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A Characterization of the Hyperbolic Mixed Problems
in a Quarter Space for Differential Operators
with Constant Coefficients

By

Yoshihiro SHIBATA*

§ 1. Introduection

L. Garding showed in his papers [2] and [3] that the following
three statements on a differential operator P (D) with constant coefficients
are equivalent (see also Atiyah, Bott and Garding [1]).

(I) The Cauchy problem for P(D) in the half space {xe R"; x-9>0}
with data on the plane z-%=0 is C* (or &) well posed, where & is a
non-zero vector in the real dual E" of the real z-dimensional Euclidean
space R™ by the inner product z-&=xz,-&+ -+ + 2,5,

(II) P(D) has a fundamental solution E satisfying P(D)E=0
and having support in some closed proper” cone K with its vertex at

the origin such that x-9>0 on K — {0}.
(III) The characteristic polynomial P (§) of the operator P (D)

has the properties:
(1.1)  P°(#)=~0 where P"(&) is the principal part of P(§),
and

1.2) P(E+s9)+£0 when §=8" and Ims is less than some fixed

number 7,.

Such a differential operator P (D) (resp. a polynomial P(§)) is said to
be hyperbolic with respect to 9.
Now consider the mixed initial-boundary value problem in the quarter

space {x= (x4, -**, Tn) ER"; ,>0, 2,>0} for a system {P(D); B,(D),
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1) A cone which does not contain any straight lines is said to be proper.
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j=1,.--, g} of differential operators with constant coefficients:

1.3 P(D)u(x) =f(x), £.>0,x.>0,
(1- 4) Diiu(‘r) ]1‘1=0=g.7 (l‘”), ]:Oy 17 ) 7"‘_13 .Z',,>0,
(1.5 B;(D)u(x) |zp-0=hs(x"), j=1,-,q, z.>0,

where m is the order of P(D). Then the corresponding question for
the system {P(D); B;(D), j=1,--,¢q} can be proposed. After the
works [5], [6] by R. Hersh and [11] by T. Shirota, R. Sakamoto [9]
proved the following.

Assume that P(§) is a hyperbolic polynomial with respect to
9= (1,0, ---,0) and the boundary 0R} ={zeR}; 2,=0} (R}={z= (x,
e, Za) € R*; 2,>>0}) is non-characteristic for P (D) and B;(D) (=1,
---,g) and that g is equal to the constant number p of the roots with
positive imaginary part of the equation P(§’—is9’,1) =0 in 1 with
s large enough where &’ = (§,, ---, £,_;). Then the mixed problem (1. 3)-
(1.5) is C* (or &) well posed if and only if the Lopatinski determinant
R(EN? of {P(D);B;(D),j=1,---, p} has the properties corresponding
to (1.1) and (1. 2):

(1.6) R°(®#)=+0, where R°({’) is the principal part of R({").

1.7y R +s59’)+#0 when §’€E" " and Ims is less than some fixed

number.

Such a Lopatinski determinant R ({’) is said to be hyperbolic with respect
to §’. Moreover she showed the existence of a unique system {E (z, y) ;
F;(x), j=1, .-, p} of fundamental solutions having support in some
closed proper cones.

A system {E(x,y);F;(x), j=1,--, ¢} of fundamental solutions of
the mixed problems (1.3)-(1.5) for {P(D); B,;(D), j=1,--,q} is
defined as a system of solutions of the following equations such that
E(z,y) € D" (R) NC([0, y.); D" (RPN C=((ya, 0); D" (R*))
and F;(x), j=1, -, g, belong to C=([0, o0); D’ (R M) D’ (R}).

(1.8)  PD)E(z,y)=0(z—y), 2.0, y=(0,y") €RL,

2) This will be defined in Section 4.
3) This space will be defined in Section 3.
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(1.9 B, (D) E(z,y)|2,00=0, j=1, - g,
(1.10) P(D)F:(x) =0, x>0, k=1, -, q,
(1.11) B;(DYF,(2)|s,0=0;:(x"), j,k =1 -, q,

where 0 is the Dirac delta function, y” = (ys, -, ¥a), ' = (x1, ***, Tn_1)
and 0, is the Kronecker delta symbol (ie., 0,,=0 if j==k and §,,=1
if j=k). D; denotes :70/0x; and D denotes (D, ---, D,).

We say that a system {P(D); B;(D), j=1,:--,q} of differential
operators is hyperbolic in R’ with respect to ¢=(1,0,:--,0) if it has
a unique system {E(z,y);F;(x), j=1,:, g} of fundamental solutions
of the mixed problem (1.3)-(1.5) such that the support of E(z,y)
with respect to x is contained in (K +4) MR} and the supports of the
F.(x) are contained in K R?. Here K is a closed proper cone with
its vertex at the origin such that z-9>0 on K —{0}.

The purpose of this paper is to characterize the hyperbolicity for
the mixed problem (1.3)-(1.5) by showing that {P(D); B,;(D), j=1,
.-+, g} is hyperbolic in R% with respect to #= (3,0, --,0) if and only
if P(§) and R({’) are both hyperbolic with respect to ¢ and ¢’, re-
spectively. Note that we do not assume that the hyperplane x,=0 is
non-characteristic for P(D) and B;(D). We shall show

Main Theorem. If a system {P(D); B;(D), j=1, -, q} of dif-
ferential operators is hyperbolic in R} with respect to 9= (1,0, ---,0),
then the characteristic polynomial P (§) has the properties (1.1) and
(1. 2) with respect to ¥ and the number q of the boundarv operators
B; (D) must be equal to the constant number p of the roots with
positive imaginary part of the equation P(§’ —is0’,1) =0 in A with
s large enough and the Lopatinski determinant R({’) has the pro-
perties (1.6) and (1.7).

The plan of the remainder is as follows. In Section 2 we prove the
hyperbolicity of the characteristic polynomial P (§) with respect to .
We give some preliminaries for the latter sections in Section 3. In Section
4 we prove the hyperbolicity of the Lopatinski determinant with respect

to 9’ under the assumption p =g=>1. In Section 5 we complete our proof
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of the main theorem. In Section 6 the system of fundamental solutions
{E(x,y); F;(z), j=1, -, ¢q} are constructed under the assumptions:

(I) P(§) is hyperbolic with respect to ¢=(1,0, ---, 0),

(II) p=aq,

(III) The Lopatinski determinant of the system {P(D); B;(D),
j=1, -, p} is hyperbolic with respect to ¢’.
Moreover we shall prove that FE(x,y) belongs to C=([0, ya.);
D" (R* D) NC*((¥g, o0) ; D’ (R*Y)) and F,;(z) belongs to C=([0, o0);
D’ (R*), j=1,---,¢q and that such a system is unique. When the
boundary x,=0 is non-characteristic for P (D), we give a proof of the
uniqgueness of this system. The proof is done by using the Paley-Wiener-
Schwartz theorem. When the condition is not assumed, we prove it by
a standard method employing the adjoint system of {P(D); B;(D),
j=1, -+, p} and by modifying the proof given in [9].

The author would like to express his sincere gratitude to Professor
M. Matsumura for many valuable suggestions and much kind encourage-
ment and also to Professor S. Wakabayashi for his valuable advice. The

proof of Proposition 3.1 in Section 3 is due to Professor S. Wakabayashi.

§ 2. Hyperbolicity of the Characteristic Polynomial

In this section we shall prove that the existence of certain funda-
mental solution E(x, y) implies hyperbolicity of the characteristic poly-
nomial P(§). This can be done by a slight modification of the proof
given in Atiyah, Bott and Garding [1].

Proposition 2.1. Assume that for some y=(0,y”) €R} there
exists a fundamental solution E(x,y) of the mixed problem (1.3)-
(1.5) (i.e., solution of the equations (1.8) and (1.9)) such that the
support of E(x,y) with respect to x is contained in (K+y) NRL.
Here K is a closed proper cone with its wvertex at the origin such
that x-9>0 on K—{0}. Then the characteristic polynomial P(§) is
hyperbolic with respect to 4= (1,0, ---,0).

Proof. Let U be a neighborhood of the point y such that U CR™
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and ¢ Cy(R) be equal to 1 in U. Then we have
¢(x) P(D,) E(z,y) =0(z—y) in R",
so it follows from Leibniz’s formula that
@1 P(D) f(x) =0(x—y) +9(x) in R",

where f(z) =¢(x) E(x, y) and g (x) = sz (D*(x)) (P (D,) E(x, y)/al
are distributions with compact support. T;king Fourier-Laplace transforms

we have
2.2 P F© =exp{—iy-{}+5(©), LeC"=E"+iB",

where f(&) =%f, §(&) =Fg are entire functions. If P({) is a non-
vanishing constant, the conditions (1.1) and (1.2) are satisfied, so we
assume that P({) is not a constant. Then ¢ cannot identically vanish

because P ({) has zeros. Since g &’ (R"™) we have for some constants

C and N

2.3) G I=CA+[ED" exp h(Im ),
where
2.9 h(y) =Max x-7, x<suppg, 78"

We note that
(2.5) h(—9)>0.

In fact, this follows from the fact that the support of g is contained in

(supp p—U) N (K+9). From (2.2) and (2.3) we find for any {eC"
with P(§) =0

lexp{—iy-C}|<C@A+|¢) Y exp A(ImQ).

