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Holonomic Quantum Fields. II

—The Riemann-Hilbert Problem—
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Mikio SATO,* Tetsuji MlWA* and Michio JlMBO*

Chapter 2. Application to llie Riemann-Hilfeert Problem

Introduction

This paper is a continuation of our previous note [1], hereafter refer-

red to as I, and constitutes the second chapter of the series. As stated

in I, our aim in this series is to reveal the intimate relation between (i)

deformation theory for systems of linear (ordinary and partial) differential

equations, and (ii) field operators belonging to the Clifford group. In the

present article we study the Riemann-Hilbert problem on P^. Because

the exposition may be viewed as a prototype of our theory, we have

included it here, thereby changing the organization of the series from the

one announced in I.

The Riemann-Hilbert problem has a rather long history. Let

dx

be a system of linear ordinary differential equations with a rational coef-

ficient matrix A(x). Denote by {a^ • • - , < z n } the set of poles of A(x),

and let Y(x) be a fundamental solution matrix of (2. 0. 1). In general

Y(x) is a multi-valued function having a^---,an and possibly a^ = oo as

its branch points, and when .r makes a negative(*} circuit around avy it

undergoes a transformation

(2. 0. 2) Y(jc) *-* Y(x) Mv (v = 1, • • •, n, oo).

Here M»£zGL(m,C) are constant matrices subject to the relation
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(1;) Throughout this article we adopt this somewhat unusual convention.
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(2. 0. 3) A/iM2 - • • MnJ\L = 1 .

In 1857 Riemann [4](>i<) posed the question whether there exists, for

given <?!, • • •, an eP^ and Ml9 • • •, Mn<E:GL (m, C) , a differential equation

(2. 0. 1) which has a solution matrix Y(x) having precisely the monodro-

mic property (2. 0. 2). He imposed a further condition that Y(x) be at

most regularly singular at the branch points ay (v = l, • • • , ? * , oo); namely

that its singularities there be of the form

(2. 0. 4) y(x) =0,(.r) • Cr-O~L> (v = l, • • - , « , oo)(**}

where 0y (x) is an invertible meromorphic matrix at x = av, and Ly is a

constant matrix such that eZniL» = Mv. Since in 1900 Hilbert [5] included

the above problem to his mathematical problems, it has often been called

the Riemann-Hilbert problem.

Considerable efforts has been made by a number of people [6], [7],

[8], [10], [11], [12], [13], [14], toward the solution of the Riemann-

Hilbert problem. Among them we note the names of (1) J. Plemelj

[10], who presented an existence proof of a solution on P^ for arbitrary

m and 11, (2) G. D. Birkhoff [11], who solved independently the original

problem and its various generalizations previously proposed by himself,

and (3) H. Rohrl [14], who extended the result of Plemelj to an arbit-

rary Riemann surface.

A solution Y(x) to the Riemann-Hilbert problem (and hence the

coefficient A (x) of the differential equation (2. 0. 1)) depends on the

initially specified branch points av and the monodromy matrices Mv, some-

times referred to as the Riemann data. L. Schlesinger [9] discussed

this point as a deformation theory of differential equation (2. 0. 1). As-

suming that A (x) has the form Y] —, he asked for the condition
v=i x — ay

for (2. 0. 1) to have constant monodromy under the variation of the

position of branch points, and obtained his celebrated equations (see § 2. 3,

Proposition 2. 3. 12)

(2. 0. 5) dAft= - XI [A» Av]d(at]i~av)/(afl-av} (# = 1, •»,»).

The methods so far employed to solve the Riemann-Hilbert problem

(t) Riemann himself treated an w-th order equation for one unknown function.
(**) por y — oo we replace x—ay by \/x.
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are roughly classified as follows:

(1) the continuity method (Schlesinger [8])

(2) reduction to integral equations (Hilbert [6], Plemelj [10],

Birkhoff [11], Muskhelishvili [13])

(3) series expansions involving hyperlogarithms (Lappo-Danilevski

[12])

(4) the method using fibre bundles (Rohrl [14]).

In the present paper we present still another and an entirely different one,

namely

(5) the method of quantum field theory.

The idea lies in the following point. Let (fj(i} (x), (/>*(i> (x) (z' = 1, • • • , ni)

denote free fermion operators on P1
R (see § 2. 1). Let (p be a field opera-

tor satisfying the commutation relation of the form

(2.0.6) (p-^3\x) =]

m

(p * ('} V"^-*/ ~z: / i W v^/ " ^£ ' ^^i j \^y
7 = 1

where the matrices (mu(x)) =M(x), ( m f j ( x ) ) =lM(x)~l are related to

the monodromy Mv. Then the vacuum expectation value

f9 O 7\ V( y • r^ 97T7 ( <r r-^l (///•* (i) ( T \ ih(^ (-r\ m\ I/ fn\\
\£*>* \J• I ) -L \^*-'0 ' ^) — «/t I v^o "^ / \\ r V^O/ S' \~^) T / / \T ' / i,j — 1, •'•, ni

provides a solution to the Riemann-Hilbert problem normalized as Y = l

at X = XQ. The relation (2.0.6) indicates that cp induces a "rotation" in

the space of free fermion operators; indeed we shall construct a class of

field operators <^(<2;L) "belonging to the Clifford group", and show that

their product

, . / _ . T \ „ / _ . T \

(2.0.8) cp--

has the required properties.

The advantage of our approach is that the monodromic structure is

quite apparent in the concise expression (2. 0. 7) - (2. 0. 8) of the solution,

where the "deformation parameters" av and the exponent matrices Lv are

explicitly incorporated.

We should note here that the theory of Clifford groups expounded

in I is not directly applicable, since we are dealing with infinite dimen-
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sional orthogonal spaces. One might think of constructing its infinite

dimensional version by defining suitably the notions of A(W), G(W),

Nr, etc. However it seems a rather lengthy, if not impossible, way to

recover the fundamental results obtained in T to an extent sufficient for

application. Since our interest lies not in developing the general theory

but in concrete results, we prefer to give direct proofs to individual

formulas which we need in our construction. In the course the finite di-

mensional "theory of rotation" turns out to be a useful guiding principle.

This paper is organized as follows.

§ 2. 1 is a preparatory paragraph for generalities on free fermion

operators in one dimensional space.

In § 2. 2 the Riemann-Hilbert problem is formulated in terms of opera-

tor theory. We show that the following are equivalent: (i) to find

a multi-valued analytic function with a prescribed monodromic property,

(ii) to construct a field operator which induces a specified rotation of the

type (2. 0. 6). Making use of a solution to (i) in the case of only two

branch points a and oo, we construct the field operator cp(a, L) mentioned

above. By virtue of the product formula (I. § 1. 4) we then obtain an

infinite series expansion of the matrix Y(x$\ x) in (2.0.7).

The arguments in these paragraphs are instructive but rather formal

ones. In the latter half of the paper we shall make precise the formulas

thus derived in a direct and mathematically rigorous way.

We begin § 2. 3 by supplying a convergence proof of the above in-

finite series. Assuming \LV\ (v = l, mtm
9ri) to be sufficiently small, we

show that this series converges for complex x0, x, al7 • • • , an to give a

solution to the Riemann-Hilbert problem. Then we discuss some proper-

ties of Y(xQ;x), including the linear total differential equation it satisfies

in the variables (XQ, x, al9 • • • , an), and its behavior under coalescence of

branch points. We note that in the latter process formation of irregular

singularities does not take place if the exponents Lv are kept fixed. In-

deed, by such a limit, Y(xQ\x) is shown to become a solution to a

Riemann-Hilbert problem, whose Riemann data are obtained by "fusing"

the initial ones (see p. 254). Applying these results we give the com-

mutation relation among (p(a\L)'s, and calculate the operator (2.0.8)

in the limit where some of ajs coincide.
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In the final § 2. 4 we give a formula expressing the r-f unction

j; L^)"-(p(an\ Ln)y in terms of a solution {Al9 • • • , An} of the Schlesinger

equations (2. 0. 5) . We then study the behavior of Av's in the limit

where some of a/s behave like ay~tbv, £-»0 or t^oo. We shall calcu-

late their asymptotic expansions in powers of t. We also derive the total

differential equations satisfied by Y"(.r0; x) and by A,9s in these limits,

and calculate the corresponding limits of the r-function.

Main results of this paper has been announced in the series of papers

[2], specifically in VI.

We would like to express our gratitude to Professor K. Aomoto for

kind suggestions and stimulating discussions with us. We are indebted to

Doctor K. Yajima for informing us of the result of Lions-Magenes. We

wish to thank also Doctor Y. Mori for carefully reading the manuscript

and pointing out some typographical errors.

§ 2. 1. 1 Dimensional Space Theory

Let WR denote the space of real-valued square-integrable functions on

1 dimensional space which we denote by X= {x\x^K\. The inner pro-
def

duct in WR is defined by

(2. 1. 1)(*} <w,w'> = (dxw(x)w'(x)9

It is uniquely extended to the non-degenerate symmetric inner product in

the complexification W=WR&)C9 so that Wis an orthogonal vector space.
JB

Set M={u\u^GL(I9R)}9 M±={u^M\u^O} and set also du

= - . In accordance with 1 + 1 space-time theory we define the
2n\u\

Fourier transformation as follows:

(2.1.2)

(u) = I — u

J r> r r r-H» r-Hx> r+oo /*•$•<»
••• \dxi'»dxm (resp. ! • • • \dui- "dum) means I dxv \ dxm (resp. I dui— I dum)

J J J J— 00 J— 00 J— 00 J— 00

unless otherwise stated.
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where

Remark. For the sake of notational simplicity we use the same

symbol ze;(-) in both x and n representations of

Then we have

(2.1.3) <ze;, «/> = \

In this and following chapters we shall construct and analyze a

class of field operators "belonging to the Clifford group G(W)" over W.

In principle one may proceed as follows:

(i) Specify a rotation T in the above W.

(ii) Apply formulas (1. 5. 7), (1. 5. 8) in I and find ^eG(W) such

that 7V = T.

However the second step is ambiguous, for our orthogonal space W is

infinite dimensional. As mentioned in the introduction, we do not pursue

here the course of defining A(W), G(W), etc. Instead we shall lay

aside the above W for the moment and start with the following special

functions indexed by X or M, which are supposed to play a role of

ideal basis of W.

Let (/>Oo) (^o^-X) denote 8(x — XQ) e <£ (X) . We identify it with

its Fourier transform \/0 — iu e~ix°u<^St (M) . Likewise <fi(uQ) («0eX) de-

notes \/0 — iuQe~lxUo& £B (X) and it is identified with its Fourier transform

& (M) . Namely we have the following scheme.

^-representation ^-representation

(2. 1. 4) 0 (xQ)^>d(x-xQ) Jti^iu e~ix°u

(2. 1.5) 0 (^0) <-^ VO-iuo e-ixu* 2n\u\ d (u + w0)

(2.1.6) 0W

000= f
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We denote by J(x,xf} (resp. J(u, u')) the table of inner product

for 0 (x) Js (resp. </r (?/) 's) . Namely they are hyperf unction kernels given

by

(2.1.7) J(a:,:r')
def

As in the finite dimensional case, an expectation value is a bilinear

form < >: (zt>, zt>') t-+(zuw'y such that

(2. 1. 8)

Our choice of the expectation value is

(2.1.9)

K(u, O=
def

We shall also make use of (.fj(x) (resp. 0(?0) "with several com-

ponents" indexed by XX {1, • • • , m} (resp. MX {1, • • • , /^}). Namely for

i = l,---,m let ^ (x) (resp. 0 W ) fa)) be a copy of 0(^:) (resp. </>(«)) .

The inner product and the expectation value among them are specified

by an inXm non-degenerate symmetric matrix A— (Ay) as follows:

(2. 1. 10) <</,'*' (*) , 0W (a:') >,= Ay J(x, x')

Accordingly J9 K are now in X m matrices of hyperf unction kernels. In

the sequel we shall mainly deal with the case A = ~Lm9 and also A

im 2) with even ;??. In the latter case we set <Jj*M (x) = d>(l+m/^(x)
2 I

= 1,-, 777/2).

Remark. 0(i) (j;) and 0U'} (M) are regarded as ideal basis of

In general, let Wi, W2 be orthogonal vector spaces equipped with the

inner product <( , )Wi, < , )^2. Their tensor product W=W1(^)W2 is

naturally endowed with an orthogonal structure by setting (zv&tVa, cwl
f

We
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denote by *(resp. Cv) the element of Home(T^, W*) (resp. Hom^CW,, W*))

which defines the inner product <( , yw (resp. < , yW]) , i.e. c(w) (w')

= <w, w/>w, £,(«;,,) (wO =<«;„, iv'^w, (^ = 1, 2). Also a /c-norm on A(Wi)

induces one on A(W); namely let K1^Homc(WlyW1*) be an element

such that K1 +
 t/c1 = c1. Then /^/^(X^eHom^ ("ft7, W'*) clearly satisfies

K + lK = t (see § 1. 5).

Let W2= Cm and choose a basis el9 •••9em such that (6^6^^ = ^-.

By setting 0W) (x) = 0 (a:) (X)^ we are led to formulas (2.1.10).

Take an infinite set of hyperf unctions (pm (xl9 • • • , .rm)) m&v where

Pm(-^i, • • • , ^m) belongs to 2) (Xm) . We consider an equivalence relation;

if ZI

Xp^^d), •••,^<r ( m ))- : 2] (sgn^)^(xff(1), • • • , .r,^,) for all w e JV, @ro denot-
ff£©m

ing the symmetric group of degree /?z. We call an equivalence class a

norm and denote it by

(2.1.11) S~
771=0 ml

symbolically. We denote by A(W) the set of norms, which is endowed

naturally with the structure of a vector space. The product of two norms

— [•
ml J

is defined to be

m=0 m

We also use the ^-representation of a norm

(2. 1. 12) f; .A- r •
m=o T?Z! J

(2. 1. 11) and (2. 1. 12) represent the same norm if and only if they are

transformed to each other by (2. 1. 6) . In general the transformation

into u~ (resp. x-) representation from x- (resp. u-) representation may happen

to be ill-defined. Hence strictly speaking the above two definitions do not

coincide. But since we are interested not in the whole set A(W) of
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norms but in individual elements, the reader should not worry about this

point.

The "operator algebra" A(W) is the same thing as A(W) as a vector

space, but they differ in product rule as explained below. To distinguish

an element of A(W) from a norm we refer to the former as an operator.

For a<E:A(W) we denote by Nr (a) the corresponding norm in A(W);

conversely for a^A(W) :a: will represent the corresponding operator

(in physicist's terminology : : is called the normal ordering) .

The product in A ( W) is not always well-defined. It is well-defined

when the following formal definition makes sense.

First we note the following formula which generalizes (1. 5. 2) .

