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Reduction to the First Order Systems of the
Kowalevskian Systems in the of Volevlc

By

Masatake MlYAKE*

§ Io Introduction

Let the system L(x9t;dX9dt) be given by

(1.1) L (x, t; 9,, 9,) - dtIN - P (x,t; 9,) ,

where P(x, t; 9*) - (pij(x, t; 9*))W=1,..,F? (x, t) = (xly • • • , xn, t} <=Rn+1

(or Cn+1)9 dx= ( , • • • , ) and 9t = -—.
\ dxi dxj dl

First, let us consider the case where (xs t) e Cn+1. In this case

our considerations are restricted in the holomorphic functions defined in

a neighbourhood of the origin of Cn+1, so we assume that the coefficients
n

of pij are holomorphic in G = ̂ ^{\xk\<^rk} X {l£|<^r0}. Now we say the

system L given by (1. 1) is Kowalevskian in Q if the theorem of Cauchy-

Kowalevski holds at every point in Q for L. Then in the previous

paper [1] the author obtained a necessary and sufficient condition for L

to be kowalevskian in Q in the case of n = 1. That is,

Theorem Io (Theorem 2 in [1])1}. Let n — \. Then the system

L, given by (1. 1) is Kowalevskian in S if and only if there exists

an operator J(x5t;dx) ofNxN matrix -with following proper ties:

(z) The coefficients of J are meromorphic in Q. (ii) J(xyt;dx} is

invertible5 that is, there exists J~l(x91\ 9X) such that J~1J = JJ~1 = IN.

(ill) The system J~1LJ is Kowalevskian in Volevic's sense.

Our purpose in this note is to reduce the kowalevskian system in

Communicated by S. Matsuura, February 7, 1977.
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1} For more detailed results, see [1].
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Volevic's sense to the equivalent first order system by equivalent

transformations of systems defined later. Here the equivalent transfor-

mation means that under such transformation the well posedness of the

Cauchy problem is preserved for example in the class of C°°.

Usually the existence theorem of Cauchy-Kowalevski is proved by

the method of approximation (or the method of majorant), and the Kowa-

levskian system in Volevic's sense is the best possible class in order to

prove the convergence of the approximate solutions (see Carding [2]).

Theorem 1 asserts that the Kowalevskian system in Volevic's sense is

very reasonable class considering the Cauchy problem in a sense.

Perhaps it was believed that the Kowalevskian system in Volevic's

sense is wider class than the first order system. So in this note we shall

prove that the two classes in the above are equivalent under a suitable

transformation,,

Now remember the definition of the Kowalevskian system in Volevic's

sense. We say the system L given (1. 1) is Kowalevskian in Volevic's

sense if

(1.2) order pifl (x, t; 9*) <*« — /, + ! for any i, j = !92, ••-, N,

where {ti}f=idZ and Z denotes the set of integers.

Next we shall give the definitions of equivalent transformations of

systems.

(I) Let the system L (x, t; d^ 9$) be the one given by (1.1) and

let L (x, t; dx, dt) be the system given by

(1.3) L (x91; 9,, 9,) = dtIN+1 - Q (*, t; 9.),

where Q is the operator of (N +1) X (N +1) matrix given by

a A\ n(-r /• rP V
• "/ S=si- \*^'J ^ 5 ^^/ "

\ u u /

7sr

where c (x , t ; 9«) = 4(ci(x , t; 9^.), • • - , cN(x91; dx}}9 0 = ( 0 , - - - , 0 ) , and

c$(x9t\ 9 .̂) are differential operator of any order with smooth coefficients,

where smooth means C°° or holomorphic according to the context. Then

it is obvious that L is Kowalevskian (or well posed for the Cauchy

problem) if and only if L is Kowalevskian (or well posed for the Cauchy
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problem) .

(II) Let J(dx) be the differential operator ofNxN matrix with

constants coefficients. We assume that J(dx) is invertible, that is, there
ZZz:

exists an inverse operator J~1(dx). Let L(xy I; dX9dt) be given by

(1.5) L (x9 1 ; 9,, 9£) = J~l (9*) L(x9t\ 9,, 9£) J (9,) .
z^

Then it is easy to see that L is equivalent to L.

