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Reduction to the First Order Systems of the
Kowalevskian Systems in the Sense of Volevic

By

Masatake MIYAKE*

§1. Introduction

Let the system L (x,¢;0,,0,) be given by

1.1 L(x,¢;0,,0,) =0,Iy—P(x,¢;0,),

where P(x, t; 0, = (ps; (=, & ax))i,j=1,...,1v, (z,8) = (x4, *+*, Zn, L) e R
R T W

(or €™, 0$~—<axl, , .7C,,> and 0, T

First, let us consider the case where (x,¢) €. In this case
our considerations are restricted in the holomorphic functions defined in
a neighbourhood of the origin of €C**!, so we assume that the coefficients
of p;; are holomorphic in .szil{lxk[<rk} X {|¢|<r¢}. Now we say the
system L given by (1.1) is Ko_vvalevskian in £ if the theorem of Cauchy-
Kowalevski holds at every point in £ for L. Then in the previous
paper [1] the author obtained a necessary and sufficient condition for L

to be kowalevskian in £ in the case of z=1. That is,

Theorem 1. (Theorem 2 in [1])". Let n=1. Then the system
L given by (1.1) is Kowalevskian in £ if and only if there exists
an operator J (x,¢;0,) of N XN matrix with following properties:
(Z) The coefficients of J are meromorphic in . (ii) J(x,t;0,) is
invertible, that is, there exists J ' (x, ¢;0,) such that J-'J=JJ =1y.

(¢i1) The systein J'LJ is Kowalevskian in Volevid’s sense.

Our purpose in this note is to reduce the kowalevskian system in
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Volevié’s sense to the equivalent first order system by equivalent
transformations of systems defined later. Here the equivalent transfor-
mation means that under such transformation the well posedness of the
Cauchy problem is preserved for example in the class of C=.

Usually the existence theorem of Cauchy-Kowalevski is proved by
the method of approximation (or the method of majorant), and the Kowa-
levskian system in Volevié’s sense is the best possible class in order to
prove the convergence of the approximate solutions (see Garding [2]).
Theorem 1 asserts that the Kowalevskian system in Volevié’s sense is
very reasonable class considering the Cauchy problem in a sense.

Perhaps it was believed that the Kowalevskian system in Volevic’s
sense is wider class than the first order system. So in this note we shall
prove that the two classes in the above are equivalent under a suitable
transformation.

Now remember the definition of the Kowalevskian system in Volevié’s
sense. We say the system L given (1.1) is Kowalevskian in Volevic’s

sense if
(1.2) order pyy(x, t;0,) =t;—£;+1 for any 7, j=1,2,---, N,

where {£},CZ and Z denotes the set of integers.

Next we shall give the definitions of equivalent transformations of
systems.

(@) Let the system L(x,¢;0,,0,) be the one given by (1.1) and
let Z(x, t; 0, 0,) be the system given by

1.3 L(x, 250,00 =0uIy.—Q(x, 23 0.),
where Q is the operator of (IN+1) X (N +1) matrix given by

a9 QG sy = ("0 S,
0 0
N
where ¢(x,2;0,) ="(c1(x, t; 0,), <, ex(x, 25 0,)), 0= (m), and
ci(x, t; 0,) are differential operator of any order with smooth coefficients,
where smooth means C*® or holomorphic according to the context. Then
it is obvious that I is Kowalevskian (or well posed for the Cauchy

problem) if and only if I is Kowalevskian (or well posed for the Cauchy
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problem).
() Let J(@,) be the differential operator of N X N matrix with

constants coefficients, We assume that J (0,) is invertible, that is, there
exists an inverse operator J!(0,). Let f(x, t; 0,4, 0,) be given by
(1. 5) L(xz,¢;0,,0)=J"1(0,) L(x, ;0. 0)J (35).

Then it is easy to sece that L is equivalent to L.

Now let us give our results in this note.

Theorem 2. Let the system L(x,t;0,0,) given by (1.1) be
Kowalevskian in Volevid’s sense. Then L can be reduced to the first or-
der system by repeated use of the equivalen! transformation defined

above.

Moreover from the proof of the theorem we can see that the
characteristic polynomial of L is preserved under such transformations in

a sense. In fact, let L be equivalent to the following first order system,
d.6) M (z,¢;0,,0,) =0,IN+Z—ZlAj (z,8)0,,+8(x, 1),
5=

where A; and B are (N +417) X (N +1) matrices. Then we have

Theorem 3. Under the assumption in Theorem 2, we have
1. 7) det(Tru—33 A6 =79 (3,1 6, 7),

where p(x,t;&,7) is the characteristic polyinromial of L in Volevit’s

sense.

