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On Cauchy-Kowalevski’s Theorem
for General Systems

By

Masatake MIYAKE*

§ 1. Introduction and Results

Let
1
(1. 1) af‘zvi:Zq”(JC’t;az,at)wj—i—g,;, i:1,2,"‘,l,
=

be a system of linear partial differential equations defined in a neighbour-
hood of the origin of CZxC}. Suppose that the order of derivatives in
t of q;; are less than 7;, then by adding 0,w;, -+, 07w, (1=1,2, -+, 1)

as unknown functions we have following equivalent system with (1.1),
N -
(1.2) agUi:jZIPij(x’t;aI>uj+fi, 1:1’2,"', N.

We shall study in this article the theorem of Cauchy-Kowalevski
for the system (1.2), so we shall assume that the coefficients of operators
pi; in (1.2) are holomorphic in OCCZi', where O= ﬁ {lz| <74}
x {18 <.

Now let us consider the operator L (z,¢;0,,0;) defined by
1.3) L(x,t;0.,0,)=0Iy—P(x,t;0,),

where Iy is the identity matrix of size N and P (x, £; 0,) = (£i7)1,5=1,2,, 5+

Now in order to clarify our problem, let us give a definition.

Definition 1.1. We sav the operator L defined by (1.3) is
Kowalevskian at (x,, t,) € O if there exists a unique holomorphic
solution u (x, t) in a neighbourhood of (x, t,) of the system Lu= f(x,t)
with Cauchy data U (x) at t=t, where U (x) ="(U(x), -, Ux(x))
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and f(x,t) ="(fi(=z,t), -, fv(x, t)) are arbitrary holomorphic func-
tions in a neighbourhood of z,< @,:ﬁ{lxk|<rk} and (xo, t,) respec-
j=i

tively.

Recently, Professor S. Mizohata [5] obtained a necessary condition
for L to be Kowalevskian at the origin. And the author proved that in
the case of N=1, L is Kowalevskian at the origin if and only if order
P(x,2;0,)<1in O ([4]).

In the case of single equations, necessary conditions were obtained
by S. Mizohata [6] and K. Kitagawa and T. Sadamatsu [3]. But we
have not detailed condition for the system L to be Kowalevskian. So
we shall give a necessary condition for the Kowalevskian systems (see
Theorem 1) and in the case of #=1 we shall obtain a necessary and
sufficient condition (see Theorems 2 and 3).

As professor S. Mizohata pointed out in his paper, it is impossible
of using the characteristis polynomial of L in order to characterize the
Kowalevskian systems in the case of variable coefficients. Therefore in
this article, we shall apply the idea of Volevic.

Now let us remember the definition of order of operator P («, ¢; 0,)
= (pis)i,j=1,-,» i0 the sense of Volevié. Let r;;=order p;;(z, ¢;0,) if
2:;%0 and —oo=order (0). Then order (p;,,(x, £;0.)) j,6=1,..,, is defined
by

1
(1. 4) order (pijik (x, t, 62)) j’k=1,...,l=rneasx j}:lrijia(j) >
eS8, j=

where S; denotes the set of permutations of {1,2, :--, [} and we define
—o0o+47r=—o00 for any reZ,={0,1,2, :--,m, --}. Now the rational
number p is called the order of P(x,¢;0,) in the sense of Volevi¢ if
1
(1.5) p= max — order (Piyu,) jyk=t, i -
isisN [
In the following, order P denotes the order of P in the sense of

Volevié. Then applying the following Lemma of Volevig, if p =order P,

then there exists a system of rational numbers {#}{, such that

(1.6)  order p;;(x, ¢;0,) <¢;—t;+p for any z, j=1, .-+ N.
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We shall say such a system of rational numbers {¢}7., an admissible
system of P. Let p;; be the homogeneous part of degree #—¢;+p of
Psj. Then Io’(x, t;0,) = ($;;) is said the principal part of P in Volevi¢’s
sense. Let us remark that P depends on the choice of admissible system,
but its characteristic polynomial does not depend on the choice of ad-

missible system.

Lemma of Volevie. Suppose that (7:;)s,j-1,.,n, where 71y
€ ZY{— oo} (resp.€ QU{—o0}) satisfies the following conditions:
l
max 3 7,5, =0 for any i,<---<iyand [=1,---) N. Then there exists
cES; j=1

a system of integers {t;}Y., (resp. of rational numbers) satisfying r;;
iti—tj for any i,7=1,2 ---  N.

In fact, such a system of numbers is obtained as follows: Let #Z
(resp. Q) be given arbitrary. Then ¢;, (j=2,---, N) are obtained

inductively as follows,

.7 t;€[ max {rj;, 47+ +7utE,
1ISk<j-1
s e

j=2"“) N’ Where {jly.“,jﬂ"}’ {ily'uy Zﬂ}C{J’J+1s Y N}'

Definition 1. 2. We say the system L is Kowalevskian in Volevil’s
sense if order P=<1. 1In this case there exists an admissible system

of integers {t;}i-, of P,i.e.,order p;;<t;,—t;+1 for anv i, j=1,2 --- N.