(2.1.13) Nr ( :«-!••• TO*: r^V"?^:)

I .................. k I ............... /
1] sgn , , sgn

x <^^co>-X^J<^

Here the sum is taken over all the partitions {!,••-,£} = {/^, -~,JUm}

"•,^-m} (^i<-"<^m, V 1
/ <---<vJ_7n) and (Te@m. We define products of

operators by termwise application of (2. 1. 13) . For example

Nr (0 (x) 0 (*') ) = <0 (x) 0 (*') > + 0 Cr) 0 (^)

Nr (0 Cr) : 0 Cr') 0 (*") : ) = <0 (a:) 0 (x') >0 (*")

- <0 Gr) 0 Or") >0 Or7) + 0 Or) 0 (^) 0 (^/x) .

Remark. Originally 0(x) means the delta function supported on x

as an ideal element of W. Now it means sometimes a norm and some-

times an operator. In the above, 0(x) and 0(.r') in Nr (0 (x) 0 (x'} ) or

\0 Or) 0 (.r') )> are operators, while those of 0(.r)0(.r') are norms. If

0(x) and 0(.r') are considered as operators (resp. norms) they satisfy

[</>(a:).<K.O]- = ff (*-*'),

(resp. [0(.r), ./.(*') L=0) .

In general, let 9"°' (y'=l, 2) be operators given by
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Nr(?<'>)=f; J- f. . . \dxi-dxm^(x1,-..,xm}^(xm)
™=o ml J J

Then we have

Nr(^vi))=f: £: —.—. f- (W"*r.: f- frf*; •
mi=0 7712-0 TTXjJ ^2! J J J J

X pS'te, - -, *mi) pgC*/, - - -, *;,) Nr ( : 0Crm> - .0(^) : : 0(

where Nr(:0(^m i) .--0(^): :0(^2)---0te /):) is given by (2.1.13).

The above formal definition of products has ambiguities caused by

several operations on hyperfunctions.

As for substitution, integration and product, intrinsic definitions are

given in [16] (see also [17]), but the conditions for their well-defined-

ness may fail sometimes. Moreover infinite sums of hyperfunctions are

nonsensical in general. Yet these difficulties are not overwhelming as

long as we are interested in handling explicit formulas and not the general

theory (see § 2. 3 below) .

This is in particular the case if we restrict ourselves to the following

class of operators. An operator g is said to be in class G if its norm

has the form

(2. 1. 14) Nr(gf) =cwl-~wk exp (p/2) c*>

c<=C, iv j = \dx

p=

where c^S(X) and R^ ^skew(XxX) = {R^ & (XxX) \R(x, x'} +

We emphasize the point that operators in class G are specified by a

finite number of hyperfunctions, and that their product, as far as it is

well defined, is also in class G.

Products of operators in class G are computed according to the re-

sults of §1.4 of [1] and V-3 of [2].

xp (p/2) -1 +1-+|j (j-) + - = 1 + ~JJdx,

+-|-f f f f dxidxjdxidxiR(xi, xz)R(x,} xd 0 (^i)0fe) 0Ui) 0 to) + •
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Remark. The proof given in § 1. 4 of [1] is based on the finite

dimensionality of the orthogonal vector space W. But an alternative proof

through tedious computation of combinatorics, which is based solely on

(2. 1. 13) , is possible. This guarantees the applicability of the results in

§ 1. 4 to the infinite dimensional case.

We rewrite (1. 5. 5) , (1. 5. 6) and Theorem 1. 4. 3 in the form appli-

cable to the infinite dimensional case. We adopt the ^-representation.

The formulas in the ^£-representation are almost the same.

Let g be the operator whose norm is given by (2. 1. 14) . We set

w = \ dxc (x) 0 (x) . Then we have

fc
(2. 1. 15) Nr(wg) -

-f- w(

where

K— \ \dxdx'c

ze;(1) = \dx{c(x}~ I \dxidx2

(2. 1. 16) NrCflfw) - (^(-r-^
j=i

+ lev • • TeV£>(2)) exp (p/2)

where

- 1 \dxdx'c3*

Now let <7y(v = l, m",ri) be operators in class G given by

Nr (g,) = exp (A/2)

where pv= I dxdx' Rv (x, xf) $(x) 0(^0 , R^^skew(XxX). We set

R(x9 x') = (Rftv(x, x') ) fl,y=1.....n, R/lv(x, x'} =8flvRv(x, x'} and A(x, x'}

== V "-ftV (-^5 & )) fl,V = l,—,H9
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K(x,x')

0

Then we have

{ °° i f* r*
-H-TTr '" \dXi---dXu

1=2 21 J J

n

X 2_j -"./*!/« 2 v-^i? ^2) ^\A2 vr2
/«!,••-, /a=l

(2. 1. 18) flr,--flfn = <g1"-gB> exp(p/2),

'{g J

We also remark about the basic formula (1. 5. 8) . Let T be an

orthogonal transformation. We assume that T is given by a kernel func-

tion T(x,x') through

(2. 1. 19) TC//CT') = (dx(l>(x)T(x,xf).

We seek for an operator (p in class G satisfying

(2.1.20) c p - ( } ) ( x ' ) = {dx^(x)-(pT(x,xf}.

If we assume that (p is given by a kernel function R(x, x') through

(2.1.21) Nr (0?) = exp (p/2)

p=

(2. 1. 20) is equivalent to

(2. 1. 22) (dx^ (x, x,} K (xl9 x') + f ^ x

Hence our problem reduces to an integral equation. We remark that
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neither the existence nor the uniqueness of such a solution R(JC,JC') is

proved in general. Our approach is the following. Find an explicit ope-

rator solution <^(/J = l, • • • , n) for elementanr orthogonal transformations

T,,(/t = \9 •-, ?i) . Then, if the product Pi'- <£„/((?!• ~<pny is well-defined,

it will serve as the operator corresponding to the product Tl--Tn.

The prescription (2.1.9) is equivalent to considering (</>(«) )ue^

and ((// (it) ) W£JI/H (0
f (it) = (J) ( — ii) ) as annihilation and creation operators,

def

respectively. (See Remark 1 of Definition 1.5.1 [1].) Let Aann(Wr)

(resp. Acre(W)) denote the vector subspace of A(W) consisting of opera-

tors satisfying for all m = Q, 1, 2, •••

(2.1.24) pm(un'~,um) M-55^,

(resp. pm(ul9 • - - , O i.M™=0)-

We denote by |vac) (resp. <vacl) the residue class of 1 in A(W)/

Avm(W) (resp. A(W)/ACK(W)). We also define the following state

vectors :

(2. 1. 24) k, .», «w> = 0t(«i) •••0t(O |vac> ,

<^!, • • • , um =< vac | ̂ (/O ---sHO-

We note that if 99 e A (W) , (/;f (^) •••01 (vj) ^0(«0 ---^CO is always well-

defined. (Notice that in our definition every operator is a priori normally

ordered.) We set

(2.1.25) <X -M^k, -,/O

i) ' ' •

and call it a matrix element of f. The relation between pm (i(l9 • • - , «TO) 's

and matrix elements of an operator is given by Proposition 1. 2. 11, where

r— oo and the sums over the indices /^, V7- are replaced by integrals over

tfj, z>/. We omit the proof.

We shall give an example of operators in class G.

Let / be a union of intervals in ^1A. We denote by Oj(ic) the

characteristic function of /;

l i f W E E / ,

0 if u&I .
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We define N/ by

(2.1.26) Nr(N/)= f ~ du 0 T (u) (fi (u) $ (u) .
Jo -

Then we have

m

(2. 1. 27) <vl9 • • • , Vi iN/ |«i , •",««> = S^/C^X^i, •",vj«1, -",0
J=.i

and

(2. 1. 28) [N7, 0(«)] = -e(«)0i(l«00(«) c*}-

Now using Theorem 1. 5. 3 in [1] we compute the norm of an opera-

tor 0/ which induces the rotation given by

(2.1.29) T(u,u') = a-e™e'W

The answer is

(2. 1. 30) R(u,u') = (a-

In fact it is easy to check

T(u, u') -2n\u\d(u-

Thus we have

(2.1.31) Nr(07) =g(«-i

We see directly from (2. 1. 28) that

(2.1.32) 07 = aN/ ,

and (2. 1. 31) also follows from Proposition 1. 2. 9 in [1] . We have

m

(2. 1. 33) <Vl, . . - , v,\a^\u^ • • - , «»> = ^^(M')<Vi-Vii«i-«m> .

Let NJ (resp. N«) denote N ( 0 , |U | ) (resp. N ( |U | l 0 o )) . We define

(2. 1. 34) <f>± (LI) = : 0 (?0 e-^ : .

Then we have

if
(2. 1. 35) 0± (w) =



HOLONOMIC QUANTUM FIELDS II 215

(2. 1. 33) implies that

(2. 1. 36) <??!, - ' , v L \ ( f ) ± ( u ) itly • • • , umy

± v — u v l - ' v i u \ u l ~ - u m i f z ^ e M + ,

i, •", s ' l l - t f , "i, • • • , O if tf
v=i

A little computation shows that

(2. 1. 37) [0e (zO , 0e (v) ] = 2rao (u + v). e = + or - .

Namely, for £— + or — , (f/)s (u) ) wej/_ and (0£ (zj) ) MeJf+ are creation and

annihilation operators of free bosons. We shall see later that they coin-

cide with asymptotic fields of (pF (x) .

Remark. The relation between 0(#) and ^ («) is reciprocal. If we

set 0t (w) =$±( — 11) for ^^ e 7y+ , we have c/;f (u) (fj (u) = <ft± (11) (j) (li) . Hence

(2. 1. 35) is rewritten as

(-)N»^±(«) if «eM + ,
(2.1.38) 0(«) =

.0±(«) ( - ) N - if a e A f _ ,

where

iW and N-

In the next paragraph we shall deal with free fermion operators

00*0 on tne real projective line PR = H[_] {°°}, rather than on jR1. To

make manifest the covariance of the theory we recapitulate here its genera-

lities.

Set G = SL(2, K) , P= |^ ^ eG|a=^o| . By identifying the coset

with x = a/r^Pl
R we have G/P = P1

R. In particular

Pl
R, g = (a f) ^G.

Let X:P->GL(1, 1?) be a character of P. For (g, w) eGX H1 and

we set (g,w)p= (gP,^(P)~liv), and denote by £x = (G X H1) /P the

associated homogeneous ]ine bundle over G/P^PR thus obtained. We

have the left G-action 011 Ex given by gr 0 - (g, -w) P= ({/Og,

the left G-action on P1
R reads ^-^-- for
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(?,«;).? «=£,).
Now we choose ^0 to be the following character:

(2.1.39) J(" M)=« .
\\0 or1//

This amounts to setting the following transformation property between

different coordinate representations •w (x) , wf (xf) of a cross section w of

(2.1.40) , ,r.r + o \r

For cross sections zf1? zv2 of jE?o on Pjg, we set

n +

(2. 1. 41) <wj, w2> = I
J —

(2.1.42) <«/!«;,> = f
J J- 27TX —

It is readily verified that (2. 1. 41) , (2. 1. 42) are independent of the

choice of a coordinate, and are invariant under the action of G. As the

orthogonal space W we take the space consisting of //-sections of E$0

equipped with the inner product (2. 1. 41) .

For xQ^Pl
R we denote by (JJ(XQ) the hyperf unction section 8(x — x0)

of E$o. From (2. 1. 39) it satisfies the transformation property under a

change of coordinates:

(2.1.43)

Note in particular that (x0 — x) 0 (x0) 0 (x) is independent of the choice

of a coordinate (cf . (2. 2. 5) below) .

Actually in the course of construction of field operators we shall fix

a coordinate system, bearing in mind the transformation law (2. 1. 43) .

§ 2. 2. The Riemann-Hilfoert Problem in One Dimensional Space

In this section we shall construct a family of field operators

{(p(a; L) } in class G in one dimensional space i?1, or more precisely in its

compactification Pjj. In the course we shall show the equivalence of the
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following: (i) to find a multi-valued analytic function with a pre-assigned

monodromy property (the Riemann-Hilbert problem) , and (ii) to construct

an operator which induces a specified rotation.

Let PC denote the complex projective line C(j {00}. We fix a co-

ordinate x on PC and set Pc — {00} = Dr \J R" U £>-, DJZ={Imx^Q}.

Let flj, •••7anEzR1 be ;z points such that aL<^---<^an. We fix a reference

point x* in the upper half plane, and denote by 7"v(v = l, • • • , ti) (resp. f^)

a closed path in Pc—{al9 • • - , an, 00} with the endpoint x% such that it

encircles ay (resp. oo) in the clockwise direction as shown in Fig. 2. 2. 1:

For a multi-valued analytic function Y(x) on PC~ {an ""? an, °°l we

denote by fY(x) its analytic continuation along a closed path T in PO

— {al9 • • • , <2W, 00} with the endpoint x^. The Riemann problem on P^,

in the case where the branch points alf ~m,an, °° all lie on the real line

PC, is then stated as follows [10]: given n matrices Ml9"'9Mn^GL

(in, C) arbitrarily, find a matrix Y(x) of multi-valued analytic functions

011 P^— {al9 "-, any 00} such that

(2. 2. 1) (i) Y(x) has at most regular singularities at

a^ • • • , fl7/, oo

(ii) rvy(.r) =Y(x)Mv (v = l, - » , ; / ) .

Let Y"L (jc) be a branch of Y(x) on D±, respectively, such that Y> (x)

= Y- (x) on x^>an. Then (ii) is equivalent to the condition that, for

rt^OO^ ^-W = Y.(x)MvAI^i'"Mn (v = l, - • • , / z ; a 0 = - o o ) . There-

fore the Riemann problem is alternatively stated as: find single-valued

holomorphic functions Yj. (x) on D , respectively, satisfying (i) and

(2. 2. 2) ( i i) ' Y_ Cr- /O) = Y Or + /O) M(x) , .r e H1 - {tfl, • • •, «,}

where we have set J\I(.r) =]\IvAlv,l-~j\In for tiv-L<^x<^av (v = l, • • - , ? ^ + l;
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aQ= — oo, an+1= 4- oo) . In the latter formulation (with M(x)

C) replaced by an arbitrary piecewise analytic matrix) the problem is

called the Riemann-Hilbert problem [5].

First assume M(x) = (mtj (x)) eO(m, C) . Suppose there exists a

field operator (p in class G of the form

(2.2.3)

P= ]

rt/(x, x'*) = —rji(x', x)

which satisfies the following commutation relation with 0's:

m

(2. 2. 4) <p^ (x) = 2 0(i) (x) (jpmtf (x), j = I,~-9m.

For z",y=l, • • • , w and xQ^>an we set

\"' •"• *^/ y + ij \Xf) 5 .>£y -—- ^TTZ \-^'0 «3?) XT' \"^0/ T \^) ^P/

Proposition 2. 2. I. As a function of x Y± (XQ; x) = (y=ij(x0; x))

is analytically prolongable to D±y respectively, and their boundary

values are related through (2. 2. 2).

