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On Cauchy-Kowalevskrs Theorem
for General Systems
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§ lo Introduction and Results

Let

(1. 1) d?<wt = Jl qij(x, t- dx, 90 w, + <7« , z = l, 2, .», I

be a system of linear partial differential equations defined in a neighbour-

hood of the origin of C* X C*. Suppose that the order of derivatives in

t of qu are less than njy then by adding dtwiy • • • , S?*"1?*^, (z = l, 2, • • • , Z)

as unknown functions we have following equivalent system with (1. 1) ,

(1. 2) 9,K* = ] />,/(*, *; 9.) «^ + /4 , z = l, 2, - • - , ̂ V.
y=i

We shall study in this article the theorem of Cauchy-Kowalevski

for the system (1. 2) , so we shall assume that the coefficients of operators

ptj in (1.2) are holomorphic in 0 C Qt1, where 0=f[{l^*l< r*}

Now let us consider the operator Z/ (.r? ̂ ; 9.r? 9C) defined by

(1.3) L (x, i ; 9,, 9t) = 9^ -P(x,t; 9,) ,

where J^ is the identity matrix of size N and P (.r, £; cQ = (Pii)t,j=i,2,...,N'

Now in order to clarify our problem, let us give a definition.

Definition I. I. We say the operator L defined by (1. 3) is

Koivalevskian at (x0y £0) ̂  O if there exists a unique holomorphic

solution u (x, t) in a neighbourhood of (x^ t$) of the system Lu=f(x9 t)

-with Caucliy data U (x) at t = tQ, -where U (x) =l (Ul (x) , • • - , UN(x)}
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and f(x9 t) = t(fi(x, t)9 • • • , fx(x, t)) are arbitrary holomorphic func-
n

tions in a neighbourhood of xQ^Ox = J]L{\xk\<^rk} and (x0, to) respec-

tively.

Recently, Professor S. Mizohata [5] obtained a necessary condition

for L to be Kowalevskian at the origin. And the author proved that in

the case of N = l, L is Kowalevskian at the origin if and only if order

P(x, *;9*)<1 in 0 ([4]).

In the case of single equations, necessary conditions were obtained

by S. Mizohata [6] and K. Kitagawa and T. Sadamatsu [3]. But we

have not detailed condition for the system L to be Kowalevskian. So

we shall give a necessary condition for the Kowalevskian systems (see

Theorem 1) and in the case of n — \ we shall obtain a necessary and

sufficient condition (see Theorems 2 and 3).

As professor S. Mizohata pointed out in his paper, it is impossible

of using the characteristis polynomial of L in order to characterize the

Kowalevskian systems in the case of variable coefficients. Therefore in

this article, we shall apply the idea of Volevic.

Now let us remember the definition of order of operator P (x, t \ dx)

— (Ptj)i,j=it-,tf in tne sense °f Volevic. Let rtj = order ptj (x, t\ dx} if

pij^O and — oo = order (0). Then order (pijik(x9 t\ dx))/,*=!,...,i is defined

by

I

(1. 4) order (piik(x, t\dx}} /,*=!,..., i = max £] r i i f f ,
ff^Si j=l

where Si denotes the set of permutations of {1,2, • • • , / } and we define

— oo + r=— oo for any r^Z+ = {0, 1, 2, • • • , m9 • • • } . Now the rational

number p is called the order of P(x,t;dx) in the sense of Volevic if

(1.5) p— max —order (Piji,) j,k=i,-,i •
I

In the following, order P denotes the order of P in the sense of

Volevic. Then applying the following Lemma of Volevic, if p = order P,

then there exists a system of rational numbers {^}fLi such that

(1.6) order pif(x9 t',dx)<tt-tj + p for any i9j = l9-.,N.
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We shall say such a system of rational numbers {^}f=i an admissible

system of P. Let ptj be the homogeneous part of degree ti — tj + p of

Pij. Then P(x9t; 9^) = (ptj) is said the principal part of P in Volevic's

sense. Let us remark that P depends on the choice of admissible system,

but its characteristic polynomial does not depend on the choice of ad-

missible system.

Lemma of Volevic. Suppose that (ro-)ij/=lj...^, where ris

eZu{ — 00} (resp. e Qu{ — °°}) satisfies the following conditions:
i

max Z] rM<yo>=0 f°r any ^^'"^i and ^ — 1> ""> N . Then there exists
ff^Si j=l

a system of integers {^}f=i (resp. of rational numbers) satisfying rij

<tt-tf for any i, j = l9 2, • • - , N.

In fact, such a system of numbers is obtained as follows: Let t1

(resp. e@) be given arbitrary. Then tj9 (.7 = 2, • • • , N) are obtained

inductively as follows,

(1. 7) t, e

j = 2, —,N, where O'1? • • - , Jm}, {zlf - • - , fB}C {j, j + 1, • • - , JV>.

Definition 1. 2, W^ say the system L is Kowalevskian in Volevic' s

sense if order P<1. In this case there exists an admissible system

of integers {^}f=i of P, i.e., order pij<ti — tj-}-\ for any i, j = l, 2, • • - , N.

