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A Characterization of the Hyperbolic Mixed Problems
in a Quarter Space for Differential Operators

with Constant Coefficients

By

Yoshihiro SfflBATA*

§ 1. Introduction

L. Carding showed in his papers [2] and [3] that the following

three statements on a differential operator P (U) with constant coefficients

are equivalent (see also Atiyah, Bott and Carding [1]).

(I) The Cauchy problem for P(D) in the half space {^e JRn; .r •#>()}

with data on the plane X'$ = Q is C°° (or £) well posed, where $ is a

non-zero vector in the real dual Sn of the real ?z-dimensional Euclidean

space Rn by the inner product x-$ = x1-$1-} ----- \-xn-^n.

(II) P(D} has a fundamental solution E satisfying P(D)E=d

and having support in some closed proper1' cone K with its vertex at

the origin such that .r-#>0 on K— {0}.

(III) The characteristic polynomial P(?) of the operator P (U)

has the properties:

(1.1) P°(#)^0 where P°(f) is the principal part of P(f),

and

(1.2) P(£-hs#)=^0 when feS"1 and Im s is less than some fixed

number f0.

Such a differential operator P (IT) (resp. a polynomial P(f)) is said to

be hyperbolic with respect to ft.

Now consider the mixed initial-boundary value problem in the quarter

space {x=(xl9'~9xn)*=Rn;x1>Q9xn>Q} for a system {P (D) ; B j (D) ,

Communicated by S. Matsuura, March 28, 1977.
* Institute of Mathematics, The University of Tsukuba.

1) A cone which does not contain any straight lines is said to be proper.
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J = l, • • • ,?} of differential operators with constant coefficients:

(1.3) P(D)u(x)=f(x), Xl>0,xn>0,

(1.4) Z?f«(*)U-o = </,(**), j = 0,l,-,m-l,x.>0,

(1.5)

where TTZ is the order of P (Z)) . Then the corresponding question for

the system {P (D) ; Bj (£)) , J =! , ••• ,<?} can be proposed. After the

works [5], [6] by R. Hersh and [11] by T. Shirota, R. Sakamoto [9]

proved the following.

Assume that P(£) is a hyperbolic polynomial with respect to

#=(1,0, - - ^ O ) and the boundary dRn
+ = {x^Rn

+\ xn = Q} (R"+={x=(xl9

~',xn) eJRn; .rn>0}) is non-characteristic for P(£>) and Bj(D) (j = l,

•-,q) and that q is equal to the constant number p of the roots with

positive imaginary part of the equation P(£' — zs$', A) =0 in A with

5 large enough where £ ' = (£1? • • • , £n_i) . Then the mixed problem (1. 3) -

(1. 5) is C°° (or £) wrell posed if and only if the Lopatinski determinant

-K(CX)2) of {P(D) ; Bj(D}, j=l, --,P} has the properties corresponding

to (1.1) and (1.2):

(1.6) jR°(#0¥=0, where jR°(CO is the principal part of

(1.7) jR^' + ̂ O^O when f'eS71-1 and Im 5 is less than some fixed

number.

Such a Lopatinski determinant -R(CO is said to be hyperbolic with respect

to $x. Moreover she showed the existence of a unique system {E(,x, y) ;

Fj(x)9 J = 19"',P} °f fundamental solutions having support in some

closed proper cones.

A system {E (x, y) ; Fj (x) , j — 1, • • • , ^} of fundamental solutions of

the mixed problems (1. 3) - (1. 5) for {P (D) ; Bj (D) , j = 1, • • -, g} is

defined as a system of solutions of the following equations such that

£(jr,y)e^'(li;)nC-([0,y.); ^' («"-') )1)nC"( (y», oo) ; j£ '(«-'))

and Fj(x), j = l,-,q, belong to C"([0, oo) ; 3)' (Jl-1)) C^)' (S?) .

(1. 8) P (£>*) £ (j;, y) = 8 (x - y) , xn>U, y = (0, y") e 1? ,̂

2) This will be defined in Section 4.
3) This space will be defined in Section 3.
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(1.9) Bj(Dx)E(x,y) Xn=0 = 0, .7 = 1, -,<7,

(1.10) P(D)Fk(x)=0, .rn>0, k = l, . . . , < 7 ,

(1.11)

where 5 is the Dirac delta function, y" = (yz, • • • , yn) , :r' = (.TI, • • • , -rn-i)

and Sjk is the Kronecker delta symbol (i.e., SJk = 0 if J7^& and djk = 1

if j = k). DJ denotes i~ld/dxj and JD denotes (Dly - • - , Z)n) .

We say that a system {P (Z>) ; 5 , (£)) , j = !,-••,(?} of differential

operators is hyperbolic in JR+ with respect to $= (1, 0, • • • , 0) if it has

a unique system {£ (.r, y) ; F7- (x) , J = l, • • • , ^} of fundamental solutions

of the mixed problem (1. 3) - (1. 5) such that the support of E(x9y}

with respect to x is contained in (K + y) H-K+ and the supports of the

Fk(x) are contained in Kf}R+. Here K is a closed proper cone with

its vertex at the origin such that .r-$>0 on K— {0}.

The purpose of this paper is to characterize the hyperbolicity for

the mixed problem (1.3) -(1.5) by showing that {P (D) ; Bj (D) , j = l,

•-,q} is hyperbolic in jR+ with respect to -0-= (1, 0, • • - , 0) if and only

if P(f) and ^(C7) are both hyperbolic with respect to $ and $r, re-

spectively. Note that we do not assume that the hyperplane xn = Q is

non-characteristic for P (Z>) and Bj (D) . We shall show

Main Theorem. // a system {P(D) ; Bj(D), j = I, • • - , q} of dif-

ferential operators is hyperbolic in B+ "with respect to $~ (1, 0, • • • , 0),

£/i£?z ^/z^ characteristic polynomial P(f) A^5 the properties (1.1) a;zJ

(1. 2) ze;zY/z respect to $ and the number q of the boundary operators

Bj (Z)) ??zws£ Z?£ equal to the constant number p of the roots -with

positive imaginary part of the equation P(fx — zs$', A) — 0 in A wzV/z

5 large enough and the Lopatinski determinant -R(C') has the pro-

perties (1. 6) and (1. 7) .

The plan of the remainder is as follows. In Section 2 we prove the

hyperbolicity of the characteristic polynomial P(?) with respect to $.

We give some preliminaries for the latter sections in Section 3. In Section

4 we prove the hyperbolicity of the Lopatinski determinant with respect

to $' under the assumption /> = <7>1. In Section 5 we complete our proof
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of the main theorem. In Section 6 the system of fundamental solutions

{E(x, y) ; FJ(X), J = l, • • • , < ? } are constructed under the assumptions:

( I ) P(f) is hyperbolic with respect to &= (1, 0, • • - , 0),

(II) p = q,

(III) The Lopatinski determinant of the system {P (£>) ; Bj (£>),

j = ~L,-',p} is hyperbolic with respect to $'.

Moreover we shall prove that E(x9 y) belongs to C°° ([0, yn) ;

^'(ir-^nC-CCyn, oo); ^'(IT-1)) and !?,(*) belongs to C°°([0, oo) ;

^)/(I?n~1)), j — 1, • • • , < ? and that such a system is unique. When the

boundary xn = 0 is non-characteristic for P (D), we give a proof of the

uniqueness of this system. The proof is done by using the Paley-Wiener-

Schwartz theorem. When the condition is not assumed, we prove it by

a standard method employing the adjoint system of {P (Z)) ; By- (Z)),

.7 = 1, --,p} and by modifying the proof given in [9].

The author would like to express his sincere gratitude to Professor

M. Matsumura for many valuable suggestions and much kind encourage-

ment and also to Professor S. Wakabayashi for his valuable advice. The

proof of Proposition 3. 1 in Section 3 is due to Professor S. Wakabayashi.

§ 2. Hyperbolieity of tlie Characteristic Polynomial

In this section we shall prove that the existence of certain funda-

mental solution E(x, y) implies hyperbolicity of the characteristic poly-

nomial P (f). This can be done by a slight modification of the proof

given in Atiyah, Bott and Carding [1].

Proposition 2.1. Assume that for some y= (0, y/x) e J?+ there

exists a fundamental solution E (x, y) of the mixed problem (1. 3) -

(1.5) (i.e., solution of the equations (1.8) and (1.9)) such that the

support of E(x,y} -with respect to x is contained in (K + y) 0^+-

Here K is a closed proper cone -with its vertex at the origin such

that .r-$>0 on ^—{0}. Then the characteristic polynomial P'(f) is

hyperbolic with respect to #= (1, 0, • • • , 0).

