)

<|IDEDyolltn+ (L e llellty

by Schwarz lemma and using the relation ab< (s.c.)a’+ (Lc.)b>. On
the other hand, since

D*p)i=—3 &gk + 0 (lello),

we have
(3.25) (DD*@);, ;=ei(— ; eoh )+ 0 (llollw).

We shall compute [[DD*¢|f}; by this formula.

Lemma 3. 6.

IDD*¢llt + (L c) llelfty + (s e) el
~ LA Zlletelen o +2Re X <eléipl.., eleipn )]

Proof. From (3.25) we have Lemma 3.6 by using integration by
parts. Q. E.D.

And by a simple calculation we have:

Lemma 3.7.
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; { Z<x €% (expr. 1 — €iom.a) i}
=21 '.Zs:x ||€entom. il + | €31 Pn, | @
—2Relele;g}, 1, Eleipr D}

We shall prove the following estimate.

Lemma 3.8. The terms

2Re 3, <ei€ipn, 1, €:€,0n.q)

i,1>n
—2Re } (elelpth ,, eteiol >

i,1>n

can be estimated by (s.c.)|lo|[G+ (L c.) ||l

Proof. We only prove the estimate

2Re ), Leieion. ., eieron >

i,1>n
<2Re 3 <Eleipn.is Eeipn.+ (s )l + L edliglle

uniformly for all o I",(U,, ‘T"R(CT")*).
We count Redeiéioph |, ei€iel > by integration by parts.
(3.26) Redetéios,,, eiéion,.>
= —Redelelelph. ., €ioh.>+ 0 (llollwllelw)
= —Releieieior. ), €0,
—<Re[é}, efleieh ,, &>+ 0 (lollwllellw).

The term Re([é, ei]étet ,, éipl > can be estimated as follows:

Re{[€;, efléi¢). 1, erpn.n>
=Re<élé}, eilon.s upnny
+Re<[[¢, €il, €l¢h Cpnn>
= —Re{[&, el]¢h.,, etroh. >+ O (lollwllellw)
< (L e)llelln+ Gs. ) lloll@)
So we may neglect this term.
Therefore from (3.26) we have
(3.27) Releieiol. 1, eiéion,.>
< —Releieteioh , erph >+ (Le) el + (5. c) llolla,
<Reléieleh,,, eieion >+ (. c)llelln+ (. e el
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Furthermore the term
Re<eieiol,, eicion .

can be estimated as follows:

SkSk AR

Redeieion., eeion >
<Relétetet, ,, éetol >+Rel[et, &gk, ek,
<Reléieig. 1, eiéion.>+ (s.c)llolle+ (L e llellty
<Releieiet, ,, ereioh >+Releleiol e, eloh >
+ (5. e) ol + (- e llellw
<Releieto}, ,, erion >+ (s.c)llelle+ (L c)lloll.

The term Relétéipl, |, étetpl > is estimated as follows.

Sk Sk

Redéléioh., eeiok >
< —Reletdieioh ,, el >+ (5. c)llollg+ (L e)llellt
< —Redléleleior., eiph >+ Rel[e}, efléioh., Eipnny
+ (5. e lleliag+ (L e)llellt
—Reléleiéioh. ;, ik >+ (5. c)llollG+ L c) el
Redeieioh,, eiéion >+ (. c)llolle+ (L e) el
Redeteleh, ,, eietol >+ Rel[el, eileh,, eieiph .
+ (s. e liellg+ (L ) llellw
<Reléie;q}. 1, eleioh >+ (5. )o@+ (L e)llellw
<Redeleleh, ,, ettt >+Reletelet, ,, [ef, &iloh.>
+ (s e llelld + (L e) el
<Reléeig.. 1, eteio, >+ (5. c)llelle+ (e llollt-

So we have Lemma 3. 8. Q. E.D.

IN A A

From Lemma 3.6, Lemma 3.7 and Lemma 3.8 we have the

estimate (3.15). Therefore we have Proposition 3. 3.

From Proposition 3.3 we have the following key estimate.

Proposition 3.9. Under the situation in Proposition 3. 3, the follow-
ing estimate holds uniformly pel (M, ‘T'"Q(CT")*).

N oo = [ el [ s

where N denotes the Neumann operator for [} and m denotes a non-
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negative integer.

Proof. The following estimate is proved in Proposition 3. 3.

ol <[l ¢lltm+lelm
for all ¢ in I'(M, "T"® ("T")*). Setting ¢=Np in this estimate, we

have

Nl IO Nplfom + [N [t

where H denotes the harmonic operator for J. While

N e = 2l

and

H gl [ty 1 2l ey

holds uniformly for g in I'(M, *T"®(°T")*). So Proposition 3.9 is
proven.
We shall take the Hermitian metric along the fibres of 7"="T"Q@F,

and make the space of C”-sections of T’®/,\(°T”)* pre-Hilbert spaces.
We take the Sobolev n-norm on there. We shall also introduce the
adjoint operator 03 of 0y, making use of this metric, and consider
the sub-elliptic differential operator [, =05 -0$40%-05¢>. By

a similar argument we have the following Propositions.

Proposition 3.10. The estimate

| el cmy 1 O o el oy + 1 2 oy
holds uniformly for all p in I'(M, T'Q(T")*) and for all m non-

negative integer.

Proposition 3.11. The estimate

Nz el [emy 1| 2] ey

holds uniformly for all pin I'(M, T"Q(CT")*) and for all m non-

negative integer, where Ny, denotes the Neumann operator for ..
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Proposition 3.12. The following estimate

[1D¥ R, (@) |l <l ¢ol |y
holds uniformly for all ¢ in I'(M, "T"Q(CT")*).

Proof. In fact from the relation

R() (X, V)=[0(0, ¢(N)]e—¢([e(X), Yo, +[X, e(D)]s,.)
and
pel M, "T'R(T)),
we have
D*Ru(g) (e, &)

= 2 ll'.m.p.q.p’-q’ (e_féfn@:.q) : go;’-«’

Lim,p.q
P,Iq’
" Sk k Sk ok ki Stk ¥
+ B oo (€105.0) (€n@hr o) + 25 Cz.;:,q.p'.q' (€10s.0) oo
L it

where A, , .0 Biwsase and Cei .. . denote C* functions on U,.

Therefore if m>n, Proposition 3.12 is proven. (dim;M=2n—1)

Proposition 3.13. Assuming that (M, &) is a compact normal
s.p.c. manifold and dim,M=2n—12>7, the following estimate holds
uniformly for all ¢ in I'(M, "T"Q(CT")*).

[IND} R, () [t <ll ¢l

m)*

Proof. In Proposition 3.9, we have

UZI S 7]

uniformly for g in I'(M, *"T"®(T")*). Setting p=D*R,(¢) in this
estimate, we have

[IND* R, (@) |ty <[1D* Ry () [ my»

From Proposition 3.12 and this estimate, we have Proposition 3. 13.