Next, remember that the characteristic polynomial p (x,¢; &, 1) of L
is defined by

(1. 8) p(x, t;8,2) =det L(x,¢;8,0), C=C* 1eC

N
Definition 1.3. Let p(x, £, A)=2" -3 a;(x, ;0 A¥ 7. Then
j=1
¢ (€Q) is said the weight of p if ’

1.9 g= max {deg a;(x, ¢;{) /Jj},

1SjSV

where deg a; denotes the degree of polynomial a; in {. And we say

that p is Kowalevskian polynomial if ¢q=<1.
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By definitions of order P and the weight g of characteristic polynomial
of L, it follows immediately that order P=>gq.

Let us now remark that in the case of constant coefficients the

system L is Kowalevskian if and only if the characteristic polynomial of
L is Kowalevskian polynomial. And it is the classical result that if L
is Kowalevskian system in Volevi¢’s sense, then L is Kowalevskian at
every point in &, (see Garding [1]). But, as S. Mizohata pointed out
in his paper [5], it does not always follow that Kowalevskian system is
the one in Volevié’s sense in the case of variable coefficients. And he
gave a necessary condition for L to be Kowalevskian at the origin, that
is,
“Let order P>1 and let li(x,t;ax) be the principal part of P in
Volevié’s sense. Then if the system L is Kowalevskian at the origin,
it is necessary that all the characteristic roots of P(:c, 0; %) are zero
for any (x,0) €0,xC"”

Next theorem is an extension of that of S. Mizohata.

Theorem 1. Let order P=p>1 and let T ={t}1.,CQ be an
admissible system of P. And assume the following conditions:
G) P(z, t;0)*%0, (k=1,2---,s—1), P(z,t;8)*=0, where P is the
principal part in Volevid’s sense.

(@) Let P(x,t;0,) = (p8)). We assume that order p{}=<t,—¢;+sp—c,
where sp—c=p>s and 0<c<p, (c€Q).

Now let B, (z,t;0,)= (b (x, t;0,)), where $§ is the homogeneous
part of degree t;—t;+ ps of p$7. Then if the system L is Kowalevskian
at the origin, it is mecessary that all the characteristic roots of

B.(z,0;0) are zero for any (z,8) €(O,xC™

Now let us remark that from the proof of this Theorem, we can
see that if order P (P +0,)™ '<m for some m (=2) (see Definition 2. 1),
then the system L is Kowalevskian at every point in (). But, we have
an example” of Kowalevskian system which satisfies that order P(P +0,)>2
and its principal part is not nilpotent. This shows that it is difficult to

obtain a necessary and sufficient condition by the construction of the
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formal solution of the Cauchy problem (for more detail, see section 2).
On the other hand, in the case where P=P (x;0,) we can see that
under the condition that order P (x;0,)™>m for any m, it is necessary
that all the characteristic roots of P, (z;{) are zero for any (z, &) and
any m, where Pm denotes the principal part of P™.

Next, let us consider the case of z=1. Then in this case we can

obtain a necessary and sufficient condition. In fact, we have

Theorem 2. In the case n=1, the system L is Kowalevskian
at every point in O if and only if there exists an operator J (x,t;0,)
of N XN matrix satisfying the following conditions:
(2) The coefficients of J are meromorphic functions in O.
(it) J is invertible, that is, there exists an operator J '(z,t;0,)
such that J J'=J J'=1y, where Iy denotes the identity matrix of
size N.

(¢i2) J'LJ is Kowalevskian system in Volevid’s sense.

Theorem 2 asserts that the notions of Kowalevskian system and the
one in Volevié’s sense are the same essentially. But the notion of the
Kowalevskian system is more closely connected with the matrix structure
than the order relation between p;;. In fact, there exists an example
that 0,1,— P (¢;0,) is Kowalevskian but 98,I,+ P (¢;0,) is not Kowalev-
skian. For this purpose it suffices to choose P (¢;0,) given by the foot-
note 1. Such a phenomenon does not appear if we consider only on
order relation between p;;.

Now let us consider the case of constant coefficients. In this case
we can express the condition in another way as follows: The system L

is Kowalevskian if and only if

b 03 02 0 0
L(t:0,,0) =0L—P (50, where PG3o)=| 'p O "[a o] ret Jwon

1 0
= [—ta 1]. Then we can see that J™'LJ is Kowalevskian in Volevi¢’s sense. On
the other hand, we can prove that

0 0
P(P+0,) =—2[t0; 62]'
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1.10) lim order P (0,)™/m=1.

m-—>co

In fact, we can prove,

N
Proposition 1. Let p({, ) =2" =2 a; QA" be the charac-
j=1
teristic polynomial of L and let q be the weight of p(£, ). Then we

have

(1.11) lim order P (0,)™/m=q .

Hence, this Proposition suggests that in the case of P=P (x;0,),

the system L is Kowalevskian if and only if

1-12) lim sup order P (z;0,)™/m=1.

m—co

But we can prove it only in the case n=1.

Theorem 3. In the case of n=1 and P=P (x;0,), the system
L is Kowalevskian at the origin if and only if the condition (1.12)
is valid. More pricisely, let

(1-13) lim sup order P (z; 0,)™/m=¢g=0.

Then there exists an operator J (x;0,) of N XN matrix satisfying
the conditions (i) and (ii) in Theorem 2 and if we put Py(x;0,) as
the principal part of J'PJ, then it holds that order J 'PJ =q and

P, (x0, &o) has non-zero characteristic roots for some (z,, () €0, xC.
At the end we shall give a local uniqueness theorem.