After taking logarithms of both sides, we get for any {eC™ with
P =0

@.6) —A(ImE) +y-Im {<C,+Cylog(1+[C]),

where C; and C, are some positive constants independent of &,

We shall now prove that the plane x-& =0 is non-characteristic with
respect to P (D), i.e., P'(9)+#0. We will argue by contradiction. Sup-
pose that P°(®)=0. Since P°(§)#0, we take a £°€X8" such that
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P°(&%) 5~0, and consider the polynomial in two variable ¢ and s:
P(st(§°—=9) +td) =P°(s(E"— ) + D) t™+ - =co(s) t™+ ---

Since ¢,(0) =P°(#) =0 and ¢,(1) =P°(§") +£0, the algebraic equation in
t: P(st(8°—9) +¢9) =0 has a solution #(s) in a neighborhood of s=0

such that
@.7 t(s)=as?(A+o0(1)), s—0

where a is a non-zero complex number and p is a negative rational
number. In fact, the assumption P°(9¥) =0 implies that p is negative.

If we choose the path 7:|s|<<0 and args= (—7/2—arg a)/p, we have
Ime(s)=—]al-|s|?P(1+0(1)) as s—0 along the path 7

and therefore

2.8) Im{(s)=Im (st(s) (§"—9) +£()P) =—|alls|*¥ (1 +0(1))

as s—0 along the path 7, because sz(s) =as?*'(1+0(1)),s—0. Since
y-Im{(s) =y”-Im{” (s) =Im st (s) (§°)”-y”, it follows from (2.5), (2.6)
and (2.8) that
[s|P<<C;+C,log(1+|s|?) as s—0 along the path 7,
where C, and C, are some positive constants. Then we have a con-
tradiction. This proves that P°(#)=~0.
Next we proceed to show (1.2) with #=(3,0, ---,0). Since P"(¥)

0, the algebraic equation P(§+s9) =0 in s has m roots s;(§), j=1, ---,

m, (counted according to multiplicity). Set

1@ = sup ~Imsy§).
Jj=1,-,m

For every s;(§) we have from (2.6)

2.9 A(—®)Ims; () <C,+C;log (1+|&] +5;(£))
because y-9%=0. Then we have

(2. 10) u(r)=ar’(1+0(1)), r—+oo,
where p is rational and @ is real. For we write

P(+s3) =Ri(§,Res, Ims) +iR,(§,Re s, Ims).
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Here R, and R, are polynomials with constant coefficients in the z+2

real variables §=(§,, ---,§,), Res and Ims. If we set

M,={(,Res,Ims); |€]*=7%, R,(§,Res, Ims) =0, k=1, 2},

then ﬂ(r)z(e,xef}fnps)em—lm s. By the Tarski-Seidenberg theorem we
have either (2.10) or y(r)=+ oo for all large . Since P°(#) 0 as
proved above, the roots s;(£€) are multivalued continuous functions. Hence
the function sup |s;(§)| is bounded when & remains bounded. Thus
u@) is ﬁnitej?lc;;'";ny finite »—0, so we have (2.10). From (2.9) and

(2.10), it follows that
—h (=D u() <C;+C;log(1+Cy),

where C; is a new positive constant. In view of (2.5) and (2.10) this
inequality means that #(7) remains bounded when 7— + oo, namely there

exists a real 7, such that
—Ims;(§) <y, for any j (1=<j<m) and for any £ B".

Therefore, P(§+s59%) =0 when Ims<—7, and £§€B8". So the theorem

is proved.

§ 3. Preliminaries for Latter Sections

We denote by R} the space {z= (z’, z,) €R"; z,=>0}, ie., the
closure of R and by OR? the boundary plane z,=0 of R®. Let 2 be
a non empty open set in R" and let 9) () denote the space of all com-
plex C*> functions with compact support in £, which is equipped with

the Schwartz topology. We set
3.1 D () ={p= D (R") ; supp $CKE).

This is a closed subspace of 9 (R™ and we give it the induced topology.
We denote by 9’ (R%:) the dual space of .,@(ITZ,‘) By the Hahn-Banach
theorem, any element of 9’ (R%) can be extended to a continuous linear
form of 9 (R™)), that is, a distribution on R®. On the other hand 9 (R")
is a dense subset of @(R—i) and therefore a continuous linear form on
ﬂc)(lTi) is uniquely determined by its restriction to &) (R%) and can be

identified with an element of 4’ (R") consists of all distributions in R?.
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Thus the space 9)’(R}) consists of all distributions in R" which are

extendable to distributions on R®. Namely
(3.2) D" (R =D (R /D" (R,

where 9’ (R™) ={uc D’ (R") ;supp uC R ={z= (z’, ) ; £.<0}}. We
denote by C*(I; 9’ (R™™)) the space of infinitely differentiable functions
which are defined on interval I in R' with values in 9’ (R™") equipped
with the weak topology. When I=[a,b),ucC>(I: 9’ (R"")) means by
definition that for any ¢ .9 (R™™),<u(?), ¢y is a C* function on [a, b),
that is, there exists a C™ function f,(#) defined in (a—0,5) for some
0>0 such that {u (¢), ¢>=rf, () on [a,d). Then, for any ucC=([a,bd);
D’ (R™Y)) there exists a veC~((a—0’,5); D’ (R*")) such that
u () =v(¢) on [a,b). This follows from a theorem due to Seeley [10]
which guarantees the existence of a linear operator T from C~ ([0, 4))
to C*((—A, A)) (A>0) such that for any f=C>([0, 4)), (T F) @
=f() on [0, A) and

Max |Di (T f) (&) |=Cx,a Max |D{f(Q@®)|,
1e0-4,4] ter0, 41

<7<k

where Cy 4 is a positive constant depending on % and A but not on f.
In fact, define a linear form <{v (¢), ¢> on & (R*™) by T<u (@), ¢>. Then
it is easy to see that v (#) is a C* function on (— A4, A) with values in
D’ (R™). Clearly we have

(3.3 C= ([0, ), D" (R"H) C D" (R) C D’ (R?).

In our definition of a system {E(=x,y);F;(x),sj=1, -, ¢t of funda-
mental solutions of the mixed problem (1.3)-(1.5), we assumed that
E(z,y) €C>([0, yu); D" (R D) NC=((ya, )5 D’ (R*™)) and F,(z)
eC=([0, o) ; D’ (R™").» These assumptions are reasonable because the
fundamental solutions which we shall construct belong to such a space
(see section 6). As already remarked, we do not assume that OR% is
non-characteristic for P(D). However if 9R%} is non-characteristic for
P(D), we need not assume that E(x, y)€C>([0, y.); 9’ (R*"))
NC=(yn, 00); D’'(R™™) and F;(x) e C=([0, o0); D’(R*Y). It is sufficient

4) See introduction.
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to assume that E(x, y) and F,(x) belong to 9’(RY), in view of the

following.

Proposition 3.1. Let P(x,D) be a differential operator of
order m with coefficients in C*(R") and assume that ORY is non-
characteristic with respect to the differential operator. If ue 9D’ (RY)
and P(x,D)ucsC>([0,0); 9’ (R*™")), then we have that u belongs
to C=([0,0); 9’ (R™M)).

Proof. Since ue D’ (RY), there exists a distribution #e 9’ (R")
with Z=wu in R%. Let £ be an open set of {x=R"; x,<0} such that
the closure £ is compact. Then there exists a real s such that ¢-%
€ H s, (R™) for any ¢=Cy(2), where s is independent of ¢ and Il q
={fe S (R"Y; A+ [E1DA+[E ) F(E)e L*(B"). If we set v=4¢7, ¢
=¢P(x, D)%, Leibniz’s formula gives
3.9 Pz, D)yv=9g+Q(x, D)% in R"

where Q(z, D) is a differential operator of order m —1 with coefficients

in Cy(2):
Q(z, D)z = bag(x) (D*¢) (D).

la| £18]<m
>0
Let ¢(z’) €Cy (R™Y). Then we get from (3.4)
3.5 P(z, D) (p%v) =¢%g+ % (Q(x, D)%) + [P (x, D), ¢¥]v,

where [P (z, D), ¢&]v=P(x, D) (p*v) —¢% (P (x, D)v). Since § (€’) is
rapidly decreasing C* function of §’, we have ¢¥ (H,5) CH s,y for any
reals s and 0. Thus ¢¥ve I, ., and so PEv|gs =9¢F (du) € K,y (RE)
={we D’ (R}); There exists W& K., such that W=w in R"}.
Here we denoted ¢|gsu by ¢u for simplicity. From the assumption on
P(z, D)u and the relation

D*(979) (2) = D79 (y’, xa), D3 (2"~ 7)),

it follows that ¢Xge Cg (R:) = {pcC=(R"); There exists ¢ =Cg(R")
such that ¢=¢ in R*}. Consider the term ¢ Q(x,D)u) in (3.5).
Take y€Cy(2) such that y(x) =1 on supp¢g. Since y#eH, and
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Q(x, D) is of order m —1, we have Q(x, D)% =0 (z, D) (x%) € Hs_m11,0)-
Hence ¢% (Q(z, D) u) € H(s—myi1,y (RE). We have also [P(x, D), ¢*]du
EHsmer,y (RE). In fact, we may assume from the assumption on

P (z, D) that P(x, D) has the form
P(x,D)=Dp+ > a,(x) D*=Dyp+ R(x, D).
laj<m

e m
Then [P(z, D), ¢3]v=[R(z, D), ¢x]v. Since the order of R(z, D)
with respect to D, is at most m — 1, we have R (x, D) (¢*v), ¢% (R(x, D) v)
€ Y (s_m41,09 by using the fact the weight function (1+ |&]%) /? is equivalent
to A+ [EH7A+16.1D” and so [P(x, D), ¢¥1vE H_me1,ey. This
also follows from the fact that [R(x, D), ¢%] is a pseudo-differential

operator whose symbol is
=22 DiR(z,§) (0/08)“p (¢7) /a!.