Proof. Applying the formulas (2. 1. 16) and (2. 1. 17) we have

m f /
(2. 2. 6) Nr (0(J) (x) <p) = Y] dx^ (x^ dijd (xl — x)

i=i J \

f 1 — z" \- dx2rtj (xi, x2) ^J • Nr (<p)

m r . f ^
t=i J \ J

-f- dx2rtj (xl9 x2) J • Nr (<p) .
*J £iTC X2 — X ~j~ ZU'

Hence Y^(xQ;x) defined in (2.2.5) are expressed as

(2. 2. 7) Y± (x,; x) = 1 ± 2ni (x0 - x) f {dx,dxz — Z

I I OTT- -y, ~- I ^'n
^ ^ <£//i, ^n ' ̂ i ~T~ v^J
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where R (x, x'} = (r^ (x, j:') ) . This implies the analytic prolongability of

Y±(x0;x). Multiplying <//" (.r0) to both hand sides of (2.2.4) from the

left and taking the vacuum expectation value we obtain (2.2.2).

Remark. From (2. 2. 7) one readily verifies the following:

(2.2.7)'

\- — 5 — / .
27t X— X -

2n x — x — i 0

This implies that the holomorphic functions 7(Y(x\x')— 1) de-
2/r.r —x

fined on {e Im x>0, e' Im x'>0, s' Im(x— x') <0} (e, e ' = ± ) are defin-

ing functions of R(x,x'). In particular if jR(x, x ' )=0 for x^^ or

x'^d^ (which is the case discussed below), we have M(x) =1 on x^>aM

and Y(xQ',x) defined in (2.2.7) is continued to a single holomorphic

function on (P^ — [ — oo, an~\) X (P^ — [ — oo, an~\) .

Conversely we may construct an operator <p satisfying (2. 2. 4) once

we know matrices Y±(x) = ( y ± i j ( x ) ) of holomorphic functions on D±

with the moiiodromic property (2. 2. 2). First note that, from (2. 2. 6),

(2.2.4) holds if and only if 1 + RK= (1-R'K) T, i.e. (cf. (1. 5. 8),

(1.5.10))

(2. 2. 8) R(K+LKT) =T-l

where R, K, 1K and T denote matrices of integral operators with kernels

"'• /N -1 Z ", j^ ^ -1 and M(x}d(x-x'}. The

following Proposition provides us with a means to construct R from Y±.

Proposition 2. 2. 2. Let Y± (x) be matrices of holomorphic func-
tions on D-, respectively, ^vith the properties (2. 2. 2) and det Y+ (x)

SO.

(2. 2. 9)

R (x, xf} = (F+ (j: -h iO) -1 - y_ (x - £0)
x — x
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2n x — x' — iO

- (y+ (x+zo) -1 — l-—-+y _ (x - zo) -1— - ~7- -

satisfies (2. 2. 8).

Proof. Denote by Y~ the integral operators with kernels Y± (x)

8(x — xf), and apply Proposition 1.5.4 in [1]. Since K and 1K are

projection operators onto the space of boundary values of holomorphic

functions on Z>±, respectively, the first two conditions of (1. 5. 11) are

satisfied (J is the identity operator in the present situation). The last

condition is nothing but (2. 2. 2).

Remark 1. As shown below, such Y_ and R are not uniquely

determined by the condition (2.2.8). Also R(x,x') in (2.2.9) does

not satisfy R(x,x') = —tR(x'9x) in general. However we note that if

Y±(x) satisfies (2.2.2), so does tY-(x)~l by virtue of the condition

M(x) eO(;;z, C). Hence if det y± (x} ̂ 0 on D±9 R(x,xf) and

— tR(x/, x) simultaneously satisfy (2. 2. 8). Replacing R by — (R — 1R), we

may then assume R= —1R.

Remark 2. For later convenience we list here some identities in-

volving R defined in (2. 2. 9).

CO Q 1 rA Z? J?" ^V—1 V—A 7-1 2?^ V{/i. £. JLUj iviv = r ( vJ:T — I _ J • J A. • JL _ ,

T-MTT 7? 7 v-i r~ 1 £ ^ ^v v >J -£V • jC\J — JL _ • J A. • ^jt _ — ^+y

i^- p T v-1 ^ r-1 Z^ V L 7-1 t f V "NJ\. • riJ —I + • (J A. • I _ + J J P ± ' j L + )

-Rj=y i1 (j-1^ - Y _+j-1 £jc • y+
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So far we have assumed that M(x) is an orthogonal matrix. The

general case M(x) e GL (m. C) is reduced to the case of orthogonal mono-

dromy of double size. Namely we now consider a field operator cp in

class G of the form

(2. 2. 12) Nr (<p) = exp (p/2)

P=

= 2 S f f ̂ ^'0(0

z,/=l J J

which satisfies the commutation relation with 0's:

(2. 2. 13) p0«> (.r) = f] 0"> (x) <pmtj (x) , ^*»> (x)
1=1 =

0' = 1, • • • , m ; (mfj (x) ) = 1M (x) -1) .

Here </>w (x) = </;(x) (g)e{, 0* <0 = </i (x) <8>ef with <e{, ey> = 0, O?,e?> =

and ^et,e*y = Sij (see p. 11). In this case

(2. 2. 14) 3'+ u (x, ; x) = - 27W (a:, - x) <0* (i) (a:0) </-v> (x) ^>

.V_,,. (xfl; x) = -27» (o:0-x) <0*«> (j;0) ^0tf) (x) >

gives matrices with the monodromic property (2. 2. 2) , while

(2. 2. 14) * .v*s, (*„ ; x) = - 2m (x0 - x)

satisfy

(2. 2. 2) * Yf (x-zO) - Y*

Conversely <p satisfies (2.2.13) if R(x, x'} - (?-{J (x, x) ) in (2.2.12) is

given by the formula (2. 2. 9) .

We shall now present a scheme of construction of a canonical field

operator corresponding to the Riemann problem. First consider the case

77 = 1. The Riemann problem then admits elementary solutions Y±(x)

= (jc — a±iO) ~L, where L is an 772 X m matrix such that ezM = M is the

given monodromy matrix. (Naturally there is an infinite number of pos-

sibilities in the choice of L) . From Proposition 2. 2. 2 we may construct

the corresponding field operator (p = (p(a\L). Under the normalization
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<(^) = 1, it is given by

(2. 2. 15) Nr (<p (a; L)) - exp (p (a; L) /2)

where in the case M^O(m,C)

m f f

(2. 2. 16) p (a; L) =. I] dxdx'ip* (x) ris (x-a, x'-a; L) 0<" (x')

(2. 2. 17) J? (x, x';L) = (rt/ (x, x'; L) )

•*-o) *-(*-«>)*)£—"'

+ T-—=^-^*' + *°)~1t-O«TT «~ «.' ,.11 I

In the general case Me GL (m, C)

(2.2.18) p(a;L) = 2f± f f dxdx'^\x) riy. (x - a, x' - a;
*,/=! J J

where r^ (x, x'; L) is still given by (2. 2. 17). Making use of formula

(2. 2. 19)

I I dxdxf — e~'l(xu+x'u ) — _. __ A i—S L
Jo Jo x — x ± z'O sinTrZ/ u + u — z'O

we obtain the ^-representation of p(a\L):

(2.2.20) f £ f fd«d«'0«(«),v(« «';L)0»>(«')^t«+u'>
«,y=i J J »' »

p (a; L) = c (in the case (2. 2. 14) )
m f f

2 T] I I dudu'(b^(u)ri*(ii^ u'\ L}</}*U} (u'}eia(u+u/:>

I *. jf^i J J

(in the case (2. 2. 16))

where in both cases R (u, uf; L) = (r# (u, u'; L)) is given by

(2.2.21) ^(w, w7; L) = -2sin7rL- (w-z'O
M _ j_^ ' _2 ' 0

We remark that for an orthogonal M, <p(a\L) given by (2. 2. 18) is

nothing but the tensor product (p(a\ L) ®cp(a\ L) of copies of <p(a\L)

given by (2. 2. 16). In what follows we shall mainly deal with the case

Me GL (m, C) corresponding to (2. 2. 18).

Remark. R (x, xf; L) has an alternative expression



(2.2.17)' R (.r, x ' ; L) = 2z sin nL
'
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'1- l M

2;r x — x7 — z'O

0 Cr>0)

which clearly indicates its support property. It should be noted, however,

that (2. 2. 17) ' is not well defined at the origin x — xr = 0 as a product

of hyperfimctions. In this sence (2. 2. 17) is a more precise expression.

In the general case n^L9 we choose Ly so that e?mL* = My (v = l, • • • ,

??) and set

(2.2.22) (P = ( p ( a l J - - , a n - L l , ...,LB)

; A) ~-(p(an: Ln) >~> (*r, I/O - - - ^ (an; Ln) .

Applying the product formula (1. 4. 11) we see that its norm takes the

form

(2.2.23)

—

= £ II f f
A,v = l i ./=l J J

Here Rftv(x, x') =RJ!1Si(x, x' '; a2, • • • , #n, L2, • • • , Ln) = (fflVtii(x, x')) denotes

the (/i, v) -th block of the WTZ X m?z matrix

(2. 2. 24) £ (x, .r ') - (dxl (1 - jR A) ~l (x, xj R (xl9 x')

where

(2. 2. 25) (1 - .R A) -1 (x, x") = d (x - x'} • 1

+ £j I"1 \dx1"-dx2l_1R(x9x1)A(xlyx2)'"

i-i, x ) ,



R(x- an, x
f — an; Z,n)

\ • " - . . • . . 27T * -x' - z
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(2. 2. 26) R (x, x') = |

A (~, ~'\ _/i (X9 X ) —

Accordingly Y-(x0\x) defined by (2.2.7) is also expressed as an in-

finite series

(2. 2. 27)

v c . N-I 9 v >> \n f f,/ ^ ! *-*• ± V'^-'O 5 X ) — -L ^iTCl I XQ X ) /, 1 I CtX-^CLX2 — ~
A,V=I J J 27T ^o — ̂ i+z'O

-^ 1

^7T JCo ^C ^~ ZvJ

/«,v=iz=o

X

f f
I'" l
j J

X ̂  fez-t-i, ̂ 2^+2) ] ,„- l-

The vacuum expectation value (r-function) tn(al5 • • - , an) =^(p(a1; L^

-••(p(an\ Z/n) ) itself requires a more careful treatment. Naive application

of the product formula (2. 1. 18) yields an infinite series expansion of the

form

(2.2. 28)(*> vn(al9 • - - , an)

{ o o - i r r
~ ~ 2 T ] — t r a c e 1 ••• \dx1'--dx2i

1=2 21 J J

Unfortunately (2.2.28) is meaningless., because 1 ••• I dx2--'dx2i A (x,

x2)R(xz, xs) -•• A^Z-IJ &2i) R(xZi, xf) has a singularity at x = x'. How-

ever we note that the series for its logarithmic derivative is termwise well-

defined :

(*} Since the kernels corresponding to A and R in (2. 1. 18) are matrices of double size

(-<(A(x',x»A(X'^} and (-<&&,*» R(*'^)> respectively, the factor 2 in the
exponential comes in.
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(2. 2. 29) d log rn(0!, • • - , an) =— XI trace 1 f f
7T JM»=I J J J

x Ocs-O*-^).

In the next paragraph we shall show that the series (2. 2. 25) ,

(2. 2. 27) and (2. 2. 29) converge, assuming each of the matrix elements

of Z/v(v = l, • • • , 72) to be sufficiently small. These series expansions enable

us to study in detail the analyticity and monodromy properties of the

matrix Y(xQ\x) or the kernel R(x, x') , including their dependence on

the parameters al9"'9an and Ll5 • • • ,L 7 J . In particular we shall verify

that Y(XQ\X) indeed provides a canonical solution to the Riemaiin pro-

blem. Here we shall be content to study its local properties in the

framework of operator theory. The following arguments are rather formal

but instructive, and are made precise in the next paragraph.

Consider the norm of products (pep and 0*$?:

/ m r
(2. 2. 30) Nr (0<» (*) <p (a ; L) ) = £ dx^ (x^ (1 - R'K) „ (x,, x}

\ i=l J

H ^0*^ (x.) (1 + «1?'X) „ (x,, x-}

Here l-RLK= ((l-R'K)^ is given by (cf. (2.2.11))

(2. 2. 31) (1 -R'K) (x,, x) = ( (x, -a + iff) *1
! — x + ?0

.
27T .r! — .r — zu/

Replacing L by — JL in (2.2.31), we obtain an expression for 1-f

= ( (1 + * J?'X) f/) . Similarly we have

(2. 2. 32) Nr fa (* ; L) 0<» (.r) ) = (f] f ̂ 0^ (^) (1 + ££) ,, (^, ^) )
\*=i J /

Nr (<p (a • L) 0*»> (x) ) = (fj f dxj,™ (x,} (1 - 'JJ2Q „ (x,, x)
\i = l J

x N r f a ( f l ; L ) )
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where (I + RK) (xl9 x) (resp. (1-1RK) (xl9 x)) is given by (2.2.31)

(resp. (2. 2. 31) with L replaced by —tL) with the boundary value

(x — a-riff)~L (resp. (x — a + zO)'L) replaced by (x — a — iff)~L (resp. (x

— a — iO)tL). In a neighborhood of x = a, we expand (2. 2. 31) in powers

of x — a:

(2.2.33) ( l - ^X) (o : 1 , ^ )=] ( (^ 1 -
*=o27T

-(x,-a- iff) L-fc~1) Or - a + iff) ~L+k .

Now we introduce the following operators.

Definition 2. 2. 3,

(2. 2. 34) 0iP (a) = £ f ̂ i0(l) (*0 ~ ( (*i - a + zO) ij-1

*=i J 2;r

27T

(2. 2. 35) Nr (^ (a ; L) ) = 0£P (a) - Nr (^ (a ; L) )

Nr (0£,<» (a ; L) ) - 02/» (a) - Nr (^ (a ; L) ) .

Here we have identified $$ and 0*/O) with their norms, and (x

denotes the (i,j)-th element of (x — a ± i f f ) L .

In terms of these operators we have the following local operator

expansion formulas. (At least formally, for (2. 2. 33) is valid only for

Proposition 2. 2. 4e

(2. 2. 36) Nr W\x) <p (a ; L)) = f] f] Nr fo#it(a ; L)) - (x - a + zO)r/+*

Nr (0*"> (^) 0 (a; L) ) - £ H Nr (p*#_fc (a; L) )
k=0 i=l

X (.r-



HOLONOMIC QUANTUM FIELDS II 227

Expressions for Nr (<p (a ; L) 0y) (x) ) (resp. Nr (p (a ; L) 0* v> (x) ) ) is ob-

tained by replacing x — a-\-iQ by x — a — z'O in (2. 2. 36) .