Next, remember that the characteristic polynomial p(x9t;^9k) of L

is defined by

(1.8) M^M;C,A)-de tLCr , ; ;C ,A) ,

Definition 1. 3. Let p (x9 t; C, A) = I* - ] a,- (*, i; Q A"--7'.
y=i

zW the -weight of p if

(1.9) q = n*x {deg

where deg ay denotes the degree of polynomial as in C. And -we say

that p is Kowalevskian polynomial if
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By definitions of order P and the weight q of characteristic polynomial

of Lfy it follows immediately that order P^>q.

Let us now remark that in the case of constant coefficients the

system L is Kowalevskian if and only if the characteristic polynomial of

L is Kowalevskian polynomial. And it is the classical result that if L

is Kowalevskian system in Volevic's sense, then L is Kowalevskian at

every point in 0, (see Carding [1]). But, as S. Mizohata pointed out

in his paper [5], it does not always follow that Kowalevskian system is

the one in Volevic's sense in the case of variable coefficients. And he

gave a necessary condition for L to be Kowalevskian at the origin, that

is,

"Let order P>1 and let P(xyt;dx) be the principal part of P in

Volevic's sense. Then if the system L is Kowalevskian at the origin,

it is necessary that all the characteristic roots of P(x, 0; Q are zero

for any (x, Q e Ox X CV

Next theorem is an extension of that of S. Mizohata.

Theorem 1. Let order P = p>l and let T = {tt}?=lC:Q be an

admissible system of P. And assume the folio-wing conditions:

(z) P(x9 £ ;Q f c ^O, (& = 1,2-••,*-!), P(x9 *;C)S^0, -where P is the

principal part in Volevic's sense.

(it) LetP(x, t\ dx)
s= (/>$)• We Assume that order />$<*« — */ + $/>-£,

where sp — c = ps^>s and 0<^.c<^p, (ceQ).

Now let Ps(x, t\ 9*) = (p$ (x91\ 9*)), where p$ is the homogeneous

part of degree tt — ts + Ps of p$. Then if the system L is Kowalevskia?i

at the origin, it is necessary that all the characteristic roots of

Ps (x, 0; Q are zero for any (x, Q e Ox X Cn.

Now let us remark that from the proof of this Theorem, we can

see that if order P(P + dt}
m~l<m for some m (>2) (see Definition 2. 1),

then the system L is Kowalevskian at every point in 0. But, we have

an example!) of Kowalevskian system which satisfies that order jP(P + 9t)>2

and its principal part is not iiilpotent. This shows that it is difficult to

obtain a necessary and sufficient condition by the construction of the
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formal solution of the Cauchy problem (for more detail, see section 2).

On the other hand, in the case where P = P(x\d^) we can see that

under the condition that order P (x\ d^)m^>m for any m, it is necessary

that all the characteristic roots of Pm(x\Q are zero for any (x, Q and

any m, where Pm denotes the principal part of Pm.

Next, let us consider the case of n = \. Then in this case we can

obtain a necessary and sufficient condition. In fact, we have

Theorem 2. In the case n = 1, the system L is Kozvalevskian

at every point in 0 if and only if there exists an operator J (x, t\ d^)

ofNxN matrix satisfying the following conditions:

(i) The coefficients of J are meromorphic functions in 0.

(it) J is invertible, that is, there exists an operator J~l(x,t\d.^)

such that J J~l = J J~l = IN, where IN denotes the identity matrix of

size N.

(iit) J~1LJ is Ko*walevskia7i system in Volevic's sense.

Theorem 2 asserts that the notions of Kowalevskian system and the

one in Volevic's sense are the same essentially. But the notion of the

Kowalevskian system is more closely connected with the matrix structure

than the order relation between pij-. In fact, there exists an example

that dtI2 — P(t\dx} is Kowalevskian but 9f/i + P(*;0,) is not Kowalev-

skian. For this purpose it suffices to choose P(f\d^) given by the foot-

note 1. Such a phenomenon does not appear if we consider only on

order relation between pi3.

Now let us consider the case of constant coefficients. In this case

we can express the condition in another way as follows: The system L,

is Kowalevskian if and only if

^ L(t; dx, 00 =dtlz-P(t; dx), where P(t;ds) = \ *f*4 f*,] - P ^1. Let J(t• 9.)
L—t ox —to>xj L.OX UJ

I _ fl 1 • Then we can see that J~1LJ is Kowalevskian in VoleviC's sense. On

the other hand, we can prove that

--.[; a-
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(1. 10) lim order P (dx)
 m/m<l .

m-*co

In fact, we can prove,

N

Proposition 1. Let p (C, A) = 1N - XI ai (0 1N~~* be the charac-

teristic polynomial of L and let q be the -weight of p(£9 A). Then -we

have

(1.11) lim order P (dx)
 m/m = q .

Hence, this Proposition suggests that in the case of P=P(x;dx)9

the system L is Kowalevskian if and only if

(1 • 12) lim sup order P (x\ dx)
 m/m<l .

m->oo

But we can prove it only in the case 7z = l.