Summing up, we have proved
P (z, D) (¢ ($u)) € Hims1,) (RE) .
By Theorem 4. 3.1 in Hérmander [7], we get
0 (Bu) € Hos,w (RE).
Repeated application of the same argument gives that
02 (p1) € H o,y (RY).
Then
¥ $)) (0, 2) ={(B) (', 72), § (3") >y € C7 ([0, 00)).
Since ¢=Cy(2) and ¢=Cy(R"™?') are arbitrary, we conclude that

us C>([0,0); 9’ (R*™)). This completes the proof.

Lemma 3.2. Let u(x,) be a continuous function defined on the
interval [0, 6] with values in 9’ (R%™"). Then there exist constants

C,r and a compact set KC R such that
(3.6) |G pu(x,) ) ISCA+|L D)7 exp AOm L),
C’: (Cl, ey Cn——l) EC"—I
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where A(Im£”) =Max z’-Im {’ and C,r are independent of z,< [0, b].

z’cK
Proof. For any ¢= & (R%") we have
sup [u(z,), ¢yl <oo,
T, E[0,b]

that is, {u(x,); xz.€ [0, 5]} is a weakly bounded set in &’ (R37"). Hence
{u(x,); z.< [0, 5]} forms a strongly bounded set in & (R% ") and so
there exists a compact subset K of R% ™, a positive constant C and an

integer =0 such that |J supp u(x,) CK and that
z,E[0,0]

@B.7 ISUEPJKH(%),@!SC' SU%ID“(ﬁ(JC') l, €& (R,
nethe fai2r

where C is independent of ¢. On the other hand, we have
(Fou(xn)) (&) =<u(z.), exp iz’ L) .

Applying (3.7) to this relation, we get (3.6). Q.ED.

Now we present a basic lemma concerning a representation of solu-
tions of equations which will be used in Sections 4 and 5 (see Hérmander
[71).

Let P(D)=Dr+an,_D¥*+---+a, where D,=—id/dt, be an
ordinary differential operator with constant coefficients of order m. Assume
that the zeros of the equation P(r) =0 are all non-real. Then let us
denote them by tf,--- ¢}, t1, -, Tm_p, where Im />0, j=1 .-+, p and
Imr7<0, j=1, .-, m—p. Assume that p=1. Let B;(D,), j=1, -, p,

be some other ordinary differential operators. Put
P, (t)y=I%_,(t—1}).

We define the Lopatinski determinant of the system {P(D,), B;(D.),
j=1,-,p} by
R=det ( (2i) - jB,- (©) 1P, (7) —ldr> ,
7 Jyk=1,m,p
where 7 is a positively oriented contour in the complex t-plane enclosing

the zeroes 7, ---,7,. We have

’

Lemma 3.3. Assume that R#0. If feCqH(RY), 95, i=1, -, p,
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are complex numbers and u is a solution of the inhomogeneous boundary

problem:
PD)yu=f, t>0, B;(D)uliee=9g;, =1, -, p,

which belongs to Cy (RY), then it follows u=v,+ v, where

vi= @0~ [exp{ier} F [ (1) P() it

vy= (2mi) ~? jZ‘;,hl exp {itt} 'R, (9, — B; (D) vii0) (P () R)dr.

Here f, denotes a compactly supported C*® extension of f to £<C0,”
< [ fo] denotes the Fourier transform of f,, and R;, denote the (J, k)

cofactor of the matrix ((277) ! IB; @) (P, () 7T ket

§ 4. Hyperbolicity of the Lopatinski Determinant

Let P(§) be a hyperbolic polynomial of order m with respect to
#. Then it follows that the principal part P°(¢) is hyperbolic with
respect to ¢ and that a homogeneous hyperbolic polynomial has only
real characteristics. The component I'=I"(P)=I(P,%#) of the set
B"— {{8"; P'(¢) =0} which contains ¥ is an open convex cone with

its vertex at the origin and we have

(4.1) P(+ip)+0 when é€B" and 7€ —I' —s with s large enough.
The localization P (§) of P(§) at &° is defined by

4.2) PPt +€) =t"Pu(§) +O ™ ™) as -0,

where P (§) is the first coefficients that does not vanish identically in
§. Then it follows that the localization P, (§) of P(§) at any real

20

point &° is hyperbolic with respect to ¢ and that
4. 3) I'=IrP, ) Clpw=I (P, ¥,

For further details we refer to Atiyah, Bott and Garding [1].

Now we write the polynomial P(§) in terms of power of &,.

P =P, &) =27q,ENE,

5) See Seeley [10].
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where ¢(§’) is not identically 0. So m’<<m, in particular m=m’ if
the hyperplane x,=0 (: 0R%}) is non-characteristic for P(§). Then we
see that ¢(§") is the localization of P(§) at N=(0,---,0,1). Hence

we have

4.4 @ (&’ +17") 0 when §’€E"" and 7€ — I, —s?,

in particular 7€ —I" —s9 with s large enough (Note the relation (4. 3)).°
If we set

4.5) Fy= {7 B (7,0 €T} =53,

it follows from (4.1) that the roots of the equation P({’, 1) =0 in 2
are never real when {'=¢& +ip’ e B"*'—il,—is9’ with s large enough.
By (4.4) the roots of P({’,A) =0 in 4 are (multivalued) continuous
functions of "’ B" ' —i[(—is?®’ and therefore the number of roots with
positive imaginary part, counted according to multiplicity, is constant
when ¢’ € 8" '—i[y—is®’. The roots of P({’,2) =0 in 1 with positive
imaginary part we denote by A{ ("), -+, 47 () and those with negative

imaginary part by 2;.,({"), -, 22-(€"). Put

(4. 6) P (&, D)=II5_,(A—-A; (")), ¢ B ' —il—isd.

In this section we consider the case where the number of boundary con-

ditions B; (D) equals exactly p. In particular, if »p=0, boundary con-

ditions are not imposed. Therefore, we assume that p>1 in this section.

We define the Lopatinski determinant of the system {P(D); B;(D),

Jj=1,-,p} by

@D RE)=det((2m)" j B, (&, )P, (D) —w) ,
%)

Jik=1,-,p

’eB"'—il\—isd’ with s large enough, where 7({’) is a positively
oriented contour in the complex Z-plane enclosing the roots 1f (), ---,

27 (€. Denote by I" the projection of I in E"! that is,
4.8) I'={ B¢, ¢)el for some &, 5},

which coincides with one defined in Sakamoto [9]. The following two

6) These fact are pointed out by K. Kasahara. He also showed that his discussions in
[8] are valid in this case (unpublished).
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lemmas are due to Sakamoto [9].

Lemma 4.1 ([9]). R(&") is holomorphic in B*—il" —is¥’ with

s large enough.

Lemma 4.2 ([9]). Let t be a complex parameter. Then we

have
(4. 9) R(tC’) = tho {R° (C’) 4R (Cz) +R? (CI) + }’

where the convergence is uniform in KX {A€C; |A|>Tx} for every
compact set K 1in il and for some T x>0 depending on K.
Furthermore

(I) R does not vanish identically in {’ and h, is an integer.
(II) every R’ (L") is holomorphic in r= U z(E”‘l—if),

2&C—{0}

() R (L") =t™iRI ("), ¢’eT, teC— {0}.

Main purpose of this section is to show the following.

Proposition 4.3. Assume that P(D) s hyperbolic with respect
to O and that p which is the number of the roots with positive
imaginary part of the equation P(& —is®’,2) =0 in X for large
positive s is greater than 0. If in the mixed problem (1.3)-(1.5) the
number of boundary conditions is equal to p and there exist dis-
tributions on R% F;(x), j=1, -, p, which satisfy the equations (1.10)
and (1.11) and belong to C=([0,0); 9’ (R*™Y)) for some positive
number 0, whose support is contained in KN\RE, then the Lopatinski
determinant of the system {P(D); B;(D), j=1,---, p} is hyperbolic
with respect to V', that is,

(D) R(9") -0,

(I1)  there exists a real number 1, such that

R(& +s9)£0 when £ €5 and Ims<y,.

Proof. Let U and U’ be open neighborhoods of the origin in R
such that the closure of U 1is contained in U’, that the closure of
U’ is contained in R*'x (—0/2,0/2) and compact in R”. Choose
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peCy (U’ X (—0/2,0/2)) with ¢(x) =1 in U. Then
(4.10) P(D) (¢F) (x) = fu(z), z=RY.
(4.1 B;(D) ($F0) (2) |2,-0=0,:0 (") +0;.(z"), 'R,
where f,=P(D) (¢—1)F, and ¢;,=B;(D) (¢—1) Fi|,-0 are distribu-

tions with compact support. Taking partial Fourier-Laplace transforms of
both sides of (4.10) and (4.11), we obtain

(4.12) P, D) GF) (€, ) = Fuo(C, 22), >0,

(4.13) By (€, D) BF) (€, %) lanco= 05+ 31 (C7).

Now we apply the Euclidean algorithm to the polynomials in 1: B; ({’, 2),
P, and P,.(£’,4). Then we have

414 B; @, H=0,C,HPE,H+T,;&, HP,. &, H+B7E, A,
where Q; (&', ), T;(’, ) and B¥({’,) are polynomials in 1 whose
coefficients are holomorphic functions of &/ in E"'—irs —il" and of
polynomial growth in {’. Furthermore, deg Q;<r;—m’,deg T ;<mn’ —p
2 2
and deg B¥<{p. Here r; is the degree of B;({’, 1) in A. Substituting
2
(4.14) in (4.13), we find
~
(4.15) B; (&', Do) (BF ) (&, Za) 200
=056+§5: () — Q5 (€, D) Fo (€, ) 20
P
—T;(&, D) P (&, Da) (9F ) (€, zn) |2,=0-
We write B¥({’, D,) in terms of powers of D,;
(4.16) B} (€', Da) =280, (8) DIF

where all 5,,({”) are holomorphic in E*'—iy,8’ —:I". Since

0 for j=0,1,.--, p—2,
(4. 17) i. 11P+ (CI’ l) —1dl={ or g s 3?
21t Jren 1 for j=p—1,
¢ eB—ire —il,
we have

(4.18)  R(&) =det (6, (&) jumtyny &’ EB  —iyed’ —il .
From (4.15) and (4.18), we obtain
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(4.19) R(C) det (Di7'F i (€, n) [20=0) s,0=1,1
=148, e B —ir,® —il".