Now let us give our results in this note.

Theorem 20 Let the system L(x9t;dx,dt) given by (1.1) be

K.owalevskian in Volevic's sense. Then L can be reduced to the first or-

der system by repeated use of the equivalent transformation defined

above.

Moreover from the proof of the theorem we can see that the

characteristic polynomial of L is preserved under such transformations in

a sense. In fact, let L be equivalent to the following first order system,

(1.6) M (x, t • 9X, 9() = dtIN+l - S A, (x, f) dxj + B (x, 0 ,

where Aj and B are (N + l) X (N + £) matrices. Then we have

Theorem 3L Under the assumption in Theorem 2, -we have

(1. 7) det(rlw- A,fy) =r '/»(*, *J £, 0,

'where p ( x ^ t \ ^ 9 ' C ^ ) is the characteristic polynomial of L in Volevic's

sense.

Remember the definition of characteristic polynomial p of L in

Volevic's sense, Let P i j { x 9 t ' 9 d ^ ) be the homogeneous part of order

tt — tj-rl of pis. Then the characteristic polynomial p of L is defined by

(1. 8) p(x9 1; f, r) =det(rJV- (&,(*, *;£)))•

At the end, we note that the reduction of the (single) Kowalevskian

equation to the first order system preserving the characteristic polynomial

in our sense was considered also by S. Alinhac [3].
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§ 2. Reduction of the Problem to the Calculus of Matrix

As will be shown in this section, our problem is reduced to the calcu-

lus of matrix with components of integers. In order to introduce the

calculus of matrix, we give two elementary transformations of systems.

(I) Let

(2.1) ptj (x9 t;d^)=a (x, £) da
x + qtj (x, £; 9*) 5 i=£j.

We put a = a/ + a",

' Pn Pi2 •" PIN 0

0

Pn Pi2 "• PIN a®,

0

PNI PNZ-'-PNN 0
0 0 0 0

and

N + l N + l

(2.3)

(2.2) £(*,*; 9,, 00

\ 0

"l
0

$ j~l(dx} =
°\ °

'i
0

then we obtain

(Pii-

PNI PNN 0
o ;

We note that J~1LJ is Kowalevskian in Volevic's sense if L is so.

In fact it suffices to choose tN+l so that ti-\-\a"\<tN+i<ti + \—\a'\9
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where \a\ = \a'\ + \a"\<tt-tf + l. Let p(x9 *; ?, r) and £(*, *;?, r) be

characteristic polynomials of L and J~~1LJ respectively. Then it is clear

that p = -cp. Let us now remark that the principal part of the system

in Volevic's sense depends on the choice of admissible system {^} of

integers, but its characteristic polynomial does not depend on the choice

of them.

Now let us return to our problem. It is obvious that by continuing

the above transformations, we can lower the order of (z, j) component.

In fact, there exists ra e {1, 2, • • • } such that L is equivalent to the fol-

lowing system,

(2. 5) dtIN+m-R(x, *; 9,), R= (rtj(x91; 9.)),.,»!,..,*+w ,

where

m

6) (order rtj) <

( Pn PIN — oo oo

— oo

Pil I ~ l(t> J) PiN I I

— oo

PNI PNN ~ °° oo

/ — oo- • • — oo

~oo oo

/ — oo- • • — oo

vvhere pt/Border pij9 — oo = order (0) , / — l(*'y) = the order of (i9 j) com-

ponent is / — I, and (^iy)^fe/)> (rij,Qij^Z) means rtV-<go- for any

In fact, it suffices to choose a' so that |Q/|=/.

(II) Let

(2. 7) pti (x, t; 9,) - a (x, t) 9* + qu (x, *; 9.).

We put a = <Z'Jr(%"9

( Pn PIN 0 ^

0

~ ~N OT Pn"'Pa-" PiN ada
x'(f) Q\ Tit* f • rv n i — n TV"« O J -L/ \^. t* 5 <-/^, t/j J — v/{J. jy i i

o
PNI PNN 0

ko o o J
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and

(2.9)

I

'•. °
'l

0

(I
0

1
0

Then we have

/>n ............ />i* 0

..................... 0

Pu ...... Qu ...... PIN

.....................