Remember the definition of characteristic polynomial p of L in
Volevié’s sense, Let p;;(x,#;0,) be the homogeneous part of order

t;—i;+1 of p;;. Then the characteristic polynomial p of L is defined by
1.8 p(x,t; &, 0) =det(cly— (i (x, £;€))).

At the end, we note that the reduction of the (single) Kowalevskian
equation to the first order system preserving the characteristic polynomial

in our sense was considered also by S. Alinhac [3].
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§ 2. Reduction of the Problem to the Calculus of Matrix

As will be shown in this section, our problem is reduced to the calcu-
lus of matrix with components of integers. In order to introduce the

calculus of matrix, we give two elementary transformations of systems.
(I Let
@1 pu(z,50) =alz, H0+ay(z,50.), iFi

We put a=a’+a”,

Pu Pr-Piw O
.................. 0
=~ i i2 ' P ag’
©@.2)  L(z, 850,00 =0yn—| 0 020w “O ,
P Py Pwn O
0 0-eneoe 0 0
and
N+1 N +1
1 1
0 .0
2.3) J@)= 1 , J7N0.) = 1
0o o
0---—0%0---1 0.--9%0.-- 1
7 J
then we obtain
Drpeereeees Py O
.................. 0
~ 1o Qis Dy @0
2. 4 TALT 0 e | P8P “O
le ......... PNN 0
N0 P05 psn O

We note that J-'LJ is Kowalevskian in Volevi¢’s sense if L is so.

In fact it suffices to choose fy,; so that ;4|0 |Zty . =t;+1—|a/|,
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where |a|=|a/|+a”|<Zt;—t;+1. Let p(x,¢;&,7) and B (x,£; &, 1) be
characteristic polynomials of L and J'LJ respectively. Then it is clear
that p=tcp. Let us now remark that the principal part of the system
in Volevid’s sense depends on the choice of admissible system {z;} of
integers, but its characteristic polynomial does not depend on the choice
of them.

Now let us return to our problem. It is obvious that by continuing
the above transformations, we can lower the order of (7, j) component.
In fact, there exists me {1,2, ---} such that L is equivalent to the fol-
lowing system,

(2.5) 0dyim—R(x,t;0,), R= (rij(x,t;02))s =1, vem,

where

m
Pu ........................ plN '—'OO"'—OO\
.............................. — o
Dap e [ —1Gh ... Diw Loennt l
.............................. — o
2. 6) (order r;;) < )
le ..................... pNN — 00 — OO
Pptpig—l-piy+pi;—1 —o0-- —o0
771 ------------------------------ — O0Qrrs — OO
Pt —lpiw+pi;—1 —o0---—o0

where p;;=order p;;, —oo=order (0), [—1%? =the order of (i, j) com-
ponent is =1, and (ry;) <(qi;), (rij, ;€ Z) means r;;<q;; for any
i, J.

In fact, it suffices to choose &’ so that |a’|=/.

(II) Let

2.7 bu(x, t;0,) =a(x, t) 05+ qu(x, t;0,).

We put a=a’+a”,
Prpeerrereeenes Py 0 )
.................. 0

= i P ag’

@8  Llet:0,0)=0ly,—| 0 TR 4R
Py Pwv O
LO crerrrnennnnns 0 0 )
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and
N+1 N+1
1 1
.0 .0
2.9 J@)= 1 , J7N0.) = 1
0o 0o .
0---—9¥0---1 0---0%0 -1
i 7
Then we have
Py v piv O N
..................... 0
= | D Qapreeee aai
(2. 10) J_ILJ=6JN+1—- Pu Qii Pin .
Dar s Pax O
0% P05 gy -+ 05 a0y

Therefore, if L is Kowalevskian in Volevi¢’s sense, then J"liJ is
so. In fact, it suffices to choose ¢y, so that ¢;+la”| <ty <t;+1—|a’|,
where |a|=|a’|+|a”|<1. And also it is obvious that p=rtp, where p
and P are the characteristic polynomials of L and JLT respectively.