Theorem 3. In the case of n = 1 and P = P(x;dx)3 the system

L is Kowalevskian at the origin if and only if the condition (1. 12)

is valid. More pricisely, let

(1 • 13) lim sup order P (x ; 9,) m/m = q>$ .

Then there exists an operator J(x\dx) ofNxN matrix satisfying

the conditions (i) and (if) in Theorem 2 and if -we put PQ(x,dx) as

the principal part of J~1PJ? then it holds that order J~1PJ = q and

PO(XQ) Co) has non-zero characteristic roots for some (xQy Co) ^ Ox X C1.

At the end we shall give a local uniqueness theorem.

Theorem 4. (Holmgren) Let (x9 1) e Un+1. If there exists an

operator J(x1t\d^) satisfying the conditions (f) , (if) and (Hi) in

Theorem 2, the local uniqueness theorem holds for the Cauchy problem

to L. Pricisely, let u (x, t) e= C1 ( [ - T, T~] ; 3)' (Sx)) satisfy Lu = 0 and

u(xyQ)=Q, where Q^QX. Then u(x,t) vanishes in a neighbourhood

of the origin.

We should remark that in the case where the coefficients of J and
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J~l are real analytic at the origin, this theorem is trivial. Therefore

our interest lies in the case where the coefficients of J or J~~l are singular

at the origin.

This article is constructed as follows. In section 2 we shall prove

Theorem 1. Section 3 is devoted to the proof of Theorems 2 and 3. And

at the end of Section 3, we shall give a system defined in C",!1, (n>2)

which corresponds to Theorems 2 and 3 hut is not proved by our

method. Finally Theorem 4 will be proved in Section 4.

§ 2. Proof of Theorem 1.

In general, the domain of existence of the solution of the Cauchy

problem depends on Cauchy data, but concerning this we have

Lemma 2. 1. (S. Mizohata [5]). Let L be Kowalevskian at the

origin and let H(&x) be the set of holomorphic functions in &x, -where

Oej^ClO*. Then there exists D (d(5) -which depends only on Qx

such that the system Lu=Q has holomorphic solution u^H(D) -with

Cauchy data u \ t=Q = U (x) e H (2^) .

Definition 2. 1. P (P -f dt} denotes the operator defined by

P(P + 9«) = P2 + Pt, -where P t is the operator obtained by differentiating

by t the coefficients of P. In general, P (P -f 9,) m = (P (P + 9,) m~1) P

Now let us consider the following Cauchy problem,

(2.1) Lu=0,

(2.2) « | ,-o = £/(*),

where L = dtIN — P(x9 t\dx}. Let u (x, f) ~X! um(x)tm/m\ be the formal
m^O

solution of (2.1) -(2. 2). Then by definition of P(P + dt)
m, (ra>l) we

have

(2.3)

where
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In order to investigate um(x),we prepare the following two lemmas.

Lemma 2.2. P(P-i-dt)
m~1 is expressed as follows:

"where Rm-\ is a linear sum of each term "which is a product at most

m-2 terms in {P, Ph • • • , Pt...t}.
s-v'
m-1

This is a result of an elementary calculation.

Now we put

(2. 4) P (P + 9,) -1 = Pm + Qm_! + Rm_, .

For the simplicity of the discription, in the following order P^p means
T

order ptj^ti — tj-i-p for any i9 j9 where T= {^}

Lemma 2. 3. Suppose the conditions in Theorem 1. Then zve have

(z) order Psk<kp, ,
T

(ii) order Qsk^<kps -(p-c),
T

(Hi) orderRsk_1<kps-2(p-c).
T

Proof. (i) is evident. (ii) : Let us consider each term (P^P**"*"1,

(/ = ! , -•- , sk — T). Put l^as-i-q and sk — l — l = bs + r. Then a-\-b = k

— 1 and q + r = s — l.. On the other hand, w^e have order Pas+(l^aps
jr qp,

T

which implies immediately our result.

(iii) : Let us prove it by induction on k. It is evident when k = ~L, since

(s — 2)p<ps — 2(p — c}. Let (iii) be valid up to k. Now we shall

examine the construction of RS(k+v-i.

(2. 5) P (P + 90 " = (Ps« + Q.,.! + £«_,) P + (Psk + Qrt_, + !?.»_,) ,

where Qsk = (Ps/fc) t -f Qsk-iP and Rsk = (RSk-i) t- By the assumption of
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induction, we have order Rsk^kps — 2(p — c) . In general, we have
T

(2. 6) P (P + 9.) '*+< = Psk+l+1 + Qsk+t

•where

We can prove by induction on / that order Rsk+i<kps-}- lp — 2(p — c) .
T

In fact, it suffices to see that order Qsk+i^kps^r lp + £? which can be
T

proved easily by induction on I, (/= — 1, 0, • • • ) . Hence, by putting

l = s — I we have order jR ( fc+i ) s_i < (k + 1) ps — 2(p — c} . On the other hand,
T

we have order jRf*_iP'< (& + l)A-2(/>- ^) , and order (Qsk+j-i\Ps~1~'J

which implies (iii) . Q.E.D.