PNI ............ PNN

(2-10)

Therefore, if L is Kowalevskian in Volevic's sense, then J 1LJ is

so. In fact, it suffices to choose tN+l so that tt-{-\a" <tN+l<ti + 'L — CC'\,

where \a\ = \a'\ -f \a"\ <1. And also it is obvious that p = tp, where p

and p are the characteristic polynomials of L and J~1LJ respectively.

Therefore by continuing the above transformations we can lower the

order of (z, z) component. In fact, there exists we {1, 2, • • • } such that

L is equivalent to the following system,

(2.11) dtIN+m-S(x, *; d,), S= (sif(x91; 5g)^=lf..,F+m,

where

( Pn PIN — °° °<

(2. 12) (order stj <
PNI'

— oo

— I-" PIN + Pu — l, Pu Pu

— I, Pu Pu

m

m
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In fact, it suffices to choose Of so that \af\-l.

In the following, we shall prove Theorem 2 by the transformations

defined above. Hence, by Theorem 2, Theorem 3 is obvious.

Inspired from the above calculus we introduce the following calculus

in the matrix with component in {0, 1, 2, • • • } \J { — 00} .

Let

(2.13) R=(rti), rwe{0,l,2,...}|J{-°°}.

(I)' If i*3,

D
J\.-

rlN —oo

— oo

riN I
— oo

rNN — oo
I _ oo

(II)' If i = j,

R-

rlN —oo

— co

Ni rNN -oo

. ru + r« — I - • • riN -f- ru — I rti ,

Thus Theorem 2 is reduced to the following,

Theorem 4. Let R= (r,,),..,^....^, rtjt= {0,1, 2, • • •} U {- 00}. If
rtj^ti — tj + l f°r any z, J = l, '", N f°r some {^}f=idZ, then by the

above transformations (J) ' and (II}', R can be reduced to a matrix

'with components <!.

This theorem will be proved in Section 3, but we shall give here

some remarks.

In order to prove our theorem we may assume without loss of

generality that
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(2.14) *i<*2<-"<*ff

by changing rows and columns if necessary. Moreover by joining together

many blocks we may assume without loss of generality that R has the

following form,

1 0 — oo - - - — oo

2 1 0 - o o

'. —00
(2.15) R =

N-l 1 0

N 2 1

§ 3. Proof of Theorem 4

As mentioned in the previous section, we consider the matrix R of

(2. 15) as the original one.

Lemma 3. 1.

(3.1) R >S =

f — oo 0
— 00

2 1 0

AT '..1

-oo 1
— 00

-oo 2

0

— 00

— oo 0
— 00

— 00 — 00 0

'o
n r > 9 100 A L )

Proof.

(II)'
R >

f —oo 0
— 00

2 1 0
" •

'•. 0
AT ' -I

^ 2 1 — oo • — oo

0 >

— 00

— oo

1 J

(IT

( -oo 0
— 00

2 1 0

'•. 0
AT .". 1

-
— oo JL — oo • — oo

^ — 00 2 — 00 • — 00

0 -oo N

— 00
•

rvn on

1 0J_ U

2 -oo ,
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(II)'

( -oo

2

AT"JL V

— 00

— 00

V -CO

0

1

1
2

2

— 00

0
.

' . 0
1

— OO--- — 00

— oo--- — oo

— CO- • • — OO

0

— 00

oo

— 00

2

2

— 00

— 00

oo

0

— 00

1

— 00 >

oo

0

— 00

1 ,
The last matrix can be expressed as follows (joining together the last

two rows and columns),

' -oo

2

AT"

— 00

^ —00

0
— 00

1 0

' '•• ' ' o
. . *. 1

1
— oo

2

0

— 00

— 00

— oo 0

2 1,

Hence by continuing these operations we have the desired matrix S. We

note that in the following we use the same simplicity for the brevity.

