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On the General Form of Yamagutl-Nogi-
Vaillancourt's Stability Theorem
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Zen'ichiro KOSHIBA*

§ !„ Introduction

It is well known that the Friedrichs scheme is stable in many hyper-

bolic cases ([2], [5], [10], [15], [17]) and it is quite natural that

this simple scheme may be expected to be stable under less restriction.

The theor}r of pseudo-difference and translation operators has played

an important role in the stability theory of difference schemes as in [3],

[14], [15], [17]. But the treatments of pseudo-difference operators are

rather different from those of pseudo-differential operators, although it

seems that both operators work in the same principle. The crucial reason

why such different treatments have been needed is as follows: The main

properties for a pseudo-differential operator P with symbol p (jc9 £) are

derived from the behavior of p(x,!T) as | f |—>oo. On the other hand

the properties of a pseudo-difference operator Ph with symbol p (x, hf)

(0<A<1) are derived from the behavior of p(x,hs} as A—»0 (neces-

sarily |Af |->0).

In the present paper we shall study an algebra of a family of pseudo-

differential operators and apply this theory directly to the stability theory

of the Friedrichs scheme. The class {STh} of pseudo-differential operators

is defined by means of a family of basic weight functions /U(f) (0<7z<l)

as in [7], [8], [12], [13]. For the application to the stability theory

we have to define two subclasses {STh} and {Sfh} of {Sfh} as the sets of

all the symbols ph(x9 ?) such that h~lphs= {Sfh
+l} and h~ld^ph^ {S?A

+1"|a|}

for any a^O, respectively. The class {§lh} corresponds to the class of

usual pseudo-difference operators and the class {S^} does to the class of
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operators of null scheme. Then, setting "the principle of cutting off" a

symbol ph(x,f) of our class {ST.} by X (*»(£)) (or p(C*(£))) (see
Theorem 3. 14) , we can naturally derive a stability theorem of the

Friedrichs scheme for a diagonalizable hyperbolic system by using the

well known calculus of pseudo-differential operators.

We should note that the theorem is regarded as the general form of

the Yamaguti-Nogi-Vaillancourt stability theorm ([14], [16], [17]) and

holds without the restriction on the behavior of symbol ph (xy £) at

x — oo.

In Section 2 definitions and preliminaries will be given. In Section

3 algebra of operators of class {SfJ- and its properties will be given.

There and thereafter our theory depends heavily on Calderon-Vaillancourt's

theorem. In Section 4 we shall give an improved form*} of the

Yamaguti-Nogi-Vaillancourt theorem of Lax-Nirenberg's type as an appli-

cation of the Friedrichs approximation method (see [4], [11], [14],

[17]). But this theorem will not be used for our calculus of the

Friedrichs scheme in Section 5, where the algebra of operators of class

{STh} will be directly applied to the Friedrichs symbol (5. 7) and the

general form of the Yamaguti-Nogi-Vaillancourt stability theorem will be

derived. The difference scheme may depend on t as well.

The results of this paper are stated in the previous paper [6] with

a sketch of proofs.

The author is greatly indebted to Professor M. Nagase for his kind

advice.

§ 2. Definitions and Preliminaries

Let a— (aly • • - , a^ be a multi-integer of o^>0. We put \a\ =

v, a! = ai!-0n! and 9?=

Definition 2.1. A family {AA ( f )> (0<A<1) of real valued C°°-

function in R| is called a basic weight function, when there exist positive

*} An essentially improved theorem in the sense that besides the homogeneity of symbol
in £ C2-smoothness with respect to x and £ is only assumed, will be published else-
where.
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constants A0, A.a (independent of Ti) such that

(2.1) i) l^ft(?)^

and

for any a, where <f> = {1 + |f |2}1/2 and 4°° (?) = 9?>U (?) for a.

Example 1. Let C* (?) = C^"1 sin A? ly • • • , h~l sin A?B) . Then lh (?)

ig a basic weight function. This function satisfies

(2.2)

Definition 2. 2. ^=^(R") = {/(y) e C-(R") ; lim |y | ' |
!y|-*oo

= 0 for any / and a}. &" denotes its dual space which consists of all

temperate distributions in the sense of L. Schwartz.

Definition 2. 3. i) A family of C°°-symbols ph (x9 f ) in RJ x R?

(0</i<Cl) is called of class {Sfh} (— oo<^m<^oc)9 where there exist

constants Ca^ (independent of h) such that

(2.3) I^UC

for any a, |9, where £$» = 9?

ii) The set of all symbols ph(x,^ such that A"1^ S {S?*1} is
o

denoted by {STh} and the set of all symbols ph(x9£) such that h~ld"ph

e{5rA
+1"|a|} for any a(^0) is denoted by {SfJ.

Hi) A family of linear operators Ph : J?^— ><$^ is called a pseudo-

differential operators of class {Sfh} with symbol ph (x9 f ) , where there

exists a symbol j^ (x^ $ ) of class {S^} such that

(2. 4) Phu (x) = ph (X, £),) « (z) = Je'«/»» (x, I) 8 (f ) M

for we^, where ^f= (2?r) ~ Vf and fi (?) = \e~ixlu(x}dx. We denote

(2. 4) briefly by Ph = ph(X, Dx} e {ST.}, or

It is evident that {ST'\ C {Sf,1} for OT^OTL We set {Sr4"> =
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Definition 2. 4. A family of C°°-symbol ph(x, ?) in R*X R? is called

of class {S™ih}, when there exist constants Ca>/3 independent of h such

that

(2. 5) ! p£\n (x, 0 | ̂ Cai,Afc (?) ra for any a, 0.