Proof of Theorem 1. Remember that the formal solution u (x, f)

~^um(x)tm/m\ of the Cauchy problem (2. 1) - (2. 2) is given by
TO^O

um (x) = {Pm (x, 0 ; 9,) + Qm_, (x, 0 ; 9,) + Rm^ (x, 0 ; 9,) } U (x) ,

m>0. In the following, we shall consider such k as

(2. 7) kps — integer.

Therefore, we have

(2. 8) «„ (^) = {Ps* (^ 0 ; 9.) + Qn_, (x, 0 ; 9X) + R.t_, (x, Q;dx}

We shall prove the theorem by the contradiction. We assume that there

exists (xQy to) E:OxxCn such that there exists a non-zero characteristic

value l(xQ,tQ) of Ps (x*, t0 ; Co) -

First, we assume that Ps(0?0; Co) has a non-zero characteristic value

A. Now we put

P(x, 0; 9,)! = P,(0, 0; 9,) +Ptil(x; 9,),
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where order PS}1(j;; dx) <ps and its homogeneous part of order ps in the

sense of Volevic vanishes at the origin. Then we have

(2. 9) u.t (*) = A (5,) "U O) + Pik (x • 9X} U (*) ,

where P,(9j.) =PS(0, 0; 5^) and order Psk<kps and its homogeneous part

of order kps in the sense of Volevic vanishes at the origin.

Let feC^ be the eigen vector corresponding to A, i.e., P»(Co)? = ^£.

We put Ps(Co)fc- (Af )• Then £j £??$, = l*£t, i = l, • • • , JST. Considering

that order A-s/° (9*) =ti — tj + kps, where kps = integer, if we give $'<

by

f f € if ^ is an integer,
£' = '(£,-,&), «= * ' .

I 0 otherwise,

then we have

(2.10) SAff (C,)f'y = A*«, * = 1,-,JV.

Now we may assume without loss of generality that

(2.11) &0¥=0, *fo = integer and ^<0 for any i.

Let Z7(jc)='(i71(^), • • - , C7y(^)) be the Cauchy data defined by

( 2 . 1 2 ) U<(x) = I l / e k ~ t

where ^]/ denotes the summation over k such as kps = mteger. Let
&

^Sft,i0(-^) be the ffl-th component of usk. Then we have

«.*,*. W = S /^ (9.) U, (x) + 1] pffl (x ; 9,) C7, (x) ,

where order ^^f (9,) - *,o - ^. + *#„ order ^^^ < tto -~ ts + A/>, and its

homogeneous part of order tio — 13 + kps vanishes at the origin. Hence, we

have

where fsk,tQ is a constant depending only on 00, • • • , ̂ jt-i- Now we put

where 00 is given arbitrary. Then we have
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On the other hand, we know that p^>s by the condition in Theorem 1,

which implies that the formal solution constructed in the above is not

holomorphic in any neighbourhood of the origin. Therefore, it is necessary

that all the characteristic values of PS(0,0;C) are zero for any CeCn.

In the case that all the characteristic values of jP,(0, 0;£) are zero

for any C> but there exists (XQ, Co) ^ Ox X Cn such that Ps (.r0? 0; Co) has

non-zero characteristic values, we may assume that XQ is as near the

origin as we need. In view of Lemma 2. 1, if the system L is

Kowalevskian at the origin, then there exists the solution &e£T(D) of the

Cauchy problem Lu=0, u \ t==0 = U (x) ^H(0^), where D depends only

on Ox. Let .r0e £>n{£ = 0}. Then we can construct the Cauchy data in

H(px) such that the Cauchy problem Lu=0, u t=Q = U(x) has not

holomorphic solution in any neighbourhood of (XQ, 0), which contradicts

the assumption that L is Kowalevskian at the origin. O.E.D.

§ 3. Proof of Theorems 2 and 3

In order to prove Theorem 2, we prepare some lemmas.

Lemma 3.1. Let L = dt — P be the system given by (1.3) and

let n — \. Suppose that the all the characteristic values of P(.r, £; Q

are zero for any (x, £, QeOxC1 , then there exists an operator

J(x,t\d^ -with properties (z) and (ii) in Theorem 2. And also, if

zve put J~1LJ = dtIN — P, then order P<order P— e (AT), -where e(N)

is a positive constant depending only on N.

Proof. Let p,(x, t; 9,) -(Ai, • • -, PIN} and p*(x, t\ 9,) = '(#iy, - - -, pNj)

be the z"-th row and j-th column vector of P respectively, where P is the

principal part of P in Volevic's sense. Then if A0—0 (resp. ^/0^0),

we can regard that pio=Q (resp. pjo==fy by a suitable choice of admissible

system. In fact, pio=0 implies that order pioj <^0 — tj + p, where order P

= p and T={£t}iLi is an admissible system. Hence, there exists r>0

(r^Q) such that order pioj<tio — (tj + r) +/> if j=^=z"0. Now it is easy

to see that S— {^}, where si = fi + r if i=f=iQ and sio = £i0, is also an

admissible system of P, and we have for this admissible system pio=piQ
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=0. Therefore, without loss of generality we may assume that ^.=0

if i>k + I and ./>£ + !, and ti<t2<---<tk by a change of row and column

if necessary. Obviously we assume that A^O and pj^0 if z", j^k.