Therefore by continuing the above transformations we can lower the
order of (Z,7) component. In fact, there exists me {1, 2, ---} such that

L is equivalent to the following system,

(2.11) 0dyim—S(x,8;05), S=(s0;(x,2;02)) 4501, 54m

where
Pll ........................ PIN — 00 — 00
................................. — o0
Dap e l—1@H ... Diws Loviiennn, l

(2. 12) (0rder Sij) é --------------------------------- — m
Dappeererersereneanaanin Py — 00— 00
Put+pu—Ll-pintLu—1l, Pu-e Dau
------------------------------------------ 7n

Puttu—1l- v+t pPu—1t, Du - Di
S——x
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In fact, it suffices to choose a’ so that |a’|=/.

In the following, we shall prove Theorem 2 by the transformations
defined above. Hence, by Theorem 2, Theorem 3 is obvious.

Inspired from the above calculus we introduce the following calculus
in the matrix with component in {0,1,2, ---} |J {—oco}.

Let

(2.13) R=(ry;), ry;<{0,1,2, -} U{—o0}.

M7 If i#j,

Frpprreerrerraeeeeeinaaaiaa. iy — 00

------------------------------ —-w

Tareeee [—1@GH ... Ty l
R—

.............................. — 00

L e eenaaanaas ryy — 00

rj1+7"ij'—l"‘rj1v+7‘ij—'l — o0

)’ If i=j,

/S TERE TR TR E PR PR TR iy —O00

------------------------------ —-oo

Fapereeer 160 ... ran L
R—

.............................. — oo

er --------------------- rNN -—-Oo

ratra—l-riytra—l Ty

Thus Theorem 2 is reduced to the following,

Theorem 4. Let R= (ry;)i jo1,m, 7;€40,1,2, -} U{—o0}. If
ry<t;—t;+1 for any i,j=1,---, N for some {t}Y ,CZ, then by the
above transformations (I)' and (II)’, R can be reduced to a matriz

with components <1,

This theorem will be proved in Section 3, but we shall give here
some remarks.
In order to prove our theorem we may assume without loss of

generality that
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(2.14)

by changing rows and columns if necessary. Moreover by joining together

many blocks we may assume without loss of generality that R has the

MASATAKE MIYAKE

A e

following form,

(2.15)

As mentioned in the previous section, we consider the matrix R of

(2.15)

— 00
2 1 0 —

. Lo e

N —Teteeeeenann 10

N ceeeveenenns 2 1

§ 3. Proof of Theorem 4

as the original one.

Lemma 3. 1.

—o0 0 0
— 00
2 1 0 — 00
.0
Noeveoeernnin, 1
3.1) R—>S=
—o0 1 — oo 0
— 00 — 00
—oo 2 —o0 —oo 0
: 0
—ocoN—1—0c0o| —o0 -ee- 2 1
Proof.
—oo0 0
—oco 0 0 R
-0 21 0
(II), % 1..0. — 00 (I)/ E . ..
R——> : . — : .0
: .0 : N oceeeenns 1
N ------------ 1 .—-oo
— —00 1 —o0:r—o0
21—c0:—c0l 1
—00 2 —o0-r—00

0 —o0
— o0
—o0 —o0

1 0

2 —oo
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— 0 —o0 —o0
— o0
21 0 — o0
am’| 0 -
—_— N ............... 1 —c0 —00 —Oo0
—00 1 —oo0:--—o00|—0c0 O 0
—0 2 —o0-r—o0| 2 1 1 )

347

The last matrix can be expressed as follows (joining together the last

two rows and columns),

(—oo 0 0 A
2 1 0 — o0
. .'O -
—o0 1 —o0 0
— o
—oo 2 2 1)

Hence by continuing these operations we have the desired matrix S. We

note that in the following we use the same simplicity for the brevity.

Lemma 3. 2.

(3.2) S—T=

Proof.

Q.E.D.

—o0 0 —x 0 — o0
—00 —o0 0 —oo — o0 0

3 2 1 0 -
: .. — 0

0

Noeooerrieeeeiieaenans 1
—oc0 1 —oco 0

— o0

—o0 2 oo _ .
—oo N —1 —c0 2 1
—oco —oo 1 — 0

: e B - .'o
—~o N-1N-2 —00 2 —0oN—2--2 1)
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By continuing these transformations, we have

Lemma 3. 3.

(3.3)

@

R->U= Ui j=1,.7»
where U;; are (N —i+1) X (N —j+1) matrices and

—o0 0

— o0

Uii< —o°

—o0 0

N—-i4+1.-2 1

where the equality holds for each i such that i=2.