The operator Ph corresponding to this symbol is defined by the same

way as (2. 4) . This class will be used only in Section 4.

Example 2, For real m /U(f)me{Srj.

In the case /U(?) =<^C/i(f)X we have the following examples which
are important for the calculus of difference schemes:

Example 3. sin A?, e {S!h} and cos A?, e {SJJ .

Example 4. Let ph (x, £ ) e {S£} - Then A A (x, £ ) e {Ŝ 1} -

ExampIeS. Let /> (:c, ?) e S5>, which means that \P$](x,$)\

-|B|. Then ^(^ f) =/,(a;,

Let Ph = ph(X, DX) e {Srj and let's define the formal adjoint P* by

(2. 6) (Phu, v} = (u, P*v} for u, v^^.

By Theorem 3. 1 we get PI <E {5fA} . Then by the aid of the relation

(2.6) for u ej?" and v<^Sf, we can extend Ph\^-^5^ to the mapping

P,:^'-^'.

Definition 2. 5. For real 5 we define the Sobolev space e^f^ f t > s by

Jf ,,,, = {u e^';^ (£) s« (?) e L2 (R?) with norm || a || ,„. = ]| ̂  (f ) SS (f ) || L..

This is the Hilbert space with inner product (u,v)ihS= I A/i(f

When & and 77 are /-vectors i.e. M = ( « ! * • • • ; w ^ ) , v = e (7^1,

77 ̂ ), where * ( • • • ) is transpose notation, we can define M^h)S by the same
/

way with inner product ][] (w^, 77 y) i f t>,. ^ is dense in L2 = J^ftj0. When
j=i

Ph(x9 f) = (P*ttj(x, ?)) is a /X / matrix function, we say that ^e {S?A}

if all elements />M>/ (^ f ) e {SfJ . We define P, by Phu = ^^ph (x, f )

Xf i ( f ) ^ f , where ^ (x) =l(«1(a:), • • - , ut (x» e^- and M*, f ) * (0
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-'(I] P*,*ti(x, f)0X?), -, S/>/>,/,/(*, f )*/(£))• In the case the index

.7=1 .7=1

of Sobolev norm 5 = 0, we write briefly ||«||0, or sometimes \\u\\ with no

subscript in place of H ^ l h R , o .

§ 3. Algebra of Operators of Class {STh} and Its Properties

Throughout this section we fix a basic weight function /L f t ( f ) . We

assume only that Aft (?) satisfies (2. 1). In this section we shall employ

the methods and results of [8], [9], [12], [13] and for further clarifica-

tion these papers should be refered to as original references.

Theorem 3.1 (Fundamental theorem of algebra of {S^}).

I) Let Ph = ph(X, Dx} e {S?h} and let Pf be its formal adjoint by

(2. 6). Then Pf is of class {Sfh} and <T (PJ) =pf (x, f) has the asymp-

totic expansion

(3. 1) Pi (x, £ )

_ laK^- a!
zvhere A denotes the Hermitian adjoint matrix of A..

li) Let Ph,j = phtj(X,DjG{S%} (.7 = 1,2) and set Ph = PhilPhit.

Then Ph is of class {Sfh
i+mz} and G(Pj?) =ph(x9£) has the asymptotic

expansion

(3. 2) ph (x, f) ^H -i-^iCa:, f)/>M,(«) (^ 0 •
« a!

We omitt the proof of Theorem 3. 1, from which we derive a series of

corollaries.

Corollary 3. 2, If ph(x, f) zs re^/ valued (Hermitian symmetric

in the matrix case) , from Ph^ {$Th} ^e have

(3.3) PJT-P.e^STr1}.

Corollary 3. 3. If -we define the operator PhjioPhi2 by the symbol

P*,i (*, 0 P*,2 (x9 f ) , from Ph>j e {Sf/} 0' - 1, 2) we

(3. 4) Ph)1oPh}2-PhjlPh}2^ {STh
i+m*~1}.
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Corollary 3.4. (i) For Phtf <={§?,*} (.7 = 1,2) we have

(3. 5) [TVP*,.] = P^Ph^-P^Ph^ {k^~1}

under the commutativity condition:

Pn,i (x, f) pK,t (x, S) = /»»,, O, £) AM (x, f).

(ii) For PM = PM(-D.)e{

(3. 6) [PM, Pft>2]

under the commutativity condition ph,i(£)Ph,,z(x, •?) — Pfi,z(^9

Proof of i). From (3. 2)

and

S

Proof of ii). Noting that ph>i,(a-, (x, f) =0 for |a|>l we have

(3.6).

Remark 3. 5. Our Corollary 3. 4 is so called a commutation

theorem ([10]). If ph,i(jS) is scalar valued, Corollary 3. 4 ii) is valid

unconditionaly (see Example 3) . This fact is used later for the calculus

of difference schemes.

Remark 3.6. As for the subclasses {§%} , {Sfft}, they form algebras

as {Sfh} in themselves because of the fact that the asymptotic expansion

admit term by term differentiation with respect to f . Especially we use

later the fact that if PMe= {Sfh
1} and jPMe{SJi'}, then both Ph>lPh>2

and PfcfloPMe{Srfc
1+*i}.