Since rank P(x9 t\ Q <& — 1, there exists a left null vector of

PO, £;Q of the form

l(x, t- C) = («;*•-'', • • • , /I.-1C*'-*'-1, 1, 0, .-, 0),

where 2<iQ<k and /f(.r, £) are meromorphic functions in 0. Without

loss of generality, we may assume that Z€=0 if tio — tt f$ Z+ — {0, 1,2, •••}.
In fact, we can easily see the following:

(i) If *<0-*y + />eZ+, then A-y^O implies ^ lo-^eZ+, where z = l, - • - ,

(ii) If ^-o — tj + p <0, then /<y ^0 for any z = 1, • • • , z"0 — 1.

(iii) If t<.-tj + peZ+f}R+9 (R+={x; ^>0», then /Iy^0 if

z = l, • - - , z'o-1.

Now we put

Then we have

0
1J

Let J~1LJ = dtIN-P. Then since P = J~1PJ- J~ljt and J~lJt = Jt, it is

obvious that order P<order P. If order P —order P, then the principal

part P0 of P with respect to the admissible system T is P0(.r, t\ C)

= J~1(x9 t\ QP(X t\ QJ(x, t\ Q. Hence, P0(x9 t\ Q is nilpotent for any

(x, t, C) and order pioJ <ti9 — tj + p9 (j = 1, 2, • • •, JV) . By the above
operations, we can obtain an invertible operator J(x9 t\ 9^.) of N X N

matrix with meromorphic coefficients such that if we put J~1LJ = dtIN — P,
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then order P <prder P.

At the end, we should remark that if order Q Border P, then there

exists a positive constant £ (JV), which depends only on the size N of

matrix P, such that order Q<order P — £ (JV). Q.E.D.

Proof of the Necessity in Theorem 2. Now we assume that L is

Kowalevskian at every point in 0 and order P = p^>\, Then P(x,t\£>)

should be nilpotent matrix for any (x9t9£). Therefore, by Lemma 3.1,

there exists an operator J(x, t\ dx) satisfying the properties in Lemma 3. 1.

It is obvious that if L is Kowalevskian at every point in 0, then the

system J~1LJ is also Kowalevskian in the domain where the coefficients

of J and J~l are holomorphic. Therefore if J~1LJ is not Kowalevskian

in Volevic's sense, we continue the above procedure. Q.E.D.

In order to prove the sufficient condition, we need some preparations.

First, we should remark properties concerning solutions of Cauchy

problem for Kowalevskian systems in Volevic's sense.

Let us consider the following Cauchy problem,

(3. 1) L(x,t; dX9 90 u=f(x, t; x», *0),

(3.2) u\M9 = U(x',xJ,

where L is Kowalevskian system in Volevic's sense, f (resp. £7) is

holomorpic function in a neighbourhood of (.r0, *o) (resp. XQ) .

Now assume that radius of convergence of / (resp. C7) does not

depend on parameter (x0, £0) (resp. XQ) when (x$9 £0) varies in a compact

set. And also assume that f (resp. £7) are uniformly bounded in (XQ, to)

(resp. XQ) . Then we can prove that the radius of convergence of the

solution u (x, t; x0, t0) of (3. 1) - (3. 2) does not depend on (.TO, £0).

Moreover we can show that solutions u(x, t\ xQy £„) are uniformly bounded.

Roughly speaking,

sup \u(x,t;x0,tQ)\<C(A + B),

where C is a positive constant depending only on L, sup \f\<A,

sup \U\<B. We omit the proof of the above statements, since it seems

obvious from the proof of the existence theorem of Cauchy-Kowalevski.
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Lemma 3. 2. Let J satisfy the conditions (z) , (ii) and (Hi)

in Theorem 2. Assume that the coefficients of J and J'1 are holomorphic

in

x

Let /eH(n{|*.Kr*>x{|*|<r,}) and UeH([{\xk\<rk}^, where
k=l fc=l

•?/b + £*<?%<>£. T7ie;z £/z£ Cauchy problem, Lu=f and u\t=Q = U has

a holomorphic solution in a neighbourhood of the origin.

Proof. Let us consider the following Cauchy problem instead of

the original one,

(3.3) Lu=f,

(3.4) a|,_ t. = C7(x).

Let

(3. 5) u(x,t; *„) = X>m Or ; *„) (* - *,) "/»» !
m;>0

be a formal solution of the above problem. Then um(x, £„) are holomorphic

in . In fact,

X U (x) +f(xy tQ) and generally there exists operators J? Jw) (x, £ ; 5^) ,

(j = 0, 1, 2, • • • , w — 1) with holomorphic coefficients in 0, such that

m-l

«» (*, ^o) = Pm (x, t, ; 9,) C7 (^) -f S Xf } (^, ^o 5 9.) (9.'/) (^, 4) ,
j=o

where Pm = P(P + 9g)m~1 defined by Definition 2.1.

