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Asymptotic Behavior and Stability of Solutions
of Semilinear Diffusion Equations

By

Hiroshi MATANO*

§ I. Introduction

This paper is divided into two chapters. In the first chapter (§ 2

^§ 4) we study the asymptotic behavior of solutions of semilinear diffu-

sion equations — in particular their behavior around unstable equilibrium

solutions, so as to get a clearer understanding of the situation where

those unstable equilibrium solutions are placed. The results will then

be applied to making some stability criteria as well as to establishing

theorems on the existence of stable equilibrium solutions and on the

structure of multiple equilibrium solutions. In the second chapter (§ 5,

§ 6) we are confined to Neumann problems and discuss the possibility of

the existence of non-constant stable equilibrium solutions.

Let D denote a bounded domain in Rn with a smooth boundary dD.

What we shall deal with first are initial -boundary value problems of the

type

(1. la) ^- = Lu + f(x9u) in £>x(0 , T),
at

(1. Ib) u (x, 0) = MO Cr) on D,

(1. Ic) a (x) u -h {1 - a (x)}— = ft (x) on dD x (0, T) ,
dv

where L is a second order uniformly elliptic operator of the form

A 9 { du\
*../=i d

and 9/9 V denotes the outward conormal derivative. It is always assumed
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that 0<C£<1 everywhere on dD. A function v = v (x) is said to bean

equilibrium solution, or a steady-state solution, of (1. 1) if it satisfies the

following elliptic boundary value problem:

(1. 2a) Lv + f(x,v)=Q in £>,

(1.2b) av+(l-ct) — = P on dD.
dv

Throughout this paper only real-valued classical solutions are considered.

Our main result in Chap. I is related to the question of how a

solution of (1. 1) will behave in the long run when starting from nearby

an unstable equilibrium solution. In short, we shall show that above

an unstable solution v of (1. 2) there exists a minimal solution v+ in a

certain sense and that for any continuous function 0 satisfying v <C0^^ +

the solution of (1. 1) with initial data u0 = (/) converges to v+ as t in-

creases. Here, roughly speaking, v+ must often be replaced by +00

according to circumstances. A similar assertion holds for a maximal

solution below v.

The main result in Chapter II is on the stability of solutions of the

following Neumann problem:

(1. 3a) Jz; + /O)=0 in D,

(1. 3b) ^L = 0 on dD,
dn

where d/dn denotes the outer normal derivative. It shall be shown

that if D is a convex domain or one of other certain kinds of domains

then any non-constant solution of (1. 3) is, if it exists, unstable.

As regards the stability of equilibrium solutions, D. H. Sattinger has

shown in [12] how stability and instability are characterized in terms

of upper and lower solutions. The characterization of stability in this

direction presents us a clear understanding of the global behavior of

solutions around stable and unstable equilibrium solutions. But so far,

it seems that stability — including instability — of solutions of (1. 2) has

not yet been completely characterized by means of those upper and

lower solutions, or supersolutions and subsolutions in [3], In this

present paper, taking advantage of the self-adjoi^tness of the elliptic
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operator L, we shall make quite another approach to the understanding

of the global behavior of solutions which will provide us with a complete

knowledge of "the extent of instability". The fundamental technique

for the discussion of the asymptotic behavior of solutions is given in the

next section. One of our contributions here is to reveal the extent of

instability in pretty general situations, and another is to emphasize the

importance of this result.

In § 2, we prove, as is mentioned just above, some fundamental

theorems on the asymptotic behavior of solutions which are based upon

estimates of fundamental solutions, Schauder's estimates, and the so-called

energy methods. For convenience' sake, we employ the idea of co-limiting

sets in the discussion. What is important is the fact that the co-limiting

set of a solution of (1. 1) consists only of the solutions of (1. 2) and

that in many cases it is not empty (Theorem 2. 8). We usually discuss

the behavior of solutions simply in the topology of Cl(D) f\Cz(U) and

never in a stronger one even if possible, since it is sufficient for the

essential part of the following argument.

In § 3, the main result in this chapter is presented (Theorem 3. 1).

It should be noted that no further assumption than a smoothness condition

is made on the nonlinear term f. Applications of this theorem are found

mainly in § 4, but also the results in § 6 are essentially (if not directly)

based upon this theorem.

In § 4, theorems on the existence and on the structure of solutions of

(1. 2) are given. We first prove that a subset of C1 (D) fl C2 (D) which

is stable as a set in a certain sense contains at least one stable solution

(Theorem 4. 2). Next we show that between two unstable solutions

below and above there exists at least one stable solution (Theorem 4. 3)

and that between two stable solutions exists at least one solution (Theorem

4. 4). It is H. Amann who has proved the existence of minimal and

maximal solutions between a lower solution below and an upper solution

above (see [1]). Our theorems in §3, §4 are partly analogous to [1]

as well as to [12], but include stronger results that probably can hardly

be obtained by their methods, namely the monotone iteration methods.

From a practical point of view we must note Corollary 4. 5 and Remark

4. 6, which are sometimes useful for investigating the stability of
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solutions. For example, given a maximal solution v of (1. 2) (i.e., a solu-

tion above which there lies no other solution), one can see, from Remark

4. 6, that it is quite sufficient to conclude the instability of v if he only

finds a continuous function 0 which makes the solution of (1. 1) with

initial data 0 blow up to + oo in a finite time or diverge to +00 as

t->oo (here we assume n = I and that / is independent of x).

In § 5, we consider (1. 3), which is a special case of (1. 2), and pre-

sent one of the main theorems in Chap. II (Theorem 5. 1) . This theorem

is a kind of generalization of N. Chafee's result [4; Section 6] on the in-

stability of solutions of (1. 3). He has proved that / being of class C2

any isolated non-constant solution of (1. 3) is unstable provided that

n = 1. Our theorem here, which contains the same kind of result for

convex domains in Rn, of course includes his result and, moreover, is

stronger than his even if restricted to one-dimensional cases, for it is all

the same applicable to non-isolated solutions. One also finds other two

types of domains in which any non-constant solution is unstable, namely

a body of rotation with a convex section and a domain bounded by two

concentric spheres. (dD is always assumed to be smooth.)

In § 6, it is shown that when n>2 there are actually cases where

(1. 3) has a non-constant stable solution (Theorem 6. 2). We give suffi-

cient conditions on the domain D and the function / for the existence

of such a solution. This result is obtained by applying Theorem 4. 2 to

a certain invariant subset of C1 (£*) H C2 (D) which contains no constant

function.

The author wishes to express his gratitude to Professor Masaya

Yamaguti for continued encouragement and guidance throughout the

course of this work and to Professor Masayasu Mimura for stimulating

suggestions by which the development of Chapter II was motived. He

also thanks Professor Seizo ltd for a useful remark on the estimates of

fundamental solutions.
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Chapter I. General Theory

§ 2. Preliminaries

Our assumptions concerning the equations (1. 1) and (1. 2) are all

put together as follows:

(A) 1) D is bounded and its boundary is sufficiently smooth, say of

class C3.

2) Each atj (x) is smooth, say all its second derivatives are

uniformly Holder continuous in D (of exponent 7% 0<^<^1),

and the matrix (atj) is uniformly positive definite and symmetric.

3) Both a(x) and $(x) belong to C2(9£>), and 0<tf<l every-

where on dD.

4) f(x, IL) is of class C2 in u. Moreover, / and df/du are

Holder continuous (of exponent 7) in D X R.

We make no further assumption throughout this section, while some

of the results in next two sections require slightly stronger boundary

conditions. Smoothness conditions in (A) may be relaxed somewhat, for

which we shall not care in this paper.

For the purpose of convenience in making a priori estimates and in

discussing the asymptotic behavior of solutions, let us introduce some

function spaces.

First, for description of the asymptotic behavior: Given an interval

I in R1 and a metric space X, we denote by C(I\X) the space of all

.X-valued continuous functions on / with the topology of uniform con-

vergence on compact subintervals.