Theorem 3. 7. For Pft e {STh} we have a constant Cs independent

of h such that

(3.7) ll^lk,8^CsNk,s+m for
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Proof. We begin with the special case of Calderon-Vaillancourt's

theorem. ( [1] )

Lemma 3.8 (Calderon-Vaillancourt) . When ph (x, § ) e {Slh} , it

holds that

(3.8) \\Phu\\lh,^C\\u\\lh,, for

where C is independent of h.

To derive the estimate (3. 7) , we consider the operator

AUZ>)P*;UCD)--Cl+m) which belongs to {Sjfc} by virtue of Theorem 3. 1 ii)

and v(x)= r****A*(0I+m0 (£)•<*? which belongs to M^,. Then, from

the preceding Lemma 3. 8 we get

I! P»« || „.. = II P»A» CD) -<i+»> v || ,>,. = || Al (£>) P»A» (Z)) -«•+-> w || ,.,,

| i lk., = C.||«|U,,.+.. Q.E.D.

Corollary 3. 9. WAew j&ft (a;, ?) e {S?J , f f AoWs that

(3.9) l(P^,«)I^C||«||^m/2 /or «e^.

Proof. We put (Pft«, «) = (lh(D~) ~m*Phu, ln(D)m'2u) = (P'nu,

u) .where P'h = lh(D) ~m/2Phe {Sf/2}. Hence by using Theorem

3.7 and Schwarz inequality we get | (PA«, a) |^||PU ||0||

Now we turn to the well known theorem relating to the Friedrichs

part and Garding's inequality. ( [4] , [8] , [12] ) Using the same way as in

those papers, the following Theorem 3. 11 is derived and we only mention

its principal statement without proof.

Let q (o~) be an even and C°° (Rn) -function satisfying that q ((T) >0,

suppg((f)C:{<T: |<7|<1} and [q*((f)dff = l. We define F(f, C) by

(3. 10) F Or, 0 ^ q ( (S ~ C) ̂  (f) -1/2) ^ (f ) -^

and double symbol pF,h(^,x',£') by

(3. 11) />,,» (f , x', n = ^ (f , 0 Pu (x', Q F (f ', Q ̂ C .
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Definition 3. 10. The operator PF)h called the Friedrichs part of

Ph is defined by

(3 . 12) P(0

It is well known that if we put Pu (x) = f f f <?i(*f-*'*+*'f/)/>C*, ?, *', f)

and #L(o:, f) = JJ^-'^XXA)11^^, f + C, ̂  + «, f)

for double symbol p(x, %, x' ,%'} , Pu=pL(X, Dx}u

holds. ^>£ (.r, f ) is called the simplified symbol of P. For simplicity the

subscript L is omitted here and the simplified symbol of PF}h is denoted

by pF,h(x, <?)•

Theorem 3.11. Let Ph^{STh}. Then zve have the following

(3.13) /^*(*,f)e{S!i}.

(3. 14) ^,, (x, f) -#, (x, f ) e {SJ-1} .

^ ^A (-3?, f ) z'5 real valued (Hermitian symmetric) ,

(3.15) (PFihu,v} = (u,PF,hv} for «,

T/" />A (x, f ) >0 (non-negative Hermitian symmetric) ,

(3.16) (Pjr,»«,K)>0 for u^y .

Furthermore, if ph(x, f) >c0AA(f)m/ /or a constant ca,

(3.17) (P^B.^^Collallt^-CllBllJ..^!,/, /»r

Furthermore, if CQ is positive,

(3.18) tfY»«,«)>c.ll«IIS,,./»,

-where GI can be chosen as positive and independent of h.

For our application to the difference scheme we shall use (3. 18) ,

which is derived from (3. 16) . We shall show it as Lemma 5. 7.

Theorem 3.12 (Lax-Nirenberg) . Let Ph(t= {Sft1}) satisfy

^ f t(jc?f)>0 and qh(^} (^ {-§I12}) ^ a real scalar symbol. Then -we

have
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(3.19) Re (P,X (#)«,«) ̂ -CA || Milk,,/,*., for uef,

ivhere C is independent of h.

Proof. The following identity is easily verified.

h-1 (PFthq\ (£>) u, u) = (PF,Ji~1/2qh (Z>) u, h^qh (D) u) + (Q^K, u) ,

where Q f t= [P^,*, A"1^] ̂  {>§rft
1+m2} because of (3.6). Noting that the

first term of the right hand is non-negative by virtue of (3. 16) and

applying Corollary 3. 9 to the second term, we have (3. 19) .

Corollary 3.13. If real scalar symbol qh (£ ) e {S?ft
2} , tve can

replace PFjh by Ph in (3. 19) ; i.e.

(3 • 20) Re (PhcA (D) u, u} > - Ch \\ u \\lh,mi/2+m2.

Proof. We have only to estimate (h~l(PFtJl — P^)q^(iy)u9 11) . Since

7z-VU#) e {SI?*1}, it holds that (PF,h-Ph}h-*ql(D) e {^+2m*}. Thus

we have | (A"1 (FF,,- P,)

In the following we mention a simple and very useful theorem for

the calculus of difference scheme.

Theorem 3. 14 (The principle of "'cutting off") . Let % (t) and

be CQ '-function in R] and R|, respectively. Then zve have % f t(?)