Theorem 4. (Holmgren) Let (x,t) € R**'. If there exists an
operator J (x,t;0,) satisfying the conditions (i), (i1) and (i) in
Theorem 2, the local uniqueness theorem holds for the Cauchy problem
to L. Pricisely, let u(x,t) eC'([-T,T]; 9D’ (2,)) satisfy Lu=0 and
u(x,0) =0, where 0€8,. Then u(x,t) vanishes in a neighbourhood

of the origin.

We should remark that in the case where the coefficients of J and
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J~! are real analytic at the origin, this theorem is trivial. Therefore
our interest lies in the case where the coefficients of J or J~! are singular
at the origin.

This article is constructed as follows. In section 2 we shall prove
Theorem 1. Section 3 is devoted to the proof of Theorems 2 and 3. And
at the end of Section 3, we shall give a system defined in C2}%, (n==2)

which corresponds to Theorems 2 and 3 but is not proved by our

method. Finally Theorem 4 will be proved in Section 4.

§ 2. Proof of Theorem 1.

In general, the domain of existence of the solution of the Cauchy

problem depends on Cauchy data, but concerning this we have

Lemma 2.1. (S. Mizohata [5]). Let L be Kowalevskian at the
origin and let H (R,) be the set of holomorphic functions in R,, where
02,C0,. Then there exists D (C0O) which depends only on £,
such that the system Lu=0 has holomorphic solution u € H (D) with
Cauchy data u|,.q=U (x) € H(2,).

Definition 2. 1. P (P +0,) denotes the operator defined by
P(P+0,) =P*+P,, where P, is the operator obtained by differentiating
by t the coefficients of P. In general, P(P+0,)"=@P@P+0,)™")P
+ P EP+0)™..

Now let us consider the following Cauchy problem,
2.1 Lu=0,
2.2) ulio=U (2),
where L=0Iy—P (x,¢;0,). Let u(x,t) ng #n(x)t™/m! be the formal

solution of (2.1)-(2.2). Then by definition of P(P+0,)™, (m=1) we

have

2.3 Uy () =[P(P+0)™"].oU (x), (m=1),
where P(P+0,)"'=P.
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In order to investigate u,(x), we prepare the following two lemmas.

Lemma 2.2. P(P+0,)"" is expressed as follows:
P(P+0)™" =P+ 31(P™") P*'+ Ry y(z, £; 0.),
k=1

where R,_; is a linear sum of each term which is a product at most

m—2 terms in {P, P, -, Py..}.
—~

m—1
This is a result of an elementary calculation.

Now we put
2.9 PP+0)""'=P"+0n1+Rn_1.

For the simplicity of the discription, in the following order P=<<p means
T

order p;;=¢;—t;+p for any i, j, where T = {£;}_,CQ.

Lemma 2.3. Suppose the conditions in Theorem 1. Then we have

(@) order P*=<Fkp,,
T

(i7) order Qg1 =kp;— (p—¢),
T

(ii7) order Ry, 1=Fkp;,—2(p—c).
T

Proof. (i) is evident. (ii): Let us consider each term (P%),P*~*1
(I=1,--,sk—1). Put I=as+q and sk—I—1=bs+r. Then a+b=k
—1 and g+7=s—1. On the other hand, we have order P**'<ap,+gp,
which implies immediately our result. !

Giii): Let us prove it by induction on k. It is evident when £=1, since
(s—2)p<ps—2(p—c). Let (i) be valid up to k Now we shall

examine the construction of Ry 1y 1.

2.5) P(P+0)"= (P*+ Q-1+ Re—1) P+ (P*+ Qo1+ Ry_1)
=P (P, + Queci P+ Rog 1 P+ (Osier) e + (Ree—1) s
=P 4 Qut {Reues P+ Quer) o + Re,

where Qg = (P**),+ Qu_iP and R, = (Ry_1):,. By the assumption of
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induction, we have order Ry, <kp,—2(p—c). In general, we have
T
@.6) P(P+0)™H =P 140y,
L ) -
+ {Rsk—lpl+l+ZO<st+J‘*l) P+ Ryt
=

where

Qslc+l: (P”Hl):‘l‘ (st+z—1)P ’
Esk+l:-ﬁsk+l—1P+ (ka-i-l—l)t

1-1
+ {Rsk—1PL+jZ=:0(st+l—l) tPl_l—j}t .

We can prove by induction on [ that order Ry, <kp,+ip—2(p—c).
In fact, it suffices to see that order st+f§kps+lp+ ¢, which can be
proved easily by induction on l,T ({=-1,0,---). Hence, by putting
[ =s5—1 we have order R(k+1)s_1<(k+ Dp—2(p—c). On the other hand,
we have orger Rsk:Psé (B+1)ps—2(p—c), and orger (Qsppj) P

Skps+(G—Dpt+e+(s—1-p=C(k+1D)p,—2(p—¢c),((=0,1,-,5-1),
which implies (iii). Q.E.D.