Secondly, for a priori estimates: Given a closed interval /, a compact

set K in D and a positive number 7<O, we introduce the notation

,
' (!*-*! + *-* Dr/

where fir is a function denned on Kxl. We also need the notation
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92g dg
dt

The space of all functions with finite norm \Q\T)I}D is denoted by

C r(Z)x/). And C2+r(Dx (*!,*«]) denotes the Frechet space denned by

the system of seminorms \Q\z+r,is,t^,K where K varies over all the com-

pact sets in D and s over (tl9 £2]. It is not difficult to see that Cl(D X/)

is embedded continuously both into CT(DxT) and into C(I;C1(D))9

and that C2+r(D X (th tj) completely continuously into C ((^, t2~\ ; Cz (D)).

We are now ready to formulate our a priori estimates — a pretty

weakened form of what is known as the interior estimates of the

Schauder type:

Lemma 2. 1. Let g (x, t) belong to Cr (D X [tl9 £2]) and let u (x, t)

be a continuous function on D X [^, t^\ satisfying

n

Then u belongs to C2+r (D X (tl9 ^2]). Moreover, given any compact

set K(^lD and any se (^1,^2], there exists a constant C>0 such that

/br a^y continuous function u satisfying the above equation.

Our assumption on D and L is quite enough for the estimates of

this type. See A. Friedman [5; Theorems 5 and 9 in Chapter 3] for

details.

Let U = U(x,y,t), defined on D X D X (0, oo) , be the fundamental

solution of the equation

— = Lu in Dx(0, oo)

with the boundary condition

dv
= Q on 9Dx(0, oo),

where L and a are as in (A) . We owe the following lemma to S. Ito

[private communication]. (This result can naturally be obtained in the
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course of constructing the fundamental solution in a bounded domain;

see [8; § 3, § 4] for the construction of fundamental solutions.)

Lemma 2. 2. U, VJJ and dU/dt are continuous in D X D x (0, oo),

and U(x9y9t)=U(y9x9t)'^>Q on D X D X (0, oo), -where Vx = (d/dxl9

d/dx2) • • •, 9/9x^) . Moreover, given any to>Q, there exist positive

constants Mi (z = l,2, 3) such that

(2.1) sup f U(x,y,t)dy<M1,
X<=D JD

(2. 2) sup f
xt=D Jl

for 0<£<£0 and that

(2. 3) sup f todr f VJJ (x, y, r)
XGD Jo JD

We introduce linear operators T and S with parameter t: For each

£>0, TOO is an operator on L°° (D) defined by

[T(0w](o:)= f C/C^^O^Cy)^,
JD

where we understand T (0) w = w. S (f) is defined by

\_S (0 ff] (x) = r C7 (x, y, «- r) ff (y, r) dy ,

and here we understand S(Q)g = Q. These integrals are easily seen to

induce such operators as

(2. 4a) T : L°> (D) -*C* (D X [tf, *„]) R C ([ff, *,] ; C1 (15) )

(2. 4b) S:L~(Dx (0, i0) ) ->C' (S x [0, *„]) n C ([0, *„] ; C1

for any given 0<jJ<^0 and 0<J<1. Moreover;

Lemma 2. 3. The operators in (2. 4) are both compact.

Proof. By virtue of the continuity of dU /dt and V JJ on the com-

pact set D X D X [<J, £0] , T is compact if regarded as a mapping from

L00 (D) into C1 (D X [5, *0] ) • Since C1 (D X [<J , ^0] ) is embedded
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continuously into Cr (D X [<?, *„]) nC([5, to] ; C^Z))), the compactness of

the mapping in (2. 4a) follows.

Well, let

Using (2. 1) and (2. 3) we get

(2. 5) sup { i IS (0 g] (*)| + ! F, [5 (0 g] (*) | } < Af

for all ge A. As Z) is compact and as VJJ is continuous on D X (0, £0],

it also follows from (2. 3) that given any s>0 there exists a d£>0 such

that

(2. 6) I F, [5 (0 g] W - F, [5 (0 g] (^) |<e

for all geA, ^e [0, £0]
 and x^x'^D satisfying |j; — x' <d. (Note

that IF^S^gl itself is sufficiently small if t is sufficiently small.) On

the other hand, for any O^^^^fS^o and any

P Jr f C7 O, y , tz-t}g(y, r
Jo JD

- P^r f U(x9 y,tl-
Jo Ju

d-c
i-Jt, 0) J.D

*ti pI dr \U (x9 y, tl — r)g(3>, r) \dy
'maxC^ —J£ ,0 ) JD

pmaxCti — J t . O ) p

Jo JD ' ' ? '

f*1 r
<3AM*+ 6?r |C7(^, y, r +J^)-t/(x,

r^1 r r^<3MjJ^4- I dr \ dy \
JminC^.JO JD Jo

where At^t^ — t^. Using (2.2), we get

<M2 f
Joo r +<
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Hence, an elementary calculation yields

(2.7) su

< (SMi + M2 log - ** - ) At

for all g<=A and 0<^ <t^<t^ Seeing (2.5) and (2.7), we easily find

that {Sg}geA is relatively compact in Cr (D X [0, £0] ) for any 0<f<l.

It remains to show the relative compactness of {SQ}g^A in C([0, £0];

C^C-D)). For each fixed £e [0, to], S(t)g is a function of x^D, and it

remains in a compact set of Cl(D) as £ varies in [0, £0] and (7 in A,

by virtue of (2. 5) , (2. 6) and Ascoli-Arzela's theorem. So what we

are to prove is the equicontinuity of {Sg}g&A in t with respect to the

topology of Cl(D). Since the norm of Cl(D} and that of C(D) are

equivalent on the set {S (t)g\0<t<tQy ge A} as it is relatively compact

in C1(-D), we have only to prove the equicontinuity in the topology of

C (D) , which follows immediately from (2. 7) . Thus the relative com-

pactness of {Sg}g^A in Cr(Dx [0, *„]) nC([0, t,~\\Cl(D}} is established.

Hence the compactness of the operator S in (2. 4b) . Q.E.D.

Now we turn to the initial-boundary value problem (1. 1) . Converting

(1. 1) to an integral equation and then using the successive approximation

method, one easily finds that for any bounded continuous initial data the

unique existence of the solution of (1. 1) is guaranteed so long as t

remains small. Therefore, for each ^^0, an operator Q(f) on j3°(Z))

=L°°(D) nC(D) can be defined as follows:

(2. 8) [Q (0 ze>] (x} =uw(x, f) for w e ^° (D) ,

where uw is the solution of (1. 1) with initial data u0 = zu. For each

fixed ^/>0, Q(t'} is generally a nonlinear operator and its domain

— denoted by Dom(Q(^ /)) — is not necessarily the whole space j23°(Z)).

A function w belongs to Dom(Q(^ /)) if and only if uw can be extended

farther than t = t' as a solution of (1.1); in other words, if and only

if uw does not blow up in the time interval [0, £']. So we have

Dom(Q(0)) = j3°(.D)? and one can easily see
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Dom (Q (*,) ) IDDom (Q (*f) ) ,

for any

Theorem 2. 4. Le£ (A) hold and let B be a bounded set in

®\U). Then

i) there exists a positive number tQ such that BciDom (Q(£0))

and that {Qw}w&B is bounded in L°°(Dx (0, £0)), 'where Qw denotes

a function of x9 1 expressed by [Q (f) w~\ (x) ;

ii) z/{Q^}we.B ^ bounded in L°°(D X (0, ^)) for some £i>0, zY zs

relatively compact in C ( (0, *J ; C1 (D) fl C2 (Z>) ) .