We first consider the case where S({’)=0 in F*'—ir®’ —:I". Then

R0 in B"'—ir,® —I". Suppose that R°(§) =0. Since R (r®’)

=t (R"($) +t7'R* (@) +---) 50 for any teC' with |r| large enough,

there exists an integer j,—>1 such that R/(§’) =0, j=0, -, j,—1 and

R (9”)0. Since R°(¢") #0, take a {¥ € "' —iI" such that R*(£*) =0

and consider the function of (s, 2):

(4.20) f(5,2) =R (s =) +9) +2R' (s —=9)+¥) +---.

This function is holomorphic in a neighborhood of the origin of C%
Since by assumption f(0,0)=-.-= (0/02)7"'f(0,0) =0 and (0/02)7
X f(0,0)=#0, we can write by applying the Weierstrass preparation
theorem (see, for example, [4]) to f

(4.2D) fs,2) = (2 + 2 a; ()2 uls, ),

where u (s, z) is holomorphic and z (s, 2) 40 in a neighborhood of (s, 2)
=(0,0) and a;(0) =0, j=1, -, j. Then the equation f(s,2z)=0 has
a solution 2z(s) 20 which is an analytic function of s"/? in a neighborhood

of the origin and vanishes at the origin:

(4.22) z(s) =256 (8707 |s|<d,
where d is a positive rational number. Put

(4. 23) t(s)=1/z(s).

Then we have

(4. 29) t(s)y=as’A+0()), as s—0

where Y is a negative rational number and @ is a complex number. If
we choose the path: 0<|s|<(d and arg(as’) = —m/2, we have

t(s)s@C¥ —9") +t ()Y € B —ird —il
and
R(t(s) €Y —9") +e(s)v") =0

by taking 4>0 sufficiently small if necessary. This contradicts that
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R(&)#0in "' — iy, —iI". Then we have R*(§’) 0 when S ({’) =O0.

Next we consider the case where S({”) does not vanish identically
in B*'—iry®’ —il". Put

H={x";x=(z', x,) € (supp 6 —U) N K for some x,=>0} CR"™,
Then supp f,CH and supp ¢;,CFH. Since the compact set H does not
contains the origin in R*! and x;=x’-9%">0 on H, we have
(4. 25) h(—9") =Ma;1< x’ - (—9") <0.

EdS

Further we have for some constants C and N
(4. 26) 19 €D I=C A+ D" exp A(Im )
and
(4.27)  1Q;(€, Do) Fe (€, 20) |2yo SC A+ E') Y exp 2 (Im &),

We shall also denote by C and N some inessential constants which
occur in later estimates. Now we estimate the term T ,;({’, D,) P, ({’, D,)
A~
X (@Fy) (€, xn) |sp—o in (4.15). TFor simplicity we put v,({’, x,)
~
=P, (', D,) (@F:) (£, x,). Then supp vx({’, 2,) [0, 0/2] and v (&', x,)
is a solution of the equation ’
P_ (’:’, Dn) vk(C’, .Z,,) :}\‘k(c,, xn), -rn>0 ,
where P_(¢’, D,) =P(’, D,)/P,(’, D,) is a polynomial in D, whose

coefficients are holomorphic function of &’ in E"”l—iroﬂ'—if. Further-
more these functions are of polynomial growth in {’. We define
A «&’, z,) =0 for z,<<0. Since the equation P_({, 1) =0 in 1 has only
roots A(¢”) with Im 2(¢’) <0 when ¢’ &€ E*'—ir®’ —il', we have

v (&', xa) = (27) 7 f:eXP {i2za} Fo, L[, z) J Q) P, D) dA,
2,20

Hence we have

(4.28) | Dro, (€7, 0) |

<c{[Tig.lie, 1@ ra”

X { J‘—+:|/1‘(P_ @, ]‘))_llzdi} o
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too 12
<c{[T1A@ wyrdzd ", it 0<i<m’—p.
0

Now, we know that
176, 2) |SCA+ T )™ exp h(Im L)
where the constants C and N are independent of x,2>0. Since
deg T ,(¢’, 1) <m’—p, we obtain from (4. 28)
(4. 29) T3, D) P&, D) GF0) €, 22) |yl
—|T, €, D) v (&', ) | evmol
<CA+ ¢ exp{h (Im C7)}.

From (4.15), (4.18), (4.19), (4.26), (4.27) and (4.29), we deduce
that

ISE)=CQA+ICH" exp{ra(Im )},
where r is a positive integer. Then (4.17) implies that
1ISCA+|C )Y expfrh(Im &)} for any &' € B —ird’ —il’
such that R(¢’) =0. Hence we have
(4.30) —AIm&)<C;+Cylog(1+1[Z’|) for any &’ with R(¢)=0.

Here C, and C, are some positive constants independent of {’,
Now let us show R°(9)=0. If R7(§’)=0 for all j=0,1,---, we
have R(—1t9’) =0 for ¢£>7, from (4.9). Then we deduce from (4. 25)

and (4. 30) that
t<<Ci+Cj;log@+1z]), t>70

which is impossible. Consequently there exists an integer j,—>0 such
that R7*(¢") 0 and R’/ (¢") =0, j=0, ---, jo—1, if j,==1. Suppose that
R'(%) =0. Since R°({’) 20, we take a ¥ € F*~'—7I" such that R°(¢")
#0 and consider the function f(s,2) defined by (4.20). By the same
argument as in the case when S({’) =0, the equation f(s,2) =0 has a
solution 2z (s) 0 of the form (4.22). Then £(s) ==z (s) ™" satisfies (4. 24).
Set &’ (s) =st(s) Y —9’) +¢(s)®" and choose the path £:0<|s|<d and
arg(as’) = —7/2. Then we have
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(4.31) R(E'())=0 and Im&(s) = —|ai|s]"®’ A+0(1)) as s—0
along the path £. In view of (4.25), we have
(4. 32) —h(Im’ (s))=]al |s|”-A+0(1)) as s—0 along &.
Since |’ (s)|<Const|s|*, we deduce from (4.30) and (4.32) that
|s]*<<C7+C;log(1+]s]*) as s—0 along &.

Here C{ and C; are some new positive constants independent of s. Since
Y is a negative rational number, this is impossible. Therefore we conclude
that R"(%")=~0.

We shall finally prove the assertion (II). We first note that if we

consider the polynomial of the variables £’ A7, .-+, 47 :
RE, AL, -, 43) =det (B (&, U))/kgj =29,

we have
REH)=RE, 4 &), -, 4;&)).
Put

M,={(’,Res,Ims, Re 4, Im 4, .-+, Re 1., Im 1,.);

9§ +58) 2 k= —q: (¢ +597),
P& + ) TIFd= (—1) ™ g (& +597),
Im >0, -, Im ,>0, Ims<—7,, |§''=r%, & 8",
R(E, M, -, ) =0}
and

u(r)y=sup —Ims,
My

the supremum being taken over all —Im s such that (§’, Res, Im s, Re 1,
Im 4, -, Re g, Im 4,,,) eM,. Since R'(#")=%0 and g,(& +s8’)+0
when Im s<—71, we have u(r)zoco. Then it follows from the Tarski-
Seidenberg theorem that

(4. 33) U@ =ar'l+oQ@)), r—>+oo,

where a is real and & is rational. Let us denote by s(§’) the zeros of
the equation R(§”+s9%’) =0 in 5. If Ims(¢’) <0, we have from (4. 30)
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(4.30) —Ims(&)(—h(—9"))<Ci+Cylog(1+|& +s(&)d)])

because A (Im(§" +s8)) =(—Ims)aA(—9"). When Ims(§’)=>0, (4. 34)

is obvious. Using the Tarski-Seidenberg theorem we have also

(4. 35) sup [s(§")|<Constr*, as r— + oo,
1#1=r

Hence we get from (4.33), (4.34) and (4. 35)
—h (=) u(r)<Ci+Cylog(l+7r+Cs*) as r—+ oo.

Since —A(—19")>0, this inequality means that #(») remains bounded
when 7-—> -+ oo, This implies that there exists a real 7, such that
R(& +59')#0 when Ims<y, and & 8" Thus the proof of Pro-

position 4. 3 is complete.

Assume that the Lopatinski determinant R({") of {P(D); B;(D),
j=1, -+, p} is hyperbolic with respect to ¢, where P (D) is hyperbolic
with respect to #=(1,0,---,0). Then the principal part R*({") is also
hyperbolic with respect to #’. Let us denote by 3 the connected com-
ponent containing 9 of the set {&’ €1"; R°(§’)#0}. Then J is an open
convex cone in A", (See Wakabayashi [12], Lemma 2.3.) Then we

have

Lemma 4.4 ([9]). There exists a constant 7, such that
(4. 36) RE)#0 for B '—ird —il.

Moreover there exists locally bounded functions C(3’) and N (7")
such that

C@y)=C@),N@y)=N®") when t=1,7 € —7,8’ -3
and that
(4.37) IR +i1) | SC ) A+ |§ +in' )7,

& tiy e Bl —ir, ) —i3 .
§ 5. Proof of the Main Theorem

Let P(D) be a hyperbolic operator with respect to ¢= (1,0, ---, 0)
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and let p be the number of the roots with positive imaginary part of
the equation P (&’ —is®’,2)=0 in 2 for §’€E"" and sufficiently large
s. Let B;(D),j=1, -, ¢, be boundary operators with constant coef-

ficients. Then we have the {ollowing two propositions.