(i)

Uljz

— 00
-1 | o
— 0

— o0

]
N,

j=2, -

b 2

|

~——

N—-j+1

— 00 0 — o0
— oo
—o0—o0 0 0
: g —eo | _ .
: 0
N oceeevreennnnn, 1
—oc0 1 —oo 0
L S
: 0
—o0o N—1 —o0 —o0 21
—o0 2 1 —o0 2 —oo 1
—oco0o—o0 0 0
. . —oo — 00
0 1 — o0
N ocoeeeeernnans 1 |
—>| —o0 1 —o0 0 ,
: 2 ., T
: . —o0 . — o0
;o 0 |
—oo N—-1 —o0 21 |
—oco—o0 1 — 00 —o0 0
— 0 — OO
L—oo 3 2 —o0 2 2 1)

, i=1,2 - N,

N.

T

Q.E.D.
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i
—oo 1
(iif) Uy= oo 2 _& |, i=2,-N.
oo N—1--N—i4l —oo
N
o U< —o0 ) }N—i+1,
N—j+1 N—ji—j+1 —oo---—o0) | 2<j<i=N,
N—j+1

where the equality holds for each j such that j=2.

() Uyy=(—00), 2=i<j=N.

We omit its proof, since it is proved by induction.

Our purpose is to prove that the matrix U in the above lemma can
be transformed to the one with components <1. First, we give a

simple matrix which is derived from single Kowalevskian equation.

Lemma 3. 4.

—o0 0
— o0 — o0
— o0 0. — 0 .
. —o0 0
(3. 4) — 0 ',. O ......... O 1 1 —_— 00 — OO
0 —00 O eeene 1 | -0l _
Ekb—1.... 21 _00-, 0 —oo E—1
"“Ooi — oo )
e ——’
k—1
Proof.
—o0 0 —oco 0
— 00 — o0
) 5 — oo 0 -
O covenreennnn 01 1
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—o0 0
— o0 — o0
— o0
_ 0
Oecrerrnrnnennns 01 1 — 00
—o00 Q------ 01  —o 1
[ —00 —00k—2--1 | —00 —oo0

Therefore by continuing these transformations, we obtain our lemma.

Q.E.D.

We remark that the right hand side of (3.4) can be expressed as

.__OQO
— 00
(3.5) R
. -O
O crnenrennnnn 01
00 ( ereens 01

In the following, we shall use the similar abridgments.

Now let U be the one in Lemma 3.3. Then by applying the above

lemma we have

— 00 O
. Uy |- |—o00
0
Qnvrvrens 01 1 ~
U—> =U,
Uxn U — 0
—00 00 1 Upyyrgl | 1

where

UN_H”,:(N--]'—I-].,-—OO,--',—OO), j=27'",N‘
N—j+1

On the other hand, we can lower the numbers in Uy,,,; (j=2,::, N)

at most 1. In fact,
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. Ui, Ui | OO0 — 0
0
Qereevenns 01 1
U21 Ugg U23 e | — OO0 — OO ~
U— l -‘—‘U,
Us U32 Uss ——'001—00
—00 00 1 | Ulpyrs U;ms}... 1 \ 1
i |
o |
oo Nelev1 | Ulras U;V+2,3[“‘|_°° 1
where
N—j+1
——————N————
U;V-ilf—(oa_oo"“’—oo)’ J:2’ 9N1
U;Vﬂ“l-j_(‘—oo’os ',Oal)’ J:2,,N
~———
N—j+1

. Ui Uy |-+ —o0
0
Qneveenns 01 1
|
U”= Uy Us Usp |- |—o0 y
Us Us, Usg |-+ |—o0
N 14 [ "
—o0 0---0 1 'UN+],2[UN+1,3 "" 1

where

%414:(0’...,0,1), ]=2,
~_~—
N—-j+1

By continuing these transformations, we have
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(3.6)

MASATAKE MIYAKE

U—V=V:i)iict, w1,

where V;; are (N —i+1) X (N —j+1) matrices, (Z, j=1, -, N) Vg1,
are 1x (N —j+1) matrices, (j=1,---,N) Vyyu are (N—i+1)x1

matrices, (=1, ---, N) and Vy, y,11s a 1 X1 matrix respectively. More-

over V;; have the following forms,

®

(i)

(iii)

(i)

™)

(vi)

(vii)

(viii)

V= o IN—i+1, =1, N, Vywa=Q),

N
VN+1,J'=(O"”;O,1)’ j=2a'“aN’
—_—
N—j+1
— 00
Vi,N+1= —:00 ’ Z_l, “’Nr
1
— 00
V1.7'= j_l) 0 ’ j=23“'sN,
— o0
7
N
1
—0c0 2 —o0
Vil_ . ’ 1:2,'“3N’
N —i
1= > 2<j<i<N,
ii_<0“_0 1 =i<a=

Viy=(—00), 2Zi<j=<N.