We prove this theorem only in the case where /?=0, for otherwise

(1. 1) can be reduced to this case by subtracting from u a function

ze>0 e C1 (D) f] C2 (Z)) which satisfies the same boundary condition as

(1. 2b) and makes Z/w0 uniformly Holder continuous in D. (We can

indeed find such a WQ, since given any uniformly Holder continuous data

(p the elliptic equation LzvQ = (p with the boundary condition (1. 2b) is

solvable except that when a=0, <p must be so chosen as to satisfy

= f a
JdD

where

(9 Q^ n(y\vA V) a \x)
I j

and here ( r i j ( x ) } denotes the outer normal to dD at x.) Note that if

the assumption (A) holds for (1. 1) it is still the same with the reduced

problem

®^ = Lu + f(x u)
dt U X'U

U (X, 0) = UQ (x)

au + (1 —

where
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7O, u) =f(x9V+w0(x))+LwQ(x).

For LwQ is uniformly Holder continuous.

Proof of Theorem 2. 4. As is mentioned above, we can assume

/9=0 without any loss of generality.

i) Let fi(u), fz(u} be locally Lipschitz continuous functions satis-

fying

(2.10a) /i (K)<min(0, /(*,«)),
x<=D

(2. lOb) /, («) >max (0, /(*, a) ) ,
x<=D

for all u^R, and let us then consider the following ordinary differential

equations :

(2. 11)

(2. 12) «*

U(0)=M,

where Af = sup||w||Loo(I)). Either of these equations has a solution at
w&B

least on some interval 0<2<£0 (^0>>0). Seeing (2.10), we have

for 0<^<^0. Besides, regarded as functions of x, t, these solutions

obviously satisfy Lut = 0 and dui/d^ = Q (z = l, 2). Considering these

facts and using (2. 10) again, we get, instead of (2. 11) and (2. 12) , the

following partial differential inequalities:

on

-<0 on 9D X (0, *0] ,
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L«, + /(x,«1) in Z>x(0,*,]

, 0)>ze;(.r) on Z)

(1 - a) -^2>0 on 91) x (0, *0] ,

here *w is any element of B. Since 0<a<l, it follows from a standard

comparison theorem that

for all .reJD and *e(0,/0]. (See, for instance, M. H. Protter- H. F.

Weinberger [11; Theorem 8 in Chapter 3], where the proof of the com-

parison theorem of this type is implicitly suggested.) Strictly speaking,

this inequality should be understood to hold so long as Q (£) w is

definable, i.e., w e Dom (Q (/) ) , but as a matter of fact it is the case

because any solution of (1. 1) can be extended until it blows up or to

t = oo. Hence this completes the proof of i)

ii) Converting (1. 1) into an integral equation in the usual manner,

we get

(2.13)

where

(Here the boundary integral term does not appear, for we have assumed

that /?==0.) As {Qw}w&a is bounded in L°° (D X (0, ^) ) , so is {fw}w&B

because of the continuity of f. Therefore Lemma 2. 3 can be applied

to get the relative compactness of {Qw}w&B in Cr (D X [8, *J) C\C([d, ^] ;

C1 (Z?) ) for any given S e (0, ^] . Hence {Q w} W&B is relatively compact

in C ( [fl, *i] ; C1 (15) ) • On the other hand, as / is uniformly Holder

continuous of exponent 7* in x and Lipschitz continuous in u9 {/W}W^B

is bounded in Cr (D X [d, t^\ ) . So it follows from Lemma 2.1 that

{Q^}w&B is bounded in C2+r (D X (8, *i]), hence relatively compact in

C ( (5 , ̂ i] ; C2 (Z?) ) . Combining these facts, and considering that 5 is any

number in (0,^], we now obtain what is expected. Q.E.D.
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Corollary 2.5. Let (A) hold and let {vx}^A be a set of solu-

tions of (1.2). Suppose {VJ}IZ=A is bounded in j55°(Z)). Then it is

relatively compact in Cl(U} fiC2(D).

The proof is immediate, since {vx} i<=A = {Q(f) v^} i<=A for

Lemma 2e 6, Let (A) hold.

i) For each fixed t^>0, the following mappings are continuous

linear operators (cf. (2.4)):

ii) Let B, tQ be as in Theorem 2. 4. Then there exists a constant

C>0 such that for all w

sup \\Q(t}wl-Q(t}w2\\LZ(D^C\\'wl-w2\\LZ(D} .

We omit the proof of this lemma, for such kinds of results are so

popular. Suffice it to say that ii) is an immediate consequence of a usual

successive approximation in the integral equation (2. 13) .

Our estimates obtained so far are not yet sufficient for the discussion

of the asymptotic behavior of solutions; it is because they are merely

local estimates (with respect to t) . We need some more information on

solutions which is in a sense global in t. For this purpose we introduce

an energy form J (u) associated with (1.1):

TS ^ f f 1 ^ 9u du „,J(u)= — Hain——-F(x,
JD 12 i,y=i oxi dx

, f \OL 2 , l-afdu\2
-f a\— uz + -- - —

JdD 1 2 2 \ 9 v /

where

O

and a (x) is as in (2. 9) . For any £> 0 and any iv e Dom (Q (f) ) the
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form J(Q(f)?v} is definable.

Lemma 2. 7. Let (A) hold and let tQ be any positive number.

Then for any w e Dom (Q (£0) )

d f ( 9 )2

dt JD \ dt ~ )

Proof. For brevity's sake we write u (x, t) instead of [Q (f) ze;] (x).

First let us show du/dt belongs to C((0, *0]; C^Z)))- Differentiating

(1. 1) by t, we formally obtain the linear equation

(2.14a) 2f--.

and the boundary condition

(2. 14b) .
dv

As fu(x,u(x9t}} is Holder continuous in D X (0, £„], (2.14) has a

unique classical solution for any bounded continuous initial data at t = t^

where ti is any given number in (0, ^0] • Set

(note that du/dt is bounded by virtue of the Holder continuity of /).

We claim that p = du/dt on Dx[tly t0~]. To see this, we put

(2.15) u(xft^=u(x,t1)-}- {*p(x,s)ds
J«i

and prove u = u. Since

t1)+ \ Lp(x,s)ds
J t t

dt

it is not difficult to see that w=u — u satisfies the equation
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dw
— J^vu , j u\^, ") w \ Juu\^>"')—^-
dt J«i dt

as well as the boundary condition

, N 9ze>- = 0.
' 9v

Putting w = e~ktw, we get

in Dx [£i, -

ze; O, ^) = 0 on D

aw +(i-a) — = 0 on 3D x

where k is a positive number so large as to satisfy the inequality

f s du(2.16) k-fu(x,u(x,f}}> ("'
Jft dt

ds

on D X \ti9 to]. By the boundary condition, w cannot take its positive

maximum nor negative minimum anywhere on dD X [£i, £0] - Now suppose

w^Q, and let (x'^ t') be the point where \w\ takes its maximum. We

can assume without loss of generality that w (x', £')>(). Since (xr^ t'}

X (*j, 4], it follows that —>0, Lze;<0 and w>0 at (x', t'). So

f ua d*J UU - ""> 3
dt

which clealy contradicts (2. 16). Therefore w must vanish everywhere,

hence the equality u = u is established. As tl is any number in (0, to],

Now we differentiate the form J (u) by t. The following formal

calculation is well-founded because du/dt belongs to C ((0, to] ; C1 (D))

and Lu( = du/dt — f(x,u)) is bounded. By Green's formula,

J f f 1 v-^ du du
~T\ \—HalJ— —
dt JD ( 2 i, j dxi dx

f
IjD

d2u du rf ^ du] 7— f(x,u) - > axx ^ ' } dt\
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f du du ,~ f IT rt \\ 9u jI a ax— S {Lie ~h/(.r, u)} ax.
Jap dt 9v JD dt

— I a

From the boundary condition of u it follows that

9 « _ _ 9 ^ / du\du_ d

_ (_

9 l - a / 9 w \ 2 a
dt\ 2 \dvl ' 2 "

Therefore

cL i 9z^ i
^ J-D ' 9^ J#

Let 0 be an element of Dom(Q(oo)) (^ fjDom(Q(^))) . Looking
J>0

upon the set {Q (t) (/}} 0<t<m as an orbit described in some function space,

we can define its o)-limiting set in the usual way — as is usual in the

theory of dynamical systems:

Definition I. For any 0eDom((2(oo)) the ti)-limiting set of 0

in a function space X is denned as follows:

where cl^(-) denotes the closure of a set in X. (We understand that

fi(X\<J)')=0 if 0 belongs to ^°(D) \Dorn (Q(oo)), i.e., if the solution of

(1. 1) with initial data 0 blows up in some finite time interval.)