Q. E.D.
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§4. The Space ZDi and the Closedness of LZD1

In this section we shall study the linear operator L introduced in § 1.
We denote by Ity (M, "T'®CT")*) (resp. ['(M, FRACT)®)
the Hilbert space obtained by completing the pre-Hilbert space
consisting of °T"®(°T")*-valued C> functions (resp. F®/2\(°T”)*
valued C* functions) by the norm || |, introduced in § 3. We put

Zp=1{p 1 9= (H+DD*N)g, ol'¢, (M, "T"Q('T")*)}.

Then we have the following proposition.
Proposition 4.1. The set LZ, is closed in I'(,y(M, FQN\(T")*).
To prove this proposition, we make some preparations.

Lemma 4.2. The following diagram commautes.

F
L, &
T L FQCT)*
'D oy

TRCTY  —  FRA(CT)®

| D, o

- 2 v 3
OT//®/\ (OT/I)* F®/\ (OT//) *,
where we set L, as follows: for each 0 in "T", we put

Lo (X)=—LX, 015

where X in °T". And we set L, as follows: for each ¢ in °T”®/2\ CT")*,
we put

Lz¢(X1: X, Xy)=— (g(Tz)sb(Xn X, X3>)F’

where by (02¢ (X, X,y X,))r we denote the projection of 02¢ (X, X,y X;)
to F according to the splitting CRQTM="T"@"T'PF introduced in
§1.
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Proof. Of course the above maps L, L, are well defined. Espe-
cially L, is a C* bundle-isomorphism since (M, °T”) is ans. p. c. Now
we shall prove our lemma. For each #&I'(M, °T"), we have the

relation :

4.1) (dP-Lo) (X, Y)
=[X, LO(Y)]-+[LOI(X), Y]:—LO([X, Y])
:_"[XJ [Ys 0]F]F_"[[Xa 0]1% Y]F+[[X: Y]s G]F:
where X, YelI'(M, °T"). On the other hand
(4.2) LDO(X, Y)=[X, DO(Y)]1:+[DI(X), Y]s
:[X) [Ya 0]°T”]F+ [[X3 0]01‘”, Y]F:
where X, YelI'(M, °T"). From (4.1) and (4.2), we have the rela-
tion :
(09+L,—L-D)6(X, Y)
=_[X> [Y: 0]F]F_ [[Xa ﬁ]Fs Y]F+ [[Xa Y]: 0]1’
_[Xa [Ya 6]0T”]F—[[Xa 6]0T”: )f_lF
=—[X, LY, 01 1:—[[X, 01r, YL+ [LX, Y], 01¢
:O,
for any X, YeI'(M, °T"). Therefore we have
09+ L,=L-D.
Similarly we have
0®L=L,-D,.

Therefore we have our lemma. Q. E.D.

Next we shall prove that Z, is closed in [, (M, T'RCT")*).
The linear operator D*DN is a continuous operator from I'(, (M,
T"RCT")*) to itself. (In fact the following relation assures this.

ID* DN¢| [t = {IND* Dol [ty < C||D* Dol |y < C'[[ @[ ays

for all ¢ in I'Gy(M, ‘T"®RCT")*).) Therefore KerD*DN=2Z, is
closed in I'(y (M, *“T"Q(CT")*).
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Similarly we have the following :
The set Zyp = {o: o= (Hy+3P30*Ny) 0, o€ Tt (M, FQA CT"*} s
dosed in I', (M, FRACT")*).

Now we shall prove Proposition 4.1. It suffices to prove the

following relation :
(4.3) LDD*NI(y (M, "T"Q(T")*) =009 * N: I,y (M, FOACT)®),

since HI'G,y (M, "T"® (°T")*) is a finite dimensional vector space and
LZ, is spanned by LHIG,, (M, ‘T"®CT")*) and LDD*NI¢,, (M, ["T"®
(°T")*). 1In fact the set P00 * NI, (M, F®/\2 (*T")*) is closed in
'ty (M, F@/z\ ("T")*) (because of the relation :

3PP * N, I, (M, F®/z\ CT*) = Z;» N Ker Hy.)

Now we shall prove (4.3). For any ¢ in ', (M,)T"QCT")*), we
have that

|IDD* Nl [(wy = [|NDD*¢|[(ay < Cl|DD* || ¢y < C'|| 0] | oy
And so
[ILDD*Ng||ty < C’||[DD* N ¢y < C'C’[ 9] [y
Hence
LDD*No &'ty (M, FRACT)®).
On the other hand, it follows from Lemma 4.2 that

LDD*No= (H,+3P39*N, +-59*5® N,) LDD* Ng
=503 * N, LDD* Ng.

Hence
LDD*NT% (M, *T"® CT")*) CoP80* Ny Tty (M, “T" R CT")*).
Conversely for any ¢ in I'(, (M, F®/2\ (*T")*), we have that

FPEP* Nyp= 0P L, L7300 * Nop= LD+ L3O * Nygp
= L-DD*ND(L;*%3{* Ny¢p) = L- DD*N(D- L;*-50* Nep).

Thus, if we have the relation

(4. 4) 1D+ L502* Nehl|cny < ClIhl
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2
uniformly for all ¢ in I'(,,(M, FQ/A(T")*), our Proposition 4.1 is
proven.

So it remains to prove (4.4). Let {U..ex be a system of finite
coordinate covering of M and {ef};_.. ... be a moving frame of

°T” on U, For each ¢ in I, (M, F®/2\(°T”)*) we define C~
functions (N:09*¢)% on U, by the following formula :

(N:0P*¢) 6= (N0 *¢) (eh).

Let I'y(U,, FQ(CT")*) be the space consisting of FQ ("T") *-valued
C= functions supported in U,. For each ¢ in I'\(U,, FR("T")*), we
set

(ezp) (€F) =eneh,
where ¢} is defined by ¢i€=¢(et). Similarly we set
(éxp) (eh) =éiph

The differential operators e, & can be extended to the differential
operators on I, (M, FQ(T")*) as follows:
Let p, be a C” function supported in U, such that

pklvk:: 1,

where {Vi}iex 1s a refinement of {U,}.ex such that V,€U,.  Then
we define e! as follows: for each ¢ in I'(M, FRQ(CT")*),

(ezp) (€5) = ez (0:9%).
Similarly we define ¢! as follows: for each ¢ in I'(M, FRQ(CT")*),
(e.p) (e1) =&:(0u90).
Now to get (4.4), it suffices to prove the following:

(4. 5) |le02* Nl |y < Clll i

uniformly for all ¢ in I, (MM, F®/2\ T")*). With the above nota-
tions (4.5) can be written as follows.