(2. 2. 37) Nr (0*«> (x) 0#> (a ; L) ) = — (x - a + f 0) ft'1 - Nr ($ (a ; L) )
27T

+ E 2 (* - « + »'0) fr* • 0*.cl}-* U) 0iP O) • Nr (p (a ; L) )
jfc=0 7i=l

x) ̂ ,<« (a ; L) ) = — (x - a + f 0) JJ-1 • Nr (^ (a ; L) )
2?r

+ S S (x - a + *0) «IL+* • 0i"2* (a) 0^"> (a) • Nr (q, (a ;
fc=0 A = l

Replacing x — a + iQ by x — a — iQ in (2. 2. 37) ^ve obtain expressions

for -Nr (0$> (a; L) 0*(i) (x) ) *mrf -Nr (^^ (a; L) 0tt) (^) ) , respectively.

Proof. Straightforward from (2. 2. 30) ~ (2. 2. 34) and (2. 1. 16) ,

(2. 1. 17) .

Proposition 2. 2. 5. The following commutation relations hold.

(2. 2. 38) 0«> (*) v$Lt (a ; L) = <p$Lt (a ; L) f] 0(A' (x) - (
fl=l

0*"' (j:) pf_t (a ; L) = <p%.k (a ; L) f] 0*<A>(x) -

we have set ( m { j ( x ) ) =M(x) =1 (x>a) , =e2*iL (x<^a) , and

(x)) =1M (x) ~l. The same relations are valid if we replace

(a\L) by (p*^(a\L) in (2.2.38).

Proof. For fixed x* let xf be a point sufficiently close to a. We

have then

<//" Gr) </-"' (^') ̂  (a ; L) = - </,"> (x') <//" (x) ̂  (a ; L)

= - <//» (x') p (a ; L) f; ^<ft) W OTW (x) .
/l = l

Substituting this into (2. 2. 36) we obtain

(2. 2. 39) _f] f] 0»> (.r) ̂ 1, (o ; L) - (^ - a + Iff) ,li+*

co TO m

I] I] Pi'l.(fl ; L) (x' - a + ;0)fiL+* I] 0('l) (x) (
k=Q 1=1 h = l
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The first relation of (2. 2. 38) is then obtained by equating the coeffi-

cients of (x' — a-\-iO)uL+}c in (2.2.39). The rest are proved in a similar

manner.

The behavior of Y(xQ;x) at the branch points xQ = all or x = ay are

known from Proposition 2. 2. 4.

Proposition 2.2.6. In a neighborhood of x — av we have

(2. 2. 40) Y (x, • x) = 0V Oo ; x) • (x - av + z'O) ~L"

xv here $v(x0; x) = (®yiij (XQ\ x)) is a holomorphic matrix at x = ay given

by

(2. 2. 41) 0M/(;co; x) = -2ni(xQ-x)J£(x- av)
k

zvhere rn = ((p (a1 ; L2) •••(p(an\ Ln) >. Similarly at xQ = afJL zve have

(2. 2. 42) y (^o ; x) - (x0 -a,-}- zO) L- - 0J (^0 ; ̂ )

where 0* (XQ\ x) = (0^>ij (XQ\ x)) is given by

(2. 2. 43) 0* iy (^o ; ̂ ) - 2;rz (x0 -

x r^^

(2. 2. 44) y (a:0 ; x) = (x, -aK + iO) l» • $,„ (x, ;x)-(x~a, + fO) ~L"

ivhere 0/la(x0;x) = (<$„„. y (a:0 ; ̂ :) ) Z5 expressed as follows

(2.2.45) ^,«U;x) =

- 2wt (a:, - x) f] f] (^o - a,) * (x - a.) l (ft <v)
fc=0 Z = 0

x r

fc=0 Z=0

X r^<^(ai; LO • • • : ̂ il^(av}^l(a^e^^^-....9(an-. Ln)>

fc=

x r
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Proof. First consider (2. 2. 40) and (2. 2. 41). If x is sufficiently

close to a,,, 0(.r) commutes with <p(aft;L^ for /{ = 1, • • - , y—- 1, and from

(2. 2. 36) we have

9(<*\\ A) --y(an\ Ln)>

* ( l ) (.r0) </?(#!; A) '''(/;(J) (X) ^(^vJ A) '"9(an\ I'n) )

771

- v- V- /,/.*«' ^A «(ai. L,) ...<p<g_ t (a,;L,)---pK;Ln)>Z_J

This proves (2. 2. 40) - (2. 2. 41). Formulas (2. 2. 42) - (2. 2. 43) are ob-

tained similarly by noting c/;*(i) (XQ) 0y) (x) = -0tf> (a:) 0*(i) (*„) for x=^^0.

To prove (2. 2. 44) - (2. 2. 45) we start with (2. 2. 41) or (2. 2. 43). If

similar argument leads to the expansion

Substitution into (2. 2. 41) yields (2. 2. 45) for /*<>. The case /J>V is

proved similarly using (2.2.43). In the case fji = v we have from

(2. 2. 37)

Z7T

Noting — 27ri(^o — ̂ )Z] — Cco-a,)"^""1^-^.)^^! wc obtain (2.2.45)
for /^ —y.

Finally we note that the norm of the derivative of the operator

(p(a\L) is expressible in terms of operators c/;p, c/>*(i).

Proposition 2.2.7. Setting L= (lu) -we have
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(2. 2. 46) 1-W (a) =

(2. 2. 47) Nr (—<? (a\L)\= 2ni f] 0f (<z) 0^(i)(<z) /„ - Nr (p(a; L)).

Proof. Formula (2. 2. 46) follows immediately from the definition.

To see (2. 2. 47) it suffices to note that

and that

-^-R(x-a, x' -a, L) = — ((^r-

Corollary 2. 2. 8,

(2. 2. 48) log rn = — trace ( (<2 t f; aj) Lv

-where 0vy (XQ; x) is defined in (2. 2. 44) - (2. 2. 45) .

Proof. Straightforward from (2. 2. 45) and (2. 2. 47).

§ 2. 3. Solution to the Riemaim Problem

Before proceeding to the convergence proof of (2. 2. 27) and

(2. 2. 29), we must make precise their meaning, for in general an infinite

series of hyperfunctions does not make sense as mentioned in § 2. 1. We

shall show below that the series (2. 2. 27) is convergent in the complex

domain x^ x^P^— [— oo, an~] and that it defines a holomorphic matrix

Y(xQ\x) there. It is then natural to define the series (2.2.27) for

Y±(xQ\x) to be the boundary value Y(xQ-\-i§\ x±iQ). Also the precise

definition of the series (2. 2. 25) for R (x, x') is given through the for-

mula (2. 2. 7').
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Apart from the field operators (p(av\ Lv) , it is natural to extend the

parameters al7 '-,an to the complex domain. Let al9 '-,an$EC be points

such that Ima^ •••^Im an, and denote by Fv the half line

Im (x ~ av} = 0, Re (x - av) ̂ 0} (Fig. 2. 3. 1):

-* az

rs

rn

Fig. 2. 3. 1. Contiguous lines indicate those with the same imaginary part.

For (XQ,X) GE (C~F/t) X (C-ry) we set

(2. 3. 1) Z^ (x , ;x )= f f° ̂ ^x2 1 ?_
J J-oo 2?r xQ-a —xl

27T ^:2 ~ (x —

n o 1 i „*
7 7 ! l - p ( • 7 " ̂CLXi&Xz — - - J\. \X\) X2, -L/v) — - r~

„ OTT- f —, sr \ T Q-rr -r ( T n i
~ ^-//t v^'txQ *'*'v>) 1 ^/t ^2 V^^t' *-^v)

oo n ro po -«

z=i V L — , y I _ 1 = i J-oo J-oo 2yr f z ^ ") T '

x

9lT T (r n \ '/L//O ^2Z + 2 \v*
/^' U'v)

where R(x,x';L) is defined by (2.2.17) and

(2.3.2) , , ,, 2^ x XX + (<2 <2

The defining function of Y,_(xQ\x) will then be given by

(2. 3. 3) Y(x0-,x)=l-2ni(x,-x) ^ Z»v(XQ; x}.
/',v = 1

We proceed as follows. Set
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(2. 3. 4)

where RLy (resp. AffJ) denotes the integral operator with the kernel

R(x,x';Lv) (resp. Afty (x, x')\ It is shown (Proposition 2.3.1, 2.3.3)

that RLv and A^, regarded as linear operators on Lz (— oo, 0; dx)m, are

bounded operators provided, for each V = l, • • - , « ,

(2.3.5), |Re^|<l/2 (j=i,-,m),

where A£°, • • - , A$ denote eigenvalues of Ly. Convergence of (2. 3. 1)

is then proved by showing that the series §.= (1 — RA) ~1R= £j (RA) 1R
1=0

converges in the operator norm for sufficiently small |LJ (v = l, • • - , « ) .

To begin with we note the following well known fact:

Proposition 2. $„ I. For Im al>0 we set

7T x — x ±

Then K* is a bounded linear operator in Lz(Rl\dx) with \\K%\\<^1.

It depends holomorphically o?i a for Im tf^>0, and continuously for

Im a^>Q in the strong topology.

Denote by Aflv the integral operator

A^.f(x)^Q(-x) f° dx'
J — oo

Proposition 2.3.1 implies that Aftl> is a bounded operator in L2(!?_)

= L2(R_;dx) (R- = (— oo, 0)) with norm <J1. Moreover it depends

holomorphically on the parameters (al9 • • • , an) ^V= {(al9 • • • , an)

^C^llm «!>••• >Im an}, and is continuous in the closure V in the strong

topology.

Next consider the operator

(2. 3. 6) Rs..: f(x} -* f^xi - ±i—X'_-Lf(x') (s>0)
J 27T x — .r ±x£

where /(^) ~£ (fi(x) , ~m,fm(x)) and L denotes an ??iXtn matrix.
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Making use of the Fourier transformation

C3 /) (f) =

(2. 3. 6) is alternatively written as

(2.3.7) Rtt = x'L«3-

where XL_ (resp. 0 (± f) e~£ | f |) denotes the multiplication operator f(x) «->

xL_f(x) (resp. g ($}*-+ 0 (± $) e~slslg (£)). First consider the case m — \

where the matrix L is a complex number AGEC.

Proposition 2. 3. 2. If Re A|<i, .Rjfe fs a bounded linear operator

in Lz (H_) , <2^£/ lim Rf e, 'which we denote by R} = R}Q, exists in the
E 4 o

strong topology.

The authors are grateful to Dr. K. Yajima who pointed out that the

boundedness of Rf is implicitly proved in Lions -Ma genes [18] .

The following proof, divided into several steps, is essentially a modi-

fication of arguments in [18] .

Let /iCR1) denote the Hilbert space {g (£) | \x A (3~lg) (x) <^U(R})}a +00 v 1/2

^| |j:|*(3r~19r) W i j • Note that-00 /
HI (R1) and J/_A (I?1) are mutually dual spaces through the bilinear form

(2.3.8) <<7,,tf.>=

Lemma 1. For 0<C/i.<Cl we have

Proof. Set /(x) - \x\l(3~lg) (x) ̂ U(R1}. Since g(f + ff) -

3 ((e~ixff-Y) \x ~"f(x)) (f) , we have by the Plancherel formula
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- ("dCff-1-" {
JO J-

r °° dfi P+°°
= Mr ^Jo <T J-co

Noting the formula

r°°dff 1-cosfl-
Jo ff (J2*

we obtain the lemma.

Lemma 2. For 0 (?) e ££ (U1) (0<A<l/2) , we have

-A4 f
1-2/1/ Jo

This lemma is proved in [18] , pp. 58-59.

Proof of Proposition 2. 3. 2. Since multiplication by \x A is a unitary

operator for AEEzMJ, we may assume that A is real. In view of (2.3.7)

it suffices to prove the boundedness of the map g (?) i-*0(± f) e~sl*lg (?)

in the topology of H, (I?1) for -l/2<A<l/2. By the duality H[=H^k

through (2. 3. 8) , we see that it is sufficient to consider the case 0<J/l<C

1/2. the case A = 0 is trivial (indeed the Proposition reduces to Proposi-

tion 2. 3. 1 in this case) . Assume 0<C/l<Cl/2. From Lemma 1 we have

for £:>0,

(2. 3. 9) || 6 ( ± ?) e-^g (?) II*, - ^ (A) - f f
\ Jo

x f""^i
J-oo 27T

, x,v / DJLllTTA 7-/1 , 01\ V^ Jwhere ^! (A) = / (1 + 2A) , and
7T /

x= f
Jo o 27T
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POO

z= Jo dff-ff
o 2?r

Jo 271

Making use of the inequality

we have

(2.3.10)
» Jo 2?r

2?r

Jo 27T

For the third term J3 we have

(2.3.11) 73< P^|g(±f)|2 r^-e;-1-"
Jo 27T Jf

Combining (2. 3. 9) ̂  (2. 3. 11) and Lemma 2 we obtain

(2.3.12) ||(?(=:f

p

Jo
x

o

o

\ V2

+ <rVr(i-2;i).;i-1

This proves the boundedness of Rf>£. To prove the strong convergence

of jRf;e (e—>0) , we note

(2. 3. 13)

Jo Jo 27t
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o 27T

which is derived by a similar argument as in (2. 3. 9) . It is easy to see

that each of the integrands in the right hand side of (2. 3. 13) is dominated

by an integrable function independent of s. Hence the Lebesgue's theo-

rem is applicable and we have lim||0(±?) (<Te|e| — 1) g (?) |[//A = 0.
£ 4 0

Extension of Proposition 2. 3. 2 to the matrix case reads as follows:

Proposition 2.3.3. Assume that the eigenvalues AI, • • • , Am of the

matrix L satisfy |Re A/|<l/2(/=l, '"> w) • T/ze?? jRf>£ zs a bounded
operator in Lz(R.;dx)m, and lim^e, denoted by R% = RL,Q> exists in

£|0

the strong topology. We have, for

(2. 3. 14) *£./(*) ^ ̂ -. ( y^V ̂ ./W , /e L2 («_ ; ̂ ) - .
2m Jo A — L

Here the contour C is a simple closed curve in |Re Aj<l /2 encircling

^i? ' " j ^ m ^ £/*£ positive direction (Fig. 2.3.2):

-* ;.
Fig. 2. 3. 2

In particular R* depends holomorphically on L in a neighborhood of

L = Q, and ||-R*|| is uniformly bounded there.

Proof. From the proof of Proposition 2. 3. 2, we have an estimate

*|-1/1) (|ReA|<l/2)
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which is valid uniformly for e^>Q. Hence, for each /£=. Lz (R~ ; dx) , Ai— >

Rf,ef *s an L2 (R^; dx} -valued integrable function. Making use of the

formula

2niJc &-

we have, for £>0 and

f dx' 1 P d)\.
= Hr~ --— f i— /J 2n 2niJcl-L

= ̂ f ~RtJ(&.2m Jc l — L

Since lim RfiBf(x) exists in L2-norm, so does lim .R*>e/(.z:) and (2.3.14)
c|0 ' e|0

is valid also for £ = 0. Holomorphic dependence of R£iS on L is obvious

from (2. 3. 14) . This proves Proposition 2. 3. 3.