Of importance to us is the case where X = C1 (D) f| C2 (D) , but we

also consider the case where X = Z/°°(Z)) with the weak* topology. As

Z/^Z)) is separable, L°° (£>) -weak* satisfies the first countability axiom.

Therefore, in either of these cases a function (p(x) belongs to

if and only if there exists a sequence 0<^i<C^2 ---- >0° such that

The continuous embeddings CJ(D) H C2(D) CC(D)
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yield

As a matter of fact, these apparently different ^-limiting sets coincide

with each other as is seen in the following theorem:

Theorem 2.8. Let (A) hold and let 0eDom(Q(oo)). Then

ii) it consists of solutions of (1. 2) ;

iii) z'£ zs not empty if there exists a sequence

such that Q(£m)0 remains hounded in Z/°°(Z)) as m— »oo.

Proof. We first show iii). For simplicity let um(x) denote

[Q<X)0]O) for »i = l,2,-. As {«»}mew is bounded in ^°(D), it

follows from Theorem 2. 4 that {Q^m}meiv ig relatively compact in

CCCO^C'C^nC'CD)) for some £0>0. So {Q (*0) um} m^N = {Q (tm

+ ^o)0}me2v ^ relatively compact in Cl(D} nC2(Z)), hence the conclusion.

Secondly we prove i) and ii) at one time. Suppose @(L°°(D}

— zc;.*|0) is not empty and let cp be any element of it. What we have

to show is that q> belongs to Q(Cl(D} nC2(Z))|0) and that it is a solu-

tion of (1.2). By definition, there exists a sequence 0<[£i<C^2<C ---- >0°

such that

lim Q (XO 0 = 0? in L" (£>) -weak* .
m-*oo

Using Banach-Steinhaus' theorem, we see that #m=Q(£m)0 remains

bounded in L°° (JD) as 77?— >oo. So, with a suitable positive number £0

as above, {Q^m}me]v ^s bounded in Z/°°(Z)X (0, ^0)) and relatively compact

in C((0, tt~\\Cl(P} nC2(D)). Since J(Q(00) is monotone decreasing

in £ by virtue of Lemma 2. 7,

hence

f K**%*%±d*+ rJc «.y 9xj 9xj Js

F(x,Um)dx+
D JdD
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for 77Z = 1, 2, • • • . The right-hand side of this inequality is bounded with

respect to m because of the boundedness of {uly u2, • • •} in the maximum

norm. Considering that the matrix (^o-(x)) is uniformly positive

definite and taking into account the non-negativity of a(I — a) (dum/dv*)z
9

we find that um remains bounded in Hl(D)l} as ??z-»oo. So {u^mE^ is

relatively compact in Z/2(jD), since D is a bounded domain. Recall that

um converges to (p as m—^oo in Z/°°(Z)) — ze>.*. It follows that this con-

vergence also occurs in Z/2(D), hence, by Lemma 2.6 ii) , there exists

a function h (xy t) such that

(2.17) lim sup \\Q(t)um-h(x,t)\\LZ(D} = Q.

Combining (2.17) and the fact that {Qum}m(=N is relatively compact in

C((0, *„]; Cl(D} RC2 (£>)), we see, under a suitable modification of h

on a null set, that given any $e (0, £0] and any compact set KdD

(2.18) li
m-^oo

(2.19) HmQ(0«» = A(*,0 in

uniformly in

On the other hand, using Lemma 2. 7 again, we get

+'°dr f (|-
«t + «0 JZ> [^

Since {Q(tQ}um} is a bounded set in Cl(D), J (Q(t^)u^ remains bounded

as m— >oo. Therefore

(2.20) ^ dr f
Jti + to JD

Using (2. 18) and (2. 20) we obtain

rtm+ta r
0 = lim I dr \

m-»oo Jtm+B Jl

rta r (ft
= lim dr -Q(r)

m-^oo Js JD (Qt

1} Hl(D) denotes the Banach space of all functions with finite norm



SEMILINEAR DIFFUSION EQUATION 419

rt0 r ( a
>lim dr |^2(r)«

m-*oo Jfl JX 19^

= lim f'rfr f
m-»oo JS JX

- fV f
J<y J

for any fle(0, £0] and any compact set KdD, and hence

(2. 21) LA (*, 0 +f(x,h (x9 t) ) = 0 in D x (0, t,~\ .

It also follows that

(2 - 22) -?*- (x,£) = 0 in D X (0, *0] ,
9^

since um->h and dum/dt->Q (as ra— »oo) uniformly on any X"x[5, ^0].

Meanwhile it follows from (2. 19) and the boundary condition of Q(f)um

that

(2-23) ah(x, £) + (!- a) — ( x , f ) = 0 on 9Z>x(0,£0]09v

Combining (2. 21) , (2. 22) and (2. 23) , we conclude that h is independent

of t and is a solution of (1. 2) regarded as a function of .r. Moreover

it belongs to Q(Cl(D)(}C*(D)\(l)) because of (2.18) and (2.19).

Passing to the limit in the equality Q(f) um = T (*) un + S(t)f(x, Q(t) um)

and using (2. 17) and Lemma 2. 6 i) , we get

h (x, 0 = [T (0 p] (x~) + IS ( f y f ( x , h} ] (.r) .

Consequently

= ̂  in L2(D)

(see [8; Theorem 6] for the latter equality). It implies (p(x) =h(xyt^)

for a.e. xeD, hence (p is a solution of (1.2) and belongs to Q(Cl(U)

Q.E.D.

Owing to this theorem, there is no need to distinguish fi(X|0) from

Q(Cl(D} £\C2(U) |0) so long as we have the continuous embeddings

weak* .
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So hereafter we adopt the abridged notation

(2-24) a(#)=a(.X\0),

where X is any space satisfying the above condition.

Theorem 2.9. Let (A) hold, let 0eDom(Q(oo)), and let Y be

a nonempty subset of J2(0) such that Y and ,0(0)\Y are closed in

C1 (JD) n C2 (D) . Suppose Y is bounded in L°° (£>) . TAerc Q (0) = Y a;zrf,

given any neighborhood W of Y in C1^) nC2(D), there exists a finite

number

Proof. We have only to prove the latter part, for the former

follows immediately from the latter. Let

y(e) = {we^°CD); ||w-p|U-u>)<e for some <?eY}.

As Y is bounded in L°°(Z>), so is V"(e) for each fixed £>0. Hence,

by virtue of Corollary 2.5, ¥"(1)0*0(0) is relatively compact in Cl(U)

nC2(D). So the topology induced from C1 (JD) R C2 (I>) and the one

from L°°(jD) are equivalent on this set. Considering that Y is compact

and is separated by an open set in C1 (D) H C2 (£)) from J2(0)\Y, we

find that there exists an £0 e (0, 1] such that

(2.25) V(e. )nJ3W=y.