Proof. Let U be a neighborhood of the point y such that E/CI/Z+
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and 0eCrCR+) be equal to 1 in U. Then we have

$(x}P(Dx}E(x,y)=8(x-y) in IT,

so it follows from Leibniz's formula that

(2. 1) P(D)f(x)=8(x-y)+g(x) in IT,

where f(x} =<fi(x)E(x, y) and g (*) = £ (D«<j>(x» (P^(Dx}E(x, y)/a!
\a\>l

are distributions with compact support. Taking Fourier-Laplace transforms

we have

(2.2) P(C)/(C)=exp{-Z-yC}+g(C), Zf=C* = B*+iB*,

where f(Q=3f, g(Q—3?g are entire functions. If P(C) is a non-

vanishing constant, the conditions (1. 1) and (1. 2) are satisfied, so we

assume that P (Q is not a constant. Then g cannot identically vanish

because P(C) has zeros. Since g^&'(Rn) we have for some constants

C and N

(2.3) |0(0|<C(l

where

(2.4) h (if) — Max .r • f],

We note that

(2.5) A

In fact, this follows from the fact that the support of g is contained in

(supp0-£7) n (K + y). From (2.2) and (2.3) we find for any C^C71

with P(C)=0

|exp{-iy-C} <C( l+ |C i )^ex P A(ImQ.

After taking logarithms of both sides, we get for any C^C71 with

P(0=o
(2.6) -A( ImQ+yImC<C 1 + C 2 log(l+ |C|) ,

where C\ and C2 are some positive constants independent of C.

We shall now prove that the plane .r-$ = 0 is non-characteristic with

respect to P(D), i.e., P°($)^0. We will argue by contradiction. Sup-

pose that P°(#)=0. Since P°(f) =£0, we take a ?°eSn such that
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9 and consider the polynomial in two variable t and s\

Since c0(0) =P°(*) =0 and <:0(1) = P°(f°) =£0, the algebraic equation in

£:P(s*(?° — #)+*#) =0 has a solution *(s) in a neighborhood of 5 = 0

such that

(2.7) *(J)=<M* (l +

where a is a non-zero complex number and p is a negative rational

number. In fact, the assumption JP°($) =0 implies that /> is negative.

If we choose the path 7": |^|<(J and arg s= ( — 7T/2 — arg a)/p, we have

Im*(s) = — \a\ - |s|p(l + 0(l)) as s-»0 along the path f

and therefore

(2.8) ImC(5)=Im^(5)(f°-*)+^(5)*) = -|a||5|^(l + 0(l))

as s-»0 along the path 7% because st(i) = <2Sp+1(l4- 0(1)) , j->0. Since

y • Im C (5) - y " ' Im C/x (5) - Im ̂  (5) (f °) /x - y ̂ , it follows from (2. 5) , (2. 6)

and (2. 8) that

NP<C3-f C4log(l-f Hp) as ^->0 along the path f,

where C3 and C4 are some positive constants. Then we have a con-

tradiction. This proves that P°(^)=^0.

Next we proceed to show (1.2) with #= (1, 0, • • - , 0). Since JP°(#)

^0, the algebraic equation P(f + ST?) =0 in 5 has w roots Sj(S)y J=19 •",

7?z, (counted according to multiplicity) . Set

H ( r ) = sup ~Im^(f) .
|f|=r

J=l,—,m

For every 5^ (f ) we have from (2. 6)

(2.9) A(-*)Im5y(f)<C, + C,log (1+

because y- i? = 0. Then we have

(2.10) Xr^ar* (l + o(l)), r-»

where /> is rational and a is real. For we write

P (f + s0) = 1?! (f , Re s, Im 5) + fjR, (£, Re 5, Im



HYPERBOLIC MIXED PROBLEMS IN A QUARTER SPACE 363

Here J?j and R2 are polynomials with constant coefficients in the n + 2

real variables f = (f1? • • • , fn) , Re 5 and Im 5. If we set

Mr= {(£, Re 5, Im 5) ; \?\2 = r\ Rk(?9 Re 5, Im s) -0, A = l, 2>,

then f l ( r ) = sup — Im 5. By the Tarski-Seidenberg theorem we
(£ , Re s, Im s) &IT

have either (2.10) or ft (r) = + oo for all large r. Since P°(#)^0 as

proved above, the roots Sj (f ) are multivalued continuous functions. Hence

the function sup |Sj(f) | is bounded when £ remains bounded. Thus
y=i,.»,m

# (r) is finite for any finite r->0, so we have (2. 10) . From (2. 9) and

(2. 10) , it follows that

- h (- #) 0 (r) <d -f C2 log (1 4- C3r) ,

where Cs is a new positive constant. In view of (2. 5) and (2. 10) this

inequality means that j u ( r ) remains bounded when r— > + oo, namely there

exists a real fo such that

Im ^-(f) <70 for any j Q<j<m) and for any

Therefore, P(f + s#)^0 when Ims< — fo and ?eSn. So the theorem

is proved.

§ 3. Preliminaries for Latter Sections

We denote by 5; the space {x= (^x, xn) ^Rn; ^:n>0}, i.e., the

closure of J2™ and by 91?+ the boundary plane xn = 0 of Rn
+. Let J2 be

a noil empty open set in Rn and let 3) (ff) denote the space of all com-

plex C°° functions with compact support in J2, which is equipped with

the Schwartz topology. We set

(3. 1) S) (£*) = {0 e 3) (IT) ; supp 0d^} .

This is a closed subspace of S) (Rn) and we give it the induced topology.

We denote by ^'(SJ) the dual space of 3) (fij) . By the Hahn-Banach

theorem, any element of S)f (R+) can be extended to a continuous linear

form of 2) (R71} , that is, a distribution on Rn. On the other hand S) (H+)

is a dense subset of j2) (1?J) and therefore a continuous linear form on

.2) (Jf?J) is uniquely determined by its restriction to 3) (-R+) and can be

identified with an element of ,2)/(jR+) consists of all distributions in R°i.
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Thus the space 3)' (Rl) consists of all distributions in JR+ which are

extendable to distributions on Rn. Namely

/o ON (T\ f f nn\ (T\ f f on\ / (T\ / f Tpn N
\O. &J ^z/ \J\+) == <^U \I\. ) I «^U I -fl_) ,

where 3)' (R«L) = {u e 3)' (Rn) ; supp udR*L = {x= (x', x^ ; ̂ n<0}}. We

denote by C°°(7; ^)/(jRn~1)) the space of infinitely differentiable functions

which are defined on interval I in I?1 with values in 3)'(I?71"1) equipped

with the weak topology. When /= [a, £) , u e C°° (/: 5)' (jR71'1)) means by

definition that for any 0 e S) (i?71"1) , <2/ (^) , $> is a C°° function on [<z, Z?),

that is, there exists a C°° function /^ (^) defined in (a — d, b) for some

£>0 such that (u (t) 9^)>=f(f) (t) on [a, &) . Then, for any u e C°° ([a, b') ;

^)/(l?n~1)) there exists a v ^C°° ((a — d', b) ; <3)'(R*1"1*)) such that

u ( f ) = v ( f ) on [#, ^). This follows from a theorem due to Seeley [10]

which guarantees the existence of a linear operator T from C°°([0? A))

to C°°((-A, A)) (A>0) such that for any /e C°° ([0, A)) , (T f} (t)

on [0, A) and

Max \Dk
t(Tf} (t}\<Ck)A Max |Ay/(OI,

where Cft,4 is a positive constant depending on k and A. but not on f.

In fact, define a linear form <t; (*) , <£> on ^) (jR71-1) by T<w (0 , 0>. Then

it is easy to see that v (f) is a C°° function on ( — A , A) with values in

^(IT-1). Clearly we have

(3. 3) C" ([0, oo), £)' (Rn-l}}d£)' (g») C^)r (I?:) .

In our definition of a system {-E(.r, y) ; Fs (x) 9 j = 1, • • • , g} of funda-

mental solutions of the mixed problem (1. 3) - (1. 5), we assumed that

EteaOeC-Cfl) , yn) ; 5)' («-')) nC"((y., oo); ^'(B"-1)) and F,(x)

e C°° ([0, oo) ; $)' (H71"1)) .4) These assumptions are reasonable because the

fundamental solutions which we shall construct belong to such a space

(see section 6). As already remarked, we do not assume that 9.R* is

non-characteristic for P (D). However if 9JR+ is non-characteristic for

P(D), we need not assume that E(x, y) e C°° ([0, yn); •®/ C*""1))

(yTO, oo); ^'(U-^andFX^eC-CCO, oo); S)'(Rn-1^. It is sufficient

4) See introduction.



HYPERBOLIC MIXED PROBLEMS IN A QUARTER SPACE 365

to assume that E(x, y) and Fj(x) belong to 3)' (R$) , in view of the

following.

Proposition 3. I. Let P (x9 U) be a differential operator of

order m 'with coefficients in C°° (I?71) and assume that dRn
+ is non-

characteristic 'with respect to the differential operator. If u^S)' (R+*)

and P(x, D)weC°°([0, fl); 3)' (Rn~1}} , then -we have that u belongs

to C ~ ( 0 < ? ; < £ ' (IT-1)).