Proof of Theorem 1. Remember that the formal solution u (z, £)
Néoum(x) t™/m! of the Cauchy problem (2.1)-(2.2) is given by
Un(x) ={P"(x,0;0,) +Qn-1(x, 0;0.) + Ru-1(x, 0;0,)}U (2),
m=0. In the following, we shall consider such £ as
@.7 kp,=integer.
Therefore, we have
(2.8)  un(x) ={P"(z,0;0,)+Qu-1(x, 05 0,)+ Ru_1(x, 0; 0,) } U (x).

We shall prove the theorem by the contradiction. We assume that there
exists (xy, £,) €0, X C" such that there exists a non-zero characteristic
value A (zo, 2;) of P, (z, to; &0).

First, we assume that P, (0, 0; &) has a non-zero characteristic value

A. Now we put

P(z,0;0,)°=P,(0,0;0,) + P, ,(z; 0,),
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where order P;,(x;0,) =p, and its homogeneous part of order p, in the

sense of Volevi¢ vanishes at the origin. Then we have
(2.9) 1 (2) = Py(8:) U (2) + P (3 0)U (),

where P,(@,) :153 (0,0; 0,) and order P, <kp; and its homogeneous part
of order kp; in the sense of Volevi¢ vanishes at the origin.

Let §=C” be the eigen vector corresponding to £, i.e., PS(CO)E=E.
We put P, &) E= (PEP). Then > pEPE,; =A%, i=1, .-  N. Considering
that order p§P (0,) =t;—t,+ kp,, where kp,=integer, if we give &’ €C”
by

i =

&, if ¢; is an integer,
UGN

0 otherwise,

then we have
(2.10) 2P )€ =%, i=1,---,N.
7

Now we may assume without loss of generality that
(2.11) §;,70, ¢, =integer and ¢,<0 for any 7.
Let U(x)="(U,(x), -, Uxy(x)) be the Cauchy data defined by
2.12) R T
i

where D’ denotes the summation over % such as kp,=integer. Let
k

#sk,:,(z) be the Zpth component of #,,. Then we have
Usk,i, () =Zj 85 (0.)U () +Z 289 (2;0,)U; (),

where order A% (0,) =t —t; + kp,, order pED <t, —¢t, + kp, and its
homogeneous part of order ¢;, —¢;+ kp, vanishes at the origin. Hence, we

have

<€0, a:c>—tiauxk,io (x) ix=0 = ew’c (sz) ' |Co| —251101"75;0 + fsk,in ’

where fy,;, is a constant depending only on 6, ---, 0,_;. Now we put

0r=arg fo ,i, —arg lkgi ) kil,

where @, is given arbitrary. Then we have

| [<Co, Do) ot n,z, (2) Tomal = (kD) ! [A]*]67,1180] 50 .
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On the other hand, we know that p,>s by the condition in Theorem 1,
which implies that the formal solution constructed in the above is not
holomorphic in any neighbourhood of the origin. Therefore, it is necessary
that all the characteristic values of I?’S(O,O; {) are zero for any {eC™

In the case that all the characteristic values of P,(0,0;&) are zero
for any &, but there exists (x,, ) €@, X C™ such that Iss(xo,O;Cu) has
non-zero characteristic values, we may assume that =z, is as near the
origin as we need. In view of Lemma 2.1, if the system L is
Kowalevskian at the origin, then there exists the solution u € H (D) of the
Cauchy problem Lu=0, u|,_,=U (z) € H(O,), where D depends only
on O,. Let x,&€D~{¢=0}. Then we can construct the Cauchy data in
H(O®,) such that the Cauchy problem Luz=0, u|,.,=U (z) has not
holomorphic solution in any neighbourhood of (z,, 0), which contradicts

the assumption that L is Kowalevskian at the origin. Q.E.D.

§ 3. Proof of Theorems 2 and 3

In order to prove Theorem 2, we prepare some lemmas.

Lemma 3.1. Let L=0,—P be the system given by (1.3) and
let n=1. Suppose that the all the characteristic values of ]o’(.r, £; &)
are zero for any (x,t,8)eOXC', then there exists an operator
J (x, t; 0,) with properties (i) and (i1) in Theorem 2. And also, if
we put J'LJ=0Iy—P, then order P<order P—&(N), where ¢(N)

is a positive constant depending only on N.

Proof. Let p; (z, t; az):(ﬁil, Tty ﬁizv) and ﬁj(x, L az)zt(ﬁu, Ty 1;Nj)
be the z-th row and j-th column vector of p respectively, where P is the
principal part of P in Volevié’s sense. Then if $; =0 (resp. p7°=0),
we can regard that p%=0 (resp. $;,=0) by a suitable choice of admissible
system. In fact, p; =0 implies that order p; ;<{t;, —£;+ p, where order P
=p and T ={¢}{, is an admissible system. Hence, there exists >0
(r=Q) such that order p; ;<¢;,— (¢;+7) +p if j5i,, Now it is easy
to see that S={s;}, where s;=¢+r if %4, and s;,=¢;, is also an

admissible system of P, and we have for this admissible system 3, =p%
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=0. Therefore, without loss of generality we may assume that p;;=0

if izk+1and j=k+1, and £,<2,<---=<t¢, by a change of row and column

if necessary. Obviously we assume that $;%0 and 70 if 7, j<k.
Since rank ﬁ(x,t;()_gk—l, there exists a left null vector of

P(xz,%;¢) of the form
l(x» z; C) = (llczin—tls Tty lio—lctio—tin—la 1, Oa Y O):

where 2=<7,<Fk and /;(x, £) are meromorphic functions in . Without
loss of generality, we may assume that [,=0if ¢, — ¢, Z,={0,1,2, ---}.
In fact, we can easily see the following:

(@) If ¢,—t;+pEZ,, then p,;#0 implies ¢, —t;€ Z,, where i=1, ---,
i,—1.