(f ) ) and <ph (f ) = p (Cft (f ) ) e {Sr"} . If Ph (x, f ) s {SfJ
o

{Si;00} ^«^ (/" ^^ Cz, ?) e {Srj , then we have

Proof. For %^(f ) by using (2.1) ii) , we have 19?% f t(

TO)a/U(?)"lHo'1 for any w and a. For ^ (f ) , by using the fact that all

the 9|C*(f)'s are bounded functions, we have \dfyh (?) \<,Cm,alh ( f )m~ | a l

for any ??£ and c^. As for %hph (or (pnPh), the statement of Theorem

3. 14 is easily seen by virtue of Leibniz formula.

Combining Theorem 3. 14 with Theorem 3. 12, we have the follow-

ing corollary.
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Corollary 3. 15. Let ^ (?) = <C* (0 >. If P (x, C, (f ) ) e {Sfft>

£5 non-negative Hermitian for | CA (?) I =^"o» £/z.£;z ze^ have

(3. 21) Re

Proof. We take a non-negative CS° -f unction #?(?) such that 0>(£) = 1

for |f|<;i and consider the symbol (2h)-1(ph + ph)-\-C¥fl(^Iy where

r,(0=:^((2Mo)-1C,(0). Because of A'^e {S£+1}, we can choose

sufficiently large C such that (2/2) ~l(ph + ph} +C¥h (?)/>0 for all *

and f. If we set ph = l/2(Ph + Ph) , Ph — pn^ {SrA°°} by virtue of Theorem

3.14. Then, applying Theorem 3.12 for ph + Ch¥h(^I (<={«£}) and

£fc(?) =1 (e {S$ft}) and taking into consideration the fact that the opera-

tion Ph-*PFjh is linear, we get (PFthu9 u}>-Kh\\ii\\lhim/2-Ch(WF>hic, 11)

and furtheremore (PF}huyu)^> — Kh\\u\\lh}m/2 — Ch(¥F)hu9u). Again, by

applying Theorem 3. 1] (3. 14) and Theorem 3. 14 for Wh, we get

(3. 22) (PFthu, ii)>-K'h\\u\\h,mll .

On the other hand, from h~lph e {Sf^1} we have by Theorem 3.11

(3. 14) and Corollary 3. 9

(3.23) \h-i((Ph~PFih)u,u)\^K''\\u\\lh,m/2.

Combining (3. 23) with (3. 22) , we have (3. 21) .

§ 4. A Theorem of Lax-Nirenberg's Type

In this section we shall give an alternative proof of Lax-Nirenberg's

theorem which was derived by Yamaguti-Nogi and Vaillancourt (see [14]

and [17]).

Theorem 4. 1. Let k (x, Q be an fx£ matrix and C°° (R!J X (RJ

— ^S}^ -function -which is of homogeneous degree 0 -with respect to

C and satisfies that \Da
xk(x, Q i<^Ca for any a. Let A($) = (A, (f), • • - ,

be a real n-vector valued C2 (R£) -function -which satisfies that

=0 and d^Aj(S) are bounded for |a|<!2 and j — 1, • • • , n. Assume

that k (3;, C) is non-negative Hermitian, then we have

(4. 1) Re (KhA\u, u} > - Ch \\ u ||2 for u e L2 (RJ) ,
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where ff (Kh) = k(x,A (h?) ) and ff (Al) = £] A] (h?) .

Remark. Yamaguti and Nogi proved the theorem in case k(x9 Q

is independent of x for large \x .

For the proof of Theorem 4. 1 we need some lemmas which are

shown in [12] and [13].

Lemma 4.2. Let /U(?) be a basic -weight function. Then uue

have

(4. 2) C-'A, (?) ^A, Or + Aft (?) '"ff) ^CA, (?)

/or a;?v <JeR| satisfying itf |<^(Jo (GQ is a positive constant) , zvhere the

constant C is independent of h.

Lemma 4.3. Let AA(?) be a real valued C1 (R|) -function such

that I/iC?)^! <Z7Z<^ 96jJ.h(S) O' = l, •", w) #r<? bounded uniformly -with

respect to h. Then there exists a basic -weight function hh (f ) which

satisfies that

(4.3) Col f t(

/br 5o;?i^ positive constants c0 and c^

Proofs of these lemmas are omitted. We have only to remark

that the proofs can be proceeded as in [12] and [13] independently of

h.
We define I f t(f) by

Then by the assumption that dg.Aj (?) are bounded, we can see that

^f t ( f ) satisfies the assumption of Lemma 4.3. Hence we obtain a basic

weight function AA (?) which satisfies the inequality (4. 3) .

From the definition (4. 4) and the boundedness of A (?) , we can see

that hlh(?)^d. Hence we have

(4.5) hhh(?)<^C2 for some positive C2.
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We fix this basic weight function hh (£ ) . Here we recall the class

{SoX} introduced in Definition 2. 4. We note that Theorem 3. 7 holds

for the class {S™ih} of pseudo-differential operators, and that Corollary

3. 4 ii) holds when the symbol ph.2(x, ?) e {Sft\h} satisfies that d"phtt(x, ?)

e{SSX|Q:1} for |«|<;i, that is

(4. 6) h
Correspondingly to Theorem 3. 11 -we have the following theorem:

Theorem 4. 4. Le£ ^ (.r, f ) GE {S

e{S?rJa|} /or \a\<^2. Then we have

(4.7) pF,h(x^)^{SZ,

(4. 8) ^F5, (^ f ) - #, (^, f )

TTr/z^;z Ph(x,s) is non-negative Plermitian, ive have

(4.9) (PF*U,U)>$ for we^.