Now we claim that for any 0<£<Oo there exists a Tx>0 such

that

(2.26)

Suppose (2. 26) does not hold. Then there exist an ^ e (0, £0) and a

sequence 0<^i<C^2<C ---- >0° such that

(2.27a)

(2.27b)

for m = 1, 2, • • • . By the way, for any (p e Y and w e F (£i/2) , u=Q(f)w

— (p satisfies the reduced equation
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at

as well as the boundary condition

=0.
dv

So it is not difficult to see that there exists a t0^>0 such that

(2-28)

for all zc;ey(£i/2) (see the proof of Theorem 2.4 i)). Combining

(2.27) and (2.28), we find that for each m = l,2, ••• there exists a

**' e |>2m-i, *2m) such that

Consequently, by virtue of Theorem 2. 4 ii) , {Q(tm' + £o)0}m=i.2,... is rela-

tively compact in C1 (D) f| C2 (D) . It implies that ,0(0) meets with the

closure of F(£1)\F(e1/2), hence fl(0)\Y" meets with V^So), a contradic-

tion to (2. 25) . Thus (2. 26) is established.

As a result of (2.26), {Q(00h^ is relatively compact in C^Z))

for any (J>0. It can be seen from the boundedness of

o in L°°(D), Theorem 2.4 ii) and the fact that

{Q (0 0) t^ = {Q (5) «; ; te; e {Q (0 0} ̂ 0} .

Accordingly the topology of C1 (Z))nC2(Z>) and that of L°°(D) are

equivalent on the closure of {Q000}^> hence, combining this fact and

(2. 26) , we obtain the conclusion. Q.E.D.

Corollary 2.10. Let (A) hold and let 0eDom(Q(oo)). Suppose

remains bounded in the L°° (D) norm as t-^-oo. Then $(0) z's

non-empty connected set in C1 (D) P, C2 (D) .

Corollary 2.11. Le£ (A) hold and let 0eDom(Q(oo)). Suppose

J2(0) contains an isolated point v (zuith respect to the topology of

C1 (D) H C2 (D) ) . T/ien Q (0) = {w} on<f

lim Q(t)<l> = v in C1 (D) fl C2 (£>) .
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These corollaries are direct consequences of Theorems 2. 9 and

2. 8 iii) .

§ 3. Strong Instability of Equilibrium Solutions

A solution v of (1. 2) is said to be stable (in the maximum norm)

if given any s>0 there exists a <J>0 such that

for any 0e j3°(.D) satisfying || 0 — v || Leo(-D) <^d, where Q is what is introduced

in (2. 8) . We say v is unstable if v is not stable. As we are concerned

with real-valued solutions, it is possible, and convenient as well, to

discriminate between upward instability and downward one. It is also

convenient to introduce the notion of instability in a stronger sense.

Definition 2. A solution v of (1. 2) is unstable upward if there

exists an £0>0 such that for any cT>0 there exists a function 0ej2?°(.D)

which satisfies v (x) <=</)(x) <v(x) +5 everywhere on D and also the

inequality

(3.1)

at some (x0, to) . We say v is strongly unstable up-war d if there exists

an £0>0 such that given any 0ej3°(D) satisfying </)>v and 0^z; (3.1)

holds at some (XQ, 20) • By reversing the inequalities, downward in-

stability in either sense is defined likewise.

It is easy to see, by virtue of the comparison theorem, that v is

stable in the maximum norm if and only if it is unstable neither upward

nor downward.

Before presenting our results we introduce the following notation:

X+ (

where S is the set of all the solutions of (1. 2) .
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Here we are ready to state the most important theorem in this

chapter :

Theorem 3. 1. Let (A) hold (see § 2) and let v be a solution

of (1. 2) -which is strongly unstable upward.

i) Suppose S+ (v}=/=0. Then it has the minimum of it, i.e.,

there exists a solution v+^S+(v^) such that

v+(x)<v(x) on D

for all z/eS+O). Moreover, for any 0eX+O)

in the topology of C1 (I)) Q C2 (D) .

ii) Suppose S+ (v)=0. Then, given any </)<=X+(v), there exists

a T, 0<T<oo, such that

lim max [Q (t) 0] (x) — + oo .
t-+T x<=D

Remark 3. 2. A similar proposition holds true for S~ (v} and its

maximum v~ if v is strongly unstable downward.

The proof shall be given later in this section. This theorem will

rind its wider application when coupled with one of the following theo-

rems which are more or less familiar to us.

Theorem 3. 3* Let (A) hold, let v be a solution of (1. 2) , and

let AI be the least eigenvalue of the follozving eigenvalue problem\

(3. 2a) L(p+h(p = Q in D,

(3.2b) a<p+(l~a)- = 0 on dD.
dv

where

If A!<;O, v is strongly unstable both upward and down-ward.

Next theorem requires a further assumption on the boundary condi-

tion.
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(B) Either 1) or 2) holds:

1) a^l on dD.

2) I — a never vanishes on dD.

Theorem 3. 4. Let (A) , (B) hold and let v be a solution of

(1.2). If v is unstable up-war d (resp. down-ward), it is strongly

unstable up-war d (resp. downward) .

As a consequence of Theorems 3. 1 and 3. 4 we have

Corollary 3. 5* Let (A), (B) hold and let v be a solution of

(1. 2) . Suppose one of the following conditions holds. Then v is

stable from above, i.e., not unstable upward.

1) There exists a function </)^X+(v) such that Q(£)0 converges

to v as t— >oo (for instance in the maximum norm).

2) inf v(x)=v (x) on D .
e&s+(io

Of course an analogous assertion holds good for the stability from

below.

Some applications of Theorem 3. 1 in combination with Theorem 3. 4

will be found in § 4 and § 6, while in § 5 are those of Theorem 3. 1 in

combination with Theorem 3. 3.

Now let us begin the proof of these results.

Lemma 3, 6. Let (A) hold and let v be a solution of (1. 2) .

Suppose v is strongly unstable upward. Then

i) v is isolated from S+ (v) in the maximum norm\

ii) for any 0eX+(u),

(See (2.24).)

Proof, i) Let SQ be as in Definition 2 and let V= {w e .®°(JD) ;

\\w — £>||oo<£0}. It follows from the definition of £0 that V [}X+ (v) does

not contain any equilibrium solutions. So V (~]S+ (v) =0.
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ii) We assume $(0)^0, for otherwise the statement is trivial. By

virtue of the comparison Theorem and Theorem 2. 8 ii) , J2(0) is contained

in S+ (v} U {v} . Since v is an isolated point of S+ (v) (J {v} , it follows

from Corollary 2.11 that either Q(^i) = {v} or fl(0) dS+ (t;). Suppose

that the former holds. Then we see, from Corollary 2. 11 again, that

Q (0 0 converges to v in C1 (D) f) C2 (D) , which contradicts the strong

upward instability of v. Therefore the former cannot hold, hence the

conclusion. Q.E.D.

We introduce into S+ (77) (resp. 5~(t;)) an order relation defined

as follows:

Vi>vz means v1(x)>v2(x) everywhere on D. S+(v) (resp. S~ (vj)

is then regarded as a partially ordered set with respect to this relation.

Lemma 3. 7, Let (A) hold and let v be a solution of (1. 2) .

Suppose v is strongly unstable up-ward and that S+ (v} =^=0. The?i

for any vly v2^S+(v} there exists the greatest lozuer bound of

{"£>!, ^2} in the ordered set S+ (t;) .

Proof. Put

h O) = min {v^ (x) , vz (x) } .

By virtue of the strong maximum principle, h(x)^>v(x) on D (cf.

Lemmas 3.8 and 3.9). Hence h^X+(v) and, by the comparison theorem,

v<Q(f)h<viy z' = l, 2,

for all ^>0. Applying Corollary 2. 10 and Lemma 3. 6 ii) to h, we find

that J2(A) is a non-empty subset of S* (v) . The above inequalities thus

imply that {z>1? vz} has at least one lower bound in S+(v}. Let

be any lower bound of {vly v2}. Since v<h,

for all ^>0. So any element of J2(A) is an upper bound of {v} . It is

now easy to see that Q(h) contains only one element, namely the greatest

lower bound of {vly v2}. Q.E.D.
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It follows from this lemma that any finite subset of S+ (t>) has the

greatest lower bound of it in S+ (v) . We denote by v1/\v2/\ -•• /\vm

the greatest lower bound of {vly v2, • • • , vm}.