() If ¢,—%;+p<0, then ;=0 for any i=1, -, 5,—1.

Gi) If 2;,—¢;,+pEZ R,, (R,={z; 2>0}), then p,;=01if t;, —t;,€ Z,,
i=1, -, ,—1

Now we put

.0

T (z, ;0,) " =) | 1Lt 1

0 .
1
Then we have
1
"0
j(x7 t; az) :Zo) —Zla;io_tl..:l
0 .
1

Let J-'LJ=0JIy—P. Then since P=J'PJ—JJ, and J-'J,=J,, it is
obvious that order P<<order P. If order P=order P, then the principal
part P, of P with respect to the admissible system 7" is P, (z, £, 0)
=J"(z, t; ) P(x, t;0)J (z, ;). Hence, Py(x,t;&) is nilpotent for any
(z,¢,8) and order p;; <t;, —t; +p, (7=1,2,---,N). By the above
operations, we can obtain an invertible operator J(x,¢;0,) of NXN

matrix with meromorphic coefficients such that if we put J'LJ =8,y — P,
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then order P <order P.
At the end, we should remark that if order Q <{order P, then there

exists a positive constant & (N), which depends only on the size N of
matrix P, such that order Q=order P —e (V). Q.E.D.

Proof of the Necessity in Theorem 2. Now we assume that L is
Kowalevskian at every point in @ and order P=»>1. Then ﬁ(;n, 0
should be nilpotent matrix for any (=z,¢,{). Therefore, by Lemma 3.1,
there exists an operator J (z, ¢; 0,) satisfying the properties in Lemma 3. 1.
It is obvious that if L is Kowalevskian at every point in (), then the
system J'LJ is also Kowalevskian in the domain where the coefficients
of J and J~' are holomorphic. Therefore if J~'LJ is not Kowalevskian

in Volevi¢’s sense, we continue the above procedure. Q.E.D.

In order to prove the sufficient condition, we need some preparations.
First, we should remark properties concerning solutions of Cauchy
problem for Kowalevskian systems in Volevi¢’s sense.

Let us consider the following Cauchy problem,
(3' 1) L(x’ z; az, at) u :f(x, t; Zo, to) >
(3.2) Ulimsy,=U (x; 20),

where L is Kowalevskian system in Volevié’s sense, f (resp. U) is
holomorpic function in a neighbourhood of (x, %) (resp. x,).

Now assume that radius of convergence of f (resp. U) does not
depend on parameter (x,%,) (resp. x,) when (x,, ¢,) varies in a compact
set. And also assume that f (resp. U) are uniformly bounded in (z, )
(resp. xy). Then we can prove that the radius of convergence of the
solution #(x, ¢; x, %) of (3.1)-(3.2) does not depend on (x,%).
Moreover we can show that solutions z (x, ¢; x,, £,) are uniformly bounded.

Roughly speaking,
sup |u(x, ¢; x, £,) | =C (A + B),

where C is a positive constant depending only on L, sup|f|<A,
sup |[U|<B. We omit the proof of the above statements, since it seems

obvious from the proof of the existence theorem of Cauchy-Kowalevski.
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Lemma 3.2. Let J satisfy the conditions (i), (ii) and (i)
in Theorem 2. Assume that the coefficients of J and J ! are holomorphic

in
'Q=Ii[1{5k'“5k<i$k! <sp+ ex) X {so— eo<]|2] <so+ &0}

Let fEH(’:!.;[l{'xkl<rk} X A{]¢] <ro}) and UEH(kHI{kai<Tk}), where
S+, <v<ry. Then the Cauchy problem, Lu=f and u|,_,=U has

a holomorphic solution in a neighbourhood of the origin.

Proof. Let us consider the following Cauchy problem instead of

the original one,

(3.3) Lu=Ff,
(3.4) w|eme,=U ().

Let

(3.%) w(x, ;1) =25 un (5 1) (£~ L) "/

be a formal solution of the above problem. Then u,(z, ) are holomorphic
in in{ka|<Tk}X{!t|<ro}. In fact, u(z; £)=U(), u(x, t)=P(z, ts; 0.)
XU (x) + f(x, t,) and generally there exists operators _L{(z,¢;0,),
(j=0,1,2, ---, m —1) with holomorphic coefficients in (), such that

(2, 1) = P (3, 23 00U (@) + 2 L5 (=, a3 0.) (07 F) (z, 1),

where P,=P(P+0,)™ " defined by Definition 2. 1.
QOur purpose is to prove that the formal solution (3.3) converges
at the origin when #,=0. Now we remark that (3. 3)-(3.4) is equivalent

with the following,
(3.3)’ (JLT) (J-'w) =J1f
(3. 4y %) 1oy =T 1 (, 03 0) U (2),

where J'LJ is Kowalevskian in Volevié’s sense. From the assumptions

on J and J7, and in view of the remark before Lemma 3.2, we may

assume that the holomorphic solution u(x, ¢; %), (|Z|=s$) exists in
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n Iy
Jtu=]:[{sk—0k§|xkl s+ 04 X {|t‘t0[§6o},
k=1