(For the proof of Theorem 4. 4, see [12] .)

Using Theorem 4. 4 we have the following propositions which are

similar to Theorem 3. 12 and Corollary 3. 13, respectively.

Proposition 4.5. Let Ph (e {SoX}) satisfy that the symbol

Ph(x, £) z"5 non-negative Hermitian such that dfph(x, £) e {S™^|a|} /or

(e {S™5A}) &£ a rcaZ scalar symbol. Then -we have

(4. 10)

for u^<$^, -where C is independent of h.

Proposition 4.6. If qh (f ) e {Sfft
2} , tc'^ ca;? replace PFjh by Ph

in (4. 10) , ^/xa^ is

(4. 11) Re(PA<7i(D)«, ^>-CA||^!ILTOl /2+mz .

Proof of Theorem 4. 1. We choose a C~ -function % (Q satisfying

that %(O=1 for ICI^v^iC, %(C)=0 for large |C| and 0^%(Q^1,

where ^j and C are the same as those in the right hands of (4. 3) ,
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(4. 2) respectively.

Consider the following symbol

(4. 12) Qh = k (x, h'lA (A?) ) A\ (0 = (1 - %ft (f ) ) Q» + %* (?) Q,

where %A (f ) = 7 (AA (f ) ) . From the definition of %, it is easily seen that

if |A-M(/z?)|<l, Antf-^tf^ffXVTdC holds for any f , ff (|<T|^ff,)

and 0</z<l. Then we have XA (?) =1 and %ft (f - AA (£) 1/2<0 =1. Hence

QI,A (•£,£) is Cj-f unction and satisfies

(4.13) iQv,Cr,0!^CA24(?)^C'

which is derived from (4. 3) and (4. 5) .

Let (p((f) be an even non-negative, Cj°-f unction such that \ (p(ff}dff = li

and Th (x9 f ) be denned by

(4. 14) Th (x, S ) = JV (ff) Q,,» (x, $ - ^ (f ) ̂ ff) ^ff .

Then we have

(4. 15) 7\ (x, 0 = V ( (f - 0 /!, (f ) V2) A» (f) -/2Q1]ft (x, C) ̂ C -

From the assumption k (xy Q S^O (non-negative Hermitian) and the defi-

nition of % we see Th (x, <f ) >0.

Define Ph by

h(4. 16) P

Then we get from (4. 13)

(4.17) \T,(x, £)\<Ch^h(%y and

Furthermore by the differential calculation we can see

(4. 18, i) 9f/Q1;ft (x, Q = Qgi (x, 0 + QS\ (x, C)

and

(4. 18, ii) 9r e»QM (^, C) = Q& (x,

w^here Q(3
fl (x, C) 0" = 1, 2) is the sum of the terms involving the deriva-

tives of (1 — %/i(C)) . Since AA(C) is bounded where the derivatives of
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(1 — %ft(C)) is llot zero, Qij,l(x, Q is a form of A2 times uniformly

bounded function. By the fact \h~lA(hQ \<Ckh (Q, Qgl(x9 Q is of the

form of h2&h (C) times uniformly bounded function. Therefore by using

(4. 2) we get from (4. 14)

(4. 19, i) \dt,Th(x, f) I^CA'^tf) and |9f,P*(;c, f) I^C'

and

(4.19,ii) |9|«+^TA(.r,?) ^CA2 and \dp*'»Ph (x,

By succesive differentiation of (4. 15) we get

d?Th = f s
J $<>a,

^or 1^1=3, where cajl3(ff) and ^a>/3((T) are bounded functions. Then from

(4. 13) we have

(4. 20) \9fTh(x, f) |^

and

for |CK|^3. By the same calculation as the preceding we can see

and

\Did^Ph(x, f) I ̂ C;,,r/U (?)-"" (|a| =0, 1, 2)

for any 0 and y. Hence PAe {S0°,,J and 0?P»e {S^1} for |a

On the other hand we define gft(£) by <?ft (?) = AA f t (f) (e {SJJ)

and apply (4. 11) to Pft and gft. Then we get

(4. 21) Re (P»?| (D) u, «) > - CA || « ||2

or

(4. 22) Re (Thu, u} >-Ch\\uf .

To estimate the difference Th — Qlih we use the lemma without proof.

Lemma 4. 7 (P. D. La.r) . The function k (x, Q in Theorem 4. 1
can be expanded in a series
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(4. 23) k(x, Q = £ a. (*)exp (*(«, C/KI) =2 fl«(^)*«(0,
a a

a varying over all multi-integers so that the series as well as any

differentiated series -with respect to x and C, converges uniformly.

Furthermore, Z j l^ l* a a are convergent for any £, where aa= sup
i f \\ * *es*\aa(x)\.