Proposition 5.1. Assume that p=q and that the Lopatinski
determinant R(") of the system {P(D); B;(D), j=1, -+, p} is hyper-
bolic with respect to 9 ,if p=1. Let W (z) €C~([0, 0); D'(R*™)) be
a solution of the homogeneous problem:

P(DYW (x) =0, zeR:, B;(D)W (z)|s,-0=0, j=1,--, p.

If supp WC {z€R?; z;=x-9=>0}, then W (z)=0.

Proof. Put
I={§el;§el},
where I'=I"(P,9¥) (see Section 4). Let IV and 2’ denote the dual
cone of [ and 2, respectively. For any positive number &, we put
Sy={re R* b<|z|<b+1, 2,0, z,>0},
S,={z’eR"; (z/,0) €S, (ie. b<|2'|<b+1), >0},
[=T"+8,, ['4,={x’eR"; (z/,0)els}
and
Dy={[3"+ (", USHTUTS} NEE.
Since both I and 2 are closed

proper cone with its vertex at
the origin such that z£-9>0 on S,
I' — {0}, there exists a number
5>0 for an arbitrarily given a>0
such that D, and B,= {x< R";
lz|<a, £,=0, 2,20} are disjoint.
Choose such a number 6>0. Let 4=C7y ({x€ R"*; |x|<b+1}) be equal
to 1 in {reR"; |x|<<b}. Then we have

Zn

6.1 P(D) W) =f(x), x.>0,
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(5.2) B;(D) (W) |4,c0=9;(x"), j=1, -, p,
where ¢W and f are C* function of =z, in [0, o) with values in

E(R*), g;(z’) belongs to & (R*™) and
(5.3) supp f () CS,;, .20,
5.4 supp g, (z") CS, .

Taking partial Fourier-Laplace transforms of both sides of (5.1) and
(5.2), we obtain a system of ordinary differential equations with a

parameter &’:
A o

(5.5) P, D)W (&, za) =f (&, 2a), x>0,
(5.6) B; (€, D)W (£, 20) |2a=0=0,; (&), j=1,-, p.
R(Z’) is, by assumption, hyperbolic and so R({’)=~0 for {’ e B '—i1,8’
—i3. Since qS/Y\V(C’, D, FE&, ) eCs (R for every £/, we can write,
applying Lemma 3. 3,

A
(5.7 oW (&, 2a) =01 (&7, 2a) +v:(E7, 20), 2.0,

where

(5.8) vl z)=(2m)7" Jexp(ixnfn) Fo LS (€, 62) (P (L, 60)) M6

(5.9 w2 = @) Whan | exp (i) 27 (P (€, 1) A

XR;yx(€)[95(C") = B; (€, Dn)va (&', %) [z,=0] (R(ED) 7.

Here R;,({’) is the (j, k) cofactor of the matrix

(@ | By@ @@ par),

yk=1,-,D

f}.(C’,xn) is a compactly supported C> extension of f(C’,xn) to x,<0

and

6.1 T [A1€, 80 = [ exn(—izt) Ful, 2 dz.

If p=0, that is, if the equation P({’,1) =0 in 1 has only roots 1({")
with Im 2(€") <0 for every C’EE"‘I—i‘)’lﬁ’—iZ", we have

A~
W (&', z,) =v, ({7, x,) for z,=0.
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Therefore we define v:({’, x,)=0 in this case. Now we have from

5.7
(56.11) @W) (z) =T [0, z) ] + G2/ [0:2 (&, 2za) ],

where 7} denotes the inverse Fourier-Laplace transform in {’. From

(5.8) and (5.10) we find
(5.12) FHvi(l, z)1=FF (PO f@1=F [P ) "1xf.

Since F[(P(&))™] is the unique fundamental solution of the Cauchy
problem for P (D) such that the support is contained in I/, we obtain
using (5. 3)

(5.13) supp Fet v, (&, z) ] NRECT + S, .

In particular (5.13) implies that

(5.14) supp (B; (D) 47 [v1(€’, z2) 1 2a=0)
C{z’eR" " (z,0) el +S8,} =I7%,.

In view of Lemma 4.4, we have applying the Paley-Wiener-Schwartz

theorem?

(5 15) supp EIE}[ j;(r') exp (anl> Ak—l (P+ (c/, ]\)) -4

X R (€ REN) |3

From (5.4), (5.9), (5.14) and (5.15), we find

(5.16) supp Fz' [v: (L7, z.) N R
CH{2"+ Uj=1supp[(9;— B; (D) v1) |5, -0Q0 () ] N RE
C{2"+ (S UTE) I NRE.

From (5.11), (5.13) and (5.16) we conclude that

(5.17) supp ¢W C D, .

Since ¢(x) =1 on B, and B,ND,=@, (5.17) means that W (x) =0 in
B,. Letting a—+o00, we get W(x)=0 in R"”. This completes the

proof.

7) For example, see Theorem 2.6 in [1] or Lemma 2.3 in [9].
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Under the situation at the beginning of this section we have

Proposition 5.2. If p>q, there exists a non trivial solution
W (x) €C=([0, 00); D’ (R™)) of the following homogeneous problem
whose support is contained in some closed proper cone K, with its

vertex at the origin such that z-90>0 on K,— {0}.

(5.18) P(D)YW =0, z,>0,
(5.19) B;(DYW|,,,=0, j=1,-,4q.
Proof. Consider the matrix A (") = (a;x(&")) j=1,..., Where
k=1, p

(5. 20) a; () = @ri)™ j;(c') B; (&, D)A(PL.&,D))dR.

Assume that rank A () =7 (0<r=<g), that is, some r-rowed minor 4({")
of A(Z) is not identically zero in "' — iy — iI" when 1<r<g and every
(r+1), -+, g-rowed minor of A({") is identically zero in B ' —iy,0” —il’
when 1<r<g—1. When 50, ie., A({’)=#0, we may assume without
loss of generality that

(5.21) 4(€) =det(a;.(8")) s,u=1,r -

When 1<r<{g, we put

(5.22) W, z) =246 @571 (C)

x (@) [ exp(izm) (P, ) d)

+4(¢7) @iy~ Lm exp (iz.d) 47 (P, (¢, ) A,

where 4;,(¢") is the (J, k) cofactor of (@;%x(€"))j,k=1,...,r- When =0,
put

(5.23) W, z) = @ni)~" jm exp (izad) (P, (&7, 1)) ~'dA .
Since
@) [ expzd V7P, 0) 7R, =1, p
r(¢’

are linearly independent functions of z, and 4(’) %0 in B '—iy,d’ —il
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we have W(C',.r,.)séo. Since W(C’,x,,) is analytic in &’, we have
W (&, z,) £0 in R". It is easy to see that W (z) belongs to C=([0, o0);
D’ (R™1Y)) and satisfies (5.18) and (5.19). Moreover, using the Paley-
Wiener-Schwartz theorem, we see that the support of W (x) is contained
in K;N R where K, is some closed proper cone such that z-%>0 on
K,— {0}. This completes the proof.

Let us now complete our proof of the Main Theorem which is stated

in Introduction.

Proof of the Main Theorem. In Proposition 2.1 we proved that
the existence of certain fundamental solution E(x,y) of the mixed pro-
blem (1.3)-(1.5) for some y=(0, y”) = R} (ie., E satisfies (1.8) and
(1.9) and its support is contained in (K+y) NRT where K is some
closed proper cone such that z:9>0 on K — {0}) implies the hyperbolicity
of the characteristic polynomial P (§) with respect to 4= (1,0, ---,0).
The hyperbolicity of P(§) determines the number p. Next the unique-
ness of the system {F;(x), j=1,---,q} implies that the number g of
boundary operators B, (D) must be greater than or equal to p, because
if g<p the system {F;(z), j=1,---,q} is not unique by Proposition
5.2. Now suppose that g>>p. When p=0, Proposition 5.1 shows that
if P(D)F,(z)=0 and supp F,C {z€R?, z,>0} then F,(z)=0. This
contradicts the definition of F,(x). In fact F,(z) must satisfies
the equation B;(D)F,(x)|;,-0=0(x’). When p=1, the existence of
F;(x), j=1, -, p, implies that the Lopatinski determinant of the system
{P(D); B;(D), j=1,---,p} is hyperbolic with respect to @#’. Since

F,.,(z) satisfies the equations:
P(D)Fyu(2) =0 in RY, B;(D)Fp1(2)]2,-0=0, j=1,-, 8,

and supp F,,,CKNR?E, it follows from Proposition 5.1 that F,,,(z)=0
in Ri. This gives a contradiction because F,,,(z) satisfies by definition
the equation: B, (D) Fzi1(x)]z,40=0(z"). Thus we conclude that the
number g of boundary operators B;(D) must be equal to p. If p=0,
this means that such boundary conditions cannot be imposed. If p=>1,

we see by Proposition 4.3 that the Lopatinski determinant R({’) of the
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system {P(D); B;(D), j=1, .-+, p} is hyperbolic with respect to ¥’.
The proof is complete.

§ 6. Proof of Sufficiency

First we construct a system {E(x,y); F;(x),j=1,:-,q} of funda-
mental solutions of the mixed problem (1.3)-(1.5) for any given system
{P(D); B;(D), j=1,---, g} of differential operators satisfying the cone
ditions:

(I P(§) is a hyperbolic polynomial with respect to ¢= (1,0, ---, 0),
that is, P(§) satisfies (1.1) and (1.2),

(II) the number g of the boundary operators B;(D) is equal to the
number p of the roots with positive imaginary part of the equation
P —is®’,2) =0 in 2 when & 8" and s>7,,

(III) the Lopatinski determinant R({’) of {P(D); B;(D), j=1, -, p}
is hyperbolic with respect to ¢/, that is, R({’) satisfies (1.6) and (1.7).