Our purpose is to prove that the formal solution (3. 3) converges

at the origin when t0 = 0. Now we remark that (3. 3) - (3. 4) is equivalent

with the following,

(3. 3)' (J~1LJ) (J-1^) -J-1/,

(3. 4)' (J->*0 |^(B= J~\x, tQ-9 dJUW,

where J~1LJ is Kowalevskian in Volevic's sense. From the assumptions

on J and J~1
9 and in view of the remark before Lemma 3. 2, we may

assume that the holomorphic solution u(x, t',to), (|^o| =^o) exists in
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for some positive constants dk (dk<^£k), and also we may assume that

(J~lu) (x, t\ to) are uniformly bounded in Jto when tQ varies in {\t0\ =SQ}.

Let

M= sup \u(x,t;t0)\
Jto,\to\=s0

Then by Cauchy's integral formula we have

(3.6) \um(x;ta)\<M-ml/80
m,

n
for any jC^fi{sk — dk<\3:k\'<sk-{-dk} and t0\ = SQ. Now because of that

Ar = l
n

um(x; tQ) is holomorphic in H{|-rfc <J*:} X {\tQ\ <To} , we have by the
fc=i

maximum principle,

(3.7) |«»( jc ;0) i<Af-OT!/ f f 0 - for any

This proves

(3.8) |M»(x;0) <M-ml/8a
m for any

fc=l

This proves our lemma. Q.E.D.

Proof of sufficiency in Theorem 2. It is now almost obvious from

the above lemma. In fact, in the case where the coefficients of J or J~l

are singular at the origin, there exists {sk}l=Q such that the coefficients
71

are holomorphic in a neighbourhood of JJ { | xk \ = sk} X {\t\=sQ}. On the
k=l

other hand, we can choose sk as small as we need. This shows that L

is Kowalevskian at the origin. Q.E.D.

Proof of Proposition 1. It is a result of the theorem of Hamilton-

Cayley. By the definition of the weight q of the characteristic

polynomial p(£,,l) of L, there exists a characteristic root A ( r - C o ) of

P (? ' Co) satisfying

(3.9) A(rCo)=0(r 3 ) , r->oo .

Since A (tCo) m = O (rm9) is a characteristic root of P(rCo)m, it is obvious
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that lim inf order P(dx)
m/?n>q. Next, by the theorem of Hamilton-

m-»oo

Cayley we obtain

P (0 N+k = g a<?> (C) P (0 *-', k = 0, 1, - - - ,

where af = aJ9 (j = l, 2, • • - , JV) and p (C, A) =A*- J a,- (Q ̂ -J'. It is

easy to see that {<z^}}f=1 satisfies the following asymptotic formula.

. ̂
0

az

(3. 10)
0

^0y

(3.10) implies immediately that deg a$-fc)<(j + k)q, j = 1, 2, • • • , AT, that

is, order a^fc) (dx)P(dx)
 27~-7"< (j -f&)g-f (N — f)p9 where T is an admissible

r
system of P. This shows that

lim sup order P(dr)
m/m^q. Q.E.D.

Before the proof of Theorem 3, we shall prepare the following

lemma.

Lemma 3. 3. Let P = P(x\ dx) and J(x; 9^) satisfy the conditions

(i) and (it) in Theorem 2. Then we have

(3.11) lim sup order Pm/m = lim sup order J~1PmJ/m .
m—>oo 771—>oo

Proof. Let order Pm = p (m), Tm={^m)}f=1 be an admissible system

of P771 and r(e$) be sufficiently large constant such that order J"<r,
I'm

order J~l<^r and also order Pq^r for any ^ = 0, 1, • • - , m — 1. Then if

we put l = sm-{-q9 (g~0, 1, • • • , m — 1), it follows that

order J~lPlJ<sp (m) + 3r ,

which implies

(3.12) lim sup order J~lPmJ/m< lim sup order Pm/m .
771—*oo 771—*oo

On the other hand, the inverse inequality is now obvious. Q.E.D.
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Proof of Theorem 3. First, we remark that if lim sup order Pm/m
m->oo

<^order P, then the principal part P(x\Q is nilpoteiit for any (x, C) •

Then there exists an operator J satisfying the condition in Theorem 3,

that is, order J~1PJ— q, where q is the one defined by (1.13). More-

over the principal part of J~~1PJ is not nilpotent.

Now it is sufficient to prove the necessity, since the sufHcienc}^

is proved in Theorem 2.