Proof. Since u^3)f(ES), there exists a distribution

with u=^u in Jtt+. Let Q be an open set of {x^Rn\ xn<^8} such that

the closure Q is compact. Then there exists a real s such that <j)-u

G c?f(M) (l£n) for any 0eC5°C0), where s is independent of 0 and M^^

= {/€=,*"(«»); (l+\£\2y/2(l+\£'\2y/2f&^L2(Bn). If we set v = j>V9 Q

= 0P (x, Z)) w, Leibniz's formula gives

(3.4) P(x,£))w = g + Q(^,Z>)» in JR"

where Q(j;, Z>) is a differential operator of order m—1 with coefficients

in C0~(,G):

Q (*, Z>) a =

Let 0 (V) e C0°° (IT
1-1) . Then we get from (3. 4)

(3. 5) P (x, D} (0*^) = 0* g + fc (Q (x, D} u) + [P (x, D) , 0*,] v ,

where [P (*, D) , 0*,] v = P(x, D) (0*,z;) - 0£ (P (x, D) z;) . Since 0 (f ') is

rapidly decreasing C°° function of fx, we have 0*/ (Jf(S>(r)) CJf(,j0o) for any

reals 5 and (T. Thus 0J/we J£(,|0o) and so 0J^|jB» =0J/(0«) e Jf(,j0o)(5j)

= {w e ^)x (JR+) ; There exists w e JT(S}00) swc/x ^/za^ w = ze; zn JR+} .

Here we denoted (/)\RnU by 0w for simplicity. From the assumption on

P (.r, ZJ) w and the relation

^) , £#0 (^x - y 0 X

it follows that 0*xgeC5)(lZJ) = {0eC°°(llJ); T/z^r^

5?/cA z^/z^^ 0=0 m jR+}. Consider the term 0 *, (Q (a;, D) w) in (3.5).

Take % e C£° (5) such that % (x) = 1 on supp 0. Since %w e ^(S>0) and
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QO, D} is of order m-I, we have Q(x, D}u = Q(x, D) (%u) e^(s_m+M).

Hence 0*, (Q (*, D) B) e c#(f __W+1|00) (5j) . We have also [P (x, £>) , 0*,] 0w

e c#(*_m+i,oo) OKI). In fact, we may assume from the assumption on

P(x,D) that P(x,D) has the form

Then [P(o:, D) , 0*,]v - [-R(ar, D) , 0*/]v. Since the order of R(x,D}

with respect to Dn is at most m — 1, we have jR (.r, D) (0J/T>) , 0J/ (J? (a:, D) t;)

e J^CS-TO+^OO) by using the fact the weight function (1+ ]f I2)*/2 is equivalent

to ( l+ | r | 2 ) f f / 2 ( l+ | fnr) f f / 2 and so [P(^D),0*/beJf(s_ra+1,ro>. This

also follows from the fact that \R (x, D) , 0 J,] is a pseudo-differential

operator whose symbol is

, f)
a

Summing up, we have proved

P (x, D) (0s. (#«)) e ^f(._m+1,

By Theorem 4. 3. 1 in Hormander [7] , we get

Repeated application of the same argument gives that

Then

G&(0a)) (0, x') =<(0«) (y', J:.),0(y')>,'SC"([0, oo)).

Since 0eCr(-S) and 0eCr(l?n~1) are arbitrary, we conclude that

w e= C00 ([0, <J); .S7 (I?71-1)) • This completes the proof.

Lemma 3. 2. Let u (x^) be a continuous function defined on the

interval [0,6] with values in 3)' (R1^*) . Then there exist constants

C, r and a compact set KdR71'1 such that

(3. 6) |3v«(*.) (CO |<C(1+ IC'ir exp h(lm CO,
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where h (Im C') —Max x' -Im C' and C, r are independent of xn^ [0, b].
x'^K

Proof. For any $ ̂  £ (JR^1) we have

sup |<BGO,0>!<°° ,
*»e[0,&:i

that is, {tt(:r,i); ^e [0, b~\} is a weakly bounded set in Q' (jRJr1) . Hence

{w(xn); xne [0, 6]} forms a strongly bounded set in £' (jRJr1) and so

there exists a compact subset K of fi^r1, a positive constant C and an

integer r>0 such that |J supp u (xn) dK and that
^ne:o,&:

(3. 7) sup | <« (x.) , 0> | <C • sup | D^ (X) , 0 e 5 (^r1) ,
.rneco,&] *'ex

i«|<r

where C is independent of 0. On the other hand, we have

(Sv« (x.) ) (C') = <« (xn) , exp »V - C'> .

Applying (3.7) to this relation, we get (3. 6) . Q.E.D.

Now we present a basic lemma concerning a representation of solu-

tions of equations which will be used in Sections 4 and 5 (see Hormander

[7])-

Let P(Dt}=DT+am_1DT~ljr"-Jra0, where Dt= —id/dt, be an

ordinary differential operator with constant coefficients of order m. Assume

that the zeros of the equation P(r) =0 are all non-real. Then let us

denote them by rf, • • - , rj, rf, • • - , r~_ p , where Im rj~>0, j = 1, • • - , p and

Imrj<Q9j = l9"'9m — p. Assume that />>!. Let Bj(Dt), j = 1, • - - , />,

be some other ordinary differential operators. Put

We define the Lopatinski determinant of the system {P (Dt) , Bj (Dt) ,

j = I, -,p} by

R = det (2ni) -1 Bj (r) •ck~1P+ (r) -ld*
\ Jr

where f is a positively oriented contour in the complex r-plane enclosing

the zeroes f i~, • • • , fj. We have

Lemma 3. 3. Assume that R=£Q. If f^C &(!&+) , Qj9J = ^-9
 m " 9 P 9
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are complex numbers and u is a solution of the inhomogeneous boundary

problem:

which belongs to C^(i?+), then it follows u = vl
j
rv2, where

v, = (27f) -1 Jexp {it-c} 3 [/„] (r) P (r) ~Wr ,

v2 = (27ri) -1 S5f *-i exp {itr} -ck~lRjk (g, - B, (A) ^ | *=0) (P+ (r) J?)-

Here jT0 denotes a compactly supported C°° extension of /* to

£? [/"o] denotes the Fourier transform of f0, and Rjk denote the (j,

cofactor of the matrix ((27rf)-1 (*£,- (r) r*-1^ (f)) ~Wr) ,-,fc=i5...,P.

§ 4. Hyper boliclty of the Lopatinskl Determinant

Let P(?) be a hyperbolic polynomial of order m with respect to

$. Then it follows that the principal part P°(£) is hyperbolic with

respect to & and that a homogeneous hyperbolic polynomial has only

real characteristics. The component F = F (P*) =F (P,$) of the set

Sn — {? e j?re ; P° (?) = 0} which contains 7? is an open convex cone with

its vertex at the origin and we have

(4.1) P(f -f z"^)=£0 when feS" and T j ^ — F — s with s large enough.

The localization Pfo (?) of P (f ) at f° is defined by

(4. 2) rT (r-1? ° + f) = f*'°^- (f ) + O (rm'° +1) as r-^0,

where P|0 (f ) is the first coefficients that does not vanish identically in

£. Then it follows that the localization Ps 0 (?) of P(f) at any real

point f° is hyperbolic with respect to $ and that

(4. 3) r - r OP,
For further details we refer to Atiyah, Bott and Carding [1].

Now we write the polynomial -P(f) in terms of power of

p (f ) - P (£', f ») = s?:̂  (f o f?'-' ,

5) See Seeley [10].
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where <?0(?') is not identically 0. So mr <m, in particular m — mf if

the hyperplane xn = 0 ( : 91?+) is non-characteristic for P (f ) . Then we

see that g0(£') is the localization of P(?) at JV= (0, • • - , 0, 1). Hence

we have

(4.4) go(?'-t-zY)^0 when feS"-1 and

in particular ??e — F — sfi with 5 large enough (Note the relation (4. 3)).6>

If we set

(4. 5) r, = ft' 6 S-1 ; 0?', 0) e T} = ̂ V1 f| T ,

it follows from (4.1) that the roots of the equation P(C', A) =0 in A

are never real when C' = £ ' + irf ^Sn~l — iFQ — is$' with s large enough.

By (4. 4) the roots of P(C', A) — 0 in A are (multivalued) continuous

functions of C' ^ Sn~1 — iFQ — is^ and therefore the number of roots with

positive imaginary part, counted according to multiplicity, is constant

when C ^3n-l-irQ~is$'. The roots of P(C, A) -0 in A with positive

imaginary part we denote by hi (CO , • • • , Ap (C) and those with negative

imaginary part by A;+1 (C) , • - • , A~, (CO . Put

(4.6) P+(C / ,A)-7T?= 1(A-A;(C /)) , CeS^-zTo-z^.