Let G(x) be the unique fundamental solution of the Cauchy problem
for P(D) in the half space z-9>0. G(x—y) is given in the form

6.1 (Gla—3),d@)=En~ [ PE+in)-dE+inde,
e _7’019'—1-',

where g(x) =¢(—x) € D(R™ and ¢ (€ +17) is the Fourier-Laplace trans-
form of ¢. We may assume that ¢ is of the form: ¢(x) =¢(z")0(xn),
e DR and pe PD(RY), since the set of all test functions of this
form is dense in 9(R"). Now we wish to show that G(z—y)
eC=([0, ¥,); D" (RzH)NC*((¥n, ) ; D' (RE)).P To do so we write

in Section 4
(6.2) PE+in) =q(§" +i1") Gt i)™ + 111ai (€7 +7") (§at i7)™

If m"=0,P(§+ip)=P(§"+17"). In this case we do not consider any
boundary condition and so E(z,y) =G(x—y). Then we have

8) Let I be an interval in R} and let x€9’(R%). For simplicity we write u=C=(l;
9’ (R%Y) in place of u] R*IxE eC=I; 9’ (R")) where u|prix s is the restriction
of u to RZ'XI.
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6.3)  <E(z,v),dx)o(xz))

=@ [ exp{—iy @ +in)} PE +in))~

GRS iv?’)df’} B (@ 92), 0(z) -

Thus, in this case it is obvious that E(-,y)eC=([0, y,); D’ (R*))
NC=((ya, 20); D" (R*)).

Let us consider the case where m’>>1. Take xeC{({é.€E8%;

|€.1<2}) such that y(&,) =1 when |£,|<1. Using Lebesgue’s dominated

convergence theorem and Fubini’s theorem we find
6.4  <Glz—), =)0 (z))
~lim (2m)~ J\exp{—i.’y G+ i)} (6 (P(E+in))™
X P& +in") 0 (Ent i) dE

=lim (27)~" jj:[ Ln_‘exp {—iy’ (" +i7")}

elo
IGER Y ACH 5’+iv’)d$’]5 (z2)dz,

where

(6 5) Ie (1',., é’ -+ 177’) = J._-:oexp{i (xn - yn) (Sn + lnn) } X (eén)
X (P(E+17y))'dé,.

In order to derive an expression which is valid when &—0, we shall

first establish the following estimate.

6.6 8/0€,)*(P ) -<ag, AFIE i D
(6.6)  [(0/06)*(P(§+im) 7= TIE T

C(—:O, 1’ 25 ”.’

where M, and k%, are some positive constants independent of &4-ipe B
— it —il .
In fact, we have for some positive constants C; and C,>>1

6.7 l0(§"+i7") | =C, (see (4.4))

and [g, (8" +i7') | <Ca(L+ (& + iy )™
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Then it follows from (6.2) that

a. (& +1i7")

Entima| 7.
(& iy }

[P(s+iv)!zclien+inn|M'{1—2r;1

Hence if |§,+ 9,/ >Cs(1+ €7 +27"|)™ ™! with Cy=2m’C7'Cs, we have
from (6.7)

SlaE +in) /ae (& + i) | €t i T <1/2
and so
(6.8) [P(E+1in) | "<CiA+[Ea+i7.])"™ .
On the other hand, if |&,+27,| <Cs(1+ |& +i7’])~™, we have
(6.9) |PE+in) | 7'SCs=<Ces(1+ |&" +in )™ ™™ A+ |&a+i7.]) ™.

From (6. 8) and (6.9) we find (6.6) for a=0 with M,=Max(C5;(2C5)™,
C) and ky=m’(m—m’+1). We show (6.6) for =1 by induction.

Now we have
[(0/06.) P(§+in) | =|m"qe(§" +i7") (§n+i7,)™ "
+ X =1 =1)q(§" + ") (Gat ima)™
SC A+ [+ DA+ [Eatina )™ 7.
Hence
(0/08,) (P + 1))~ =| (0/08,) P (& +im) | [P (& +im) |
SM QA+ [+’ D" A+ [Eatina) ™™

Suppose that (6.6) holds for 0</<<q—1. From the relation
0= (0/06)*(P-P) =X () {9/08.) (P} {(0/08) P,
we get
(6.10)  (9/08)(P) = —X0(F) {0/08.)" (P} {(0/06.) " P} P,
Now we have

| (0/082) 7' P(E+2m) [=C A+ € +in' )™ A+ [Eatina]) ™"

and by the induction assumption
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[(0/06.)" (P (E+im) =M Q+|& +ip' DA+ |§a+d7,)) ™!

[=0,1,---,—1. Applying these estimates to the right-hand side of
(6.10), we have (6.6) for a.

We shall now return to the integrals (6.4) and (6.5). Using

repeatedly the relation
exp {Z (xn —¥Yn) (Ent+1270) ¥
= —1(zo—y,) 7 (0/0€,) exp {i (2n— ¥a) (En+i7a)}

and iategrating by parts, we obtain

(6.11) L,(an, & +i1) = (ra— )| [ exp{iea92) Gub i} 2(e6)

X (= i0/08.)(P(E +1)) st T (n, & 417 |, 2uos,
where
(6.12)  Jo(xn, & +ip’) =D& j_wexp{z’ (Zn—yn) En+ i)} 20 (860)
X [(=i0/0&,)* (P (§+im) T ]déa, (x"=(—i0/05.)"0).
The estimate (6.6) gives
(6.13)  lexp{i(za—ya) (§at+i7)} 2P (e§,) [(—20/06)“ (P (E+ 7)) ]|
<My exp{(yn—Za)Tn} A+ [§" +177[) "
X (L4 1&,+1279,]) 7™ 2,
Using Schwarz inequality and (6.13) we find

(6.14) [Je(xa, & +17") | <Ce(@A+|&"+17"|)"

X { ‘Tm(l*’r !$ﬂ+i~gn|)_zd$w}1/z

12
x { j déﬂ} exp { (Yo — ) 7}
1< |Eq <261

=CVe@+ (& +i7" )" exp{(ya—Ta) Un},
where C and k are some positive constants. Since g€ 9 (R"') we have

for any N

(6.15) |G +in) [SCy(+ | +in' )" exp {h, (1)},
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h,(7")= Max z’-7".

z’/Ssupp ¢

If we take p with support in (—oo, v,) U (¥., o), we may substitute
(6.11) in the right-hand side of (6.4). Since we have (6.13), (6.14)
and (6.15), letting ¢ tend to zero, we get the following expression by

Lebesgue’s dominated convergence theorem.

(6.16)  (G(z—9),d(x)0(z))

= f: (Ya—zn) ™" Ln_lexp{— iy’ (&' +17")}
)@+ [expti@a—va) Gutin)

% (—i&/@én)”‘(P(S+i77))“d$n]p(xn) d&'dz,.
Therefore we have for any sufficiently large «

6.17)  <G(z—9), =)
= am ) [ exp{— iy @ +in) ~ iz Gutin)

X G +in") (—i0/08,)* (P (€ +in)) ~'d§,

when x,#y, and we see that G(x—y)eC*((—o0, y.); D' (R*™))
NC=((Yn, +00); D' (R*™)). This implies that for any integer /=0
DLG (x— ) |z,-0 makes sence when y,5<0. Moreover the estimates (6. 6)
and (6.15) enable us to differentiate the right side of (6.17) with
respect to x, under the integral sign and so D)G(x—¥)|,,-0 is given

in the form

(6.18)  (DLG(z— )0, §(2)D
:ZLOCQL,,:V,T”“" jgnexp{—iy E+in} (& +i7")

X (§at i)' (—30/062)*(P(E+1i)) 7'dE, v.#0,

where « is chosen sufficiently large and Cy,=a(a+1)---(a+v—1) (ll))
Writing

B;(D)=31 bu(D) Dy,

we also find
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(6.19)  {(B;(D)G(z— )40, $(z)D
=371 (DG (2= ) sty b (— D))

=Y T Canyi® [ exp =iy G imbba(e +in)

XGE +in") (Eatina)' ™ (—10/06,) (P (§ +i7)) a8,
¥a70.
Now we define F (-, z,, ») €C*([0, ); D’ (R")) by

(6.20) <F(z,9),¢(z)>=@m)"(—)X", 37 3 Cuyi®

exp {ixn A} A*7! d . .y R (7 +17")
an{ P, (& +in, 1) l}exp{ b EFIDY TR e i

X b (& +in) P& + i) (Entima) ™ (—10/08,)"
X (P(§+in))dé,

where R;,(§"+17") is the (j, k) cofactor of the matrix

((2m‘) = § B, (& +in’, DAL, (& +i7, D)) ‘ldi)

Jyb=tyenp
& iy e B —ir —il.

If we put
E(z,y)=G(z—y) —F(z,v),

then E(x,y) is the required fundamental solution, that is, E(x,y) be-
longs to the space C=([0, y,); 9" (R* D) NC*((y,, 00); D’ (R*)) and

satisfies the equations
P(D.z-) E(.Z', y):é\(x'_'y), x,,>0, y,,>0, Bj(Dz)E(.Z‘, y)[z"=020’ ]:1, IR 1).

From Lemma 4.4 and the Paley-Wiener-Schwartz theorem, it follows that
there exists a closed proper cone K with its vertex at the origin such that
z+-9>0 on K— {0} and supp E(x, y)C (K+y) NR:.

On the other hand, the Ifundamental solutions F;(x) are defined by

(6.21) <F,(2), (x>

=@ nxz, [ {few bzt @@ i, v)-an)
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X Ry (8" +17") (R(E"+i7")) P (&' +in")dE’, j=1,-,p.