Note that from (2. 2. 17) the integral operator RL corresponding to

the kernel R (x, x' ; L) is expressed as

(2. 3. 15) RL = lim #L.£, #L e - 2z sin nL (eMRi e + ̂ ~^L^ e) -
e|0

By Proposition 2. 3. 1, the operator A in (2. 3. 4) is bounded in M —

U(RJ)mn. Moreover under the condition (2. 3. 5) „ (v = l, • • • , n) , JR is also

a bounded operator in J^T by Proposition 2. 3. 3. We have

(2.3.16) ||jR||<max 2 sinh

Note that ||jR|| is made as small as we please if |LJ (y = l, m"9n) is

chosen small enough. Thus we have the following.

Proposition 2.3.4. In a neighborhood of LV = Q (v = l, • • • , ri),

(1 — RA)"1 exists as a bounded operator in M, and coincides -with

the Neumann series )

Proposition 2. 3. 5. The series (2. 3. 1) for Z^ (XQ ; x) converges

absolutely and uniformly on any compact subset of (C — F^) X (C—F^.

Moreover Zftv(xQ; x) is holomorphic with respect to al9 • • • , an on
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V= {Im aj>>"->Im an} and is continuous on V.

Lemma. Set kz (x) = —, 2 e C— (— oo 0]. Then z^>kz (x)
2n x — z

defines an L2 (R_; dx) -valued holomorphic function on C— ( — °°,0]3 and

(2.3.17) I A. (*) || =1= / 0 (*=r*";r>0, !0|<7T).
27TV r ™ sin a

• n*.<*) »'= r ~J-oo (^72

= i r l
( 2 7 T 2 J-o 2zr si(27T)2 J-« 2zr sin 0 V x - reie x - re~i0<

= I 6
(27T)2 r sin fl *

(The result is valid also for $ = 0 by continuity.) Analyticity of z\ >

kz(x) is obvious.

Proof of Proposition 2.3.5. For f,g^U(R^\dx)m we denote
r*o

their inner product by (/, g) L2 = I dx*f(x) g (x). Then the matrix
oo J — °° oo

ZMV(XQ\X) is expressed as ^ (^x -a » [(-^^-)l-K]^j?-a )L«- Since ^J (,RA)1R
I=Q * " 1=0

is convergent in the operator norm, we have

Sl(*5?o-* > K^^)^]/».**-«,) L. | <Z3 || [C^-A)1J2] ̂ 11 || A,0_a ||||^_aj|<00 .
1=0 " V 1=0 *

This proves the first half of the Proposition. Analyticity and continuity

with respect to al9 "-, an follows from that of RA in the strong topology.

(2.3.18)

Corollary. 2. 3e 6» For a fixed XQ^C—F^ zve have

1
_=
v \x — av\

uniformly in any subsector |arg(jr — av) l^n — £ (0<£<C1) °f C—FV.
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Proposition 2.3.7. Z,tv(xQ;x) is analytically prolongable with re-

spect to .r0 (resp. x) across the cut F ̂  (resp. 7\).

Proof. Assume XQe Fft — {afl}. The analytic continuation of Z^ (XQ\ x)

is then obtained by deforming the overlapping paths Fff. (i.e. those such

that Im aff. = Im afl) (x" = l, • • • , & ) as shown in Fig. 2.3.3:

-x<Zl

Fig. 2. 3. 3

In order to justify this procedure we must show that the convergence of

Z^ is not affected by a slight change of the paths of integration. In

other words we are to prove that RLV and Aftv remain bounded, and the

increase in their norm is chosen as small as we please under sufficiently

small modification of the path. Since the argument is essentially the

same, we consider the case of RLv.

Proposition 2.3.8. Let x(s) ( — oo<5<^0) be a C2-curve in the

x-plane satisfying

(0 x(0)=0

(ii) there exists an s0<^0 such that x(ts) = s for S<^SQ

(Hi) for some £>0, \x(s) — x(s') !2>£|s — s'\ (—oo<^s,

Then under the same condition on L as in Proposition 2. 3. 3,

t* : f (s) ̂  \ ° x (/) ̂  ( - x (s) )
J— 2n

is a bounded operator in L2 (U_ ; ds) m, and lim R* e exists in the strong
e i O

topology. Here the dot indicates differentiation -with respect to s,

Proof. In view of (2. 3. 13) we may assume that L is a complex

number ^€EC. It suffices to show that the difference of two kernels
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s — s

belongs to L2(JR_ X I?_ ; dsds') , and that lim ^ (5, 5' ; e) exists in the L2

c |0

norm.

Rewrite ^ (5, s' ; e) as

%(*,*'; e) = (±0- *"*'**

s — s ±ie

diere

Since the coefficients of ^, ^2 and ^3 are bounded functions by (iii) ,

it is sufficient to prove that ^, ^2, ^3eL2(l?_ X U_; dsds') , and that

lim ^2 (5, 5' ; e) = 0 in the .L2-norm.
e i O

Notice that ^ (5, 5'), %3(s, 57) =0 for s, s' <^s0 by (ii) . We note also

that -fr (s, s') = ( — 5) A ( — s') ~AX (continuous function) for £ = 1,3. For z'

= 3 this is seen by noting \x(s) /s\^>c^>Q so that ( — x(s} / — 5) ±A is in

class C2. Hence for f = l or 3

n° ^A'lx^^Ol^f f Fdsds'+ r
-cxj \ J J2S0 J-o

r° r2so \
+ \dS\ ds')\tt(.S, 5') |2

Js0 J — oo /

Since A=|ReA|<l/2, J/" is finite. As for J"\ we have
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= r°ds \*ds' \Xl(S, so i2
J-oo Js0

- {*ds'\s' -^ r°ds ^ \-x(
JS0 J-oo 5 _ _ 5 ' 4

UO f2s0

^VI-'^CO-^COI8-,0 J-oo
— Sol

r° r2so ] ? ] 2(/t+i)"j

]s J —oo |c C I 4J

<oo.

Similarly

J —oo Js0 Js0

X I ds —-—

<oo.

The term «73
(l) is shown to be finite by a similar calculation. Next con-

sider vo. We have

f°
J- — 5 ±ze |

z sm 2TC/J.

This completes the proof of Proposition 2. 3. 8.

Remark 1. In the case Im <22 >•••> Im an, another way of distor-

tion of the contour is to replace 7~^s simultaneously by parallel lines as

shown in Fig. 2. 3. 4. From this we see that the estimate (2. 3. 18) is

valid in a sector — 71 — S^arg (x — av)^7T + £ whose central angle exceeds

27T.
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Fig. 2. 3. 4

Remark 2. By Proposition 2. 3. 8, it is possible to deform the con-

tour as in Fig. 2. 3. 5:

Fig. 2. 3. 5

As far as the series is convergent, this gives an analytic continuation of

Zfly(xQ\x) with respect to al9'--9an outside the domain V= {Im #!>•••>

Im an} .

Now we shall assume Im a1^>--^>Im an for the moment and study

the monodromic property of the matrix Y(xQ\x).

Theorem 2. 3. 9. In a neighborhood of x = av, ive have

(2. 3. 19) Y (x, ; x) = 0, (x, ;x).(x- av} -L>

'where 0v(xQ\x) is a holomorphic matrix at x — ay given by

(2. 3. 20) 0V (x, ; x) = (XQ - a^ L> + 2m (xQ-x)f,^ f dx,Z,ff (x. ; xj
ju=l ff(=fv) JCP,X

xl

The contour CVtX is shown in Fig. 2. 3. 6.

Similarly at xQ = aft zve have

(2. 3. 21) Y(x0; x) = (x,-a,^L>$* (.r0; x)
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(2.3.22) ®*(x6;x} = (x-a,}-L»-2m(xQ-x^ £ f ^1_L_
pfct/o v=i Jc,. *0 2/r .r0 — Xj

At x0=aj!l and x — av -we have

(2. 3. 23) Y(xQ ; .r) = fo, ~ O L' - 0,v to ; *) • (* ~ *,) "Zv

(2. 3. 24)

tf^o ; J:) = ff^ • 1-f 27Tz'(o;o - ^) I rf ^i 1 dx2 -- -
JGfl,Xo Jcv>x 2n XQ — X!

• — ̂ — (1 - 'U +1] E Zft (.Tl ; .r.)

27T JC2 — -

Fig. 2. 3. 6

Lemma (cf. (2. 2. 10)) .

(2. 3. 25) f Ac,* (xl9 x2- L.) 1 —-?
J Z7T .T2 — (X — ay

, + f0) ̂  - (x, - *0) *•) -* (^ - a.)
(.r — a.)

cdx i_ i_ R. X . L ^

-A ((*,-*€. ,
27T

Proof. Straightforward.

of Theorem 2. 3. 9. First we note the relation

. This implies that Z/[V(xQi x} = (

L^kx_J, i.e.
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o; x) = \\ dxidxA— - - —
J J (2n (xQ — a — xl

1 z
X - J.J - i, 7 - */ _ - .

27T xz — (x — ay

f j U ^ *= I aJC!< -- 0^
Jr, 127T (^o — ) ~ Oi — «»)

where we have used (2.3.25). Since Zfia(xQ\x) ((T^v) is holomorphic

with respect to x in a neighborhood of Fy9 we may deform the path of

integration into a contour (Fig. 2. 3. 7) and obtain

Fig. 2. 3. 7

(2. 3. 26)

Z (x - x) = - f dx(— l- S H

2n xl —

+ 2ni — _ff ^ + I] Z^ (x. ;x)>(x- a^ L (x
\2n XQ~X tfw*>

i *
»- -- — -

27T JC0 —

/*
Q-av}

Lv~ X]
ff(^i/) JC^

27T

&Q; x) .

Hence by (2. 3. 3) 5^(^05 -^) is expressed as

Y (*,; ̂ ) =l-2^(^o-^)
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where 0v(x0',x) is given by (2.3.20). Formulas (2. 3. 21) - (2. 3. 22)

are proved similarly. To prove (2. 3. 23) - (2. 3. 24) we start with (2. 3.

22). From (2. 3. 22) we have

0*(.r0; x) = (x-a^-Lv-2iti(x*-x) ^ dxl (x1-a/t)-
Lfl

P(=£/«) JCp,Xo Z7t XQ — XI

= (x- a,) -L» + 27ti (x, - x) H Spv f dx,~ —1 - (x, - a
(>(+& jCfi,x0 Zn XQ — XI

X — —

X —

= (x - a^ -L» - (1 - 5^) (x - a J -L« + 0^ (XQ ; x)-(x- av) ~L» ,

where 0AV Oc0 "> ̂  is given by (2. 3. 24). This completes the proof of The-

orem 2. 3. 9.

Theorem 2. 3. 9 shows that the branch points are regular singularities

for Y(xQ;x), and that the latter has the monodromic property (2.2.1)-

(ii) there. When prolonged around x = oo it satisfies

roo YX^o; x) = Y(x0; x} M^

where M^^ (M1"-Mn)'~
1 and ^ denotes a closed path encircling oo clock-

wise (see p. 17). If each \LV\ (v = l, • • - , ri) is sufficiently small, M^ is

arbitrarily close to the unit matrix. We set

(2.3.27) L0. = _LiogM. = — f]irl^(M.-l)«.
2?rz 2m 1=1 Z

From (2. 3. 18) we have an estimate

(2.3.28) |Y(^0;x)! = 0(Vkl) (k|->oo)

"which is valid in any finite sector 00<^arg x^01 thanks to the monodromy

property (see Remark 1 below Proposition 2. 3. 8) . Thus x = oo also
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is a regular singularity of Y(xQ\x).

Theorem 2.3.10. For sufficiently small LJ (v = l, • • • , n), we

have

(2. 3. 29) Y(x0 \x)=0M O0; x) - XL°°

zvhere 0M(x^x) denotes an invertible holomorphic matrix at x=ooy

and LOO is given by (2. 3. 27). Moreover for v = l, • • • , TZ 0v(3;0;.r) <fe-

fined in (2. 3. 20) z > invertible at x = av.

Lemma. Let M<EGL(m, C) satisfy \M—1|<1, and set L = —-

-y—(M-l)1. If L'^L satisfies ezM' = M, there exists an
=1 3eigenvalue /I of L' such that |ReA|>—-.

4

Proof. First assume that the eigenvalues jul7 - ' , / j t m of Mare mutual-

ly distinct. Taka a PeGL(ra, C) so that P~1MP is diagonal. Since

P~1LP and P~1L'P both commute with P~1MP, they also must be diago-

nal. On the other hand the eigenvalues of L' have the form ^j — ns

-1- -—; log /6, JijELZ. Now if L^=L' we have %^0 for some j, and
1 1|Re ^ — tyl = !— Arg/(,-!<—- since |#y — li<l. This implies that |Re/l^|

3
Z7T 4

In the general case, there exists a sequence L(fc)-^»L' (&—>oo) such

that M™ = e?M™ has distinct eigenvalues, |M(fc) —1|<1 and L(/fc)^7-—:-
Z7TZ

log M(fc). Let /l(fe) be an eigenvalue of L(fc) satisfying |Re A(fc)|^—. Then

an accumulation point /I of {A(fc)} is the desired eigenvalue of L''.

n. / \ trace Ly

of Theorem 2. 3. 10. Set y(x) = det Y(xQ; ^) • H (^~^
v=l \^Co — &v'

where the branch is so chosen that v (x0) = 1. Theorem 2. 3. 9 implies

that y(x) is single-valued and holomorphic everywhere in the finite

.r-plane. In view of (2.3.28), y(x) must be a polynomial. Since

x— oo is a regular singularity, Y(xQ\x) is written in the form

(2. 3. 30) Y (*„; x) = C GCO; x) • x^ ,
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where ®'^(XQ\X) is a holomorphic matrix at x = oo and c2niL"°° = M^. We

have then y (x) =^trace^oa"^v5 ^ X (holomorphic function at x = oo)y so
n

that trace (Z^ -\- ^J Lv) is a non-negative integer. Among the possible
v = l

choice of C and L£ satisfying (2.3.30), let C,, Ll be such that
n

trace (L^ 4- ][] Lv) attains its minimum. We insist that L/
00 = L00.

v=\

Choose PGEGL(m, C) so that P~1L^P = J = J, © ••• © Js is the

Jordan's canonical form, where J^ is the mr X ;?zr matrix ( .r J^ ) (* = 0 or
"

l ; W j H ----- \-ms = m) and A r(r = l, • • • , 5) denote the distinct eigenvalues of

Z^ satisfying Re A^-'^Re 4. Let 0y (x) denote the j-th column vector of

C,-P. From the estimate |C(^0; x) PxJ\ = \ Y(xQ\ x) P\ =Q(J\x\) , we have

(2.3.31) lWi(^) , - ,^ (x) )^ |=0(VW).