Q.E.D.

Lemma 3. 2.

(3.2)

— 00 0 — 00

— 00 — 00 0 — 00

3 2 1 0

'o
\T 1

-oo 1

-oo 2
— 00

-'oo N-l

— oo — oo 1

— 00

-oo N-1N-2

0

— oo

— 00

— oo 0
— CO

'o
-oo 2 1

— 00

— oo ••• 2 — oo

-00

0
— 00

— 00

-oo 0

— 00 "

N-2--2 1,

Proof.
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' — 00 0 — 00
— oo

— 00 — 00 0

' 0
AT 1

-00 1

— oo

— - oo JV — 1 — oo

, — oo 2 1 —oo

(—00 0 -00

— oo — oo 0
. — 00

0
AT 1

— oo 1
2

— 00

-oo N-l

— oo — oo 1
— 00

,-oo 3 2

0

— 00

-00 0

'o
-oo 2 1

2 —oo

0

— 00

-oo 0
. — 00

' 0
-oo 2 1

— 00
— oo

— 00 2

-00 N

0

— 00

— 00

1 J
-00 ^

0

— 00

— 00

-oo 0

2 1,

(ii) N, j = 2,..-,N.

>T .

Q.E.D.

By continuing these transformations, we have

Lemma 3. 3.

-where Utj are (N — z' + l) X (N — j + T) matrices and

' -oo 0

— 00

(0 uu< -°° ' • - . _
— 00 0

.N-i+1-2 I )

•where the equality holds for each i such that i^=2.
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(iii) Z/n= -oo f -oo , i = 2,-,N.

N

<M ua<
\N-j + l N-j-i-j + 1 -oo. ..-oo/ J 2<./<*

JV-j + 1

•where the equality holds for each j such that j=f=2.

(v) C/0=(_oo),

We omit its proof, since it is proved by induction.

Our purpose is to prove that the matrix U in the above lemma can

be transformed to the one with components <J1. First, we give a

simple matrix which is derived from single Kowalevskian equation.

Lemma 3. 4.

( -oo 0

— 00
•

— oo
*.
Q

k k k-1 2 1 ,

— oo U
' • m — oo

— 00

'o
o o i
~~ A 1

o
— oo ' • t

^ —oo 1

— oo

j[ QQ • • • OO

^— oo J_
— oo

— oo •1
-00 ,

(3. 4)
*0 —oo 0 ...... 1 —oo 1 \

- A . — 0 0
T T - i r ^ ^ . 1 1 . I

5-1

Proof.

' -00 0

". — 00
•

— 00 '.

n\J

^ k k — 1 2 1 t

' -oo 0

— oo
— 00 " 0

n n i

( -oo k-I ••• 1

^

— 00

1J.

-00 J
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'-00 0

'. — 00

— 00

' 0
0 0 1

oo n fj i

s-oo -oo k-2--l

\

— 00

1 — oo

— 00 1— v-xj J_

— OO — OO t

Therefore by continuing these transformations, we obtain our lemma.

Q.E.D.

We remark that the right hand side of (3. 4) can be expressed as

(3.5)

In the following, we shall use the similar abridgments.

Now let U be the one in Lemma 3. 3. Then by applying the above

lemma we have

' — oo 0

" .

— 00

oo n

• B

'
A\J

n

- 00

0
ij.

1

ij.

1

U-

/ -oo 0

*0
A A 1

u«

-oo 0 - - -0 1
\

»a
U22

uw ...

— 00

1

— oo

1

where

Ur+lti= (N-j + l, -oo, ..., -oo), j = 2, -,N.
•^ /

N-j+l

On the other hand, we can lower the numbers in UN+ltJ (j = 2, --9

at most 1. In fact,
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U-

— 00 0

'o
0 o i

u*

un

-oo 0 - - - 0 1

-ooN-l — l

uu

UK

U3!

U N + I^

U # + 2,2

Un

Uls

U»

UN + L.S

UN+I,S

— oo

1

— 00

— oo

1

— oo

— 00

— 00

— 00

1
1

= u,

where

N-j + 1

*HW = (0, -oo, • • ' , -oo), j = 2, -,N,

y+>.j=(-°°,0, ,0,1), j = 2,-,N.