{for some positive constants 0, (0,< €;), and also we may assume that
(J7'u) (x, £; £,) are uniformly bounded in J, when £, varies in {|£]=so}.
Let

M= sup |u(x,t;t)]

Jtos 1Ll =50

Then by Cauchy’s integral formula we have

(3.6) ltm (5 &) | SM -m ! /0",

for any xeﬁ{sk—6k§|xki§sk+5k} and |%|=s,. Now because of that
un(x; %) is holomorphic in f[{}xk|</k} X {lt)]| <ro}, we have by the
maximum principle, o

(3. 7)Y |un(z;0) | <M -m!/3,™ for any xe,ﬁl{sk—6k§|xk|§sk+6k}.
This proves

(3.8)  unp(x;0)|IZ=M-m!/d™ {or any xek]i];{]xklésk-!—o“k}.

This proves our lemma. Q.E.D.

Proof of sufficiency in Theorem 2. It is now almost obvious from
the above lemma. In fact, in the case where the coefficients of J or J!
are singular at the origin, there exists {s,}f_, such that the coefficients
are holomorphic in a neighbourhood of kf—[l{]x,c| =sub X {|£l =s0y. On the
other hand, we can choose s, as small ;s we need. This shows that L

is Kowalevskian at the origin. Q.E.D.

Proof of Proposition 1. Tt is a result of the theoremn of Hamilton-
Cayley. By the definition of the weight ¢ of the characteristic
polynomial p({, 1) of L, there exists a characteristic root A(z-{;) of
P(t-§,) satisfying
3.9 (@) =0(r?), t—ooo.

Since A(r{)"=0(t™%) is a characteristic root of P(t{,)™, it is obvious
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that lim inf order P(0,)™/m=gq. Next, by the theorem of Hamilton-

m—>co

Cayley we obtain

PO =3P QPO k=01,

N
where aP=a;, (j=1,2,---, N) and p(, ) =2"-> a, Q"7 1t is
=1

easy to see that {a{?}7_, satisfies the following asymptotic formula.

a®Y (a, 1 af

0

a® a, 1 af

(3. 10) C=
. 0 '
1
Lag) La o ag

(3.10) implies immediately that deg aP=(j+%k)q, j=1,2, -, N, that

is, order a{ (0,) P(0,) " 1< (j+k)g+ (N — j) P, where T is an admissible
T

system of P. This shows that

lim sup order P(0,)"/m=<gq. Q.E.D.

m—co

Before the proof of Theorem 3. we shall prepare the following

lemma.

Lemma 3.3. Let P=P(x;0,) and J (x;0,) satisfy the conditions
(z2) and (ii) in Theorem 2. Then we have

(3.11) lim sup order P™/m=1im sup order J'P™J/m .

m—>c0

Proof. Let order P"=p(m), T = {£f}I, be an admissible system
of P™ and r(=Q) be sufficiently large constant such that order J=<r,
T,

order J'=<r and also order P*<r for any ¢=0,1, -, m—1. “Then if

T, T
we put [=sm+gq, (g=0,1,---, m—1), it follows that

order J !PT <sp (m) +3r,
T

which implies

(3.12) lim sup order J™'P™J/m=<lim sup order P"/m .

m—>o0 m—>oc0

On the other hand, the inverse inequality is now obvious. Q.E.D.
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Proof of Theorem 3. First, we remark that if lim sup order P™/m
<order P, then the principal part P(z;&) is nilpotelzc_)?or any (x,Q).
Then there exists an operator J satisfying the condition in Theorem 3,
that is, order J'PJ =gq, where g is the one defined by (1.13). More-
over the principal part of J~'PJ is not nilpotent.

Now it is sufficient to prove the necessity, since the sufficiency

is proved in Theorem 2.

Proof of Necessityv. Its proof is some modification of that of
Theorem 1. Under the condition that ¢>1, it is obvious that L is not
Kowalevskian at the origin if the coefficients of J and J~! are holomorphic
at the origin. Therefore, it suffices to consider the case where the coef-
ficients of J or J™' have pole at the origin and ¢>>1. Under the as-
sumption that L is Kowalevskian at the origin, we know that there exists
a domain D such that the Cauchy problem Pu =0, u|,_,=U (z) € H (O,)
has a holomorphic solution ze H (D). Now without loss of generality,
we may assume that the coefficients of J or J~! have pole only at the
origin and assume that the order of pole is at most k. Let j=max
{order j;;(x;0,)}, where J=(j;;), and let (xy,&) be a pointwin
(Dq{¢=0}) X C! such that the principal part of J7'PJ iu Volevié’s
sense has non-zero characteristic values at (x,, ;). Under the above

conditions, let us consider the following Cauchy problem,
(3.13) dv=J 'PJv,
(3.14) V)=V (2), V(x)eH(O,).