(4.6) llekete;ds”* Nl o < Cllg G
4.7 |lezeze;05* Nl | am < ClIh] urs

(4.8) |leze3e}05* Nhl|owy < ClI][Gny
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and
(4.9) |letese 0 * Nl |y < Cl1h]tmys

for all @, B, 7=1, ..., n—1, k€K and ¢ in I, (M, FOACT)®).
Here we shall prove only (4.6), the others being proven similarly.
We fix £ once and for all and suppress the suffix 2 of o=l (M, F®/z\
(*T")*) till the end of the proof and ei=e,.
First from Proposition 3.2 we have,

llelltm < CLI105 @l [t + 1102 @118 + |0l [2m}
for all pI'(M, FQ(T")*). Then putting
p=e,e,N;09*¢),
where ¢I" (M, F®/2\ ("T")*), this gives rise to the inequality

(4.10)  |le.ese,N:05>* [ty
< C{1105ese, N:0S * |ty + |07 €6, Ns0P * | £y + [ lese, Ne 05 * Gt}

for all gI'(M, FQA(CT")*). While
(4.11) 0Pe,e N 0P *p=e,00e NOL*¢+ [e,, 0] e,N0L*g.
[es 0] has the estimate ;
IILess 910w < Cli@][tms
pel’ (M, FQ(T")*). Hence

lilep 95°1e,Ns05*hl|y < Clle, Nz05* Dl [y
S CIN:0F*l[my
<Cl0* Pl
<C”l¢lim
<@l

On the other hand, as for the first term of (4.11), we have
e,00e, N 0P *p=e,e, 00 NoP *p+e,[08, e, 1N 09 *.
Then we get similarly

lles L%, €, 1Nz * |y < ClINZ0E* &l [y
<10 * ¢ m
<CI¢llen
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777 ”
< C7 PG
and the first term becomes
3 *
e;¢,N0P 00 *,
and hence can be estimated as follows.
Q1 (1) * — AW A
‘}eﬁeﬁF)NFGFD Doy = |lese, N0 * || my

< CloP0* ¢!
< il lcm-

Next we show that the second term of (4.10) can be estimated

as follows:
|[0Fese, N5 * | [ty < ClI] |G-
We note that
(4.12) Ofe.e, N0 p=e05e, Norp+ [0%, e,]e,N;05¢.

The principal term of the differential operator [d%, ¢,] has the follow-
ing form:

2ake;+ Zef-éj—f—che,
J 7

where a4, ¢/ and ¢; are C” functions supported in U, and L, is the
Lie derivation defined in § 2.

So we have
1007, e;1e,N:0F ¢l iy < Clle,Ns05 l|wy + C'l| Lee, Ne0F Dl | (-
We estimate the latter term using the following relation :
(4.13) Le N 0f¢p=e,L.N0fp+[L, e N 0%¢.

Since (M, §) is a normal s. p.c., we have that the principal part of
[Le e] is Xaje;, where a; are C* functions supported in U,. Then

from Proposition 2.7.1 and Corollary 2. 8.1, we have

HLeeTNFafvn*SbH(m)ﬁ“‘?rLeNFag)*Sl’”w)‘i“ I1[Le er]NFal(’l)*st(m)
<|le,NzL0P* || (my+ ClIN:0L* | (o
<C|e,0P* N L\ |y + C'l| @]l my-

While from the estimate
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lle, (05" * NeLe) | < C {10805 * N Leghl |y
+1108* 08 * Ny Leh|lomy + 1102 * Ns Lehl | i} »

we have
lle, (0 * N Le) il my < ClILe | -
So it follows that
1 Lee, N:02* Pl | iy < Cl16H] [omy-

And the second term of (4.12) can be estimated by the same method
as above.
Then we get the relation:

lle.25e,Nx05* Pl my < 1] |G-

Therefore Proposition 4.1 is proven. Q. E.D.

Remark. For all oI, (M, FOACT)*) with 8P¢=0 and
Hyp=0, we have that

GDEszl-

Proof. From the assumptions 02¢=0 and H,p=0, we have the

relation :
p=300P*N,g,
2
by Hodge decomposition. Moreover since ¢l (M, FRN(CT")*)
we have that

peLZy,

from the proof of Proposition 4. 1.

Proposition 4.2. There exists a closed subspace C,of ZD1 such that
L|c, is an isomorphism from C, to LC,=LZ,, where L|; denotes the
restriction of L to C,.

Proof. We set C,=Ker Lr]ZI,1 and we shall define a closed sub-
space :

C={z: z€Z,, (z, y)=0 for all yeC(l},
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where ( , ) means the inner product defined by the ||, ||¢,, norm.
Then we have the orthogonal decomposition of the Hilbert space :

Zs,= C®C,

and L|c, is an isomorphism. Q. E.D.

By A: LZI,1—>C2 we denote the inverse of L\cz. This map A
plays an essential role in our construction of versal family of isolated

singularity.
§ 5. Construction of the Versal Family

In §3, we formed the adjoint operator 09* of 0% and set up the
Laplacian

=340 93604 330 . 5.

As is usual in the theory of harmonic forms for the sub-elliptic differ-
ential operator [], we have the harmonic space HY in I'(M,
T'QCT")*). We shall introduce a first order differential operator &
from I'(M, TRCT")*) to I'(M, "T"QCT")*) as follows: For each
¢ in I'(M, TQCT")*), we put

Lh=—3,.0,,
where 6, is in I'(M, °T") such that
[Xa 0¢]F=¢<X)F’

for any X in I'(M, °T"). With the above situation, we have the
following Proposition.

Proposition 5.1. The map £ |HY), being restricted to HSY is

injective.

Proof. We assume that L¢9=0 and ¢=HY).. From the definition
of &, we rewrite these relations as follows
¢—0.,0,=0

and
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oS HP.
So we have that
o=0.
Therefore we have our Proposition. Q. E.D.

We use the notation # for £ (HY). The Main Theorem in this
paper is the following.

Theorem 5.2. Under the assumption HP=0, dimM=2n—1>7
and that (M, &) is a normal s.p.c. manifold, there exists a deforma-
tion (M, *@T") which is parametriged complex analitically by a
neighborhood U of the origin in the euclidean space # such that the
Jollowing relations A.0), A.1) and A.2)hold.

A.0) o(0)=0.
A. 1) For every teU, o), (M, "T'QCT")*) satisfies

P(p(#))=0.

A. 2) The linear term of oy, ty ..., t,) is equal to iﬁqtq,
=1
where {B;}1<ic, 15 a basis of #, where q=dim # and (t, t, ..., t,)

are local coordinate of U.

Here m is a sufficiently large integer, in particular m>n+2.

Proof. We shall prove this theorem by using Kodaira-Spencer’s
methods [8] and the a priori estimates in §3. Let ¢(2) be a
I'(M, “T"®(T")*) valued holomorphic function and

ky

o) = Z%&l --.lqtl vee th ,

be the power series expansion of ¢(¢) with ¢(0)=0. For simplicity,

we abbreviate
p@)= leo,.(t),
P

where ¢,(t) is a homogeneous polynomial of degree gin (¢,..., £,).
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Let

¢ =50 0.