N-j + 1

Thus we have finally a matrix of the following form,

U" =

f -oo 0

"o
A 01

un

un

-oo Q - - - 0 1

,„
Un

T J

U'^+1,,

Un

u!S

uss

JJ"v-y N + l, 3

' • „

V

— 00

1

— 00

— 00

1

here

By continuing these transformations, we have
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(3.6) U >V=(Vi^i,J=1,...,N+ly

where VtJ are (N — z + 1) X (N — j + 1) matrices, ( i y j = ly • • • , JV) VN+ltj

are lx(JV —j + 1) matrices, C/ — 1, • • • , AT) Vt^+i are (JV —f + l )xl

matrices, (z = !5 • • - , JV) and T^^+1,^+1 is a IXl matrix respectively. More-

over Vij have the following forms,

,-oo 0

(i) Vu=l
\ °jo o r

(ii) V*+lt 1 = ( roo ?Q ? . . . ?0 ? l ) ,

N-j+i

f
- oo\

-L

1

(v)

i
- 00 2 — 00

0 -oo... )

(viii) V ( /=(-oo), 2<i<j

As the final step, under the assumptions on V defined by (3. 6),

we can lower the numbers in (vi) at most 1.
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— oo 0

'o
0 0 1

— oo 1
: o ^

— oo 6

1
— 00 "

N-3
0

Vn

— oo 0

0
0 0 1

V&

va

-oo 0
* .

0
0 0 1

...

...

'. ' '.

i
— 00 • — OO

JV-3
— 00

1
• — oo

N-3
...

— 00

— oo
1

'l
— 00

— oo

i

— oo

N-3

— oo 0

'o
0 0 1

1
0

— 00 • —00

0

1
— oo • — oo

N — 3
— oo 00

V12

— oo 0

0
0 0 1

V 3 2

vtt

V2S

— oo 0
* t

Q

0 0 1

...

I * • • .

1
— oo • — oo

JV-3

2
— oo • — oo

JV-3

— oo

— oo

1
0

— oo

6
-oo 1

• —00

— oo JV— 4
...

— oo

— 00

1
\
1

— oo

— 00

;

— oo

— oo

— oo

— 00

— oo

•

— oo
1

'l

— oo

•JV-3

N-4

N-3 N-4

Thus by continuing these operations, Theorem 4 is proved. Q.E.D.
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Example. Let us consider the following system so called Cauchy-

Kowalevski's type,

(E. 1) d?1*! = £] /></(*, t\ d*, d t } u j , i = l, • • - , N,

where order /></<#/ an^ order of pi3- with respect to t<^n} for any

Now we put

(E. 2) pi:f (x, t\ dx, dt) = ]T] pf? (x, t\ d^d?s~k, order

Then if we give icitk by

the system (E. 1) is equivalent to the following one.

ik = uik k = l - - n i — l, i = l ••- N,

(E. 4)

If we put the right hand side of (E.4) by Qu, where u =t(ultly • • • ,

^linu '"> UN,ly ""> UN,nN)j WC liaVC

(E. 5) (order Sw) =

— 00 0

'.

'o
77 Q 1

— CO

n - . 9 1

— CO

77 Q 1
fi 2 *•* -»-

— 00 0

".

'o
n . . . . 9 1

2 1

— 00 0

'o
nN 21

Therefore if we give {£*}Jii"'+n* by

(E.6)
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it holds obviously that order Qij^tt — tj-}-1 for any z, j. In this case,

the reduction to the first order system is very easy. In. fact,

(order

— c

A..

A. .

X> U

0
A 1

— CO

A 1

— 00

A A 1

-co 0
*

0
A A 1

•0 1 •0 1

— 00

A A -j

— CO

n A i

-oo 0

0
A A 1

— oonN—l'"2 1

— CO

1

— 00

1

— 00

1

— °°y-oo m — l~-2 1

Hence by continuing these transformations, we can reduce to the first

order system.
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