Set Oa i h — (1 ~~ %/z,

Then analogously to (4. 18, ii) we get

(A. 9A\ fl(ci+c/)O ( r f\ — D(2) f-r P> 4-O(2) (r f^\f±. 6Q) C/c k£a,l,/i V-^, W — Lia.l./z, k-^j ^/ ' k^a.l.ft V-^, S>J ,

where Q^i./i is the sum of the terms involving the derivatives of

(1 — %ft (C) ) . Therefore we get

(4. 25) dp+'*Qa,llh(x, Q=h2aa(x) £ \a\sba>h)S(Q,
S = 0

where ba}h,s(£) (s = 0? 1, 2) are bounded uniformly with respect to ot and

7z.

By applying the Taylor expansion to Qi^Cr, Q — Qi,h(x9 f) 5
 we get

(4. 26) Tft (x, f) - Q l f A (x, g) - - f] ^ (f)J/2 L (ff) 9f Q1§fc (^
y=i J

vn xn
-Zj 2_j '

a i,j=l

where the second term of the right hand is obtained by term and term

twice differentiation under integration sign. Since <p(ff)o"j is an odd func-

tion the first term of the right hand vanishes. Hence taking into con-

sideration (4. 5) and (4. 25) we get

where £«,&,,(£) are bounded uniformly with respect to a and h. There-

fore by virtue of Lemma 4.7 the operator h~l(Th — Qi^ is bounded

uniformly with respect to h, as it is the uniform limit of Z/2-bounded
2

operator whose symbol is XI (Zj \OC\saa(x) £«,*,,(£)) •
finite a s=0

Combining (4. 22) with the above result we get
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(4.27) Re(Qi,*K, ^)>-C1A||w||2 .

As for the estimate of Q2}h, we rewrite it in the form

where we can see | ka (£) ̂  (f )XA(£) | <A'2A2
ft(f )%„(£) ̂ c,A'*» (f ) ~* for any

positive /? by (4 3) and the principle of cutting off. Thereof ore again from

Lemma 4.7 we get ||Q2,7l||^C/A2 X] aa<jC"h. Hence Q2>ft is a null
a

scheme in the sense of Yamaguti-Nogi and we get (4. 1) . Q.E.D.

§ 5. A Stability Theorem for the Fried richs Scheme

Let /U (?) = <CA (f )> = (1 + ^~2I] sin2 Af y)
 1/2. In this section the scheme

j=i
may depend on t as well and for clarification of the sense of dependence

on t we introduce here a function space 3$\(S™^ .

Definition 5. 1. Let T be any positive fixed constant. We write

P (*, x, ?) e -® e (^3>) > when / X / matrix valued function /> (t, x, f ) defined

on [0,T]xR5xRf satisfies the following conditions:

f o r ^ e 0 T ,

ii) they are uniformly bounded in S^> with respect to t, i.e.
1''1 and

for some constants Ctf,^, C«f/s which are independent of t.

Furthermore if Ca,0, C^ can also be chosen independently of

h (0<A<1) for a A-family ph(t9x,£)9 we write #Ae ^{({SJ}). It is

evident that if ^> (t, x, f) e 5J(S5>) , then /> (^, x, C* (f)) e

Now we consider the hyperbolic system of the form

(5.1) Lu=Dtu-p(t,x,DJ=0 in [0, T]x

with ult=Q= &0^£2(R£) for u= (uly • • • , u ̂  . We assume that P(t9x9£)

has the form

(5. 2) # (^, ̂ , f )
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(pje3\(S&9 .7 = 0,1)

and that all the eigenvalues H j ( f 9 x 9 £ ) (j = l, • • - , / ) of pl arc real and

satisfy

(5. 3) maxl^C*, x, f) |^0|f j O' = l, • • - , f)

on [0, T] X R ™ X {|?|>M0} for some positive constants //„ and M0. We

also assume that Pi(t9x9£) is diagonalizable in the sence: there exists

AT (*, x, f ) e ^ J (S^>) such that

(5. 4) AT (*, *, f ) A (*, *, f ) = .0 (*, *, f ) # (*, *, f )

on [0,T]xRSx{!?|>M}

and

(5.5) det\(N(t,x,i))\>c0 on [0, T] xRJ X {|?|>M>

l»i<t,x,f) 0 \
for constants C0(>0), M(>M0) and 5) =

\ 0 ilt(t,x,^l

Definition 5. 2. The Friedrichs scheme for (5. 1) is the following:

(5. 6) 4

where w (^, a;) = (2w) -1 ](w (^, x + Aey) + w (^, x- Ae.,-)) and ey=(0, • • - ,

1....0).
Here we can consider (5. 6) as the operator which works on

u (t9 x) ( e Z/5r) to u(t + k, x) . Since r ( = &/A) is a fixed real constant,

the operator may be denoted by Sh and

(5. 7) (T (S») (*, :r, f ) = qh (?) + *r A/>ft (*, ̂  f ) ,

where q*($°) = n'1 ^cos h$ , and /> f t(f, ^, f) =p (t, x, Cft (f)) . Then we

have ^e^K^uTand #»e S}({SJ4}).

Our statement is the following theorem.

Theorem 5. 3 (General form of Yamaguti-Nogi-Vaillaiicourt's

stability theorem) . For the hyperbolic system of which the principal

part pl is diagonalizable for large |f| (i.e. under the assumptions

(5. 2) , (5. 3) , (5. 4) , (5. 5) ) , the Friedrichs scheme with r (| r j

"1) is stable in the sense of Lax-Richtmyer.
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Proof of Theorem 5. 3 will involve several propositions which are

similar to those in [17] and be done after Lemma 5. 7. In the following

calculation we use the notation O(Ji) that denotes a quantity (real or com-

plex) not larger in absolute value than h times of some positive constants

which are independent of h and t. Hereafter || • || with no subscript denotes

//-norm and since the function space & is dense in Lz (R71) , we may

assume that u belongs to &. First we shall aim at the one-step energy

inequality (5. 26) and therefore the terms being O (Ji) may be neglected

for the simplicity of calculation.