Obviously the F,;(x), j=1, ---, p belong the space C*([0, c0), D’ (R™*™))

and satisfy the equations:
P(D>Fj(x) =0’ .Z',,,>O, BI(D)Fk<x) |$n=0:61k6(‘z/)y j’kzla "',P-

From Lemma 4.4 and the Paley-Wiener-Schwartz theorem we also see
that the support of every F';(x) is contained in some closed proper cone
having no points =0 in common with the half-space z-9>0. Thus we
obtained a system {E(z,y); F;(x),j=1, -, p} of fundamental solutions
of the mixed problem (1. 3)-(1.5) for {P(D); B;(D), j=1, -, q} which
satisfy the required condition on their supports. It only remains to show

the uniqueness for such a system.

Proof of the uniqueness of {E(x,y); F;(x), j=1,---, pt. The
uniqueness of the system {F;(z), j=1, -, p} follows immediately from
Proposition 5.1. In fact, suppose that there exists an another system
{Fj(x) eC>([0, 00); D" (REY)), j=1, -, p} satisfying (1.10), (1.11)
and the required condition on support. We may assume that supp F;CK
replacing K by a larger one if necessary. Then W (x) =F;(x) — Fj(x)
satisfies (5.1), (5.2) and supp W K. Therefore we have F;(x) =F(x)
by Proposition 5.1,

If the hyperplane x,=0 is non-characteristic for P (D), the unique-
ness of E(x,y) also follows immediately from Proposition 3.1 and
Proposition 5.1. First we note that if z€ 9’ (R?) belongs to the space
C=([0,0), D’ (R%Y)) for some 0>0, then z€ D’ (RY). In fact, take
x(x.) €CF((—0/2,0/2)) with y(x,)=1o0n [—0/4,0/4] and decompose
u=u+ Q—y)u=u+u;, Then u,€C~([0,0); D" (R%")) and supp
CR'x[0,0/2) so u;€C=([0, 00); D’ (R C D’ (R:). Since supp u,
CR%'x (0/4,0), we have u,€ 9’ (R?) and so zeD’(R?). Now
suppose that there exists a E'(z,y) € D’ (R2) NC>([0, ¥,); D’ (R™))
NC=((¥a, ) ; D" (RZ)) satisfying (1.8), (1.9) and supp E’(x, v)
CK+y. Then W (z)=E(x,y) —E’(x,v) € 9’ (R?}) and sataisﬁes k.1,
(5.2). Hence WeC>([0,); 9’(R%")) by Proposition 3.1. Since
supp WC K +y, it follows from Proposition 5.1 that W () =0, that is,
E(x)=E'(z,v).
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When the hyperplane x,=0 is characteristic for P(D), our argument
above does not go through. So we shall prove the uniqueness of
E(x,y) by a standard method employing the adjoint system of {P(D);
B;(D), j=1, -, p}. The following lemma is a modification of Green’s

formula given in Sakamoto [9].

Lemma 6.1. Suppose that the assumptions (), II) and
(II1) stated at the beginning of this section hold, and that u(x)
is an & (R¥ Y -valued C> function of x, in [0,00) with compact
support. Then for any ¢=Cy(RY) there exist suitable functions
g, eC*(REY (J=1,--,p), 0,€C°(RyY (=1, -, r—m’) and ¢
C=(R?) such that supp ¢Csupp ¢+ A, supp ¢;, supp p;C{zx’;(z’, 0) = supp ¢}
and that

(6. 22) £M<P (D) u(x’, z.), o (", 22) >dxn

- j;w<u (.Z,, xn)’ ¢(x', ‘rﬂ)>dx’ﬂ

=20 _KB;(D) et sy, 95 (x) ) + 25V <DP (D) tt] 3,0, 0x(27),

where A is a closed proper cone such that x-(—9)>0 on A— {0}, m’
is the order of P(D) in D,, r is the maximum of the orders r; of
B;(D) and { , > denotes the duality between &’ (R") and &(R").

Proof. Let 15(£"), j=1, -, p (resp. A5(&"), j=1, -, m’" — p)
denote the roots with positive (resp. negative) imaginary part of the
equation P (&’ 1) =0 in A when {’ € 8" '—iy®’ —il', where m’ is the
order of P(§’,§,) in §, (see Section 4). Put

P&, 0 =I5.(2—25(€)), P&, ) =75 (A—2; €))7
Then
P&, 0)=217%4a; )" =q, )P (L, D)P_(L, D).

As stated in Section 4, we have

@@)=£0 in  Erl—ire —il.

9) This notation is different from one in Section 4.



390 YOSHIHIRO SHIBATA

We write
P&, )=2+ai ()A" "+ +a5 (L),
P_(&,0=2""+a; ({)A™ "+ +an_,({).
When &’ is fixed, we also put for simplicity
P)=P&,),P,()=P,.(&,1),P-()=P_(T,4),
P =q@) 2™+ ()2 + -+ qn (T,
P.()=2"+af )2 +--+af (),
P_)=2""+a; @)™ "+t am_, ),
@) = [(uErv@yde, @ vo=10vO),
and
Fo[u] (', za) =0 (L, za) =u(za).
With this notation we have
(P(Dn)u,v) — («, P(D,)v)
=i W 77y (8 ai (§) KD " *'P (Do) u, vp + -+
o+ (P (Da)u, DY 7?70}
+i3270q0 (") ai (€) KD 'u, P_(Dy) vy + -+
o+ <u, DE*P_(D,) vd}.
Now we set
‘U= (u(0), D.v(0), -+, Di7'u(0),
P, (Da)u(0), -, D2 "*7'P, (Da) u(0)),
V= (D2 'P_(Dn)v(0), -, P_(Dn)v(0), Dy'~*"v(0), ---, v (0)),

1
af 1
1 0
: [ A, 0"
A=qo(@) @iy ai 1 S D ),
| \ o @

Amr—py-a; 1



HYPERBOLIC MIXED PROBLEMS IN A QUARTER SPACE 391
where *U denotes the transpose of U, then we have
(6.23) (P(Dy)u,v) — (u, P(D,)v) =iV* U,
where V* denotes the adjoint of V. Put

6.24) B, ) =0Q,& , D)PE& ) +B,&,2), j=1,,m’—p,

and
(6- 25) B;’+P(C/> Dﬂ) =D¥I_IP+(C,, Dﬂ): J=17 ) 77’1’ _—P
C/ EEn—l_iTﬂy/ _12’

b

where de§ O; ", DH<r—m’ (G r—m’<0, Q;(¢’,2)=0). When {’ is
fixed in B"'—i7,d’ —i3 we also put
B; (1) =B, ).

Let us denote

B{ (D")u(o) B:{l, RS B;p B:;zﬂ-l» Tt B;m’ u(())
B, (Dn) u(0) Boty =+, Bop  Bopes, =, Bome Dﬁ“u (0)

, =10, 0 10,0
Bya(@u@| | 0 800 P (D)a)
BuD)u©® ) | o .63 ) DrmPuDyw©)

QII E -@12
S D U= 93U,
0o : I

then we have det & =det B,;=R, where R is the Lopatinski determinant
of the system {P(D),B;(D), j=1,---,p}. Since R=R({’)=0 by
Lemma 4.4 for {’ € 8" '—iy,®’ —i3, we can put

3= (A9,
and then we have

(P (D) u, v) — (¢, P(Da)v) =i(B"V)*(BU).

Put
B/ (T, D) (0)
6.26) B"V = Bf’, (&, Dy (0)
Bp+1(C’., D,)v (0)

B..(Z, D,)v (0)
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(), -, b (L) blps1 (L), -, bime (1)

By (T, -+, by (8) Bypi (D), -+, by (T)

bZ+}1(C,), ) b?+1p(cl) bZ+11{+1(C/), Ty b;_;+1m’(cl)

(T, oy g () Blprgia (T, -, B ()

n B
= 1%4

<.‘B§’1 @;’)
Note that if f(¢’) is holomorphic in B"'—ir,9’ —:3, then F(Z') is
holomorphic in "'+ 77,8’ 4+i3. The coefficients of B (¥, 1) are all

holomorphic in E™'+i7,8’ +i3. Hence, it follows from (6.23), (6.24)
and (6.26) that

6.27) J TP, DY, 2o (%) dx.

_ j“u &, ) P(T, Do) () dza

=i3? B,;(¢, D)a(l’,0) - Bj (L, Da)v(0)
—i3? ST DEP (L, Dya(L’,0)-¢5(C) B (T, Du)v(0)
+ ZZT;P,HB; (C’, D’") Z? (C” 0) 'B,]’ (?’ Dﬂ) v (O)

where Q; (€7, 1) =2""q¢5")A* (f r—m’<0 for some j,q5(")=0)
and the coefficients of B7({’,D,) and ¢5({’) are all holomorphic in
T eB'+ir® +i2. Since P(Z,0)=q, &) -P. (&, )P_(¢,1) when
T eB'+ir9’ +i5, we denote the roots of the equation P (&, 2) =0
in 2 by (2, -, 1,8, 17 (&), ---, 1;(T’), which are enumer-
ated so that Im 17 (£)>0, k=1, .-, m"—p, Im 1; (&) <0, k=1, ---, p,
T eB"'+i7,0’ +i2, and then we have

P (&, 0)=2+337 a;(@)A7=]II7_ (A=1;(T))
P_(&, ) =27+ Pa; (C) AW =117 2 (A—15 (),
T eB"+ird +i2.

Put

R*(Z7) =det((2mi) = § By, (T, DA P, 1))

Jik=1,,m" —ps
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Tef+ird +i2.
Since
By (8,0 =by. 1 (E)2PTP (L, ) + -+ by, 5, (T)P_(L, )
b5 peg (E) AW e B e (D),
we have
R*(T) =det By, U € B ' +iyd +i3 .