Proof of Necessity. Its proof is some modification of that of

Theorem 1. Under the condition that g>l, it is obvious that L is not

Kowalevskian at the origin if the coefficients of J and J~1 are holomorphic

at the origin. Therefore, it suffices to consider the case where the coef-

ficients of J or J~1 have pole at the origin and <£>!. Under the as-

sumption that L is Kowalevskian at the origin, we know that there exists

a domain D such that the Cauchy problem Pu=Q, u\t^0 = U (x) ^H(0^)

has a holomorphic solution u^H(D). Now without loss of generality,

we may assume that the coefficients of J or J*1 have pole only at the

origin and assume that the order of pole is at most k. Let j=max
t,j

{order jis(x\ 9*)}, where J=(jiJ')9 and let (x0, Co) be a point in

(Dn {* = ()}) XC1 such that the principal part of J~1PJ in Volevic's

sense has non-zero characteristic values at (XQ, Co). Under the above

conditions, let us consider the following Cauchy problem,

(3.13) dtv=J~1PJv ,

(3.14) v\M = x*+>V(x), V(x)^H(Ox}.

Then in view of the proof of Theorem 1, we can construct V (x)

^H(0z) such that the Cauchy problem (3. 13) - (3. 14) has not holomor-

phic solution at (x0,0). This contradicts the assumption that L is

Kowalevskian at the origin. In fact, the above Cauchy problem is

equivalent with the following,

(3.15) dt(Jv)=P(Jv),

(3. 16) Jv\t=Q = J(xk+JV(x» 6=^(0,)- Q.E.D.

At the end of this section, we shall consider the following example

defined in C£f which can not be applied the above method,
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(3.17)

where Q = (giy) , order go-<l and a(x,t)^H(0). Then the system

L = dtI2 — P is Kowalevskian at every point in 0 if and only if

,Q 1Q, ^, _ 2)

(3. 18) Q(X £; dx) = \
a21,

where a, /?, • • • , ̂ o-eJ7(0) and Q(x^t\d^) is a homogeneous operator of

order 1.

First, we shall show the necessary condition. Let

-p
#11 #12 adXl'

#21 #22 —adxz

L O O 0

, order P = order P .

Then it is easy to see that L is Kowalevskian if and only if L = dtIz

is Kowalevskian. Let

(3.19) J(9,) =

Then we have

- 1
1

--9,, -9,, 1-

, J~\d*) =

-1

1

- 9Xa dx 1 -

J 1LJ = dtls~

«
where order P<3/2. Now let qi5 be the homogeneous part of order 1

of gtj. Then order P<3/2 implies immediately that

(3. 20) qu = adXl, qzl = - adXz, qn = rdXl, q22 = - r9*t.

«
On the other hand, if order P — 3/2 and L is Kowalevskian, then it

holds that

(3. 21) {qn (x, t;QC2 + q2l (x, t ; Q Ci} Ci

- {012 O, t ; C) C2 + 022 (j:, ̂  ; 0 Ci} C2^0.

2) In the case where P=P(x,dx), we can show that (1. 12) is valid if and only if Q(x\
dx) has the form (3.18).
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From (3. 21) we have the condition (3. 18) immediately.

Next, we shall prove the sufficient condition. More pricisely, we

shall show that under the condition (3. 18) we can reduce the system

L — dtI2 — P to the equivalent Kowalevskian system in Volevic's sense.

Let g(x, t; 9.) = A(x, £)9Xl + B(x, £)dft + g(x, t; 9*), where 9* = (9,,, • • - ,

9 j p , a n d l e t

Pll, Pl2, <

P21, P22, — <

L 0 0

order /t = order P .

Then we have

where X = dtlz — /*< and

Ai = 9X2 {AdXl + adXl + g + au} +dXi{- AdXz - adXz + a21} ,

,, + alz} + 9

Therefore if g(x, t\ 9#) =0, then J lj£J is Kowalevskian in Volevic's

sense. So let us consider the case where g^O. Let /£ (x, t\ 9 .̂) —J~l,

= (/£ij)i,j=i,2,s, and let

k 0 0 0

1

1

-9,, 0

Then it is easy to see that L is Kowalevskian if and only if X=dtl^~ fi

is Kowalevskian, because of the fact that order §f = l. By an elementary
calculation, we have

-i r - « r<=L J — O«-M

3) It is easy to see that order Pm = order /™ for any
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~ w — « w

where /i 81 = gdXl + /£S1, /£ 32 = 09^ + AM and order /£3/<l, j = l, 2. Thus

we have proved that L is Kowalevskian. The proof of lim order Pm/?n

= 1 is easy in the case where g^O.

§ 4. Proof of Theorem 4

In this section, z and x denote z = (zly • • • , 2B) eC71 and j: = (j:1, • • • , xn)

" respectively, and Zo^C1 and ZejR1 .

First, let us consider the Cauchy problem,

(4.1) £(*,*o;9,,0,.)«=0,

(4.2) K..-o = C/(*),

where Z/ has an operator </ satisfying the conditions (i) , (ii) and (iii)

in Theorem 2 and the coefficients of L are holomorphic in 0 given in

section 1.

From Theorem 2 we know that L is Kowalevskian at every point

in 0. Now let U(z) ^H((0) where 0C0,, (0, - On {*0 = 0} ) • Then for

any J^ft) there exists SQ (>0) such that the solution u of (4. 1) - (4. 2)

exists in J X {\ZO\<SQ} and moreover there exists K (J^K^o)) such

that

(4.3) sup H < C s u p j Z 7 ,
J"x{|z0l^s0} K

where C depends only on L.