We define Sl1} by

(5. 8) <7 (SJ») - qh (?) -r irhplth (t, x, O (plih = Pl (t, x, C, (?) ) ) •

Since M*,*,C*(£))^}({SU), we have by Theorem 3.7

(5.9) \\(^

Then we can neglect the lower term pa and p1 is denoted briefly by

p hereafter.

Consider a function #>(?) eC0(Rj) satisfying the following conditions:

i) K?)=l for I £1^4/3, <?(?)= 0 for |f|>5/3, and

for 4/3<|f|<5/3.

We set

(5. 10) q>h (?) = <p (M-1^ (f ) ) , &(£)=?( (2M) -^ (f ) ) ,
v

and define S^ by

(5. 11) ff(SJ (t, x, f) =qh(^ +ithph(t, x, f),

where ph = ph (t9 x, f ) (1 - 0^ (f ) ) . Then we havp

Lemina 5. 4.

(5.12) ||(S|?>-50a|l=0(A)||«||.

Proo/. From ff (S^ - S») = ithph (t, x, f ) ̂ A (?) , where

by the principle of cutting off, we get A"1^*15— <SB) e {SJJ-. Then

(5. 12) follows by Theorem 3. 7.
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Now set

(5. 13) Hh (t, x, S ) = N* (t, x, Cft (?) ) N (t, x, CA (?) )

where iV* denotes the Hermitian adjoint matrix of N. Then we have

Lemma 5. 5. Hk (t, x, ?) is positive Hermitian and satisfies

(5. 14) cJ^Hh (t, x, ?) ^

and H^

Furhter let Hh denote the Friedrichs part of Hh (t, X9 D^) . Then

-we have

(5. 15) 6 (Hh} -ff(HJ<=£t( {S^} ) „

Proof. For f such that [M^GC?) 1^9/6 and some f0 (|f0 |=9/6),

Hh(t,x,ft><ph(fiI>(p(€JI'9 and for f such that \M~^h(^ \ >9/6, from

(5. 5) we get ]det(7V(£, x, C/i(?))) l~co- Then there exists some positive

constant c' such that

(N* (t, x, C, (I) ) JV («, x, Cft (?) ) (1 - <ph (?) ) 2z;, v)

,N(t, x,

for any /-vector v. Then, setting c1 = min(^(f0), cx (1 — ̂ (f0))2) ? we get

cJ^Hji (t, x, ?) . By the assumption N (t, x^ ?) e= ^} (5^) it follows J?ft

e^J({SSA}), from which we get Hh(t,x,£)<zcJL. Noting the fact that

the operation of taking the Friedrichs part of a symbol and the dif-

ferentiation of the symbol with respect to t are commutative, we get

dt

Then from (3.14) we get (5.15). Q.E.D.

Lemma 5.6. || u\\Hfi= (Hhuy ^)1/2 defines an equivalent norm to

\\u\\9 that is

(5.16) a\\
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'where cc and /? are independent of h and t.

Proof. From H,e^(^U) and (3.13) we get H^

Then || u \Hh1^$\ u \\ follows from Theorem 3. 7. The other inequality (X\\u\\

<^\\u\\Hfi follows from the inequality (5.14) by applying Theorem 3. 11,

(3.18) for the case m = 0. For completeness of this proof we shall

prove (3. 18) as the following Lemma:

Lemma 5. 7, If ph(x, ?) >cQ&h(^
mI for a positive constant CQ,

then -we have (PF,hU, u) ^Ci||^||JAfTO/2 for some positive constant c^.

Proof. Applying (3. 16) to the non-negative Hermitian symbol

ph (x, £ ) - c0ih (f ) m7, we get (PF,hu9 u} >c, (A?,fc (D9 D'} u, u} . From the

definition (3.12) and Plancherel's equality we get (A?^ (D, D') u, u)

^ «,*(f,o
= \F (f , Q &h (Q

 mF (f x, C) d^a Via the change of integration order we get

where uF(x'yQ = \e ix'*'F($', Q u (f /)-^f' and by using Plancherel's

equality again we get

= I( J**^ + *

Then, by using the inequality (4. 2), we get

for some positive constants ^0? <^le Noting that £0 ^vas positive, we get

(Pj^B, K)>*i||w||! fc.m/2 for d-^-Wo, Q.E.D.

Proof of Theorem 5.3. We calculate ||SA«||HA
 as follows.

(5.17) ||S^||^-(^5^,5^)

- (Hh (gh -f i rhph) u, (qh + i-chph} u)
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, u) + irh([q%Hhph-p$Hhqh']u9 u)

where the operator defined by the adjoint matrix of A is denoted by A*

which must not be confused with the adjoint operator *\ and j04 appears

as the term influenced by the difference between the two operators.

As for the estimate of J2, we need the following Propositions 5. 8-

5.10.

Proposition 5* 8.

where A=B mea?is A — B& {Slh} throughout the Propositions 5.8-

5.10.