For any I'(M, ‘T"®(T")*) valued holomorphic functions ¢(t),
¢@) in (t, ..., t,), we indicate by ¢ () =¢(¢) that the power series
expansion of @) —¢(t) in (¢, ..., t,) co#ntains no terms of degree
less than g

Clearly A. 0) and A.1) is equivalent to the system of congruence :

(3.1.1), Dt (2) + Ry (" () =0,
and
(5.1.2), Lo#(£) =0,

ptl

where ¢*(t) €', (M, “T"Q(T")*) (#=1, 2, ...). Since R,(¢) is a

second order polynomial with respect to ¢, we have
(5.2) R,(¢*(#)) = R, (¢* ().
pt1

Hence we may rewrite (5.1), as follows.

(5.3. 1), D, () + R, (fp""(t))iO,
and

(5.3.2), Lo+ (2) =0.

Since

Dy (8) = Dy, (8) + Dig*™ (2)
and
P () =Dip*™ (1) + Ry (9" (D)),
where
o' () €l (M, ‘T"Q(T)®),
these are equivalent to the following:
(5. 4. 1), Dy, (t) +P(¢”‘1(t))§10,

and
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(5.4.2), Lo,()=0
with @, (&) €l (M, "T"Q(CT)*) (#=1, 2, ...).

Now we shall construct ¢,(f) by induction of g We set ¢,=0
and prove that gol(t)=Zq}/9,1t,1 satisfies (5.4.1), and (5.4.2), where
{8} is a basis of #. -

In fact from the defininition of #: for each pE#, 0P¢=0 and
pel' (M, "T"®(T")*). So we have that for each p=#, D,p=0 and
Lo=0.

Suppose that ¢*7'(z) satisfying (5.4.1), and (5.4.2), are already
determined. We want to define a homogeneous polynomial ¢,(¢) of
degree pin (fy, «.... » t). For this first we shall study the following

differential equation :
(5.5) PP (£) +P(p*(2)) = 0.
g+l
Under our assumptions HP=0 and dimM=2n—1>7, we shall

show that the partial differential equation (5.5) has a solution. We

shall recall a result obtained in [1].

Lemma 5.3. For any element ¢ in I'(M, T'"Q(T")*),
3”T’/P(g0)=0.

For the proof see Theorem 3.10 in [1]. This lemma holds for any
2 times continuously differentiable ¢. Therefore we may assume that
for each o't (M, "T"Q(T")*)

05.P(p) =0
From the assumption P(go"“(t))%o, we have
(5.6) IR (P (¢ (1)) )fﬁwsﬂ“_l &) (P (1)) =0
(Lemma 5. 3).
We put ¢(2) as follows:

¢(t) = — 05N P (¢ (2)).

Then from the assumption HY=0 and (5.6), ¢(¢) satisfies (5.5).
Hence Z¢(t) also satisfies (5.5). Namely
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5.7 oNL P (t) +P(go““(t))§10.
Noting that Z¢(t) is a “T"Q(T")*)-valued global form, we rewrite
this relation according to the splitting 7"="T"@F as follows.
(5.8.1) D,.Z¢ @)+ P (1)) i@
(5.8.2) LZ¢(t)=0.
From these, we have
(5.9.1) ND!D,#¢(¢) + NDfP (o' (2)) iO,
(5.9.2) LZ¢$@) =0, F
which in turn imply
(5.1)  LND*P(¢ () =LUHZ$(®)+D.DINZY(),
where H denotes the harmonic operator for

O=D-D*+Df-D..

From (5.11), it follows that the p-th homogeneous term of
LND}P(¢**(¢)) is in LZDI, where Z, is the sub-space of I, (M,
‘T"QRCT")*) introduced in §4. In fact from (5.11), we have the
relation :

LND*P(¢**(¢)) —LHZ ¢ (t) iLDD*Nf(/) @®).
Therefore it follows that F
H{LND*P(¢** (1)) — LHZL ¢ (2) }pi 0,
and
9 {LND{P (¢*~*(£)) —LHZ $(£)} ;:;10
from Lemma 4.2. On the other hand the following estimates hold.

lILNDY P ("~ () [ltm

<GJIND*P (¢ (t)) lltm (by continuity of L)
< C||D¥P ("7 () ] em (by Proposition 3.9)
<Glle* 1l (by Proposition 3.12)

for sufficiently small ¢&. Since LHZ¢(¢) is a C* form, we have the



826 TAKAO AKAHORI

above from the remark of Proposition 4. 1.
Now we define a homogeneous polynomial ¢,(¢) of degree g as

follows :
(5. 12) ¢, (2) ;:;1— NDFP(¢*7(8)) +A(LND{P(¢*7'(2))),

where A denotes the linear operator introduced at the end of §4.

Then ¢,() satisfies the following equation.

(5.13) Dy, ()=~ D.NDP (¢ (1)
=—P(¢*7 () + D DNP (¢"7()) -

at

From the relation d,.P(¢**(¢))=0, we have
g+l

(5.14) D,P (72 (2)) = (0P (9" (8)) o
=0.

pt1

From (5.13) and (5. 14), it follows that

T

(5.15) Dl%(t)fl—P(??"‘l @),

while from (5.12), we have

(5. 16) Lo, () = - LND{P (¢ (t)) +L-A(LND¥P(¢*7*(2)))
=0.

Note that ¢,(2) is in I'(,(M, *T"®(CT")*). Hence this completes
our inductive construction of ¢,(2).

Now we shall prove that the power series

e =D +e.@)+...+0,(H)+...,

converges in || ||¢mw-norm for small .

Consider a power series

f@ =T fi o pith . 1
whose coefficients f'u----’n, are in I'(M, ‘T"®(CT")*) and a power

series

hy h h
a(t) =2 a, .t . 1
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with non-negative coefficients. By writing f(#)<a(t) we indicate

that
ool <.,

for all (k... h,). For each I'(M, *T"Q(T")*)-valued

function

k

hy b
()= 2] Sohl...hqtlltzz- AN

we set

h

V4 ” h, R,
N I ] () 4 AR
Then we have

g @) + @ D e < 11 (&) 1Tem + [ D[ emrs

and

I11¢p () @ () 111G < CllIg @1l (8 1]
by Sobolev lemma.
Let

A(t) :b/64c§ 1/ (b4 . +1,)"
We remark that
A@)< (b)) A®), v=2, 3, 4,....
For our purpose it suffices to derive the estimates

(5. 17), Hle* Dl <A@,

holomorphic

by induction on g provided that the constants b, ¢ are chosen prop-

erly. For p=1, this is obvious if & is sufficiently large. Assume
therefore that (5.17),., are established for a g>1. We have from

(5.12) that
() =" NDFP (7' (8)) + A(LNDIP ("7 (1)),
= — ND} (D" () + R, ("7 ()

ptl

+ A(LNDY (D,p"™ (£) + R, (¢*71(£)))).
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Then
(5.18) e O Nen < Cillle* ™ @) |1 lem + Cllle* = (D111

As ¢,(t) is a homogeneous polynomial of degree g, we have from
(5.18)

(5.19) eu () |[em Ll () ][
LGA(®)®
Leb/c AR,

where the constant ¢, is independent of g Hence if we take ¢
sufficiently large, we have

(5. 20) e, Dllm <A@,

and so the power series
e =2 ¢, (8)
u=1

converges in || ||[(m norm. Especialy ¢(f) is in c¢*-class by Sobolev
because of m>n+2. Q. E.D.