Its proof is done by the same way as that of Theorem 2, considering

the remark before Lemma 3. 2. Now we can choose s0 as small as the

Cauchy problem for (4. 1) with Cauchy data

(4.2)' «|.B_r. = C7(*), (|r0|<50)

has also a solution in J X {\ZQ — r0|^50} and the similar inequality with

(4. 3) holds with constant C which is chosen uniformly in r0 (see the

proof of Lemma 3. 2) .

Now let the coefficients of L (x, t\ dx, 9t) be real analytic in ,0CJRn+1,

(Oe.fi). Assume that these coefficients can be holomorphic extension to

£a-{(-,*o)eCn+1; \zk~xk\<a, \z,-t\ <a, k = l, • • - , n, (x, t) eJ2}. It

is evident that L (z9 ZQ\ 92> 92o) has the same properties in Theorem 4.



ON CAUCHY-KOWALEVSKI'S THEOREM FOR GENERAL SYSTEMS 335

Adjoint operator *L of L has also the same properties in Theorem 4.

In fact, l(J-1LJ)=lJlLf(J-1)='Jr£L(lJ)"1.

Now our purpose is to prove that if u<=Cl(\_~T, T]; 3)' (fl,)) satisfy

the Cauchy problem,

(4.4) Z , K = 0 ,

(4.5) «(*,0)=0,

then z^ vanishes in a neighbourhood of the origin.

Let p (x) €= Co00 (fl,) , where p - 1 on W (0 e W Cfl,) , and let te;

= pz£. hen we have

(4.6)

(4.7) w(o;,0)=0,

where / = p (x)P(x, *; 9.) u ~P(x,t; 9,) p (x) u e C°([-^, T]; ^ (£,))

and supp /dsupp[p.P(^:)] for any £e[ — T, T], where p^ — grad p (x) .

In the following, we put supp [pj = V.

Now let v(z, ZQ ; ^0) be a solution of the Cauchy problem,

(4.8) 'L(z)2o;d,,92> = 0,

(4.9) f|..-.. = '(0,-,0(*),0,-,0), (0«,sfi).
£

where 0(z)eH(75), 7, ={«£€•; |2s-j;ft <b, k = l, • • - , n, xe V} , b<a.

From the considerations in the above, we can see that for any

c (c<y) there exists tQ sufficiently small which depends on b and c, such

that the solution v (z9 ZQ ; £„) exists in a neighbourhood of V cx[0, £0],

and the following inequality holds,

(4.10) _sup \v(z9zQ;t0)\<Csup\(l>(z)\,
VcxlQ,t0l Vb

where C depends only on L.

Under these considerations, we prove our theorem. (4. 8) - (4. 9)

is equivalent with

(4. 11) v(z, t; tj=v(z, t0; tQ) - £P(^, r; d.)v(z, r; t^dr ,
J«o

where t e 1? and z; (2, £0 ; ^0) = * (0, • • • , 0 (#) 9 0, • • • , 0) . Then we have
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rta
/ <rg) (Y f\ *7) ( Y f ' f ^\\ I /ft 7Py ( T f\ 7J ( T f '\ 07 .̂̂ ., t,Qj , U \J^y t-o 3 ^Qj / — I \"t "^ V-£, ^/ , ^ V^, *• ?

Jo

Thus we have

(4. 12) (wk (x, *0) , 0 Cr) > - f ̂  </(*, 0 , t, (x,t ;
Jo

Let us now remark that z^e jZ) ' (V) , (^"(V) denotes the distribution

with support in V, where V is the closure of V) can be uniquely

extended to analytic functional H' (Vc*) by the formula,

(4. 13) O, 0>ff'(Fe)xff(f%) = <«, <^ilg»> ,

where H(V^) denotes the space obtained by complition of entire functions

by the norm | |M | |=SUP |M .
vc

In view of this remark, we have

(4. 14) j<ze;fc(.r, *0), <*(*)>I<C max \\f(z, t) ||^(fc)
teco,«0:

X max lb(^, ^;^o)i | f f (F c ) ,
«eco,«03

for any v (z9 t\ t0) e jff(Vc) . Now we define a sequence of entire func-

tions {0(Z)(»}r=i by

(4 • 15) 0<o («) = [4-1 n f A (y) exp (~l*± (z, - y ,) 2) Jy ,
L V / T T J J-R71 /=i

/z (x) e Cj° (fl)) , coC^. We give now the constant b as small as

(4.16)
.7=1

Then by the determination of b we obtain

(4. 17) ^ (x) I$h (x) in £ (Rn} ,

(4. 18) 0<z> («) Z|0 on F& .

We remark that if we choose W sufficiently small, then the solutions v(l}

corresponding to 0(i) belong to £f(Vc) for small t0. Therefore by
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(4. 10) and (4. 14) we have

(4. 19) I <wk (x9 *0) , 0<" (x) > ] <C' sup ] 0") (^) | .

Hence we have (wk(x, £0)? h (.r)> = 0 for any h(x)^C™(a))a Since w

= pu, this proves our theorem. Q.E.D.
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