Proof of Theorem 3. 1. i) We merely show the existence of the

minimum v+. The rest of i) then follows immediately, if the comparison

theorem, Theorem 2. 8 iii) , Lemma 3. 6 ii) and Corollary 2. 11 are taken

into account.

Put

¥(x)= inf v(x), x^D .
«es+(w)

What we have to show now is ¥^S+(v}. Take an element VQ of

S+O) and fix it. Then

V(x= inf vx

where S+ /\v0 denotes {v /\VQ; v ^S+ (z>)}. So, given any e^>0 and any

finite number of points xly "-yxk^Dy there exist vly • • - , vk^S+/\vQ such

that

for i = I ••- k. Hence

for z = l, • • • , k. It follows that W is an accumulation point of S+ /\VQ

in the topology of pointwise convergence on D. On the other hand,

since S+ /\VQ is bounded by v from below and by ^o from above, iS^/^o

is relatively compact in C1 (D) fj Cz (Z>) by virtue of Corollary 2.5.

Consequently W is also an accumulation point of S+ /\VQ in C^D) H C2(-D),

therefore W is a solution of (1. 2) . This means that W belongs to

S+ (v} U {^}» an<3 as v is isolated from S+ (v) by Lemma 3. 6 i) , W must

belong to £+ (z;) . Thus the statement i) is established.

ii) Let T = sup{£^>0; 0eDom(Q (£))}, and suppose there exist a

constant -M>0 and a sequence 0<^i<^2<C ---- >T such that

(3.3) s
x(ED

for 77Z=1, 2, • • • . As Q(f)$ is bounded by v from below, it then follows
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that {Q (£m) 0} m<E2V i§ bounded in L°°(D). Here we have two cases, i.e.,

the case where T is a finite number and the case where T = oo, In

the first case, on applying Theorem 2.4 i) to B = {Q (£m) 0} me#, we are

led to a contradiction. In the second case, an application of Theorem

2. 8 iii) yields Q (0)^0. So it follows from Lemma 3.6 ii) that S+ O)

=7^0, which contradicts the presupposition. Thus, in either case, our

supposition (3. 3) has turned out false. Q.E.D.

Proof of Theorem 3. 3. Let ^ be one of the eigenfunctions of

(3. 2) belonging to AI. It is well-known that ^ never changes sign in

D (a consequence of Krein-Rutman Theory) . So we can assume in the

sequel that (pC>0 in D and that 11^11^,^ = 1. Since Ai<0, there exists

an £o>0 such that

(3. 4) f(x, v (*) + e) - f(x9 v(x}}>z fu (*, v (x) ) +

for all 0<[£<;£o and

Now suppose that some function </)^X+(v) satisfies the inequality

(3.5) IIQ(00-w

for all ^>0. By Green's formula,

-Q (0 0, PI

, Q (0 0) -/(*,*)},

where < , > denotes the inner product on L2(Z)). Using (3.4) and

(3. 5) , we get

-<Q (0 0 - 1,,^>> -
a^ z

therefore

As /L!<O and <0 — z;,^1»0, it follows that
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which contradicts (3. 5) because D is bounded. So there exists no such

a function 0 e -X"+ (77) as to satisfy (3. 5) . Hence the strong upward

instability of v. The strong downward instability can be shown likewise.

Q.E.D.

Lemma 3. 8. Let (A) , (Bl) hold and let v be a solution of

(1.2). Given any 0eJ£+(z>) and any t^>§ such as 0 e Dom (Q (^) ) ,

there exists a constant c>0 such that

(3.6)

'where p(.r) is the distance between x and dD.

Proof. Put

and let us consider the initial-boundary value problem

dt

u(x,Q) = 0(.r) —v(x)

ccu+(l-a) — = 0.
dv

By virtue of the comparison theorem we have

(3.7) Q(O0-^>S(o:,O=^Jri1 f
J

where U is the fundamental solution of the equation du/dt = Lu with

the same boundary condition as above. Since

[/Cr,3>,O>0 for (*, y) e Z> X Z> ,

dU

(see [8], §9), and as 0 — v is non-negative and is not identical to zero,

it follows that
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in D ,

So we can easily find that there exists a positive constant c such that

hence we obtain the conclusion. Q.E.D.

Lemma 3. 9. Let (A) , (B2) hold and let v be a solution of

(1.2). Given any 0eX+(^) and any £i>0 such as 0 e Dom (Q (^) ) ,

there exists a constant c^>0 such that

everywhere on D.

The proof is just similar to the previous one except that we use

here the following property of U:

on DxD.

Proof of Theorem 3. 4. First we prove this theorem in the case

where (A) ? (Bl) hold. Let £0 be as in the definition of the upward

instability of v (see Definition 2) and let 0 be any element of X+ (z>) .

Further we put

M= max AO, £).

It is easily seen, from the proof of Theorem 2. 4 i) , that there exists a

positive number 11 such that 0 e Dom (Q (^) ) and that

(3.8) O^Q(Ow-tf<e0 , 0<^^*!

for any continuous function w satisfying 0<^ze; — v<^eQ/2. Because

— v} so long as 0<;£<^1? we get

D

by the aid of the comparison theorem (cf . (3. 7) ) . As
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\U(x,y,tl}{w(y')-v(y}}dy\
JD

ÎN-tHU-u,) f |F,t/(*,:Mi
JD

and since Q (^) w — v vanishes on 9Z), it follows that

(3. 9) Q fo) w — v^cj || zv — v I

where

^ -**«' sup f |
x^D JD

Let c be a small positive constant such that (3. 6) in Lemma 3. 8 holds

for the present 0 and t\ (recall 0 e Dom (Q (^) ) ) . As v is unstable

upward, there exists a continuous function 0j (.r) which satisfies the

inequalities

on D and also the inequality

(3. 10) [Q (<„) 0

at some (.TO, £o)« Here t^>ti because of (3.8). Combining (3.6) and

(3. 9) , we get

Q(^i)0i^^ + ̂ P^Q(^i)0,

so it follows from the comparison theorem and (3. 10) that

since t^>ti. As 0 is any element of J£+(z;), the strong upward insta-

bility of v is established.

Secondly, the case where (A) , (B2) hold. Using Lemma 3. 9 in-

stead of Lemma 3. 8, w^e obtain the conclusion more easily. Q.E.D.

§ 4. Multiple Existence of Equilibrium Solutions

In this section we consider problems under both of the hypotheses

(A) and (B) (see § 2 and § 3) , so the boundary condition of (1. 1) can

be expressed in one of the forms
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or

Definition 3. A closed set Y in (^(jD) nC2(D) has the property

(S) if there exists a family of sets {Ya}a^A in C1 (#) R C2 (D) which

satisfies the following conditions:

2) for any al9 az^A there exists an az^A with

3) each Ya is closed in C1 (15) fl C2 (D) and bounded in L°°(Z>);

4) given any element TO of Y9 any ae A and any 5>0, there exist

continuous functions wl9 iv2 and a finite number T>0 such that

and that

Q(0w*er8> £ = 1, 2,

for T<^t<^oo9 where Q is the operator introduced in (2.8).

Remark 4. 1. If a closed plus invariant set Y is plus stable, i.e.,

if given any neighborhood U of Y there exists a neighborhood VH)Y

such that Q(t)VdU for £>0, then Y has the property (5).

Now we present our main results in this section, which consist of

the following three theorems. The first one may seem rather different

from the others because of its abstract form, but one will find the second

theorem to be an immediate consequence of it, and in § 6 will be found

a more concrete and more interesting application of it.

Theorem 4. 2. Let (A) , (B) hold and let Y be a nonempty

closed set in Cl(D}^}C2(D} which has the property (5). Then Y

contains at least one stable solution of (1.2).