As the final step, under the assumptions on V defined by (3.6),

we can lower the numbers in (vi) at most 1.
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—0o0 0
.'0 Vi Vis — o0
Oeevene 01
—0 1 —0 0 -
. 1
: 0 .. .
o T 0 Va '-1
—0c0 0 Q.evvee 01 oo
1 —o0 0
—OON:_3 Ve .'0 — oo
0 Q-veee- 01
1 1
—00 ! —o0 —o0 P —oo — o0 N -3
N -3 N-3
N-3
—c0 0
.'O V]g Vlg — OO0 — 0
Oneeen 01
é — 00 0.. —;0
: 174 *. — o0
—00 : —o0 0 = 1
0 OQeeeene 01
— 00
1 —o0 0
“Nis T T o | me | -
—0000 OQeeeeee 01
1 : -
—00 ! —o0 — 00 . —oo — o0 .. N-3
N -3 0 1
2 —o0 1
—o0 i —oo — o0 T l—o0 — o0 — o0 N—4
N-3 —oo N—4
e S——
N-3 N—4

Thus by continuing these operations, Theorem 4 is proved. Q.E.D.
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Example. Let us consider the following system so called Cauchy-

Kowalevski’s type,
N

(E.l) al"ui'—"zpw(z,t;aha,)u,, i=1,"',N,
i=1

where order p;;=7n; and order of p,;; with respect to < n; for any
i,j=1,--, N.

Now we put
(E.2)  pi(x,2;0,,0,) = ﬁ P57 (x,¢;0,)007%, order pff <k.
k=1

Then if we give u#;, by

(E.3 Uy y=0{"u;, k=1 -

oo my =1, N,

> b

the system (E.1) is equivalent to the following one.

i=1,., N,

atui,Ic:ui,k.H, k=1, n;—1

)
(E. 4) N g
. .
az”i,m=j21 kZ PR Uy, =1, N.
= =1

If we put the right hand side of (E.4) by Qu, where u="(uy,, -,

Ui,y 8N, "y Un,ny), We have

—o0 0
T —o0 .. — o0
0 .
Tgerenns 2 R 21 Tgeeeee 21
—o0 0
— 00 ., — 0
E.5 rder g;;) = 0
(E. 5) (order g:y) PR 21 | ngeeeees 21 geeeees 21
—o0 0
— 0 — OO0 .
0
Tgeennes 21 | spgeeeees 21 Tyeeeens 21

Therefore if we give {£}™i™+" by

ti=i, i=1,--

> s By

(E. 6)
bopppmpypi=m—np+2, i=1 - n, k=2 --- N,



it holds obviously that order ¢;;=¢;—¢;+1 for any 1, j.

(order g;;) —

the reduction to the first order system is very easy. In fact,
— 00 O
— 00 — 0
o o
Ocervrenennns 01 Oceeeeernenns 01 Quervnrnnnnns 01 1
—o 0
— 00 . . — 00 -
0
Qevvvernnnnns 01 0eeeevennnnn 01 Ocvrrernnnens 01 1
—o0o 0
— 00 — 0 . — o
0
Qeerrrnnnnnns 01 Oeeeeeevennns 01 Qeevrvennnees 01 1
—oony—1-+:21—o00 n,—1.--21 —oopny—1--2 1|—o0
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In this case,

Hence by continuing these transformations, we can reduce to the first

order system.

[1]
[2]

References

114 (1965), 143-158.

[3]

France, 102 (1974), 289-315.

Miyake, M., On Cauchy-Kowalevski’s theorem for general systems, Publ. RIMS,
Kyoto Univ., 15 (1979), 315-337.
Gérding, L., Une variante de la méthode de majoration de Cauchy, Acta Math.,

Alinhac, S., Problémes de Cauchy pour des opérateurs singuliers, Bull. Soc. Math.