In this section we consider the case where the number of boundary con-

ditions Bj(D) equals exactly p. In particular, if p = Q, boundary con-

ditions are not imposed. Therefore, we assume that p>\ in this section.

We define the Lopatinski determinant of the system {P (D) ; Bj (D) ,

j = l9..-9p} by

(4.7) R(C)=det((2nir1 f
\ Jrcco

,
/ y, *=!,-,?

1 — iFG-- isd' with 5 large enough, where /(CO is a positively

oriented contour in the complex A-plane enclosing the roots Af (C) , • • • ,

AJ(CO- Denote by /" the projection of F in S71"1, that is,

(4.8) r={

which coincides with one defined in Sakamoto [9]. The following two

6) These fact are pointed out by K. Kasahara. He also showed that his discussions in
[8] are valid in this case (unpublished).
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lemmas are due to Sakamoto [9].

Lemma 4.1 ([9]). -R(C') is holomorphic in Bn~ir~is$' with

s large enough.

Lemma 4.2 ([9]). Let t be a complex parameter. Then -we

have

(4. 9) R (*CO - **' {R° (CO + t~lRl (CO + t'2R2 (CO + • • • > ,

•where the convergence is uniform in Kx {/leC; \^\^>TK} for every

compact set K in Sn~l~iP and for some TK^>0 depending on K.

Furthermore

( I ) J?°(CO does not vanish identically in C' and hQ is an integer•„

(II) every R3(CO is holomorphic in F = U z(Sn~l-iP),
zeC-{0}

(III) R* (*C') = f'-'R' (C'), C' e r, t e C - {0}.

Main purpose of this section is to show the following.

Proposition 4.3. Assume that P (D) is hyperbolic 'with respect

to $ and that p -which is the number of the roots -with positive

imaginary part of the equation P(f' -— is-d-'9 A) =0 in A for large

positive s is greater than 0. If in the mixed problem (1. 3) - (1. 5) the

number of boundary conditions is equal to p and there exist dis-

tributions on JR", Fj(x)9 j = 1, • • • , p, 'which satisfy the equations (1. 10)

and (1.11) a;zJ belong to C°° ([0, 5); £)x (I?71"1)) /or some positive

number S, 'whose support is contained in Kf~]R+, then the Lopatinski

determinant of the system {P(D); Bj (D), j = l, --^P} is hyperbolic

•with respect to $', £/?#£ z's,

(I) #°(#0^0,

(II) there exists a real number f1 such that

R(g'+sd')=£0 when ^^S71"1 and Ims<Ti>

Proof. Let U and U' be open neighborhoods of the origin in Rn

such that the closure of U is contained in U', that the closure of

U' is contained in R71'1 X (-5/2, S/Z) and compact in Rn. Choose
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(p€=C?(U'x(-d/2,d/2)) with 0(:c)=l in U. Then

(4. 10) P (D) (0Ffc) (or) = /*(*), a: e flj .

(4. 11) B,(D) (0F4) (*) U a_o = <Wa:') +g,,(^), *' €=«-',

where fk = P(D)((f>-T)Fk and Qjk = Bj (£>) (0-1) F f cUn = 0 are distribu-

tions with compact support. Taking partial Fourier-Laplace transforms of

both sides of (4. 10) and (4. 11) , we obtain

(4.12)

(4. 13) BJ (C', AO (0>0 (C', *w) U,-o = ff,* + g,-, (CO .

Now we apply the Euclidean algorithm to the polynomials in A: .Bj (£', A),

P(C', A) and P+(C',A). Then we have

(4. 14) B,(C', A) =Q,(C', A)P(C, A) +T,(C, A)P+(C', A) +B?(C', A),

where Qy(C x ,A) , Tj(£',fy and BJ (£' 9 fy are polynomials in A whose

coefficients are holomorphic functions of Cx in Sn~l — ij $' — iP and of

polynomial growth in Cx. Furthermore, deg Q,j<J*j — m', deg T j<Zm' — p

and deg .B* <C/>- Here r^ is the degree of J3/(C', A) in A. Substituting

(4. 14) in (4. 13) , we find

(4.15)

We write B* (^' y Dn) in terms of powers of £)n;

(4. 16) 5^ (c, DJ = sf-i*^ (CO £»r *
where all & / f c (C

x) are holomorphic in Sn~l — Z7"o#' — z/1. Since

»,.> -P ««>-0.1. • • • .. ,
2?rz Jr(C') (I for j — p — 1,

(4.17)

we have

(4. 18) # (CO = det (bjk (C) ) ,,*_,,.,„ C' e S"'1 - x'r,*' - i/1 .

From (4. 15) and (4. 18) , we obtain
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(4. 19) £«;') det (Dr^CC, *.) k_o

We first consider the case where 5(£')==0 in Bn~l — iTC$-'—if. Then

£(£')=£() in B*-l-ir*$'-f. Suppose that #°(#) -0. Since £(r#')

= rX£0(#0+r~1#1(#') + -")=£° for any reC' with M larSe enough,
there exists an integer J0>1 such that RJ ($') =0, .7 = 0, • • • , ./<, — 1 and

#>• (#') ^0. Since R° (C) E£ 0, take a C0/ e= S71'1 - if such that .R0 (C0/)

and consider the function of (s9 z) :

(4. 20) f(s, z) = R° (s (C0/ - *7) + #') + ̂ J?1 (5 (C0/ - fl 0

This function is holomorphic in a neighborhood of the origin of C2.

Since by assumption /(O, 0) - ••• = (d/dz) f9"1f(09 0) -0 and (d/dz}Jo

X/(0, 0)=^=0, we can write by applying the Weierstrass preparation

theorem (see, for example, [4]) to f

(4. 21) /(*, z) = (z*> + H^aj (5) «'--0 « (5, «) ,

where w (5, z) is holomorphic and w (s, z) =£0 in a neighborhood of (s, z)

= (0,0) and <zy(0)=0, J = 1 9 - ~ 9 J Q . Then the equation f(s9z)=Q has

a solution 2^(5) ^0 which is an analytic function of 51//J in a neighborhood

of the origin and vanishes at the origin:

(4.22) z(*)=Sy-i^(*1/0' !

where J is a positive rational number. Put

(4.23) *(*)=!/« (5).

Then we have

(4. 24) 1 00 - ^* (1 + o (1) ) , as 5->0

where V is a negative rational number and a is a complex number. If

we choose the path: Q<^\s\<^d and arg (asv) = — ft/2, we have

t (5) s (C0/ -#')+* GO #' e S71'1 - fro*' - if

and

by taking ^f>0 sufficiently small if necessary. This contradicts that
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R (CO ̂ 0 in 3n~l - ir*$' ~ if. Then we have R° (#') ^0 when S (CO =0.

Next we consider the case where 5 (CO does not vanish identically

in 8n-l-ir$'-if. Put

H={x'',x= (x', xn) GE (supp (P-U)(~}K for some xn>(

Then supp fkdH and supp gjkdH. Since the compact set H does not
x'

contains the origin in I?71"1 and x1 = x' •$'>() on H9 we have

(4. 25) A ( - #0 = Max x' - ( - #0 <0.

Further we have for some constants C and JV

and

(4.27) |QXC',AO/*(£', *n) . . . .I^CCl-HC'D'expACImC').

We shall also denote by C and N some inessential constants which

occur in later estimates. Now we estimate the term T j (C, DOP+ (C7, DO
/x

X (0.FO (C7,-^O U»=o in (4.15). For simplicity we put ^(C'j-rO

= P+ (Cx, Dn) ( 0 f c ) (Cx, xn) . Then supp vk(£', xn)d [0, 5/2] and
xn

is a solution of the equation

where P_(£', DJ =P(£'9 DJ/P+(£'9 DJ is a polynomial in Dn whose

coefficients are holomorphic function of Cx in Sn~l — ifo^ ~ if*. Further-

more these functions are of polynomial growth in C'. We define

fk(C,Xn)=0 for :cn<0. Since the equation P_(C, A ) = 0 in A has only

roots A (C7) with Im A (CO <P when C'eSn-1-*ro#'-*A we have

, *0 - (27T) -1 r+

J-o

Hence we have

(4.28) |j

1/2

j V2
X { f

i j—°
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<C\ r
( JO

Now, we know that

where the constants C and N are independent of xn>0. Since

deg Tj (£', A) <m' -p, we obtain from (4. 28)

(4. 29) \Tj (C', Dn) P+ (C', £>n) (0X) (C', ^n) Un=o|

<C(l+|CTexp{A(IniC')}-

From (4. 15) , (4. 18) , (4. 19) , (4. 26) , (4. 27) and (4. 29) , we deduce

that

where r is a positive integer. Then (4. 17) implies that

l<C(l+|C1)*exp{rA(ImC')} for any C S S71'1 - *><)#' - if

such that -R(CO =0. Hence we have

(4.30) -A(ImCO<Ci + C2 log(l+|C' |) for any C with 22 (C7) =0.