On the other hand, since

we have Bp=(JA_)*  And then we have R*({)= (g,(&))™->
el '+ird+:i3. Put R% (%)= the (j, k) cofactor of

<(27ri) - §BZ+1(?, DIHP_(L, l))"dl>
Jyk=1,-,m’~p 5
FeB"4ird +i2.
For any ¢=Cy(R:) we put
v (E’ -+ i77’, .Z‘n) =7, (5, + i”?,, xn) — Uy (Sl + iﬂ/, 1‘,,,),
& iy €B 4 ir® +i3
where
01 (& T, ) = (2m) jexp Galad § (6 + i, E2)
X (P (& +i7’, &) dé,,
v (§7 +i7, 2a) =27 A 2ri) f exp{ix, A} RF(§7 + in )AF T (R*(E +in’)™
X B (&' +17", Dp) v (8 +17',0) (P_(§' —in’, X)) 7'dA,
& iy €B ir Y +i5 .

Put

6.28) p@ =@ | explia’ (¢ +in)bo @+ it m)dE’

7 ETP+E
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Since P({)+#0 when {€ 8"+ i1,®+ il and the coefficients of P_ (&’ —i7’,
2) and B, ;(&8"+i7’, ) and R¥. (¢’ +:7’) is holomorphic in & +iy’ € B!
+i79’ +i3, it follows from Paley-Wiener-Schwartz theorem that ¢ (z)
belongs to C*(RY), whose support is contained in {supp ¢+ 4} ) {z.=>0},
where A is some closed proper cone with its vertex at the origin such
that z-(—9#)>0 on A—{0}. Since P (& +i7’, D.)v (& +i7’, xa)
=¢(§" +i7’, z,) and B} (§'+i7", D.)v (§" +i7",0) =0, j=p+1, -, m’,
it follows from (6. 27) that

(6. 29) fP(s' i, D& —ir, z) -0 @ F i, %) dz
B Lmﬁ (& —i, x,) ¢ (&' +1i7, zn) dn
—i32_ B, (& —iv’, D,)a (& —ir’, 0)
B} (" +in’, D,)v (&' +i7’,0)
—iy 2 IV DiP (8" —iv’, D) a(§ —iy’, 0)
g5 (¢ —in") BY (§" +i1’, Do) v (¢ +1i7’,0).

Put

6.30) 4, =D [ exniis’ @ +in)}

Er 9+ 2

XBj (§' +i1', D) v (€ +iv’,0)d§", j=1,-,p

6.3) 0,e)= @D [ explic’ @ +in)} (Shadl @ =T,

e+ 3
B (& +i1’, D) v (& +in’,0)}d&’, j=1,- r—m’.

Since the coefficients of By (§’+i7’, D,) and gi(§’ —i7’) are all holo-
morphic in & 477’ € B ' +ir®’ +:2, it follows from the Paley-Wiener-

Schwartz theorem that
supp ¢;C {z” € R"™; (27, 0) &supp ¢},
supp 0;C {z' € R**;(z’, 0) Esupp ¢}.
We have
6.32)  Ku,vp=Lu(¢’ —iv', z.), Fo[0](E —it, zs)),

where
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G 0] @ — it 2) = @00 [exp iz’ @ —in)} 0 (!, w) de

= (2r)~*-H fexp {—ix' (&' +i)}v(x, x.)dx’.
Hence, it follows from (6. 28)-(6.32) that

[T @, graz,
= (27) -<”-1>[ [p@—ir, DyaE —iv, 2, v @ +ir, z)dz,

= @m e [P —i, DyaE —in', ),

L exp{—iz’ (&' +i1)}d(z’, z2) dx'Sdzs

.
= eo-e] [T@E i, ), FE i, z)>dz.
+4332_ (B (¢’ —in’, D) a(§’ —iv’, 0),
Bj (§"+iv’, Da)v (8 +i7°,0))
—i) B D e KDRP(§" —in’, Dy)a(§" —in’, 0),

&E =iy B @+, DyvE +it, 0)) |
= [ @@, 5 @>dz+i53.<B,(Dyu (e, 0,8,
— i DIP (D) u (e, 0), 0,

Q.E.D.

Proposition 6. 2. Under the hypotheses (I), (II) and (III) we
have W (z)=0 provided that W (x) is a solution of the homogeneous

boundary value problem in R*:

P(DYW (x)=0 in R} , B;(D)W (2) |z,20=0, j=1,---, p,
such that W (z) belongs to C>([0,0); D" (R")) for some 0>0 and
that supp W () CKNRE.

Proof. 1t is sufficient to show that
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(6. 33) W,¢>=0 for any ¢=C; (RY).
In fact, if we show (6.33), then we have
W (x’, ), 8(x") >, =0 for any gD’ (R*™)
when 0<x,<0. W (x) belongs to C=([0,0); 9" (R%")). Hence
W (@,0),6(2)pw= lim W (&, ), 8(2) 2 =0.

We shall show (6.33). Let ¢, ¢; (j=1,---,p) and p; (=1, -, 7r—m’)
be functions which are stated in Lemma 6.1 for = Cy (R%). Put

2= {z’ eR""; x, =0, (z’, x,) Esupp ¢ for some x,}
2,={z’ e R*1; dist (2, £,) <1}.

Let yeCy(2:% (—0/2,0/2)) be 1 in 2% (—0/4,0/4). Let 0:(x,) €
Cy((—0,0)) be 1in (—0/2,0/2) and 0,(z’) €C~(R"") be 1 in ;=0
and 0 in z;<—1/2. Put

(PDYW,P)= | @@ PDOIW, 0:) Py de,

+<{A=0:(z) P(DYW, 0:(z") §>

where <, > in the first term of the right-hand side denotes the duality
between 9’ (R™") and PR and {, > in the second term of the
right-hand side denotes the duality between 49’ (R") and 9 (R%). Since
xW is a C% ([0, o0)) function of =z, with its value in & (RZ™) and
0:(x,)0,(x’)=1 in supp xN {x;=>0} and supp W C {x,=0}, it follows
from Lemma 6.1 that

[T @ P@aw, 0@ Brdz= [ PDYIW, Bdz= W, 5>

+227_ KBi (D) AW |spm0, § 0 + 23 7KDRP (DY g W | 20, 05 -
Since we have
B; (D)W |zpme=1%(z", 0) B; (D) Wz,
+ I%;(D“x/ al) (27, 0) B (D)W |z,

= 22 (D/al) (. 0) BP (D)W |z4=0,
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and supp (D% /al) (x’,0) Nsupp ¢ ;C {x,; <0}, it follows that

<BJ(D>xWizn=0,¢.j>=O, j:l’...’p.

Since we have
PDYIW |ayea= 3, (D1/at) (&', 0) PO (D)W ..,
and supp (D¥g/a) (’, 0) () supp p,C {£,<0}, it follows that
(DEP(DYAW [aymty B39 =0, §=1,-,7—m’.
Hence we have
[ <@ PDYW, 0Bz = x W, B

Since supp[0; (x,) P(D) A— %) W] Nsupp ¢ C {zx € R%; 2,0, 2,=0/4}, it
follows that

[(@w@P@ a-nW,06)pdz,

— ["w, =P D) i@ a @) pyd,

Since supp(1—0,(x,)) 0. () {zxeR; 2> —1/2, 2,>0/2}, it follows
that

{A=0:(z)) P(DYW, 0:(z") §>
={P(DYW, A—0:(zn))0:(x") >
=W, P(D) 1=0:(xx))0:(2") §p =<KW, P (D) (1~ 01(2x)) 02 (") 6.

Hence we have

(P(DYW,py=<W, 6.

On the other hand, since
[(@ @ r@yW, 06Dz
= [(er@W, 0200, Frdz.=0,

and since

{A=0:(z)) P(DYW, 0:(z") §)
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=C(P(DYW, 1—-0:(x.))0:(z") P> =0,
(6. 33) follows. Q.E.D.

Summing up, we have

Theorem 6.3. Le: P(D) and B;(D), j=1,---,q be differential
operators of order m and r;, j=1,.-- q, respectively, with constant

coefficients. The following three assertions are equivalent.

() There exists a unique system of fundamental solutions {E(x,y),

F;(x), j=1, -, q} satisfying the following equations:

(6.34) P(D)E(x,y)=0(zx—y) in R*,yeR", y=(0,ys-,¥.),
(6.35)  B;(D)E(z,9)]s,20=0 in R*, j=1,-,4q.

(6.36)  P(D)F.(z)=0 in R%, k=1,-,q,

(6.37)  B;(D)Fy(2)|s,ea=0,0(z") in R™, j k=1,+,q,

such that E(x,v) and F;(x) belong to C*([0,0); D’ (R ) ND’' (R?)
for some positive number 0 and there exists some closed proper cone
with its vertex at the origin such that x-9>0 on xK— {0} such
that supp E(x,v) contained in (K+vy) NRT and supp F,(x) is con-
tained in KR~

(A1) There exists a unique system of fundamental solutions {E(z, ),
F;(x), =1, --,q} satisfving the system of equations (6.34)-(6.37)
such that E(x,y) belongs to C=([0,y.); D (R*)NC*((¥a, o) ;
D(R"H)ND' (R and F,;(x) belong to C*([0, ) ; D’ (R"Y)) and
the support of E(x,y) is contained in (K+y) R} and the support
of F;(x) is contained in KNRE.

(A1) P(&) is a hyperbolic polynomial with respect to ¢ and g
equals the number of roots with positive imaginary part of the equa-
tion P(§'—is®’,2) =0 in A for large enough s and & €B™ ' and the
Lopatinski determinant R({’) of the system {P(D), B;(D), j=1, -,
g} is hyperbolic with respect to ¥’ .
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