§ 6. Versality

In this section we shall prove that the deformation constructed in
§5 is a versal family in the sense of M. Kuranishi. Let Y be a
complex analytic space of complex dimension #» and Y be a relative
compact open subset of Y’ with strongly pseudo-convex smooth boun-
dary M. And let (M, °T") be the partially complex structure induced
by Y. We shall study the complex structure of a neighborhood of
M.

Definition 6.1. Let N be a neighborhood of M. Let S be a com-
plex manifold with the origin 0 and {N,|s€S} be a set of complex
manifolds depending on s€S. We say that {N,|s&S} forms a complex
analytic family of deformations of N if there is a complex manifold
N and a holomorphic map @ onto S such that
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(1) @ '(0)=N'>DN, and
(2) the rank of the Jacobian @ is equal to the complex dimension
of S at each point of N.

We note that @™ (s) is a complex submanifold of .

Proposition 6.2. Let {N,|s&S} be a complex analytic family of N.
Then, if we replace S by a smaller neighborhood of 0 if necessary,
there is an injective map F: N X S—satisfying the following

(1) F(y, 0)=id on N,

(2) for each s, FINXs is a diffeomorphism from N Xs to F(NXs)
which is contained in @' (s),

(8) for each pEN, F|pxS is a complex analytic map from pXxS
to N,

Proof. Let {#%},es be a finite covering of A4 such that on each
% there is a complex analyitc coordinate (2},..., 2% s) such that
Ui=1{p: 1250p) [<ep Is1<e}

and these charts are holomorphically related so that

25=f%. (2 $)

on %;N%; and
U %;Na*(0)DN.
=

To prove this Proposition 6.2 it suffices to show that there exists

a system of C™ functions {25(s)},es on %, depending holomorphically
on § such that

6.1) 25(8) = f5.:(2:(5), 5)

on (%;N%,) xS, where {%,},es is a finite covering of N such that
%,cU;NN, €S and 7" ;,=%,NM.
We may assume that dim S=1. We shall construct a system of

C~ funtions {25(s)},es formally by induction on the order of the
parameter s.

We set
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2210(s) =24

Then the first step in the inductive proof is completed.
Assume that there exist C* functions {25*(s)} as a polynomial of
degree g such that

6.1), zile(s) = fe(=4(s), ).

mod s#+1
We shall define C* functions 2§,:,(s) as a homogeneous polynomial

of degree u+1 as follows:
Zjpa(s) = Z (a.fj-i/azi) 0:0;.js

mod s£+2 §

where Zjopt1 ()= (z;l,‘ﬂ(-"))lgs", 0:.;(8) = (0%;(5) ) 1casm ”?-;‘(5):2?“‘(3) -
fii(=5(s)5 5), (9f;.i/02;) denotes the matrix (9f%;/025) 1capsm {0} iea
denotes a partion of unity for the open covering {%}.cs, and

Zjlu+1 ()= (z?lpﬂ(s))lsasn-

From the assumption (6.1),, we have

6.2), o.;(6) = 0.

mod s+l

From the relations:
0'?-1(3):z?l#(s)_f}x-l(zll‘(s): 5),
a;‘,j(s):z,?"‘(s)—f;?,j(z‘;(s), S),

and

0%, (s) =zl (s) — fo.,(24(s), 5).

So we have

(6.3), a5 (8) = 2" (5) — f1;(24(5), 9)
=2%(5) — f2.,(0;..(8) + fr..(24(5),5 5)
= =2 fr;/0280%,(s)
8

mod s#+2

+ 281 (s) — fr; (i (25(5), 5), 5).
Therefore

0., (s) + (aﬁ-j/azj) o'j-t(s) = o0.,05).

mod s#t

From the definition of 23,..(s), we have
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—0.;(8) = zzllﬂ+1(s)—afl-j/azj Zj1p41 ().

mod s#
Therefore we have

22 (5) + 25,41 (5)
= fr4) +zj|p+l(s>3 s).

mod sE+2
This finishes the construction of the formal power series
25(8)==25+25, s+...,
such that
25 (s) = f1;(2;(5), )

as formal power series.
We shall prove that power series 2:(s) converges for |[s|<d for
some small 0>>0. We dominate 2;(s) with a convergent series. We

fix some notation. Let ¢ (2, 5) =72 ¢,(2,)s" be a power series where
m=0

Do (2) = (a(2)5 s (2), 2 EX,. Let a(s)=3 ans™ a,>0 be a

m=0

series with real, positive coeflicients. We write ¢ (z,, s) <a (s) if |¢z(2;) |
<a, for all z;,€%, and all a=1,..., n. The norm of ¢, is the
Hoélder k-norm. We shall recall the power series

A(s)=b/16¢ 3 (cs)™/m.
It suffices to prove

2;(8) — 2K A(s).

That is to say
6.4, 20(s) — 2, CAS)
for u=1,2,3,... .

Let us prove (6.4),: We want to show that

22(5)KLA(G)=b/16{s+...}.

From %,e%;NN, this is satisfied for b large enough.

By induction, assume (6.4), and let us prove (6.4),.,. Remember

2511 (5) = 251%(5) 4 281,01 (5)

075 (9) =2 (s) — f1.,(25(s5), ),
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and

Zipn(s) = Z 0f;../92.) p:0..;

mod s#+2 i
Remember the definitions of #°; and %) Then f.;(z;, s) is defined
on ;N%; and f.;(2,+y, s) is holomorphic for (z;, s)e?; So
there exists a K >0 such that
L (z;) [<<Km*7,

where f.;(z;+y, )= Z} f"" » (2;)y"s". We want to estimate the homo-
geneous term of af,,/az p, ..; of order p+1

[afj-.'/azi 0:0%.; (S)]y+1: [af; i/az'Pi (z?lﬂ(s) _f:"-j (zj|p+l (5))]p+1
< Z K™+ A (s) "+

K S <3K>"‘ b A,
m+a=0\ C Cc

because of the induction assumption (6.4),. If we choose ¢ so large,
then

Izi|p+1(s) ‘<A (S)

Therefore we see that the power series 2:(s) converges for |s|<(0,
for some small 6,>0. We may assume that the functions 2i(s) are
m-times continuously differentiable if we put #>m. From now on
we fix these functions 25(s), |s]|<{d,.

Lemma 6.3. Let {N,|s&S} be a complex analytic family of N.
Then there exists w(s) €1, (N, TTNQ(T'N)*) depending analytically
on s such that

(6.5) (X' +o(s) (X)25(s)=0
on U,;, for any X’&T"N.

Proof. Let {2j}.c.<. be a complex coordinate system. Using this
coordinate we define C~ functions (@(s))}., as follows.

w(s) (0/02%) = :,;‘ (0(s))}..0/025.