Here Ci and C2 are some positive constants independent of C/ '.

Now let us show R^&'^O. If #>(#') =0 for all j = 09 1, • • • , we

have R(-it$'} =Q for O>r0
 from (4- 9). Then we deduce from (4. 25)

and (4. 30) that

which is impossible. Consequently there exists an integer j0>Q such

that &•(&') i^Q and £>(#') -0, j = 0, • • • , J0-l, if J0>1. Suppose that

^°(r) -0. Since ^°(C) ^0, we take a C'^B^-if such that ^(C07)

^0 and consider the function f(s9 z) defined by (4. 20) . By the same

argument as in the case when £(0=0, the equation f(s9z')=0 has a

solution z (5) E£ 0 of the form (4. 22) . Then t(s)=z (s) ~l satisfies (4. 24) .

Set C'(s) =st(s) (C0/-t?0 +t(s)<d-' and choose the path £:0<|<? <J and

arg(a5p) = — 7T/2. Then we have
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(4.31) JR(C'(s))=0 and Im C' 00 - - | a\ \s\v$' (1 + 0(1)) as s-»0

along the path K. In view of (4. 25) , we have

(4.32) -h(lm£'(s)") = \a\-\s\v. (l + o(l)) as s->0 along ic.

Since IC'OOI^Constl*!", we deduce from (4.30) and (4.32) that

|5|y<Ci+C2 log( l+i*JO as 5->0 along K.

Here C( and C£ are some new positive constants independent of s. Since

V is a negative rational number, this is impossible. Therefore we conclude

that R°($'^0.

We shall finally prove the assertion (II) . We first note that if we

consider the polynomial of the variables C', AI", • • • , AJ :

51 (C7, tt, • • - , A+) = det(B]b(C', AJ))/ n (AJ- At),
*<y

we have

£ (CO =&(£', ̂  (C'), -,W)).
Put

Mr= {(?', Re 5, Im s, Re ilt Im A1; • • - , Re J.m,, Im ̂ m/);

Im *!

and

/^(r) =sup —Im

the supremum being taken over all — Im s such that (f x
? Re s9 Im 5, Re A1?

Im A!, - - - , R e Am , ,Im Am,)eM r. Since ^°(^)^0 and g0(f + 5^)^°

when Im5< — 7o, we have /^(r)^oo. Then it follows from the Tarski-

Seidenberg theorem that

(4.33) A(0=ar 6 (l + o(l)), r-^ + oo,

where a is real and b is rational. Let us denote by 5(fx) the zeros of

the equation R($' +s&') =0 in s. If Im s^) <0, we have from (4. 30)
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(4.34) -Imj(f /)(-A(-* /))<Ci +

because h (Im (f ' + <nT ) ) = ( - Im s) h ( - #') . When Im 5 (f ') >0, (4. 34)

is obvious. Using the Tarski-Seidenberg theorem we have also

(4.35) sup |s(£')|<Const 7^ , as r-» + oo.
\t'\=r

Hence we get from (4. 33) , (4. 34) and (4. 35)

Since — A( — #')>0, this inequality means that #(r) remains bounded

when r— » + oo. This implies that there exists a real fi such that

^(f' + s#')^° when Ims<Ti and f'eS*-1. Thus the proof of Pro-

position 4. 3 is complete.

Assume that the Lopatinski determinant -R(C') of {P(D);Bj(D)y

j = l.9"'9p} is hyperbolic with respect to $' , where P (D) is hyperbolic

with respect to #= (1, 0, • • - , 0) . Then the principal part .^(C) is also

hyperbolic with respect to $' . Let us denote by 2 the connected com-

ponent containing #' of the set {? ' e/1; J?°(f 7) ̂ 0}. Then J1 is an open

convex cone in Sn~l. (See Wakabayashi [12] , Lemma 2. 3.) Then we

have

Lemma 4.4 ([9]). There exists a constant Yi such that

(4.36) 2?(CO¥=0 /or C e S71-1 - *"ri#' - ^ .

Moreover there exists locally bounded functions C(^x) and

that

C(tf)=C(7]'),N(tf)=N(f) when t>l, f

^A^

(4.37)

§ 5. Proof of the Main Theorem

Let P(D) be a hyperbolic operator with respect to $= (1, 0, • • • , 0)
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and let p be the number of the roots with positive imaginary part of

the equation P(£' — isd' , A) =0 in A for ^'eJIT"1 and sufficiently large

s. Let Bj(D)y j = 1, • • • , g, be boundary operators with constant coef-

ficients. Then we have the following two propositions.

Proposition 5. 1. Assume that p = q and that the Lopatinski

determinant R(&'} of the system {P (D) ; Bj (D) , .7 = 1, • • • , / > } " hyper-

bolic -with respect to #', if />>!. L^ T7 (x) e C°° ( [0, oo); 3)'(Rn-1)) be

a solution of the homogeneous problem'.

If suppWd{x€=R*',Xi = x"9->0}, then

Proof. Put

where r = F(P, $) (see Section 4). Let J^ and ^x denote the dual

cone of JT and 2, respectively. For any positive number b, we put

and

Since both f and ^ are closed

proper cone with its vertex at

the origin such that .r-$C>0 on

F ~ {0} , there exists a number

b^>0 for an arbitrarily given

such that Db and

l-^l^^, -^i^O, -^n^O} are disjoint.
Choose such a number £>0. Let 0<E CS°({^e Hn; \x\<b + l}) be equal

to 1 in {x&Rn; x\<b} . Then we have

(5.1)
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(5.2) Bj(D) ((/>W)\Xn=Q = gj(x'^ J = l, ~',P>

where (f)W and / are C°° function of xn in [0, oo) with values in

6" (IT-1), gy(:O belongs to <?' (Rn~^ and

(5.3)

(5.4)

Taking partial Fourier-Laplace transforms of both sides of (5. 1) and

(5. 2), we obtain a system of ordinary differential equations with a

parameter £':

(5.5)

(5.6)

jR(C') is, by assumption, hyperbolic and so ^(O^O f°r C''

— iZ. Since 0W"(C', •)> /XCX, *) ̂  C1^ (-K+) for every Cx, we can write,

applying Lemma 3. 3,

/\
(5.7)

where

/jr ON ,-, /<^''i^o. o^ v\ \^

Jr(C')

x^.(C')[fl'y(C /)--BXC /,I>.)«i(C /,^.)l..-.](^(C /))-

Here ^ / fc(C /) is the (^', ̂ ) cofactor of the matrix

\ Jr(C') * + 9 / j,k=i,...,p'

fo(<Z',3;n*) is a compactly supported C°° extension of Jr(C/, ^n) to j

and

(5. 10) ^[/o] (C'; f») = f
J-

If ^> = 0, that is, if the equation P (C / ,A)=0 in A has only roots

with Im/KC')^ for every C'eF^-zYitf'-z'l, we have

/,J:n) for ^n>0.
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Therefore we define ^2(C', ^n) — 0 in this case. Now we have from

(5.7)

(5. 11)

where S ,̂1 denotes the inverse Fourier-Laplace transform in £'. From

(5. 8) and (5. 10) we find

(5. 12) S^CfiCC',*.)] =2rc'1[(P(0)-1£(C)] =ffc>[(P(0)-1]*/o-

Since fff/1 [ (P (Q ) -1] is the unique fundamental solution of the Cauchy

problem for P(D) such that the support is contained in jT', we obtain

using (5. 3)

(5. is) supp S^L^CC', *»)] n Jeer7 -rS> .
In particular (5. 13) implies that

(5. 14) supp (B, (D) 3? [_Vl (C', x.) ] ! ,..„)

C {*' e ^R"-1 ; (^', 0) e r7 + 56} = 7\ •

In view of Lemma 4. 4, we have applying the Paley- Wiener-Schwartz

theorem7)

(5. 15) supp ffc-T f exp (ixnX) A*-1 (P+ (C', A) ) "VA
L Jr(C')

From (5. 4) , (5. 9) , (5. 14) and (5. 15) , we find

(5.16)

From (5. 11) , (5. 13) and (5. 16) we conclude that

(5.17)

Since (f>(x)=I on Ba and Ba^]Db = 0, (5.17) means that W(x)^Q in

Ba. Letting a-> + oo, we get W (x) =0 in 1?+. This completes the

proof.

7) For example, see Theorem 2. 6 in [1] or Lemma 2. 3 in [9].
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Under the situation at the beginning of this section we have

Proposition 5. 2. If p^>qy there exists a non trivial solution

W (x) eC^CfO, oo); 3)' (I?71-1)) of the following homogeneous problem

-whose support is contained in some closed proper cone K± zvith its

vertex at the origin such that .r-$^>0 on KI— {0} .