Assume Lf^^L^. From the lemma there exists an eigenvalue Ar of
o s n

L'^ such that |Re Ar ^— r-. Since ^J ;?zr/lr 4- 2] traceLv^O and |LV| is suf-
4 r=l v=l

ficiently small (v = l, • • • , ?z) , we have Re A2|>— .

On the other hand we have from (2.3.31) l&Oc)^1!

which implies ^ (oo)— 0. From the estimate for the second column

I^Cr)-.*:*1 log.r + 02(.r) -^| =0(>/|^[) we then conclude 02(oo)=0.

Continuing this process we find that the first /^-column of ^(XQ; x) P is

divisible by .r"1. Therefore

where C is holomorphic at x=oo and L/
0l = LL + P ~ " m i P'1. This

contradicts to the choice of Z/l.

Since [Z^ | and \Lv\'s are sufficiently small, it follows from the rela-

tion <?«iL-<?Mi...e?*iL» = \ that trace (L^ + E Ly) =0. Hence v(x) reduces
y=i

to a constant 3;(x0)=l, and in particular det &„ (XQ\ oo) =^0. From

(2. 3. 19) we have 1 = y (x) = det 0V (x*\ x) • TT (x-a,)trace^ H fe

XCorollary 2. 3. 11. det Y(x,; x) =J}
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In general, let al9---9an and XQ be distinct points of P£, and let

Ll9 • • • , Ln be m X m matrices subject to the condition

/o o oo\ ~2niL, J2.niLn -|
(Z. O. OZj 0 1"-g n = 1 .

Consider the following precise version of the Riemann problem: find a

matrix Y(x) with the properties

(2. 3. 33)

'(0) Y (x) is a multi-valued analytic matrix on PC~ {#1, • • • , an}9

(1) (*} Y (x) = 0V (x) • (x - av} ~Lv at x = av (v = 1, - - -, ri), where

„ (.r) denotes an invertible holomorphic matrix at x = a^,

(2) det Y" (.r) ̂ 0 for x=£aly-',an9

[(3) r(x,)=i.
Here if av = oo for some v, x — ay is to be replaced by I/x in (1). Such

a matrix does not exist in general, but if it does it is uniquely determined.

For if Yi (x), Yz (x) both satisfy the properties (0) ~ (3), one verifies

easily that their ratio C= Yl(x) Yz(x) ~l is single valued and holomorphic

on P£. Hence it reduces to a constant C= Y1 (x^) Y2 (XQ) ~* = 1 by (3).

To make explicit the dependence on parameters we denote this matrix by

Y(XQ\X\ f1"'^71}. Theorems 2.3.9 and 2.3.10 show the existence of

for sufficiently small Lv\ (v = l, • • - , » ) . This

result is also proved by Lappo-Danilevski [12] by a quite different

method. We emphasize the point that in our solution (2. 2. 27), (2. 3. 3)

the dependence on the exponent matrices Ll9 --,Ln is more explicit and

manageble than in the expression given by Lappo-Danilevski.

We now consider some elementary properties of the matrix Y(y\ x)

= Y(y\x\ T
1-" T

n) (**}. In what follows we choose a projective coordinate
\ ^i -L>n/

so that

(2.3.34) av^=oo(v = l, .»,»).

Observe first that it is invariant under projective transformations in

the following sense:

w In order to specify the branch we choose as branch cuts mutually non-intersecting
smooth curves joining av and, say, an.

(**> Hereafter we denote x0 by y so as to regard it as a variable.
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/ h(a^) h(a^)\ I
(2.3.35) Y A ( y ) ; A ( x ) ; ;"- ' W y; *; ;

\ jL/! />n ' \

where

Formula (2. 3. 35) is seen by noting that the left hand side has the same

characteristic properties (0) ~ (3) of (2. 3. 33) . Also we note that for

any Yl (x) satisfying (0) ~ (2) of (2. 3. 33) we have

(2.3.36) Y(y',x)=Y1(yr1Y1(x).

In particular the ^-dependence of Y(y\ x) is known from (2. 3. 36); name-

ly at y = alJL it behaves like

(2. 3. 37) Y(y ;x) = (y- a,) ^0* (y ; x)

where $* (y, x) is a holomorphic invertible matrix at y = a(1.

Proposition 2. 3. 12. Under the condition (2. 3. 34)

•\r -Y —2 — ...•** ? T
JU

satisfies the folio-wing linear total differential equations

(2.3.38) dY=QY,

(2. 3. 39) fl = f] Avd log ^^^

(2.3.40) Av =

denote matrices independent of x satisfying

(2.3.41) f]Ay = 0.
y = l

In particular, as a function of x, Y satisfies the Fuchsian system of

ordinary differential equations
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/7V n A(2.3.42) ^i£ = £__^.y.
dx *=1 x — av

The coefficients Ay, regarded as functions of y and a— (al9 • • • , <zn),

satisfy the Schlesinger's equations

(2.3.43)

Proof. Denote the 1-form dY- Y 1 by J2. Clearly J2 is homorphic

in .r outside x — a^ -m,an, and from (2. 3. 33) -(1) it is written there as

Q = dY - Y-1 = d0, - 0-1 - 0*L9
 d(~x~ ^ 0-1 (y = l, - • - , » ) .
^: — <2V

This implies that Q is of the form

^L, = Res (rfy • r-1) = - 0, (a.) LVC (O -1 .
x = av

Here I?' is a matrix of 1-forms in y and #. The relation (2. 3. 41)

follows from the residue theorem. Since ¥^^ = 1, the pullback of J?

to the submanifold x = y vanishes identically, and we have

This proves (2.3.39). Differentiation of (2.3.38) yields

(2.3.44) O-J(JY) =dti-Y-ti/\dY= (dQ-Q/\S)Y.

On the other hand, we have

j2/\ J2^ ] A,Avd log -/\d log
A.V-I y — ap

Noting

fi? log (x — a^f\d log (j; - ay)
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d(x — a^) , d ( (x — #y) — (x — a^
A ~

d( (x - a^ ~(x- av) ) d(x^ #„
ai—av x — av

==d log(av — a^/\d log(x~av)~d log^ — av) /\d

hawe ave

~ H &» ' A* (d log (y - afl)
fi^v

— d log (v — av)/\d log (x — aft) )

+ 2 X] AA • A^ log 0' - *„) A ̂  log Cv - «v)/^v

(«v - «^) A ̂  lo§ (3' - «v)

(av — a^ —dlog(y-a^)

A (^log(j: — av) —<£ log Oy — #„)) ,

and hence

(2. 3. 45)

y — a*

Combining (2. 3. 44) and (2. 3. 45) we obtain (2. 3. 43).

Remark. Similar argument shows that Y( v; x; jl-- ??l j j satis-

fies equation of the form (2. 3. 38), where the coefficients Av need

not satisfy the condition (2. 3. 41).

So far in studying the properties of the matrix Y(xQ\x) defined by

(2. 3. 3) we have assumed Im ^j^>»- -^>Im an. We now return to the ori-

ginal situation where al9 •••, a ? l<ER l; namely we consider
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(2. 3. 46) Y+ (XQ \x) = - 2iti (XQ - x)

Proposition 2.3.13. Assume that al9-",an are distinct points

of R\ For fixed v(l^v<,ri), let {jil9 •••,#*} (A< "'<#*) be the set

of indices satisfying #/<v3 av<aftj. Then at x = ay Y+ (XQ; x) defined

in (2. 3. 46) has the behavior

(2. 3. 47) Y+ (xQ\ x) = (invertible holomorphic matrix)

X (x-

-where

(2.3.48) L',= (M^-M

In particular if a^-- <^an, *we have L'v=Ly (v = 1, • • • , n) , At x=oo

Y^ has the behavior (2. 3. 29) .

Proof. Suppose x belongs to a neighborhood U of av^R in the

upper half plane. Choose a'^C sufficiently close to a^ (# = 1, • • • , ? & ) so

that lmaO'">lman. Let Y' (x) = Y(XQ\ x\ £x --^ |°J be given by

(2. 3. 1) - (2. 3. 3), where the integration paths 7^ involved are as shown

in Fig. 2. 3. 8 (a). By the continuity with respect to a^ we have

(2. 3. 49) Y+ (x0; ;c) = , lim, Y/ C*0 •

Next we deform the paths F'^, • •• ,7 '^ f c into F"^ • • • , F p k so that ^c is

contained inside the region bounded by F'#k and F'y (Fig. 2. 3. 8 (b)).

UO C b)

Fig. 2. 3. 8

Clearly the corresponding matrix Y" (x) is obtained by analytic continua-

tion of Y' (x). Indeed, the monodromic property of the latter implies
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(2.3. 50) Y" (x) = Y (x) Mv • • M U k .

On the other hand, from Theorem 2. 3. 9 we have

(2. 3. 51) Y' (x) =C (.r0; x) • (x-d) ~LV at x = av

where 0" (XQ\ x) is given by (2. 3. 20) with P"^. in place of 7"^ (7 = !, • • • ,

k). Making use of the integral representation (2. 3. 20) we can prove

Lemma. lim (D" (XQ\ x) is holomorphic at x = ay.

Combining (2. 3. 49) - (2. 3. 51) and the above lemma we conclude that

O ^ R9N V (r - ir\ lim fh" (<*• • <v\^Z. O. O^J JL + ^^CQ j -^-y — illil Wv \XQ , X)

— (holomorphic matrix) X (x — a^)~L'v

at x = av(y = \, • • • , ??) . Likewise (2.3.52) holds also at ^:=oo, with L^
71

= L^ By virtue of the relation trace (Z/1 + X3 ^) —^, ^ then follows
v = l

that the holomorphic matrix in (2. 3. 5) is in fact invertible at x = ay

(see the proof of Theorem 2. 3. 10) . This completes the proof of Proposi-

tion 2. 3. 13.

As a consequence of Proposition 2. 3. 13, we have the following com-

mutation relation for (p(a\LY$'>

Proposition 2. 3. 14.

(2. 3. 53)

\ L2)>

Proof. From the remark below Proposition 2. 2. 1, it suffices to

prove that the corresponding matrix Y+ (XQ ; x) for both hand sides coin-

cide. We are only to show that they share the common characteristic

properties, namely that they have the same exponent matrices at x = aly az.

But this is a direct corollary of Proposition 2. 3. 13.



254 MIKIO SATO, TETSUJI MIWA AND MICHIO JIMBO

Finally we mention about the coalescence of branch points. For sim-

plicity assume Im #!>••• >Im an and consider the limit aV(JTl , • • • , aVo+k->aVQ.

Proposition 2. 3. 15. For sufficiently small \LV\ (v = l, • • • , ti) , w£

(2.3.54) lim FLc0;.r;

^f &i avo-i av, tf:.0+fc+i a
=Y(X''*'L'"L L L '"L\ 2^i <Lji>0~l -LfVo J^VQ + k + l -L^n,

where LVo is given by

(2.3.55) Lv^vgMVo = ±^

Proof. We already know that the limit Y(x^\x)= lim
«v0+i.-.«v0 + *-»«v0

exists and is given by the series (2.3.1), (2.3.3).

By the same argument as in Theorem 2. 3. 9 we see that it behaves like

(2.3.19) at x = av=^aVQ ( = aVo+l= •- =aVo^k) with a holomorphic matrix

(2.3.20). At x = oo Y(xQ\x)x~Lo° is clearly single-valued. Hence the

estimate (2. 3. 28) guarantees the behavior (2. 3. 29) at x = oo with some

holomorphic matrix 0^. We see also that it has the following monodro-

mic property around the point aVft = ayo+1= ••• =ay^k:

(2.3.56) r»0Y=YM,o

where MVQ, given by (2. 3. 55), is sufficiently close to the unit matrix

by assumption. Note that the growth order of Y(x$\x) at x = aVo is

estimated as

(2.3.57) \Y(xQ;x)\=0

uniformly in any finite sector 6Q^aTg(x — aVQ)^61. The rest of the argu-

ments is the same in the proof of Theorem 2. 3. 10. In particular we

conclude that 0, (resp. C,) appearing in (2.3.19) (resp. (2.3.20)) is

necessarily invertible. This completes the proof.
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Corollary 2. 3. 16. Under the same condition as above, ^ue have

(2. 3. 58) lim <p(a^L^)'"(p(a^L^_
«voHi- - ' a vo+fc-* f l j ' o <^(«iJ LI) •••<p(an\ Ln)>

= <p(ai, LQ- • '(p(aVQ-i\ L^-Q^a.,.; LVQ)(p(aVo+k±l\ L,0+fc+1> -(p(an\ Ln)
i; Li)- • -^Xo-i; Lyo_!)0X0; LVo)(p(aVD+JC+f, LVo+Jfc+1> • •?<«„; Ln)>

§2.4. r F unctions

Theorem 2.4.1. Le£ AA(y;a) (# = 1, • • • , » ) ^^ solutions of the

Schlesinger's equations (2.3.43). We denote by o) the following 1-

form:

(2.4.1) o) = — 1] trace A^Cy; a) Av(y ; a)
2 .«¥^

Then co is Independent of y, and li is closed.

Proof. From (2. 3. 38) and (2. 3. 43) we have

^ /A7--1 /I ATA Xr

- - - * , - = 0 -
9y v

Hence we have Y(y\ x\ a) ~lAfi (y; a) Y(y; x\ a) = Y(y' \x\d) ~lAn (y'; a)

Y(y';x;a), and co is independent of y.

We have

i / \
do) = — 22 tracef — ̂  [AV9 A^]d log -/* l\Avd log(a/i — av)

2 /"

= Zl ( - trace C-^/., ^A] A,) ̂  log (^ - a^) rf log (^ - (2,)
/i,v, A: distinct

+ ~ S trace ([A,,, AA] A, + ̂ [̂ 1,, A & d log (y - a J
2 /i,v, A: distinct

Since we have trace [Aft, A^] Av = trace [ Ay, AJ AA = trace [ A^, AJ A^,

trace [ A/0 A J Av + trace AA [ Av, A J = 0 and ^7 log (aA - a,,) rf log (afl - av) +
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d log (a# — av) d log (av — a^) + d log (ay — a^) d log (a^ — a^) = 0, we see easily

that dub = 0.

Let us consider the transformation property of a) under a projective

( /y /3\
ft] £=SL(2, C). We assume one of the following.

(2.4.2) HAf(y;a)=0.
/•t

(2.4.3) r=0 .

Remark. (2. 3. 43) implies that

d (E AJ = [I] Aff, 2 A^ log (y - a,) ].
/f ft V

Hence the algebraic equation (2. 4. 2) is compatible with (2. 3. 43).