Using these funtions we rewrite (6.5) as follows.
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(6.6) 0z5(s) /ozr+ ; (0(s))3.,023(s) /028=0.
We note that the relations
02%/028= Opes

hold. Therefore the matrix (025(s)/02%)1<..s<. has an inverse if s is
sufficiently small. Since (@(s)i., is a solution of the linear equation
(6.6), it depends analytically on s. So we have our lemma.

Q. E.D.

After this we shall use this notation (N, °®7T”) instead of a com-
plex analytic family {N,|s€S} of N. We shall call (N, *®T") a
deformation of N.

Let T be a complex manifold with the origin 0.

Definition 6.4. Let {(M, *@T") |t T} be a set of partially complex
structures depending on t=T. We call a set of partially complex
structures {(M, *@T") |t T} a family if ¢(t) satisfies the following:
¢(t) depends analytically on t as a map T to the Banach-manifold
Tty (M, TQCT)*), and ¢(0)=0.

Under these notations, we shall define a versal family of partially
complex structures {(M, *®T") |t T}.

Definition 6.5. We say that a family of partially complex structures
{(M, *@T") |t T} is versal if the family satisfies the following condi-
tion.

For any neighborhood N of M and any complex analytic family
{N,|seS} of deformations N, there exist differentiable embeddings f
from M to N and an analytic map h from S to T such that

h(0)=0
and
@(8) *few=0 (R ()
for any s close to the origin 0 in S, where w(s) denotes the elements
in 'y (M, T'"QCT")*) defined by the complex analyiic family in

Lemma 6.3, and o(s)+f,, denotes the partially complex structure on
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M induced via f, by (N, *@T").
Theorem 6.6. The deformation constructed in §5 is versal.

Proof. We shall prove this theorem using the above C* functions
{23(s)} ;ex and a prior: estimates obtained in §3. It makes no differ-
ence for the proof and it makes the writing much easier to assume
dim S=1.

For any deformations of complex structures (N, *®7"), there exist
a finite covering {#%,},cs of N and differentiable isomorphism z;(s) =
(25(8)y ..., 25(s)) from %; to a ball depending analytically on s such
that

25(8) =f2:(2:(s), $) on %;,NU,
and
25(0) =23,
where f., is holomorphic in 2;(s) and s, {25} is a complex coordinate
system of (N, *@T”) and {25(s)} a complex coordinate system of
(N, *@T"). After this we identify a ball in C* with % ;Xs via the
diffeomorphism 2;(s) if there is no confusion. We define embeddings
fc“’(,) from #,NMx {s: |s|<le} to %,x {s: |s|<e}, where ¥, €%,
and _UA“/V,:)M as follows: For each (z;(s), s)e# ;NMx {s: |s|<e},
we sjeet
fwy, (2;(5), )
= (25() +L(=5(5))s, )
eU,;x {s: |s|<e},
where {® is any element of I'(M, T”). This map is well defined if
¢ is sufficiently small. This is not defined globally on MX {s: |s|<e}
but is well defined modulo s*. In fact the following relation assures
this.
25(5) +C9 (=5(s))s
= @O +HO @), 9, 9)

mod §
on
U,NU,NM.
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From this, we shall define o(s) °fc<1)<,) in I'(%,NM, TTQCT)*
as follows:
(6.6)" (X+0(5) of, (X)) (25() +CO (23())5) =0
on %,NM, a—1,2,..., n and X&°T".

Then we have the following lemma.

Lemma 6.7. w(s)of,w  depends holomorphically on s.

Proof. Let h be a defining function for M in %; and {2%.,c.<.
be a complex coordinate system. Then there exists a system of mov-
ing frame {ef},_.,.. ... of °T”|o,,jnM and moving frame {¢%},... .1

¢ of T'!a,,jm, such that

et+03/088= hy/h,d/0%",
and

é1=0/02%— h,/h,0/02",

where we assume that 0h/027#0 on %,NM. Using this frame we
define C> functions (w(s) °f;<1>(,))i-ﬁ as follows.

w(s) °fc<1)(,> (ef) = ;1 (@(s) of (,))3. 56
+ @) o f, )l

Using these functions we rewrite (6.6)" as follows: for any ef B=

,2,..., n—1, we have

6.7 T (005) 2f,0,)185(25(5) +L (235))9)
+ (@) o f.n )28 (25(5) +LO (25(5))s)
+e8(25(s) +C9 (=5(5))s) =0.

We note that the relations

€;+25=0

1<a, r<n

rea

holds.
We put (n, n)-matrix B(s) as follows.

B(s) = (&5+ (25() +CV(25(5))$) ) 1arsa
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Of course B(0) =E, and B(s) depends analytically ons. If sis sufficiently
small, the matrix B(s) has the inverse. Since {a)(s)fcm(x)}{”ﬂ p=1z..in
is a solution of the linear equation (6. 7) with analytic functions in s

as coeflicients, we have our lemma. Q. E. D.

By this lemma we can expand the left hand sides of (6.6) into

a power series of s. Then we have

(6.8)  X(25())to(s)ofw, (X) (25())+ XEP(5())s) = 0

mod %

for any {®el'(M, T") and any XelI'(M, °T"). In (6.8) putting
{®=0, we have
(6.9 X(25()) tw(s)ofy(X) (z5(s)) = 20,

From (6.8) and (6.9), we have

(6.10) @)L, (X) (@) = — XEO(@5()))s

Fao(s)ofo(X) (25(5))
= - X ([P (z9s) +o(s)ofy (X) (25).
So we have
1) 0®ofn, (0 = =350 +0(s)h(X),

For any power series h(s) = i h,s", we put
m=1
k
R®(s)= 21 hus™
m=1

where h,= (h®, RP,..., h®), g=dim #. Let {}.c1c, be a base
of #. Then from the construction of ¢(t), we have
o(h(s)) =3 h®Bs+ 0 (higher order of s).

=1

After the above preparation, we shall find A(s) and the map f;,
such that

0©)ofir = 9(h(6)).

mod s

This equation becomes
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(6. 12) W(s)ofy— 0 L®s = 3 P Bs.

mod s2 2=1
This equation has solutions 2, {®. In fact from the relation
0Rw(s) ofy+ Ry (0 (s) of) + Ry (@ () o fo) =0
we have

0Rw(s)of, = 0.

mod s2

Therefore we define homogeneous polynomials #4,(s) and {®(s) of

degree 1 as follows:

hi(s) = L HP (0(s)of))

mod 2

and

L9(s) = 0 Np(—Z HP (0(s)of)) +o(s)ofy).

mod 2

Then (6.12) is satisfied.
We shall prove that we can find solutions %£(s) and f;, formally

by induction on the order of powers in the parameter s

@(8) ofe=¢(h(s)).