Theorem 4. 3e Let (A) , (B) hold and let vl9 v2 be distinct
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solutions of (1. 2) . Suppose Vi<Lv2 on D and that v1 is unstable

upward -while v2 downward. Then

i) there exist a minimal solution v& and a maximal solution

v± in such a sense that

for any solution v satisfying v1<^v<^v2,

ii) there exists at least one stable solution v satisfying vl
<^

Theorem 4. 4. Let (A) , (B) hold and let vly v2 be distinct

solutions of (1. 2) satisfying Vi<^v2. Suppose vl is stable from above

and v2 from below. Then there exists at least one other solution

v ivhich satisfies Vi^v^v2.

Here we say v is stable from above (resp. below) if it is not

unstable upward (resp. downward) . As a result of Theorems 4. 3 and

4. 4 we have the following corollary:

Corollary 4. 5. Let (A) , (B) hold and lei vl9 v2 be distinct

solutions of (1. 2) . Suppose that v1<zV2 and that there exists no

other solution lying between v± and vz. Then, either

= vl in C1 CD) fl C2

£->oo

for all w^X+ (Wl) f] X~ (v2~) or

lim Q (0^ = 1;, in C1(D)r\C\D')
i-»oo

for all w

The proof is immediate if Theorem 3. 1 i) and Theorem 3. 4 are

taken into account.

Remark 4. 6. 1) One may expect that a similar assertion still

holds when vz is replaced by +00 or vl by — oo. But, so far, any

satisfactory result has not been obtained except for the case where 72=1
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and the function f is independent of x. For this special case we state

the result without proof.

Let n and / be just as above and let v be a solution of (1. 2)

satisfying S+ (t;) =0 (resp. S~(v)=0). Then we have the following-

alternatives :

lim Q(t)w = v in C1 (D) R C2 (D)

for all w^X+(v) (resp. X~(z;)) or

lim max [Q (£) i£j] (x) = -f oo
t-*T xeS

(resp. lim inin [Q (t} zu~] (x) = — oo)
t->T x^.D

for all w^X+(y} (resp. JC~(t;)), where T is a positive number or

infinity depending on w.

2) The same is true in the case where n = \. and f{x,ii) is

bounded from below (resp. above) in the domain D X (0, + oo) (resp.

£ ) x ( — oo50)). We can prove these results by using Corollary 4.5.

From this remark, we get rather a simple sufficient (and necessary)

condition for the instability of a solution. Given such a solution as in

the above remark, suppose we could find a continuous function w such

that Q(f)w blows up to — oo (resp. — oo) in a finite time or diverges

to -f oo (resp. — oo) as £— >oo; then the upward (resp. downward)

instability of v follows. In fact, the former alternative in Remark 4. 6.

1) cannot hold in this case by virtue of the comparison theorem.

In finding such a function rw the idea of upper and lower solutions

is often useful. For, if uo is a lower (resp. an upper) solution satisfying

W(XO)^>V(XQ) (resp. w (XQ) <^v (x0) ) at some x0^D, it is easily verified

that Q(f)°vu is monotone increasing (resp. decreasing) in t to finally

blow up or diverge to +00 (resp. — oo) (see [12; Remark in §4]).

So the question is merely how to find such a lower or an upper solution.

This method can be applied, for example, to the boundary value problem

v"-\-ev = Q9 v\dD = 0. In fact, given any positive number M, a lower

solution *w satisfying •w (.r0) ^> M at some xQ^D is always found, and

so we can a priori conclude that any solution of this problem above
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which there lies no other solution is unstable upward in the sense that

the second alternative in Remark 4. 6 1) holds. (Instability of such

solutions has already been shown in H. Fujita [6] under the hypothesis

that the problem has at least two solutions.)

Now, let us begin the proof of the theorems.

Proof of Theorem 4. 2. Suppose Y does not contain any stable

solution of (1.2). By definition, there exists a family of sets

which satisfies the conditions stated in Definition 3. So, for any

we can find a continuous function u}a such that Q(f)twa^Ya for all

t>iT 'a, where Ta is a finite number depending on a and wa. Since Ya

is closed in C1 (D) f| C2 (Z>) and bounded in L°°(Z)), it follows from

Theorem 2. 8 that S(wa) is a nonempty subset of Ya. Set K = closure

U*G(^a), where the closure is with respect to C1 (D) f| C2 (Z>) . K is
a<=A

a set of solutions of (1.2) and, by Corollary 2.5, YaC\K is nonempty

and compact. Considering the conditions 1) and 2), we see f}(
a(=A

= Yf\K=f=0, which implies that Y contains at least one solution of (1 .2).

Let VQ ̂ Y(~]K. As it is supposed that Y contains no stable solution,

VQ must be unstable upward or unstable downward. Without loss of

generality we can assume the upward instability of it. Then, as is seen

in Theorem 3. 4, it is strongly unstable upward.

Now let Z be the set of all the solutions of (1. 2) that are unstable

upward and contained in Y. Naturally Z is regarded as a partially

ordered set (the relation vl<^vz means Vi(x)<^Vz(x) everywhere in Z>) .

Denote by M the set of all the well-ordered subset of Z. Again can

M be regarded as a partially ordered set with respect to the following

order relation: W"i<^W2 if Wi coincides with a segment of W2. Clearly,

M is an inductively ordered set and is not empty as it contains {VQ}.

Therefore, by Zorn's lemma, there exists a maximal element W of M.

Here we have two cases.

Case 1. Suppose that W has its greatest element v, in other words,

consider the case where W is isomorphic to the segment of an isolated

ordinal number. In this case the minimum of S+ (2>) exists and belongs

to Z. To see this, we first note that there exists a function fw^X+(v)

such that Q(f)w remains bounded in L°° (D) as £— »oo (see Definition 3
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and recall that each Ya is bounded in L°°(D)). So, considering that v

is unstable upward, we find from Theorem 3. 1 that S+ (?>) is not empty

and has its minimum v + . Again by definition, given any (J>0 and any

ae A, there exists a function 0eX+(z;) f}X~(v + d} satisfying Q(/)0eYa

on some interval T<^<C°°. Here, taking a sufficiently small $, we can

make v<,Q(ti)</)<^v+ for some *i>0. (In the case where (B2) holds,

v+^v + c for some c^>0 by virtue of Lemma 3.9. So the above state-

ment is trivial if we put d = c and ti = Q. In the case where (Bl) holds,

v+>v + cp for some c>0 by virtue of Lemma 3.8. Therefore, as is

seen in the proof of Theorem 3. 4, we can find such a S^>Q and a £i>0

as above.) It means that Q(/)0 converges to v+ in C1 (D) fj C2 (D) as

t— >oo (see Theorem 3.1 i)). Hence v+ is contained in Ya. As a is

any element of A, v+ is also contained in Y. Seeing that Q(f)(j} con-

verges to v+ from below, we find, by the aid of Corollary 3. 5, that v +

is stable from below. So it must be unstable upward since Y contains

no stable solution. Consequently v+ belongs to Z and hence W U {^+}

to M.

Case 2. Suppose that W does not have the greatest element, in

other words, consider the case where W is isomorphic to the segment

of a limit ordinal number. In this case, putting

v (x) =sup v (x),
v<=W

we claim that v belongs to Z. In fact, since Y is bounded in Z/°°(Z)),

v is an accumulation point of W in the topology of C1 (J5) H C2 (D) . So

v is a solution of (1. 2). The relation v ^Y and the stability of v from

below follow from the closedness of Y and Corollary 3. 5 respectively.

So v belongs to Z.

Thus, in either case, the existence of an element that violates the

maximality of W has been shown. So our supposition that Y contains

no stable solution must be false. Q.E.D.