Proposition 2. 4. 2. We assume (2. 4. 2) or (2. 4. 3). TT^rc we

have

(2.4.4)

Proof. We fix y and a and consider A as variable. We have

d log *(**)-*(*•)-</ log
A(y)-A(a.)

=rf log
r^ +

Hence from (2. 3. 43) it follows that

log

= -\_Af(h(y);h («)), £ A, (A (y ) ; A (a))] rf log ̂  ,
" r«^+o

=o.

Remark. As a corollary of Proposition 2. 4. 2 we see easily that

(2. 4. 5) Y(h (y) ; A (x) ; A (fl) ) = F(y ; a:; a)
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under the assumption (2. 4. 2) or (2. 4. 3). This is the general form of

(2. 3. 35).

Proposition 2. 4. 3. Assuming (2. 4. 2), tve have

(2. 4. 6) /? *ft)-ft> = £] trace AJ rf log (7*1, H- 5),

wAere /7*oj = Y 2 trace ^ (A (3>); A(<0) A, (/i (y); 7i (*))rf log (/i (a,) - h «>).

Assuming (2. 4. 3), zej£ /wive also

(2. 4. 7) A*o) - ft) = (2] trace A* - trace A2J a7 log 8 ,

•rej/7 ?rp A^ = — Y] A / £ .

Remark. From (2.3.43) we see easily that d (trace AJ) = 0 and

^(trace A^) =0. In particular, for AIJL given by (2.3.40) we have

trace A* = trace Z/* and trace A* = trace Z/^,.

Proof of Proposition 2. 4. 3. From Proposition 2. 4. 3 we have

A*ft) = — Xj trace A, t(y; a) Av(y; a) d log -
2 AT^ (Y C

= 0 - § trace A^ (y; a) A, (y; a) d log (7-^ + o)

= ft> + 2J trace AJrf log (ra^ + (?)

h trace{Aw(y; a) ^] A / i(y; a)r/ logCr^^-h o)}.
A

Under the assumption (2. 4. 2) or (2. 4. 3) we have (2. 4. 6) or (2. 4. 7),

respectively.

Let us introduce an equivalence relation among all AfJL(a) (// = !, • • • ,

n) which satisfy the Schlesinger's equation

daAft= — 2 E^-/*, -^J^ l°g a/*~~ai>,

where rfa denotes the exterior differentiation with respect to al9 --,an

for some fixed \.
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We say Afl(d) (ju = l, •-, ri) and A,, (a) (jU = l, ~',ri) are equivalent

if and only if there exist an invertible holomorphic matrix P (a) satisfying

Afi(a) — P(a) ~lAM(a)P(a) . We call an equivalence class & an inner

automorphism class. The 1-form a) is determined by inner automorphism

classes. We denote by o)^> the 1-form (2. 4. 1) determined by J^.

Definition 2.4.4. We denote by t>(al5 • • • , an) the (multi-valued)

analytic function defined by

dlog r> = cdj> .

We leave a constant multiple undetermined in this definition of r>(#i> • • • ,

The following proposition follows directly from Proposition 2. 4. 3.

Proposition 2. 4. 5. We denote by 5? the inner automorphism

class containing A#(y,a) (# = 1, • • • , ; ? ) . Assuming (2.4.2), ive have

(2. 4. 8) l, "S = JJ ^

We have also

__ ^-1/2(2 tracer-trace^)

If we assume (2. 4. 2) , ^ — oo (aft'=£oo, jy' =2, • • - , « ) is not a singular

point of the Schlesinger's equations. Lei AM (y, aly • • • , an) ( /^^I j - ' -^z)

be solutions with initial values A,,, (y; oo, <22, • • • , an) = A'^ (y; <22, • • • , an)

(ju'=2, • • • , » ) . A^/(y; a2, • • • , ^?n) (^7 = 2, • • • , ;?) themselves satisfy the

Schlesinger's equations with w — 1 branch points. Conversely, if

A'p' (y; az, • ~ 9an) (/^ =2, • • - , ; ? ) satisfy the Schlesinger's equations, there

exist unique solution matrices Aft (y; aly • • • , an) (ju = 19'",n) such that

^2A/t = 0 and A^(y; oo, a2, • • - , aj =-AJ,/(y; a2, • • - , an). We denote by ̂  or
//

^' the inner automorphism class determined by AM's or -A^/'s, respectively.

Proposition 2. 4. 6. ]T7

(2. 4. 10) lim rX*i, •", «») ̂ race4f- const.
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Proof. Choosing h= ° l } in (2.4.8),
—i «r /

we have

l, '"> n _ = TT ^

(0, af1 - af1, • • • , ail - a -1)
-trace

Hence we have the following finite limit.

limrXaj, -, ^)airace^ = t>(0, -a,-1, •-, -a.'1)

If we denote by d! the exterior differentiation with respect to a2, • • • ,#» ,

we have

XI traCe -A/.
oo 2 l^-«¥=v^n

— trace AC oo
2 2

The main result in this section is the following.

Theorem 2. 4, 7* J[/* AA (y, a) (/« = ! ,••• , ;?) are given by (2.3.

40) , iv e have

(2. 4 11) d\og<(p(a1-L1) --(p(an\ LB) > = fl)^

-where the left hand side is defined by (2.2.29). We define (^p(a^\

Lj) -~(p(an\ Ln)y up to a constant, multiple by integrating (2.4.11),

namely we set

^(flijI/O •••^(a n ;L ? l )> = const. r^(^l5 • • - , f l n ) .

Proof. From (2. 2. 29) and (2. 3. 24) we have (cf . (2. 2. 48) )

(2. 4. 12) -9- log <p( f l l; LO .-^(^; Ln)>

= - trace
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On the other hand 0* (aft; x) = @* (a/JL\ y) Y(y\ x\ a) satisfies the following

Fuchsion system with respect to x

_ > ,

dx v x — av

(2. 4. 14) A?> (a) = $* (a, ; y) A, (y ; a) 0* (a, ; y) -1 .

The local expansion of 0* (afl; a:) at x — ati is as follows:

(2.4.15) $*(alt-x

From (2. 4. 13) and (2. 4. 15) we have

(2.4.16) Ay>=-Lf,

(2. 4. 17) (*„ ; a,) - (a, ; a,) , L =
ai-~av

(2. 4. 11) follows from (2. 4. 12), (2. 4. 14), (2. 4. 16) and (2. 4. 17).

Example 1. Let L/t (/* = ! , • • • , ;z) be commutative matrices. Then

we have

a - a

Example 2. In the case ;/ = 2, we have

Example 3. We assume that ?i = 3 and Z^oo^O. Then we have

v
X

Li) <p(al,Ls» al-a\

a,- a,V/"™ce{Z}~Ili~i!) /^«»- a,- - — - -

Now we shall study the behavior of r&(al9 -•,&*) when some of the

branch points meet at one point. The bahavior of !>(£#!+ fl0, • • • , tan

~{-ao) in the limit t—>0 is known by (2.4.9). We shall show below
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for appropriate choice of ^, J/^ and ,5 2̂. For this purpose we study the

Schlesinger's equations at "fixed singularities" ([8], [15]).

Let Aft (,'* = !, • - - , ; / ) satisfy (2. 3. 43). We set Aft(t) =Alt(y\al. • • • ,

ani, tbi, • • - , * £ „ , ) (/* = !, •••, ni,nz = n — n1) and £„(£) = AV_? J I (3-; ^ • • • , rt7ll,

tbl9 •"•, tbna) (v = 1, • • • , ?J2) • Then we have the follo^wing Briot-Bouquet

type ordinary differential equations for A /z(£) (/^ = 1, • • • , w^ and Bv(t)

(y=l , •.. ,«.).

(2. 4. 18) * = -^[A,t (0 , B.L " v ; >

B,

= 1 [B, (0 , A. (0 + V] A, (0 ]
£ t a

(0 , A, (0 ] — *• - - E [B. (0 , B,, (0 ]--*•-- .
/' a/t — tbv >"(^v) y—tbv>

Likewise, if we set A / £ ( 0 = A ^ ( y ; «i, • • • , «BI, ̂ , •-,
7 7 t t

and 5p(0 =^.y+»1(y; «i, •", flWl, -:
1, • • • , - s ) (^ = 1, • • - , «2), we have

(2. 4.19) < = £ [ Aft (t) ,
(tati — bv) (ty — bv)

,(0,.A,(0] —^-- + I] [B,(0,^(0]

In general, let fflv(t), gftv(t) and /ivv, (£)

be holomorphic functions defined in {f]|^!<;co}, and consider the following

system of ordinary differential equations for ;;? X m matrices Afl(t) (/t

= 1, ..-,«!) and 5V(0 (v = l, • • - , ; / 2 )

(2. 4. 20) = y] [ A, (o , B
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at t

+ i: \B. co ,
0 »'(¥*)

Let AJ,(# = 1, • • - , ;&!) be mXm constant matrices and let /£15 ••-9jUm denote

the eigenvalues of A° = J^ ^-l- We shall study (2. 4. 20) in the neighbor-
def fi

hood of t = Q and All = A^ (jU = l, • • • , Wj) , assuming

(2. 4. 21) ReGK,-/O <1 0', £ = 1, .», /»).

Theorem 2. 4. 8» L^^ U be a relatively compact subset of {AQ

, C) max
/, *=l ,— f m

°denote the eigenvalues of an mXm matrix A°. We set ff= max

Re(jtj(A°) -jUk(A°)) and choose ffl9 $2 so that ff<ff2<ff1<l. Let C>1

and 6 be positive constants and let A^ (/^ = 1, ••• ,^1) and Bl (v = l, • • • ,

HZ) be mX m matrices satisfying A° = ̂ 2 A^^U and
a

(2.4.22) I All, (JSJKC.

There exist constants K and Kf independent of AQ
fl, Bl and C such

that for any e satisfying

(2.4.23) Cseffl~ff'<K9 0<e<K'

there exist unique solutions Afl(f) (/^ = 1, • • • , n^) and By(f) (v = l, • • • ,
nz) of (2. 4. 20) -which are holomorphic in the sector S£>g=

and satisfy the asymptotic conditions

(2.4.24)

Conversely, for any Si^>0 there exists £2>0 such that if A#(t)

(Jjt = l,~',nj and By(t) (v = l, -,w2) satisfy (2.4.20) andif\All(V)

<£2 (^ = 1, • • • , /Zj) a;zJ i^(l)|<£2 (v = l, • • • , n2) ^/z^2 the limits as t-

0 e^:f5^ z;z ^/z^ 5^^5^ of (2.4.24)

Proo/. We set Sv(0 = tA°Bv(t) t~A° and rewrite (2.4.20) with

^) and By (t) as unknown matrices.
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,, (0 , r •'•£. (0 * "] /„ (0

set A?>(*)=A;, Bf(i)=Bl and define A<*> (*) , 5« (0 (* = 0, 1, 2. -)

recursively by

(2. 4. 25) , A«> (0 = Al + l] [A,(f -^ (5) , s-»B?-» (5) j "] /„ (s) ds
JO v

> (0 = Bl + f {1 [Sf -]) (j) , I] 5-" (A?'1' W - A;,) *-"]
Jo I ^ /r

Here the path of integration is {5 = re l°|0<^<CkK ^ = arS ^}-

Let (J be a constant such that 0<5<1. For an appropriate choice

of X", ̂  in (2.4.23) we claim the following:

(2.4.26), |A?> (O-^I^

(2.4.27), U'°(Af «-A°,)r'1

(2. 4. 28), |5,(fc) 00 -Bl\<,C\t\l

(2. 4. 29)fc | A<?> (t) -A<f-» (0 i

(2.4.30), I^X^W-^^

(2. 4. 31), \B™ (t) -B

for t^Ss,0.

We choose Kr so that 0<X'<1. Then we have from (2.4.26),

and (2. 4. 28) ,

(2. 4. 32) , j Af (0 K2C, |£v<*> (0 i

Making use of the formula
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we have the following lemma.

Lemma. Let A (t) and B (i) be in X m matrices which satisfy

\A(t) \<,2Cly \B(t) \<,2C2 for ^e5£>0 and let /(*) be a holomorphic func-

tion in {£||£Kl}. There exists a constant Kr independent of Q, C2 nor

AQ^U such that for any £ satisfying Q<^s<^K', the following are valid.

Jo 2nz

ri c c
\tA° I s~AOB(s)sA°A(s) f(s)ds t~**\< \t

Jo ' 2nz

for t^SBiQ and A°(EU.

By virtue of this lemma (2. 4. 32) fc now implies

Assuming that (2. 4. 26) fc, (2. 4. 27) k and (2. 4. 28) k are valid, we see

that (2. 4. 25) fc+i is well-defined. Moreover we have

f!"E 2\A?>(s)\\S-
A'BP(S')S»\\fia(s-) \d\s\

JO y

i ̂ ° f ̂ f w 5~/10
JO

S f'(B rs-
iaB^(s

v Jfl

|^|1-<rs

/»|«| -i
Bl\< ?l2±-

JO fl \S\

f "
JO
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1-<T2

These estimates prove our claim for (2. 4. 26) k _:^^ (2. 4. 28) fr _T. A simi-

lar calculation shows that our claim is valid for (2. 4. 29) fc^ (2. 4. 31) k.

Thus we have proved the existence of solutions

which satisfies the asymptotic condition (2. 4. 24) and

(2. 4. 33) £'io (A, (*) - AQ
/t) rAQ\<^C\t\l~ff* .

The uniqueness of the solution AA (£) , Bv(t) satisfying (2.4.24) and

(2. 4. 33) is also proved by iteration. Since (2. 4. 33) follows from

(2. 4. 24) , we can omit it in the statement of Theorem 2. 4. 8.

To prove the last statement of Theorem 2. 4. 8, we start with the

following iteration.

A? (0 = Af (1) - E [4?-1' (5) , BJ*-1' (*) 3 //,,

(0 = B. (1) -

+ E Wk~" (S) , B?-« (5) ] A,,, (J) ^5 ,
»' (=f=v) )

and Af (t) = Afl (1) , Bf} (f) = B, (1) . By a similar estimation as above

we see that Aft (t) = lim A(* } (f) has a continuous limit Aft(G)=AQ
ft at

fe->00

/ = 0 such that lA^l^ej. Also we have the estimate \By(t) \<^\t\~a with

Since A/c (£) satisfy the integral equation

An (0 = A" + f E [A, (5) , B, (5) ] /
JO v

A/t(t) satisfy the asymptotic condition
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Now we define another iterative approximation.

p1 ~
11 jt v " ' v ftv

^(^s-A°~]g/tv(s)

i
L] (5) ] hyy> (s) \ ds .

}

By a similar estimation we see that Bv (£) = lim B^ (t) has a continuous

limit Bv(fy=Bl at ^ = 0 such that iBH^e, and \Bv(t) -BH^e^t l~ff.

The asymptotic expansions of A# (f) and 5V (t) are obtained as follo\vs.