The first step in the inductive proof is completed.
Assume that the embedding maps f;“%) from MN# ;X {s: |s|<le&}
to % ;X {s: |s|<e} are determined so that fc(’%) is well defined

k+1

globally modulo s*** on M and the analytic maps 2 (s) from S to

T is determined as a polynomial of degree % satisfying the following :

o(s)ofm,, = o(h® (5)).
mod s¥+1

Lemma 6.8. Assuming these situation, the map f:(,,)() can be
extended to a map fc(k)()hj which is well defined globally modulo
T

s¥% on M.

+1(’)’

Proof. We shall define embedding maps fc(k)(;)ﬁiﬂ(s) from
MnH;)x{s: |s]<epa} to %,;X {s: |s|<ewys} as follows: First we
define an element »{,,(s) in C({#;NM}, T'N) as a homogeneous
polynomial of degree k£+1 as follows:
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ia(s) = , Zi:(afji/azs') 0:i0y.j

where o,.;=(0};) 1<a<m,
a5, =2i(s) +LP(s) — fi.;(z; () +LP (9), 9,

(0f;;/02;) denotes the (n, n)-matrix (0f%./02!)1<.s<. and i, (s)=
E(5) )1<azar Then from the assumption, we have

0.;=0 mod s,

From the relations

05, =25 (5) +LF () — fr. (2. (5) +CP (), ),
o ;=2 (s) +L®=(s) —f1i(z; () +LP (), 5)

and
05, =25(8) + L (8) — f3.: (2: (5) +LP (), ),
we have
a5 ;= 27(8) +CF () — fr (0,4 1. (2,() +LP (5), 9), 9)
= T RO/ 0200t 21 () +LF=(5)
T a6 HEE 6, 9, 9.
So
o, ;+ (0f.,;/02;)0;, ;=_‘k+2¢r,._,,

and from the definition of %i,,(s), we have
—0, ;= ﬂ£+1 (s) — (a.fl.i/azj) ﬂ{+1 .
Therefore we have

FHOR S OR T AR M CAO RIS ORS// MO RN

mod §

For any I"(M, T")-valued homogeneous polynomial {,,,(s) of degree
k+1, we have

(6.13) 25(8) +LP(8) + 71 (8) +8isa (5) 25()
= fi,(z;0) +C§'k) () + 9l () +8oin (5) (25(s)), ).

mod sk+2

Now we shall solve the following equation. We shall find solutions
Cis1(s) and A,,,(s) as follows.
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a)(s) ofc(") (s)+v,{+1<5)+ck+1(:) = ¢ (h(k) (S) + h’k+l (s) ) .

mod sk+2

The left hand side of this differential equation is well defined modulo
s** from (6. 13).

By definition of w(s) Of:("’<s)+ai+1<=>+ck+1<s)’ we have
(6.14) (XF0() F 0107, cr, 0 (K @)+
CP (8) +9i1 () +Ceia (8) (25(5))) =0,
a=1, 2, ..., n for any XeI'(M, °T").

Then we can prove the following lemma using the method of the

proof of Lemma 6. 7.

Lemma 6.9. For any I'(M, T')-valued homogeneous polynomial

Cisi(s) with degree k+1 in s, w(s) depends analyti-

o .
fc(k)(s)‘.“qi+1(9+ck+l(5)
cally on s.

We can expand both hand sides of (6.14) into power series of s.
Then we have

(6.15) Xz5() to(s)ofm el 1 46y 14 (X)z5(s)
XD+ 0O oy re, o FOEPE)
T XDEE) o) o fo i i, 0T 6)
+ XCiii (250)) () of (,)+”£+1(,)+CH1(,)C&+1 (9) (z5(9))
= 0.

mod sk12

Putting {4,(s) =0 in (6.15), we have

(6. 16) X25(6) +0() fow g (D6
+ XCP e (5) + o (s) °fc(k>(:)+7£+1(,) (X)EP ()
+ X7, () F 0O Fao gy o DTG
= 0.

mod sk+2

From (6.15) and (6.16), we have
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6.17)  (@(s)ofw R PO AN (X)—o@)fw O +1]4,® (X))25()
+ X (8) (25(5)) = 0.

moa sh+2

Therefore we have

AL RCIOLT AN e SEIORT IR e 0L
+ X (s)2s = 0,

mod sk+2
that is to say,

(6.19) (s) of::(") ORI ORT AN O}

min w(s) of:(k) EF s - aT’Ck+l OF

Now we shall prove that the following equation has solutions
Cirr(s) and Ay, () ¢

6.20) 0@ L@ w0 =L PO O TR ).

mod sk+2

From (6.19), we have
(6. 21) - aTICk-H (S) To (5) O'fc(k) (t)+ﬂ£+1(:)
= p(hY©)+ Lhnps,

mod

“

where {B,}.<i<, denotes the base of . Since the map fc<k)()+i o 1S
ST +1Y
well defined globally on M modulo s**?, we have

(6. 22) P(o(s)ofm (s)+q,{+l(s)) =

mod sk+2

While the following relation holds.
(6.23) P(p(R®()))=0.
From (6.22) and (6. 23), we have
6.20)  ARO)Fwy g, o)~ PO
R ICOT XN B XCICLION
+ RU@E) S g, ) — R (P BO ()
= 0.

mod skt2
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From the assumption of the induction, we have

(6. 25) o(8)of,w N (R®(s5)).

1) g skl
From (6.24) and (6.25), we have
(6.26) W) Fawypy o= ¢BOE) = 0.

mod sk+2

We shall put the homogeneous polynomials Z..,(s) and &, (s) of
degree k+1 as follows:

() = L HP (0(s) °f Crev - SD(h(k) )

mod sk+2

and
Ln® = BNp @O fan gy o= ¢ O 6) = huna()).

mod skt2

Then the equation (6. 20) is satisfied (Hodge decomposition theorem).
We shall prove that the above formal power series Zh (s) and
Z(nHl(s)—I-CHl(s)) converge in || ||(m-norm, to be 1ntroduced next,

for sufficiently small |s|. To do this, we shall recall the following
estimate (Propositions 3. 10 and 3. 11).

Proposition 3.10. The estimate
el < NiT e e o+ i 21 o
holds uniformly for all pin I'(M, T"Q(T")*) and for all non-negative

integer m.

Proposition 3.11. The estimate

HNT’/‘!”/(Im)S”#”(m)
holds uniformly for all pin I'(M, T'"Q "T")*) and for all non-negative

integer m, where Ny, denotes the Neumann operator for [g.

Let I'={I".},cs be a chain where I'; is a T’-valued form on
Vi=7,NM and {W,},c, be a refinement of {V.},.,, We define a
semi-norm on 7”-valued chain as follows.