Then in view of the proof of Theorem 1, we can construct V (x)
e H(O,) such that the Cauchy problem (3.13)-(3.14) has not holomor-
phic solution at (&, 0). This contradicts the assumption that L is

Kowalevskian at the origin. In fact, the above Cauchy problem is

equivalent with the following,
(3.15) 0:,(Jv)=P(Jv),
(3.16) Jv|io=J (" V () e H(O,). Q.ED.

At the end of this section, we shall consider the following example

defined in €}t' which can not be applied the above method,
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05,05, 0%,

3.17) P(x,t;0,) =al(x,t) [ ot a0,

]+Q(x,t;0x),

where Q= (g;;), order ¢;;=<1 and a(x,t) €H(0). Then the system
L=0,,—P is Kowalevskian at every point in O if and only if

az ax t;az , ax 1 01' 2)
(3.18) Q(x,t;01)=[a A B0, 49 (x, 2 0.) +an, B0y, +70.,+ @ ]

_aazz+6az,+ Ay, 00, _Tazg‘f'g(x, £;0;) + as

where «, 8, -+, a;; € H(O) and ¢ (x, ¢;0,) is a homogeneous operator of
order 1.

First, we shall show the necessary condition. Let

Pll y20) aarl
P=| py pn —ad,, |, order P=order P.
0 0 0

Then it is easy to see that L is Kowalevskian if and only if L=01,—P

is Kowalevskian. Let

1 1
(3.19)  J(@@,) = 1|, J0)= 1
—d,, —0,, 1 9,, 0,, 1
Then we have
Qs T ad,,
JLJ =0,1,— Qo o —al,, s
02,01+ 02,q2, 02,90+ 02,qm, 0.,(ad,,) —0;, (ads,,)

:a;Ig—‘.?),
where order ?§3/2. Now let §;; be the homogeneous part of order 1
of g;;. Then order P<(3/2 implies immediately that
(3. 20) qu=0a0,, dzlz“aazz, 9012:7'0;1, c}zz=—701,-

On the other hand, if order ];5=3/2 and L 1is Kowalevskian, then it
holds that

(3- 21) {éu (-13, t; C) C2+(}21 (x, z; C) C1} Cl
—{dw (x, t; C) &2+ G (I, I C) Cl} £,=0.

» In the case where P=P(x,0d.), we can show that (1.12) is valid if and only if Q(x;
0;) has the form (3.18).
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From (3.21) we have the condition (3.18) immediately.

Next, we shall prove the sufficient condition. More pricisely, we
shall show that under the condition (3.18) we can reduce the system
L=0,I,—P to the equivalent Kowalevskian system in Volevi¢’s sense.
Let g(x,¢;0,) =A(x,8)0,,+B(x,t)0,,+9(x,t;0z), where 0z = (0,,, -,
0:,), and let

Du, P, a0, +B+B 1
A=\ ba, P2, —al,,+0+A |, order #=order P.

0 0 0
Then we have

AD,, + 0D, + G+ an, —B0,,+710,+an, ad, +8+B
JI LT =0,I—| —A0,,—a0,,+ as, B0y, —70,,+F+ Gz, —ald,,+0+A4 |,

Fom, P, Foxs

where L =0,I,— £ and

Ao =0, {A0, +0a0, + G+ an} +0,,{— Ad,,—ab,,+ ax},
gsZ = az‘z { - Baxl + Tax, _f_ 412}‘ + axl {Barz - Ta.z'z + 6 + 422} )
Au=0,{ad, +B+B} +0, {—ad, +0+ A}.

Therefore if §(x, ¢; 0z)=0, then J'.LJ is Kowalevskian in Volevié’s
sense. So let us consider the case where §=0. Let £ (z,¢;0,) =J ' AJ
= (%i}) i,7=1,2,5 and let

/Zn ﬁ’vlz %13 0 1
fo= b fon ﬁ:” 0 J (@) = !
Sos So fow 1] ’ ‘ 1
0 0 0 g -0, —0, 01

Then it is easy to see that L is Kowalevskian if and only if fz@tL— ﬁz
is Kowalevskian, because of the fact that order f=1. By an elementary
calculation, we have

fou Fou Fou
fon Fow Fom
ZM /Zzz Fow §
;sl 232 s §

j_ljj 23,14—

% It is easy to see that order P"=order 4™ for any m=I.
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where %ngaxﬁ ;31, ﬁ~32=§611+ Zsz and order %T;jgl, 7=1,2. Thus
we have proved that L is Kowalevskian. The proof of lim order P™/m

=1 is easy in the case where ¢g=0.

§4. Proof of Theorem -4

In this section, =z and x denote 2=(z,, -+, 2,) €C™ and x=(x4, -**, Z»)
€ R" respectively, and 2,&C*! and e R

First, let us consider the Cauchy problem,
“4.1) L(z, 2;0,,0,)u=0,
4.2) u)o=0=U (2),

where L has an operator J satisfying the conditions (i), (ii) and (iii)
in Theorem 2 and the coefficients of L are holomorphic in @ given in
section 1.