(5.18) P(D)W = 0, xn>0,

(5.19)

Proof. Consider the matrix A (CO = (<Zy*(CO) j=i,-,z> where

(5.20) a,,(C')
Jr(C')

Assume that rank A (CO =r (0<r<#), that is, some r-rowed minor J (CO

of A(CO is not identically zero in En~l — iT$' — if when l<r<# and every

(r + 1), • • • , g-rowed minor of A(CO is identically zero in Bn~~l — zYo#' — if

when l<r<<2 — 1. When r^O, i.e., A(C /)^0, we may assume without

loss of generality that

(5. 21) J (CO = det («,, (C') ) ,,».!....., .

When lf^r<#? we put

(5.22) W(C/,^.) = -I!5,fc.1^(C/)^r+i(C/)

X {(27TZ)-1 f expC^^A^C^CC, A))-WA}
Jr(C')

+ J (CO (27Tz) -1 f exp (^nA) r (P+ (C , A) ) ~ldl ,
JrCCO

where J^AsCC) is the 0", &) cofactor of (a^fc (CO) y,Jt=i, . . . ,r . When r^O,

put

(5. 23) t^ (Cx, *.) - (2;rz) -1 f exp (zxU) (P+ (Cr, A) ) ~ldl .
JrCCO

Since

(27TZ)"1 f exp(f^A)^-1(^+(C /,A))-1^, y = l,-,#
JrCCO

are linearly independent functions of xn and J (CO ̂ 0 in Bn~l — if$' — if,
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we have W (C , -^n) ̂ 0. Since W(C',.Zn) is analytic in £', we have

W(£', -rn) ̂ 0 in Rn
+. It is easy to see that W (x) belongs to C°°([0, oo);

£)'(Rn~1}} and satisfies (5.18) and (5.19). Moreover, using the Paley-

Wiener-Schwartz theorem, we see that the support of W (x) is contained

in Kif]R+ where KI is some closed proper cone such that .r-#>0 on

K!— {0}. This completes the proof.

Let us now complete our proof of the Main Theorem which is stated

in Introduction.

Proof of the Main Theorem. In Proposition 2. 1 we proved that

the existence of certain fundamental solution E(x, y) of the mixed pro-

blem (1.3) -(1.5) for some y = (0, y") EE Rl (i.e., E satisfies (1.8) and

(1.9) and its support is contained in (K+y)f~]R+ where K is some

closed proper cone such that .r-$>0 on K— {0}) implies the hyperbolicity

of the characteristic polynomial P (?) with respect to #= (1, 0, • • - , 0).

The hyperbolicity of P(f) determines the number p. Next the unique-

ness of the system {Fj(x)9 j = \9--9q} implies that the number q of

boundary operators Bj (Z)) must be greater than or equal to p, because

if q<ip the system {Fj(x)9 j = \9--9q} is not unique by Proposition

5.2. Now suppose that q>p. When p = 0, Proposition 5. 1 shows that

if P(D)F1(x)=Q and supp *\C {.r<E fij, ̂ >0} then Fj(:c)=0. This

contradicts the definition of FI(JC). In fact FI(J:) must satisfies

the equation B1(D^)Fl (x) \Xn=Q = S (jcx) . When />>!, the existence of

F J ( X ) , J = l, mmm,P9 implies that the Lopatinski determinant of the system

); Bj(D)t j = l, ~',P} is hyperbolic with respect to #'. Since

satisfies the equations:

and supp Fp+1dKr\~RZ, it follows from Proposition 5.1 that Fp+1(j:)=0

in /?+. This gives a contradiction because Fp+i(x} satisfies by definition

the equation: BP+1(D) Fp+1(x)\Xn+Q = d(x") . Thus we conclude that the

number q of boundary operators Bj(D) must be equal to p. If £ = 0,

this means that such boundary conditions cannot be imposed. If £>1,

we see by Proposition 4. 3 that the Lopatinski determinant ^(C) of the
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system {P (£)) ; Bj (D) , j = 1, • • - ,£} is hyperbolic with respect to $'.

The proof is complete.

§ 6. Proof of Sufficiency

First we construct a system {E(x, y); Py (a:) , j = 1, • • • , q} of funda-

mental solutions of the mixed problem (1. 3) - (1. 5) for any given system

{P(Dy,Bj(D}9 j = I9-"yq} of differential operators satisfying the con-

ditions :

(I) P(f) is a hyperbolic polynomial with respect to #= (1, 0, • • • , 0),

that is, P(f) satisfies (1.1) and (1.2),

(II) the number q of the boundary operators Bj(D) is equal to the

number p of the roots with positive imaginary part of the equation

P(f '-«#',*)=() in A when f ^Sn~l and <>>r0,

(III) the Lopatinski determinant J? (CO of {P (£>) ; JB, (£>) , .7 = 1, •",/>}

is hyperbolic with respect to $', that is, .R(CO satisfies (1.6) and (1.7).

Let G(x) be the unique fundamental solution of the Cauchy problem

for P(Z)) in the half space x-$^>0. G(x — y) is given in the form

(6.1) <G (x - y ) , 0 O) > = (2rc) - f (P (f + 17) ) -1? (f + f
Js»

V s*^

where <p(x) =<p( — x) ^ £D (Rn) and $ ($ + iff) is the Fourier-Laplace trans-

form of 0. We may assume that 0 is of the form: 0 (x) = 0 (jc7) p (-rn) ,

0 e ^) (IT1"1) and pe^)^1), since the set of all test functions of this

form is dense in 3) (I?71) . Now we wish to show that G(x — y)

e C- ( [0, y.) ; j£' (^r1) ) n C" ( (y., oo) ; 4)' (.R^1) ) .8) To do so we write

in Section 4

(6. 2) P (f + i?) - gfl (? ' + ̂ o (f « + f?/o m/ + unr^i (f ' + ̂ o (f . + *w-'.
If w /=0, P(f -\-ifi) =P(?/ + zV)« In this case we do not consider any

boundary condition and so J5(x, y) =G(x — y). Then we have

8) Let / be an interval in R+ and let u^W(R\}. For simplicity we write w
.SXCRS"1)) in place of «|lznrix/eC00(/;^/(-R;r1)) where wl^^x/ is tne restriction
of M to jRSr'x/.
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(6.3)

Thus, in this case it is obvious that £(-, y) e C°°([0, yB) ; ^)'

Let us consider the case where m'>\. Take

|£n|<2}) such that %(£„) =1 when fj<l. Using Lebesgue's dominated

convergence theorem and Fubini's theorem we find

(6.4)

= lim (27:)-" f exp {- »
elO J

= lim (27T)- f+°T f
e|0 J-oo L J^"-1

where

(6. 5) J5 (a:., f ' + ill") = f +"exp {» (xn - y,) (f . + 17,.) } X (ef .)
J — oo

In order to derive an expression which is valid when £— »0, ^sve shall

first establish the following estimate.

a=0,l,2,-,

where 7l/a and ^ are some positive constants independent of £ -f- z'^ e Sn

-ir^-ir.
In fact, we have for some positive constants C\ and C^^l

(6.7) |ff.(f / + »Y)j>C1 (see (4.4))

and gt
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Then it follows from (6. 2) that

Hence if |£B + z7?nj>C3(lH- |£ ' + if I)™-"1'-1 with C» = 2m'C?Ci, we have

from (6.7)

and so

(6.8)

On the other hand, if |fn 4-ztfn[<C s(l + |f ' + *Y |)~m/, we have

(6.9)
From (6. 8) and (6. 9) we find (6. 6) for a = 0 with M0 = Max (C5 (2C3)

 m/,

C4) and kQ = m' (m — m' 4 1) . We show (6.6) for a>l by induction.

Now we have

,) P (f + £7) ! = !«'<?, (£' + »?') (f » + *•?„) "'-1

Hence

.) (P (f + Of) ) -1 j = (9/9f .) P (f + z?) 1 1 P (f +

Suppose that (6.6) holds for O^l^fX — 1. From the relation

we get

Now we have

and by the induction assumption
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1 = 0, 1? • • - , a — 1. Applying these estimates to the right-hand side of

(6. 10) , we have (6. 6) for a.

We shall now return to the integrals (6. 4) and (6. 5) . Using

repeatedly the relation

exp {i (xn - y n) (f n + r/?n) }

- - i (xn - y n) -1 (9/9f „) exp {* (xn - yn} (Sn + ztfn) }

and integrating by parts, we obtain

(6.11) /,(*„, r + zY)-(y,-^

x -

where

(6. 12) Js (x,, f ' + Zy ) = y]?=1£' f+"exp {f (xn - y.) (f „ + r/?B
J-oo

x [ ( - id/d$ „) a-' (P (f + £77) ) -1] rff „,

The estimate (6. 6) gives

(6. 13) | exp {i (xn - yn} (£, + zT?n) } % « (e£n) [ ( - i9/9f .) -' (P (f + z

Using Schwarz inequality and (6. 13) we find

j 1/2
X

IL
where C and & are some positive constants. Since 0e .2) (il71""1) we have

for any JV

(6.15)
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A,(7') = Max x'-i)' .
s'esupp 0

If we take p with support in (— oo, yn) |J (yn> oo), we may substitute

(6. 11) in the right-hand side of (6. 4) . Since we have (6. 13) , (6. 14)

and (6. 15) , letting £ tend to zero, we get the following expression by

Lebesgue's dominated convergence theorem.