For each I'={I";},c, in C°(V, T"), we put
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kw=3% 3 (. prvBar,

where we use the notations C°(V, T") for T'-valued chains, by
I' a=1, ..., n we denote C~ functions on V, defined as follows;

r=" re+re,
r=1

where {€i},<,<.-» and & are the system of moving frame of 7"|V,
introduced in Lemma 6.7 and d7 means the volume element on
V.=7":NM induced by the diffeomorphism to a ball in R*"". And

we set
P=3t/oa” ... 02" % fi=4,
i i k=1

where {z,} is a real coordinate system on V,. With these notations
we define a new norm || ||ty as follows: for each I'={["},c, in
(v, T,
I1)le = Zlle. Ll
+ Slle
+ ST

where by e.I" we denote the 7T’-valued function on V; defined as

follows :

e I="3 eI gitein T,

a=1
and we put

lellw=%3% 3, Pels-Pelias.

After this we fix these real coordinate and moving frames.
Now we shall prove the convergence. Consider the series:

A(s)=b/16¢ g} (cs)t/k?,

where b and ¢ are constants to be determined later. Then we have

A($)"L(b/c)"A(s),
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where we write a(®)<b@®) if a(t) and b(¢) are power series Za t
and Z b,t* such that

la,| <b.

For each power series in C°(V,, T"), we set

I @l = I,

Then we have the relations: for any I',(¢) and I',(¢) in C(V, T,

(6.27) I @) + L O e <N @ e 4112 @)l
and
(6. 28) @) I @) e < CllT @) e 172 () |
hold.

In fact for any F(t)_Z]F1 £ and F(t)_Z}Fz J£f we have
[ (t)llon)—ZIIFl dlemt* and HF (t)l'm)—ZIF”Il(m)tk Therefore from

the relatlon Nt Laillow SN vallom +| Fz |l we have (6. 27).
Similary we have

I I =5 2 L.

r=0 r=k%

klZO
While [l I ilim KC I il L irlioy  since m>n—1. Therefore we
have (6.28).
To prove that the formal power series i‘ A () and i(cm(s)
k=0 k=0

+7i.(s)) converge, it suffices to see the following relation :

(6.29) it D) e KA, 19 (D [ KA ()
and
(6. 30) 2 () ||y <1/2K A(S),

where K is a constant, whose existence we assert, such that
1102 Ny ptl |y < Ki | oy for all pel’ (M, T'Q(CT")*) for all integer k
if b and ¢ are sufficiently large. We set b and ¢ sufficiently large so
that the following estimate holds.

1(2;(8) = 2) [|enia LA (S).
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By induction, we shall prove the relations (6.29) and (6.30). For
k=0, it is easily seen that the relations (6.29) and (6.30) hold if &
and ¢ are sufficiently large. Assume (6.29), and (6.30), and let us
prove (6.29);:; and (6. 30) .

From the relations (6.16) and w(s) -fc(,,)(s)(X) = @h®(s)), we

mod sk

have the relation:

(6.31) 06) For gy, (D7
= (P () (-5 6)) + X () —2)
X0 6) (259)) + 9 (RO ()L () (236))
+ X7i1. (5).
We use the notations (w(s) -_fc(,,)(s)hiﬁ(’)(X)z’;)””1 for the homo-

geneous term of degree 2+1. Then from (6.31), we have
(6.32) ((O) *F0 g o FZDH
= (p(h® () (z5—25(s)))*

(X (25(5) — 2 (XTO(s) (25() —2) ™
+ (9 (A (5)) L® (s) (25(s) —25) ) **
+ X7i11 () + (9 (A® (5) )P (s) 25) **.
Therefore we have the relation:
(6. 33) [ (&(s) 'f;(k)(:)+,]£+1(s))IPHH(M)

<<Cm{“ﬂi+1(5)“1(m)

+le (AP () wmlIE® () |[em

+1i@ (R () | 1EP () [t 1125 () — 23| msnr} 5
where for each element in I'(M, T"®(T")*) we use the norm
introduced in §3. Moreover from the definition of %j.,(s) :

Nl () = " ’Z (af;,/az;) 0:0;, ;5

mod §
where 0, ;= (07 ;) 1<<a and 0%,;=2;(s) +LP () (z5(s)) — S35, (=,;(5)
+L®(s) (2,(5)), 5), we have the following estimate by an induction.

[17i41(s) ”2m)<<K1A ()%

where K, is independent of %.

In fact, 0,; being a homogeneous polynomial of degree k2+1, we
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have the relation:
(6. 34) 0% ;= (25(5) — f3;(2;(8) +LP (5) (2;(5)), )

+ (ECP (s) (z3(s) —2))**?

= (25 () = f5,;(z;() +LP () (2;(5) — 2, +LP () 5, $))**

s GHOICIORI PN
We use the notation:

21(s) = fi;(=z; () +u+w, )

= 20 AfLwulvish
I,Lk
11140 or|Ll#0

Then from (6.34) we have the relation:
o;; =(2 AS.:.O(C(") (5)=%)
8
+ 2 Ana@P() () —2)) T ECP () =,) ks
Gzl w010

+ (€9 (5) (5(5) —2D)**

where by I and L we denote multiindices. {® (s)2} being a polynomial
of degree 2=1, we have

(6.35) o5, = (X AL (P (9) (2:(5) —2)) T CP (=) DM
AILILL &) A0, 1,0 (111, ILD) #(0,0)
+ (€ () (27 (s) —=9))
We may assume the relations
110,43 1 4]l By B 101
for any I, L and k.
Similarly we have

10f;.:/92:) 0: (A, 1) [| K By By 1M+

for any I, L and . We may assume
lIslltmy<CA(2) as a chain.
So from (6.35) and an induction, we have the relation:

(6. 36) 1(3f;../92.) 0.0, |
L C|A(2) |+ 3 Bye BiHI+IEI+EA (5)2l1+1zi+s

(111, 1L], ©) 9= (0,1,0)
Azl LD +.0

now the relation 2|/|+ |L|4+%.>2 holds. So we have the relations
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(6 37) (A(S))21+lLI+lz<<(b/c)21+lLl+k—2A(s)2.
From (6.36) and (6.37), we have the relation:

Il (af; :/02;) Pio'i.j) Hém)
<<<C1+ Z BO.BI|1|+|LI+I=X (b/c)zlzl+lLl+k—2)A(s)z

(11, 1L], ®) #(0,1,0)

A1l 1L #(0,0)
<K CAs)?
if ¢ are sufficiently large. So we have
(6.38) 1742 () [ < Ko A (5)*

¢ (%) being a convergent power series, we have the relation:
[1@1lwy < B, Bs,

for any /, where ¢(#) =) ¢;t'. So we have the relation:
21

(6.39) lle (2P (5))lem
<Lle A® () llem
<L BBy (R (s))’
<T BB (/)" A )
L KA(s).
From (6.33), (6.38) (6.39) and the construction of A,,,(s), we
have
17441 (9) | < K" A (5)*
L K'b/cA(s)
L1/2K A()
if ¢ is sufficiently large, where K’ is independent of k2. Similarly we
have

I|Ck+l (S) ||2,,,)<<A (5) .

Therefore 3 hin(©) and 3 Gun() +2in(s)) converge in || Il
k=0 k=0
norm. By Sobolev lemma, we have that they are in C’-class. So we

have our main Theorem.
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