From Theorem 2 we know that L is Kowalevskian at every point
in ©0. Now let U (2) € H(») where 0C0,, (0,=0,{2,=0}). Then for
any JCow there exists s, (C0) such that the solution = of (4.1)-(4.2)
exists in J X {|2zo|<so} and moreover there exists K (JEKCw) such
that

4.3) sup |u|=Csup |U|,
I x{lzo|=s0} X

where C depends only on L.
Its proof is done by the same way as that of Theorem 2, considering
the remark before Lemma 3.2. Now we can choose s, as small as the

Cauchy problem for (4.1) with Cauchy data
4.2)’ #ls0ee, =U (2),  (|70|=%0)

has also a solution in J X {{2,—7o|=so} and the similar inequality with
(4. 3) holds with constant C which is chosen uniformly in 7, (see the
proof of Lemma 3. 2).

Now let the coefficients of L (x, ¢; 0,,0;) be real analytic in QC R"*,
(0e8). Assume that these coefficients can be holomorphic extension to
2. ={(z, 20) €C™™; |z, — x| <a, |20—t]|<a, k=1 -, n, (x,0) €2}. It

is evident that L (z,2;0,,0,) has the same properties in Theorem 4.
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Adjoint operator ‘L of L has also the same properties in Theorem 4.
In fact, *(J7LJ) =T L (J Y =T L(J) L

Now our purpose is to prove that if ue C*([—T, T]; 9’ (2,)) satisfy
the Cauchy problem,

4.4 Lu=0,
4.5) #(x,0) =0,

then # vanishes in a neighbourhood of the origin.

Let p(x) eCy(82,), where p=1 on W(O0eWCHL,), and let w

=pu. hen we have
4.6) Lw=f,
“.n w (x, 0) =0,

where f=0(x)P(x,t; 0,)u—P(z,¢t;0)0x)ucC ([~ T]; D' (2))
and supp fCsupp[p.(x)] for any te[—T,T], where p,=grad o(z).
In the following, we put supp [p,]=V.

Now let v (2, 2p; &) be a solution of the Cauchy problem,
(4, 8) tL (Z, %05 az, aza) v =0 >

(4.9) Olies="(0, =, $(),0,-,0), (O<tER).

where ¢ (R)e H(V,), V,={z€C"; |2, — x| b, k=1, --- n,x€ V}, b<a.

From the considerations in the above, we can see that for any
¢ (¢<b) there exists ¢, sufficiently small which depends on & and ¢, such
that the solution w(z, 2o;2,) exists in a neighbourhood of V,Xx [0, %],
and the following inequality holds,

4. 10) sup |v (2, 2o: &) | =C sup |¢(2) 1,
= 7,

Vex[0, 0]
where C depends only on L.

Under these considerations, we prove our theorem. (4.8)-(4.9)

is equivalent with
L

A1) v(e, t:) = (s, to;to)—-j ‘P (2, 73 0.) v (=, T t)de
Lo

0). Then we have

’

where te R and v (2, fy; &) ='(0, ---, $(=),0, -~
%
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tg
G (@, ), v (@, s > = [ Ow (2,0, v (2, 25 29
t
+ j‘ ‘Po(x, T; ty) drydt
Lo

— f (Flz, D), vz, t; 1) >dt |
Thus we have
412) w0, 8@>= [ S0, v 1 0>de.

Let us now remark that ze D’ (V), (9D’(V) denotes the distribution
with support in V, where V is the closure of V) can be uniquely
extended to analytic functional H’(V,) by the formula,

(4.13) v, Bw@oxuiy =<, i) »

where H (V,) denotes the space obtained by complition of entire functions

by the norm |u|=sup|u«|.
Ve
In view of this remark, we have

(4.14) Kwi(z, ta), $(2)2|=C max [f(z,2) |wo

x max |v (2, ¢; &) |aqy,
te[0,t0]

for any wv(z,t;t) € H(V,. Now we define a sequence of entire func-

tions {¢® (2)} L. by

@15) 0@ =[] [ r@ewr By,

ji=

hx) eCy (), o€EW. We give now the constant & as small as

(4.16) SRe(z;—vy,)'=e>0, =ze€V,, vyeo.

i=1
Then by the determination of & we obtain
(4.17) ¢P (@) 33h(x) in E(RY,
(4.18) ¢p® ()30 on V,.

We remark that if we choose W sufficiently small, then the solutions »®

corresponding to ¢® belong to H(V,) for small #. Therefore by
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(4.10) and (4.14) we have

(4.19) [<ws(x, ), ¢ (x) Y| =C” sup|¢® (2) |.
Vb
Hence we have {wy(x, %), h(x)>=0 for any h(x) €Cy(w). Since w
=pu, this proves our theorem. Q.ED.
References
[1] Garding, L., Une variante de la méthod de majoration de Cauchy, Acta Math., 114

[2]
[31]
[4]
[5]
[6]

(1965), 143-158.

Hasegawa, Y., On the initial value problems with data on a double characteristis,
J. Math. Kyoto Univ., 11 (1971), 352-372.

Kitagawa, K. and Sadamatsu, T., A necessary condition of Cauchy-Kowalevski’s
theorem, Publ. RIMS Kyoto Univ., 11 (1976), 523-534.

Miyake, M., A remark on Cauchy-Kowalevski’s Theorem, Publ. RIMS Kyoto Univ.,
10 (1974), 243-255.

Mizohata, S., On kowalevskian systems, Uspehi Mat. Nauk., 29 (1974), 216-227
(in Russian).

———, Cauchy-Kowalevski’s theorem: A necessary condition, Publ. RIMS Kyoto
Univ., 10 (1975), 509-519.