(6.16)

f e
j2»-i

xn - y „)

Therefore we have for any sufficiently large

(6.17)

'" f
JS«

n)
 fl (P (f + z» ) - W ,

when .rn^;yn and we see that G(x- y) e C°°((- oo, yB) ;

nC°°((yn, +00); 2)'(Rn-1*)}. This implies that for any integer />0

Dl
nG(x — y} \Xn==v makes seiice ^vhen yn=^=0. Moreover the estimates (6. 6)

and (6. 15) enable us to differentiate the right side of (6. 17) with

respect to xn under the integral sign and so Dl
nG(x — y) | Xn=0 is given

in the form

(6.18) <DiGGE-y)|,m_,,0(:O>

= S;_,C«"y-a" f exp{-i-y(£+i-77)}0(£' + ty)
J3n

X (f . -t- ZT?») l-" ( - z9/9f .) " (P (f + f i?) ) - W , y ^0,

where a is chosen sufficiently large and Caiv = a(a+ 1) ••• (a+ V — 1) f

Writing

we also find



HYPERBOLIC MIXED PROBLEMS IN A QUARTER SPACE 387

(6.19) <

= m^_0C0,,y»"- f
JS

Now we define F(- , xn, y) e C°° ([0, oo) ; .0' (U"-1)) by

(6. 20) <*•(*, y), 0(^)>= (Z^-C

x ̂

where Rjk($ ' + z^x) is the (.;',&) cofactor of the matrix

If we put

then £(x, y) is the required fundamental solution, that is, E(x, y~) be-

longs to the space C"([0, y.) ; S)' (R^ nC-((y., oo) ; ̂ '(R"-1)) and

satisfies the equations

From Lemma 4. 4 and the Paley-Wiener-Schwartz theorem, it follows that

there exists a closed proper cone K with its vertex at the origin such that

.r-#>0 on ̂ -{0} and supp E(x, y) C (K+ y) n«I.
j;

On the other hand, the fundamental solutions Fj(x) are defined by

(6.21) <F,(*),00O>

( - 0 SJ^ exp {ix
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Obviously the F,(x) , j = 1, • • - , p belong the space C°°([0, oo), .0'

and satisfy the equations:

From Lemma 4. 4 and the Paley-Wiener-Schwartz theorem we also see

that the support of every Fj(x) is contained in some closed proper cone

having no points =^0 in common with the half-space .r •$>(). Thus we

obtained a system {E(x, y) ; Fj(x) , J = 19 ~'9 p} of fundamental solutions

of the mixed problem (1.3) -(1.5) for {P(D) -, Bj(D) J = l, • • - , q} which

satisfy the required condition on their supports. It only remains to show

the uniqueness for such a system.

Proof of the uniqueness of {JB (x9 j) ; Fj (x) , j = l, • • • , p} • The

uniqueness of the system {Fj(x)9 J = 19-'9P} follows immediately from

Proposition 5. 1. In fact, suppose that there exists an another system

{FXaOsC-CCO.oo); ^'(le,-1)), j=l,-,p} satisfying (1.10), (1.11)

and the required condition on support. We may assume that supp F'jdK

replacing K by a larger one if necessary. Then W (x) =Fj(x} —F'j(x)

satisfies (5.1), (5.2) and supp WdK. Therefore we have Fj (x) =^- (x)

by Proposition 5. 1.

If the hyperplane xn = Q is non-characteristic for P(£)), the unique-

ness of E(x, y) also follows immediately from Proposition 3. 1 and

Proposition 5.1. First we note that if &e 3)' (/?+) belongs to the space

^([M),-®'^"71)) for some d>0, then u^S)'(^). In fact, take

%(:cB)e=C!r((-5/2,ff/2)) with %(*„)= Ion [-5/4,5/4] and decompose

tt=Ma-(l-%)w = W l +«2 . Then ^1eC°°([0, 5) ; 3)' (I^r1)) and supp Wl

[0,5/2) so «iec-([0, oo); ̂ '(JRJr^C^'CS;). Since supp ^2

(5/4, oo), we have u^S>f(fG) and so u *= 3)' (5$ . Now

suppose that there exists a £' (x, y) e ^)x («^) R C"([0f y») ; ̂ x (H^1))

nC-CCy^oo);^^;,-1)) satisfying (1.8), (1.9) and supp£'(.r,y)

dK+y. Then W (x) =E(x,y) -E' (x,y} SE@' (E$) and satisfies (5.1),

(5.2). Hence WeC°°([0, oo) ; S)' (HJr1)) by Proposition 3.1. Since

, it follows from Proposition 5.1 that W(x)^0, that is,
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When the hyperplane xn = 0 is characteristic for P(D), our argument

above does not go through. So we shall prove the uniqueness of

E(x9 y) by a standard method employing the adjoint system of {P(D);

Bj(D}9 j = l, •• -,p}. The following lemma is a modification of Green's

formula given in Sakamoto [9] .

Lemma 6. 1. Suppose that the assumptions (I) , (II) and

(III) stated at the beginning of this section hold, and that u(x)

is an £' (Rl7l) -valued C°° fimction of xn in [0, oo) -with compact

support. Then for any 0eCS°(^+) there exist suitable functions

0^eC-(«;r1) 0; = l,-,/0, P/eC-ClGr1) O' = l, -,r-ro') and 0e

C°°(JRJ) sw^/z £A<2£supp 0CIsupp 0 + ^4, supp 0j-, supp pyCX-r'jCr', 0)esupp0}

that

(6. 22) (
Jo

/»o

Jo

-where A is a closed proper cone such that x- (~ $)>0 on A— {0}, m'

25 the order of P(U) in Dn, r is the maximum of the orders r5 of

and < , > denotes the duality between Q' (JRJr1)

Proof. Let At(CO, j = l, • • - , # (resp. AjCC') , .7=1, -, ^ ~ #)

denote the roots with positive (resp. negative) imaginary part of the

equation JP(C', A) =0 in /I when C e Sn~l — 1?$' — i f, where mf is the

order of P(?7,?n) in f?t (see Section 4). Put

Then

As stated in Section 4, we have

in

9) This notation is different from one in Section 4.
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We write

P+ (C', A) = A* + af (CO A'"1 + • • • + a+ (CO,

p_(C',A) = Ara'-'+ar(COAm'-J!-1 + --- + ^-!)(CO.
When C' is fixed, we also put for simplicity

P(A) =P(C', A), P+(A) =P+(C', A), P_(A) =P_(C', A)

P (A) = ^(CO A»'+ ^(CO A"'-1 + • • - + ^(CO,

P+ (A) = i>+^7(CO i*-1 + • • • + ^W),
P_ (A) = A"1'-" + or(CO I""-""1 +••• + «i--,(CO,

Poo .

(^, Z;) = U On) V (>„) dxn, <&, 7^> = tf (0) V (0) ,
' J o

and

With this notation we have

)«* (CO

«,Dr-!)-*;-if>}
') at (CO K^r*-1", P- (A.)

Now we set

P+ (Z).) « (0) , • • -, D%'-*->P+ (Dn) u (0) ) ,

= 9. (CO

f 1
-f- -1

#1 1

: "-. 1

+ + i
p-

0

V

0

1

'•. '-.

_ f ^ + °
\ 0 JL,
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'where Jf7 denotes the transpose of C7, then we have

(6. 23) (P(Dn}u, ») - («, P(A» = zV*^tf,

where V* denotes the adjoint of V. Put

(6.24) B,(C',*)=Qy(C',*)P(C',A)+B',(C',*), j = l, •••, m'-£,

and

(6.25) s;+,(C
/,D.)=̂ i-1 (̂C',JD»), .7 = 1, -,«'-#,

where deg Qy(C', /I) <r- «' (if r-m'<0, Q,(C', A) =0). When £' is

fixed in ^'^ — if^' — iS we also put

Let us denote

/ r>r /y n/ /o/ \
Pll, "',Plp Plp + 1, "", Pirn'

-'plj * " ° j Ppp Ppp + lj ' *" j Ppm'

o, ,0 i o,-,o
0 '. :
: '• 6

o, ,o 6 , - . . , 6 1 .