X=(Xl,"',Xn^) and y= (Y1? • • • , YnJ will denote ;zr and w2-tuples of

;;z X ;;z matrix variables, respectively.

Proposition 2. 4. 9. There exist kolomorphic m X ;?z matrices

1, • • • ) -which satisfy the following.

(i) They are polynomials in (X^) jt and (Yy)jt (/* = ! , • •• . ^; v = l, • • • ,

(ii) jEar/z monomial in Fl(X, Y9 f) (k>l) has a degree at most 2k in

{ ( X f l ) j h (Yv)ji}/t=lt...tni , at most k in {(XJ ji} ̂ i,...,ni and at most k in
v=l,—,nz J,l=l,—,m

(m) Each monomial in G»(X9 Yy t) (^^1) has a degree at most 2k + 1

in { ( X J j i , (YJ)jl}^li...jni , at most k in {(X^ jt} ti=l,...,ni and at most
-l-.-.m /,l=l...,m

k + I in

(iv) The coefficients of FJ (X, Y, ^) a/z^ G,fc (X, Y, *

morphic functions of t defined in {^||^|<C^o}-

(v) Aft (t) and By (t) of Theorem 2. 4. 8 have the follo^ving asymptotic

expansions.

•A,(0 =IlF"i(Al ••-, A°ni, r<°Blt>\ ••-, r''B°»tt», t)
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B.(£) =£ G,*(A!, . . - , Ala t-"BltA>, -, t-^BlS', f).
7c=0

Proof. We set F^ (X, Y, t) =X» and GJ (X, Y, t) = Yv and define

* (X, y, t) and GJ (X, y, *) recursively as follows.

G; (x, Y, t) = f ' {1 s fe ( (^) ''°x ( i) ~", Y, s\ ,
Jo [ 5 ^j i=* L \ \ ^ / \ ^ / /

The assertions (i) ̂  (iii) are obvious from the definition. We shall prove

(iv) by induction on k. The case k = 0 is trivial. We assume that the

assertion is valid up to k — 1. Then there exist holomorphic matrices

Fi(X,Y,t) (0<;^&-1) and Gl
y(X, Y, t) (O^l^k-l) such that Fl(X,

Y, t) = tjF^ (X, y, f) and G[ (X, y, t) = tlG\ (X, y, t) . Then we have

= Ts
JO v /

"

I]
= *-!~
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Hence (iv) is valid for F* (X, Y, I). Likewise it is valid for Gf (X, Y, t).

By induction we see also that for any matrix M which commutes

with A°, we have

M~lFl (X, Y, t) M= Fl (M~1XM, M^YM, t),

AT'GJ (X, Y, t) M= G\ (M~1XM, M^YM, t).

Now we define AJ (t) (j>JL = i, • • - , n^\ k = Q, 1, • • • ) and Bk
y (t) (v = l, • • - ,

;/2;* = 0, 1, • • • ) by

By the above remark we have

S~k /f\ _ ,A° T
y(t)—t

These matrices satisfy the following recursive equations.

O y j+l=k-l

E Sft j+l=k-l

E S [£,'(*),£;,(*)] A,
v (¥=>*) j+i=fc- i

Note that (ii) and (iii) implies that
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Let A f l ( f ) , Bv(t) be solutions of (2.4.20) which satisfy (2.424)

and (2. 4. 33) . We claim that

E

We assume that our claim is valid up to k — 1. Then we have

o<:.7<;fc-i

E
O v j+l^k

Likewise we can prove other claims. Hence we have proved Proposition

2. 4. 9.

By the formal transformation

/n A o/l\ A \Tnl T?k / "V "t/" i\^Z. 4. o4) Afl = 2^ -i /« v-A, i , t) ,

the system (2. 4. 20) is transformed into the following linear system.

(2. 4. 35) jj = 0 , = [y, (*) , 2 XA (0 ] .
a^ at t ft

In the following we discuss the convergence of the series (2. 4. 34) . We
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denote by AG the following subset of (Xl9 ••• ,Xn i , Yl9 • • • , Ynz9 t) space.

where JJL} (j=l,'",m) denote the eigenvalues of ]T] -X^.
/i

Theorem 2.4. 10. There exist holomorphic functions F f t ( X l 9 • • • ,

-X.,, y,,-,y,,,*) (A = l, -,«,), G.CX,,-,.^, y,,-, y,,.,*) (v = l, -,

w2) defined in a neighborhood of J1/3 such that the system (2. 4. 20)

z*5 transformed into (2. 4. 35) &y ^A^ non-linear transformation

(2. 4. 36) A, = F, (X,, • • • , Xni, Y1; - - , Y^, /)

Proof. We denote by A«0; X, Y, 5) , 5,(^; X, Y, s) the unique solu-

tion of (2. 4. 20) satisfying the asymptotic conditions

The condition (2. 4. 23) for £ implies that there exists a neighborhood

A/a of J1/a such that, for any (X, Y, 5) €E A/3, A^X, y, 5) and Bv(t;X,

y, 5) are holomorphic in a sector containing 5. (Choose ^ and tf2 so
9

that 0-j — <72>_) We set
o

F,(X, Y, s) = AM(s; X, Y, s)

G,(X, Y,s)=B,(s;X,Y,s)

for (X, Y, s) e£)1/3 and claim that Ff and G, are single-valued. We have

If we set * = e"1"*', ^ («"*'*' J-X, Y, elnis) and fiv (e
2lrV ; X, Y, e^s) satisfy

(2. 4. 25) and the following.

-Xf

Mt';X, Y, e'*ts')t'-A°-s4°
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for some constant C'. Hence the uniqueness of solution implies

A, (ezrdtf • X, Y, eZKis} = Afl (tf ; X, Y, s)

By (e
znitf; X, Y, e^1 s) = Ev ( t f ; X, Y, 5).

This proves our claim. Moreover (2. 4. 24) implies that

l imG w (X,Y,5)=Y I > .

Hence ^//5 Gy are holomorphic at 5 = 0 and the transformation (2. 4. 36)

is invertible. Since A^X, s~A9YsA\ s) and Bv(t;X, s~A*YsA\ s) are in-

dependent of 5, the substitution X^ = A°, Yv-=t~*°&vt
A* into (2. 4. 36) gives

a solution of (2. 4. 20).

So far, we have fixed aly • • • , ani, bl9 • • • , ̂ 2 and y in (2.4.18) and

(2. 4. 19). Now from (2. 3. 43) we derive the system of total differential

equation satisfied by AJ, • • • , Aj t, J3J, • • • , .B°2 as functions of aly --,ani,

b l9 • • - , & « , and y.

Proposition 20 4. II. I;z ^/xe cas^ of (2. 4. 18) we have

(2.4.37) <M°,= - S [A'A, A^]d log a"~a"' + [A0,, ^°]^ log ̂  ,

y -

/o /j QQ\ ^7730 vn r z?o z ? o i ^ 7 i ^ « . » ®v'(^Z. 4. ooj aijv= — / , L/3y, £vja log
v'(^) y ft

zuhere A° = ̂ 2 AQ
ft-\-A^. Li the case of (2. 4.19), -we have

fi

(2.4.39) dA°ft=- I] [A°, AVl^log ^^',

(2. 4. 40) JS° = - S [^, A;,] d log -- - S [BJ, BJ,] J log
A y — ati

 v'(^

Proof. We shall prove (2.4.39) and (2.4.40). (2.4.37) and

(2. 4. 38) are proved similarly. From (2. 3. 43) we have
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(2.4.41) dAf=- S [A^AAdlog^*—^

,,B.-]dlogta" '
ty-b. '

(2. 4. 42) dB>=-J2[fi,, A,]d log *t=.̂

(2. 4. 39) follows directly from (2. 4. 41) in the limit £-»0. Especially

for .f = I] A° we have

Hence we have also

(2. 4. 43) d't" = 2 [*", AJ] d log (y-a,) ,

where d7 denotes the exterior differentiations with respect to al9"',ani,

bi9"m,bn2
 and y. Using (2.4.43) we can rewrite (2.4.42) as follows.

t-"] d' log (J. - *fl,)

' log (y - fl,) - S \Sn Bj d' log
ty~bv,

Taking the limit z^-^0, we have (2. 4. 40) . Here we also use (2. 4. 33) .

So far, we have considered the behaviour of AM and Bv in the limit

t~ >0. Let us now consider that of Y.

Proposition 28 46 12.

722) ^^ ^ solution of (2. 4. 19) satisfying (2. 4. 24) . T7ze folio-wing

limits exist and satisfy the linear total differential equations belo^v.

(2. 4. 44) Y^y, x- a,, -, an^ =lim

(2. 4. 45) ^F! = fe AX log
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(2. 4. 46) Y,(y, x, a,, • • - , a,a b,, -, *„)

(2. 4. 47) dY2 = A°Ad log -*— + £ Bid log £l
W y — a/( v t?v

Similarly * for the system (2.4.18) we have the following limit.

(2. 4. 48) Y, (y, x; a1? -, ani) =lim Y(y, ^; alf -, ani, ̂ 15 -, ^2)

(2. 4. 49) rfrt= AX log ±-Jtd log ^
y - a/, y '

(2. 4. 50) Y2(y, ̂ ; a^ • • • , ̂ n , ^, • • • , &„.) =lim rI

(2. 4. 51) ^Y2 - XI -AW log — ̂ - - H S!d log --H Y2y — afl v v

Proof. We shall prove (2. 4. 46) and (2. 4. 47) . Other cases are

proved similarly. From (2. 3. 43) we have

(2.4.52)

,, J log f~* f l' +^E^ log x~b"
t(y-a,,~) * ty—b,

If we abbreviate Y(v s — , a\, • • • , <2ni, — , • • • , ̂ ^j to Y(^), we have

(2. 4. 53) t-- = A (0 Y (0 ,
J^

where
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- X"1 A f+\ &# i \H & s+\ y

We claim that there exists a holomorphic matrix Q (f) in a sector such

that

(2.454)

where Y"0 is a constant matrix and

Substituting (2. 4. 54) into (2. 4. 53) we have

Again (2.4.33) assures the existence of such Q(f) . Thus we have

proved the existence of the limit (2. 4. 46) . The proof of (2. 4. 47) is

similar to that of (2. 4. 42) , so we omit it.

Let us assume that A*fl(y; al9 ••- ,oB l) (/* = !, • • • , J^), A* (y; al9 • •• ,#„,)

and 5y°(y; ̂ i, •", ani, *i, "'» *«,) (^ = 1, •", »0 satisfy (2. 4. 37) and
(2.4.38). We also assume (2.4.21). For fixed al9-"9aHl and y, B°y

(v = l, •", 7*2) satisfy the Schlesiiiger's equation. If we denote by d' the

exterior differentiation with respect to al9"-,ani and y, from (2.4.38)

and (2.4.51) we see easily that d' (Yi'^JYi) =0. This implies that

trace -BJfJ5J is independent of a^ • • • , aWl and 3'. Hence SJ(v = l, • • • , 772)

determine a unique inner automorphism class, which we denote by J?^.

We also denote by J?^2 the inner automorphism class determined by A°ft

(/* = !, -- ,7/0 and -A°.

Let AA(^; y, fli, • • • , ani, bl9 • • - , 6nt) (^ = 1, • • • , Wi, oo), Bv(t; y, aly --,
an^ bi, '", ^O (^ — 1, m"9^z) denote the unique solution of (2. 4. 18) satis-

fying the asymptotic conditions

\B,(t;y, alt •••,a.vl,bl, •••,br,1
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ni
where A^^A0 — ]TJ AJ,. (See Theorem 2.4.8.) There exists a unique

0=1
solution A/t(y9al9'"9ani9bl9--9bnt) (ju = !9 •~9n1)9 Bv(y\ al9 • • - , ani, bl9 • • • ,

4Bi) (V = l,-.HS) of (2.3.43) satisfying

Bv(y\ a\-> "' •> an^ tbl9 • • • , tbnz) = By(t\ y, al9 •••, ani9 bl9 • • • , bn2).

We denote by J?5^ the inner automorphism class of this solution.

Theorem 2. 4. 13. Under the above assumptions, ^ve have

(2.4.55) lim r^^> •"» **" ^ '"> ̂  = const. r^2(a1? . - - , ani, 0)

Proof. We have

= X3 trace

(trace Bv(y\a^ —9ani9 tbl9 • • - , ̂ 7l2)

— trace SJCy;^, • • • , f l n i , ^, • • • , ^2

Noting that

trace BJOy;*!, • • • , a B l , ^, • • - , tb^Bj>(y\al9 -~,ant, tbl9 •••9tb»t)

= trace J 5 j ; , .-, , ̂ , -, ^; i f -,
' U tf

= trace BJCv;^, • • - , f l n i , &!, • - - , &Wf) BJ, (y; ^, • • • , f l T I l , & 1 , • • - , *

and that

trace By(y;a1, -~9ani9 tbl9 • • - , tbn2) Bv,(y; a^ -~9ani9 tbl9 *-,tbn^
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= traceB(t;y, al9 -"9ani9bl9 ••- ,*„,)

xB,,,(t;y9al9 •••,a^,bl, • • - , *ni) ,

we have

— log
dt *>,*! , • • - , W l

This implies that log {r>0 (al9 • • • , <zni, £#i, • • • , £&7,2) /r^ (^, • • • , ̂ nz) } has a

finite limit when £— >0. If we denote by d' the exterior differentiation

with respect to al9 ••• ,a, l l ,^1 , • • • , ^ r , 2 , we have in this limit

= J] trace A° (y; a1? • • • , aBl) AJ/ (y; al9 --, ani
^<A"

-X] trace A"ft(y,al9 • ~ 9 ani) A° (y-9 al9 ~-9anJlog aft
ft

,(«!, • • • , flWl, 0).

The last statement of Theorem 2. 4. 8 implies the following corollary

to Theorem 2. 4 13.

Corollary 2.4.14. For sufficiently small |LJ

we have

= const. <^(«i; Ll}"-(p(ani\ Ln^)(p(aQ\ L0)>

where LQ is uniquely determined by e
z"lL° = eZ7:iLn^l'-'ezMn^n* and JL0

<1-

Errata in [1].

Page 231, line -15, A(V) |vac> = 0 ->F|vac> = 0

line -12, (vac^CFO -0 -><vac|Ff = 0

Page 250, line -11, p=±-(vl9-~ ->p= (vl9
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/ *Page 255, line 10, <g(1)> ••• <g(TC)> ,
\-e ! -A (A) 1

\ -r -1 -*/

i

-<0(n)> Pfaffian
-e -A (A) 1

\ -r -1 -R

line 11, e= ( e f t l , • • • , <?„„, ell9 • • • , eJ

Page 260, line 11, The sign " = " should be inserted at the top of the

line.
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List of symbols

: the space of hyperfunctions on a real analytic manifold M ([16], [17]).

. du

_(\u\ «^0,
M ± " " l o «^o.