Proof. Both equalities are verified by considering the difference of

operator product and symbol product (Corollary 3. 3).

Proposition 5. 9. qf (pfHh} = (p%Hh) q*

Proof. This is verified by the commutation theorem (Corollary 3. 4.

00).

Proposition 5. 10. The modified diagonalization

(5. 18) \N%Nh (1 - <ph)
2 + (phT\ ph (1 - 0A)

holds and -we get

(5. 19) ql (Hhoph) =q* (p*oHj

Proof. By the assumption (5.4) we get p*N* = N*£D and N*Np

= p*N*N. Substituting C* (£) in place of f in the latter identity, we

get

NfNh (1 - <ph)
 2ph (1 - 0,) = pi (1 - 0A) NfNh (1 - ^)2

Hereafter we do not use the notation A for the Hermitian adjoint matrix of A.
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On the other hand we see <ph(JD (l~~0/i(0) ~0 because of the fact that

the supports of cph and (1 — 0A) are disjoint. Then we have (5.18). By

using Theorem 3. 1. ii) and Corollary 3. 3 we get (5. 19) from (5. 18)

and (5.15).

Therefore, from Propositions 5. 8-5. 10 and the self-adjointness of

qh we get q*Hhph — pfHhqh^{Sl^. Then by Theorem 3.7 we see

irhI2 = O(h) \\u\\2 and neglect it.

As for the estimate of h2Iz, we need Propositions 5. 11 and 5. 12 below.

Proposition 5. II. h2Iz can be deformed as follows'.

(5.20) h2I, = Ke(h*([_N*0bl°Nh-\u,u^+0(h) \\u\\\

•where N, = N (x, G (?) ) (1 - <ph (?) ) and 3)h = 3) (x, ̂  (?) ) (1 - 0, (?) ) .

Proof. From matrix calculation we get easily

(5.21) pZ°Hh°pi=Ntog)ioNh.

On the other hand, by using Theorem 3. 1 and Corollary 3. 3, we have

P*Hhph = pfHhph -f Pl (Hh - HA) ph

where A=B means A — B^lSl^}. Multiplying both sides of the above

equality by h and noting Example 4 (in Section 2) we get

(5. 22) hp%Hhph-hp%*H**p

Hence from (5. 21) , (5. 22) we have (5. 20) by using Theorem 3. 7.

Proposition 5* 12. The following inequality holds.

(5.23) A IJ,^;Re(^Ar»(i>)K,«)+0(A)ll«ir,
n

where ^(f) =£] sin2 A? ,.
^=1

Proo/. Consider the symbol of ̂ (^"*°n(f) °#0 - h2 (Nf°3)l°N h

which is non-negative Hermitian for |Cft(f)l=^o by the definition of
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and GE {Slh}. Therefore by applying Corollary 3. 15 we get

°rA(0°^) -^(Nfo^loN^u, u}>~Kh\\uf. Combining this inequal-

ity with (5. 20) we get

Then applying the principle of cutting off, we get (5. 23) .

As for the estimate of D4, it is seen from the asymptotic expansion

(3. 1) and Theorem 3. 1, ii) that D^ = O(h) \\u\\2. Then we can neglect it.
o

As for Il9 we see that q%Hhqh-Hhq\ = (qhHh-Hhqh}qh$E {S^} by

virtue of Corollary 3. 4, ii) . Hence we have

(5. 24) /,= (qfH.qnU, «) = Re (Hrfi (D) «, «) + O(A) \\u\\\

Summarizing (5. 23) and (5. 24) we get

(5.25)

where

n-z{^ (cos A£,-

If |r|^(V»^o) ~1> by applying Theorem 3.12 to the first term of the

right hand of (5. 25) , we have

or equivalently

(5.26)

In the case that Sh is independent of k, we have

\\S{u\\Hh<(l + C'h)'\\u\\s^C(T^\\u\\Sh for 0</£^T,

which is the desired stability.

In the case that Sh depends on t, we must calculate more carefully.



312 ZEN'ICHIR6 KOSHIBA

We rewite (5. 26) in the form

(5. 26') ||«((» +1)ailKo..,*'^(1 + c"K) ||«

setting t=nk.

On the other hand we have

pi ^ TT

where G/^ = I - - (?z& 4- Ok, xy f ) (^0 . From Lemma 5. 5 we have Gh
Jo dt

e {S$ft} . Then by using Theorem 3. 7 we can see that the above differ-

ence is O(A) |]#((;z + l)&) || 2. Further by using the equivalence of ||

uniformly with respect to t, we get from (5. 26')

\\u((n + l) k) |UA((n+i)*)^ (1 H- c!"K) || u (n

Hence we have

II « a*) Ikw.,^ (1 + C*A) '« « (0) ||^(0)^C (T) || « (0) ||^(0)

Again from the equivalence of || • \\Hh9 we get

«(0)||, Q.E.D.

Remark. As was mentioned in the remark in [17] , our method

works as well for the modified Lax-Wendroff scheme

(5. 27) (T (LO - / + fr A/>, (*, x, f ) qh (?) -

where ph^ £B\({S\^} . By modifying the above discussion from (5.17)

and thereafter, we can see that the modified Lax-Wendroff scheme with

"1 is also stable.

} u(f) and Hh(t) denote that Li-function u(t,x) and the Friedrichs part Hh at t,
respectively.
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