\ °
then we have det £B=det *!B11 = R9 where R is the Lopatinski determinant

of the system {P(D), Bj(D), j=l, >~, p}. Since R = R(£')=£0 by

Lemma 4. 4 for £f e £n~l — i f f i ' — i2!9 we can put

and then we have

Put

(626)
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Note that if /(£') is holomorphic in S^ — if&' — iS, then /(C') is

holomorphic in B^ + iri®' + i2. The coefficients of B" (^ , A) are all

holomorphic in S"'1 + zn#' + ^. Hence, it follows from (6. 23) , (6. 24)

and (6. 26) that

(6.27) f>(^A,)fi(C
Jo

- f "fi (C7,
Jo

>.) a CC', 0)
i ' V'lwi' ~Df ff T\ \ -^ fff AN D" f ft T\ \ fC\\+ zZjy=p+1-f ly(C ,-^n)«(C , 0) -By (C , AO^(O)

where Q^C', A) =IT-T<??(C') ̂ ^ (if r-w'<0 for some J,«J(C')=0)
and the coefficients of B" (£',/)„) and gJ(C') are all holomorphic in

«^. Since P (C7, A) =^0 -^+ (C', X)P-(?, ^ when
^> we denote the roots of the equation P(C 7 ,A)=0

in A by frCC7), • • ' , ^--pCC7), IfCC7) , --, ZjCC7) , which are enumer-
ated so that ImI+(C7)>0, k = l,---,m'-p, ImIr(C)<0, k = l,---,p,

tnen we have

Put
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Since

we have

#* (C7) =det -S£, C7 s B71-1 + W + ii .

On the other hand, since

0

we have ^"2=(^_)*- And then we have #* (C') = (?„(£') )

C7e1S"-1 + fr^ + ̂ . Put ^ t(C7)= the 0',^) cofactor of

(27TZ)

For any 0eCS°(i?l) we put

where

i (f ' + *Y , a:.) = (27E) -1 Jexp {̂ .f „} $ (f ' + »?',

x S?+p (f' + *Y, D.) Wl (f ' + »?', 0) (P_ (f ' - Hi',

Put

(6. 28) 0 (x) = (2ff) -<-1> f . exp {ix' (f ' + zY) } w (f ' + *Y,
j7?/eriz?+^1
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Since P(Q=^=0 when C e S71 + i TQ$ + zT and the coefficients of P_(f /-

A) and B;'+y(f' + zY, A) and -RM?' + *V) is holomorphic in

-f zYi$' + z'^> it follows from Pal ey- Wiener-Schwartz theorem that

belongs to C°°(J?J), whose support is contained in {supp 0 + yl} f| {^n^

where yi is some closed proper cone with its vertex at the origin such

that x-(~^>0 on A- {0}. Since P(?' +zY, AO^C?' + *Y, *n)

= 0(£'+iY,*0 and S?(

it follows from (6. 27) that

(6. 29) f "P (f / - if, £>B) d (f x - zY,
Jo

- f u(%'-iy',xn}'$
Jo

x - xY, 0)

, £>.) fi (%' - W, 0)

Put

(6. 30) 0,(*0 = (27T)-(B-1) f exp{zV (f 7 +zY)}
J^eri^'i-^

X 5? (f ' + ill', D.) t; (f ' + »Y , 0) df , J = 1, . . -, p

(6. 31) Pi (.r') = (2ff) -("-1) f .
jTl'<E.ri#'-r2

. exp

Since the coefficients of B" (§' + iy'9 Dn) and q{(%' — if]'} are all holo-

morphic in f + zY ̂ 3n~1 + iTi^/ + i£, it follows from the Paley-Wiener»
Schwartz theorem that

supp 0y C {^' e J?71-1 ; (^ , 0) e supp 0} ,

supp pyC^e/Z*"1;^', 0)

We have

(6.32) <«,*> = <«tf'-»y,:c,0,

where
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' - »?', *0 = (2JT) -(B-'> Jexp {zV (£' - zY) } tf (*', xj rfx'

Hence, it follows from (6. 28) - (6. 32) that

f
Jo

- ill', *,.),»

= car) -2"1-1' f °°<P (f ' - »y , s.) a (I' - »y , x.) ,
Jo

f .
J7/erit?'+-?

(f ' - f?', Z>.) « (f ' - *Y, 0) ,

*y , DO e (f ' - »y ,

(D) K (x', 0) , 0x^)

- *S',-r <DiP (D) u (x', 0) , p, (^') >.

Q.E.D.

Proposition 6. 2. Under the hypotheses (I) , (II) and (III) we

W (x) ssO provided that W (x) is a solution of the homogeneous

boundary -value problem in R*:

=Q in

such that W(x} belongs to C°°([0, 5) ; 3)' C^"1)) /or some <J>0

supp

Proof. It is sufficient to show that
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(6. 33) < W, #> = 0 for any 0 e C0°° (H J) .

In fact, if we show (6. 33) , then we have

<w- (*',*»), 0(*')>*-=o for any ^e^'cir-1)
when 0<rn<5. W^*) belongs to C°°([0, ff) ; ̂ (HJr1)). Hence

We shall show (6.33). Let 0, 0y (j = !,...,/>) and p,- (j =1, • • • , r- m')

be functions which are stated in Lemma 6. 1 for $ e CS° (i?+) . Put

1; xi >0, (x\ x^) esupp 0 /or some xn}

11-1; dist (X, J20

Let % e Co00 (J32X (-5/2,5/2)) be 1 in Ql X ( - 5/4, 5/4) . Let ^(^ e

Co°°((-5,5)) be lin (-5/2,5/2) and G2(x'} SEC00 (Rn~1} be 1 in x1>0

and 0 in xl<~-\/2. Put

«P (D) T^, 0 » - P^ (^n) P (D) W, ffs (x^ 0ydxn
Jo

+ < (1 - K (xn) P (D) W, 6Z (x'} 0 >

where < , > in the first term of the right-hand side denotes the duality

between 3)' (Rn~1} and 3) (Rn~^ and <,> in the second term of the

right-hand side denotes the duality between 3)' (JK+) and ^)(U"). Since

%W is a C5)([0, co)) function of ^:n with its value in <£' (jRJr1) and

^i(^n)^2(^0 =1 in supp%n{^i>0} and supp We {^i>0} , it follows

from Lemma 6. 1 that

f°V On
Jo

Since we have
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and supp(Da%/a!) (V, 0) fl supply Cl{^i<0}, it follows that

Since we have

and supp (jDa%/a!) (o:',0) R supp p^-CI {^i<0>, it follows that

Hence we have

Since supp [^ (XB) P (Z>) (1 - %) W] R supp 0 C {^ e «J ; ̂ >0, ^>^/4> , it

follows that

= f °°<T^, (l-x)P (D) (a, (xj ff2 (x'Jo

Since supp (1 - ffj (xn} ) (T2 (^') 0 d {x^Rn
+; Xi~> -1/2, a:n> d/2}, it follows

that

= <P (D) W, (1 - ff, (x.) ) ff,

Hence we have

On the other hand, since

f "<fft (xn) P (Z?) W, ff,
Jo

and since
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(6.33) follows. Q.E.D.

Summing up, we have

Theorem 6.3. Let P(Z>) <m<i Bj(D), j = l9-"}q be differential

operators of order m and rJ9 j = l,--9q, respectively, -with constant

coefficients. The folio-wing three assertions are equivalent.

(I) There exists a unique system of fundamental solutions {E(x, y),

FJ(X}, .7 = 1, ~',q} satisfying the following equations:

(6.34) P(D}E(x,y}=8(x-y} in Rn
+, y (=Rn

+, y= (0, 3V, y»),

(6.35) B,(^)£(*,y)U.-o = 0 m IP-1,.;^!,-,*.

(6.36) P(D)F,Cr)-0 m «», * = !,. . . ,</ ,

(6.37) Bj(D}Fk(x^Xn^ = djkd(x^ in Rn~\ j,k=l9-,q,

such that E(x, y) and F j ( x ) belong to C°°([0,<7) ; 3)' (I?71"1)) f] 3)' (UJ)

/or 507?z£ positive number 6 and there exists some closed proper cone

with its vertex at the origin such that x • $>> 0 on x^K— {0} such

that supp E(x, y) contained in (K + y){~}R+ and supp.Ffc(.r) z's £0?z-

tained in KC\R+>

(II) There exists a unique system of fundamental solutions {E(x, y),

Fj(x), j = l,m-,q} satisfying the system of equations (6. 34) - (6. 37)

such that E(x, y) belongs to C°°([0, yn) ; ̂  (I?71-1)) nC°°((yn, oo) ;

S)' (I?71'1)) n S)' (B+) ^^ Py W **foW ^ C°° ([0, (X)) ; £)' (U71-1)) flwrf

^/z^ support of E(x, y) z*5 contained in (K+y*)f~}R+ and the support

of Fj (x) is contained in K H R+.

(Ill) P(f) is a hyperbolic polynomial with respect to $ and q

equals the number of roots -with positive imaginary part of the equa-

tion P(?' — isft', A) =0 in A for large enough s and f

Lopatinski determinant ^(C) of the system {P(D)9

^} Z5 hyperbolic -with respect to $'.
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