Proof of Theorem 4.3. i) As vz^S+(v^)9 S+(vJ is not empty,

and so it follows from Theorems 3. 1 and 3. 4 that the minimum of

5+(t7i) exists. We denote it by vs. Not only V1<^vs<^v2 and v^v^

but also v^vz since v& is stable from below while vz is not. Considering
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that ^3 e S~ (v^) , we can similarly show the existence of v± — max S~ (z;2) ,

which satisfies

The rest of i) follows immediately.

ii) Let vs, z>4 be as above and put

where v=Vz — v1 and ^ = v2~
lui. Note that in the case where (A),

(Bl) (resp. (A), (B2)) hold there exists a constant £>0 such that

v, W>cp (resp.>£) thanks to Lemma 3.8 (resp. 3.9). So there exists

a finite number T>0 such that

Q (0 (vs - W/2) , Q (0 (W4 + W/2) e F

for all t>T, because these two functions converge to v^ z/4, respectively

in Cl(D} as t— >oo. It follows from the comparison theorem that

for all t>T and any function w e C1 (D) p C2 (D) satisfying

^/2. Putting ya = y we easily find that Y has the

property (5). The conclusion now follows from Theorem 4.2.

Q.E.D.

Proof of Theorem 4. 4. First we prove this theorem under the

assumptions (A) , (Bl) . Suppose X+ (7^) fl -ST~ (v2) contains no solution

of (1. 2) . Then it follows from the comparison theorem, Theorem 2. 8

ii) and Corollary 2.11 that for any *w ^X+ (7^) n^~(^z) Q,(f)?v con-

verges either to v1 or to v2 as t->oo in C1 (JD) f| C2 (D) . Set

for 0<^0<J1. By virtue of the comparison theorem there exists a number

00 such that

(4. la) Q(f)Wo-*Vi (as £-»oo) if

(4. Ib) Q(0«;,->*;2 (as *->oo) if

Neither 00 = 0 nor 00 = 1 because of the stability of vl and vz. Without

loss of generality *we can assume Q(f)tVg0—>v1 as £— >oo. Since this con-

vergence occurs in CJ(Z)), given any c^>0 there exists a ^x^0 such
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that

where p (x) = dist (x, dD) . Considering

(4.2) VZ — V^CQP

holds for some Co^>0 by virtue of Lemma 3. 8, we then find that

(4.3) ^<!Q(*i)w>*.^«V4

for some £i>0. By the way there exists a constant Ci>0 such that for

any w £E X+ (vj fl X~ (vz}

(4. 4) || Q fo) ze;,o - Q (*,) w || L^D^CI \\ we. - w \\ L~(jD)p .

This inequality can be shown just similarly to (3. 9) . Combining (4. 2) ,

(4. 3) and (4. 4) , we obtain by a simple calculation the inequality

(4. 5) Q fo) we^vl + ~ + c^c, (6 - do) I vz -
4

for any 6 satisfying 8Q<^6<^1. Let Ql satisfy

o <el - 6, <^eQc0c^ ( \\v2 - v, || L-(IO) -1 .
4

It then follows from (4.5) that Q(t^)u}ei<LweQ/2. So we can see from

(4. la) that Q(tjrt^)tw6l converges to v-i as t—>oo. On the other hand,

since 6^> 6Q, Q (£) w9l must converge to v2 by virtue of (4. Ib) . This

contradiction proves the existence of at least one solution of (1. 2) between

v\ and v2.

Secondly, under the assumptions (A), (B2) . The proof is jusl

similar to the above one, except that we use Lemma 3 9 instead of

Lemma 3. 8. Q.E.D.

Chapter II. Homogeneous Neumann Problems

§ 5. Instability of Non-conslant Equilibrium Solutions

In this section, and also in next section, we study a special form of

(1. 1) :
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(5. la) HlL = A
at

The stationary equation corresponding to (5. 1) is (1. 3). Note that /

is assumed to be independent of x. So assumptions (A), (B) are put

into the reduced form

(A') 1) D is bounded and dD is smooth;

2) / is of class C2.

Our aim in this section is to pick out a few types of domains in Rn

in which any stable solution of the boundary value problem (1. 3) is

necessarily a trivial solution, i.e., a zero of f(u). We mention here

three types; convex domains, bodies of rotation with convex sections and

domains bounded by concentric spheres. From the standpoint of practial

applications, it is important to determine, for a given function /, in what

domain (1. 3) admits non-constant stable solutions and in what domain

not. Our results here form part of the answer to the latter question,

and part of the answer to the former is given in § 6.

To define the above-mentioned second type of domains exactly, let

us introduce the following notation:

where

/ cos d — sin 6 \
I 0 \

sin 6 cos 6

\ w
and U denotes an element of SO(n). Here it is assumed that

We consider G(t7) a one-parameter group of transformations. Obviously

G(t7) is a subgroup of SO(n).
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Definition 4. A subset Y of Rn is G (C7) -invariant if

for all x^Y and 0<;0<27r. A function w(x) is G(JJ} -invariant if its

domain is G (C7) -invariant and

for all .r, 6.

It is easy to see that Y is G (t/)-invariant if and only if UY( = {Ux;

xeY}) is G(E) -in variant, where E is the unit matrix. When n = 3,

G(E) is nothing but a group of rotations around .r3-axis.

In a G (£) -invariant domain it is convenient to introduce a new co-

ordinate system (0, r, xz, • • • , .rn) instead of the usual orthogonal coordinate

system (j^, • • - , .rB), where

^! = r cos 6 ,

-r2 = r sin 0 ,

for r>0, 0<^<C27T. A domain D is G (E) -invariant if and only if there

exists an (n — 1) -dimensional domain Z)0 in (r, -r3? • • • , x^) -space such that

(5.2) D=[0,27T) XA-

(Note that for each o;s, •••,J:», the set {((?, 0, xZ) • • - , o;n) ; 0<:0<27r} is

identified to one point.) Similarly, a function ze; = iv^d, r9 x&9 • • - , x^) is

G (-E) -invariant if and only if w is independent of Q.

Definition 5. Let D be a G (£) -invariant domain. The E-section

of D is a domain in (r, x&9 • • • , xn) -space defined by DQ in (5. 2) . We

denote it by SE(D). For any C7e<5O(?z), ^/-section of a G (f/) -invariant

domain Z) is defined by Sn(D) =SE(UD) .

Now we are ready to form a clear definition of the three types of

domains.

(Tl) : D is convex.

(T2): D is G (C7) -invariant for some U^SO(n), UD does not meet
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with the 2-codimensional subspace x1 = x2 = Q (i.e. r = 0) and

Su(D) is convex. (Here n^>2.)

(T3): D={x<=Rn;rl<\x\<rz} for some 0<r1<r2. (»>2.)

These conditions are incompatible with each other, except that (T2)

and (T3) are equivalent conditions when n=2. A typical example of

domain of type (T2) for n = 3 is the inside of a torus.

Theorem 5. I. Let (A') hold, let D be of o?ie of the types

(Tl) ~ (T3) and let v be a solution of (1. 3) . Suppose v is not a

constant function. Then it is unstable in the following sense:

i) If A^^{a^R; f(a) = 0, a~>imax. v (x)} is ?iot empty, then
x<=D

any continuous function 0 satisfying v<^(/)<^(X+ ( = minA+) , (p^v be-

longs to Dom(Q(oo)) and

in the topology of Cl(D} nC2(Z)), -where Q is the operator introduced

in (2.8).

ii) If A+=0, then given any continuous function (/) satisfying

v and </}^v there exists a T e (0, oo] such that

Km max Q (t) 0 — + oo .
t-+T x^D

i) ', ii) ' similar propositions hold good for A~ = {a^R; f(a) =0,

^min v (x) } .

This is our main theorem in Chapter II. The following theorem,

though not so strong a statement as above, is also interesting.

Theorem 5.2. Let (A') hold, let D be G (U} -invariant for

some U^SO(n] and let v be a solution of (1.3). If v is not

G (£7) -invariant, it is unstable both upward and downward.

To see the above results by the use of Theorems 3. 1 and 3. 3, we

have to show the negativity of the first (i.e., least) eigenvalue AI of the

following eigenvalue problem:
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^O in D,

= on
dn

where

As is well-known,

AI = min M (cp),

where

^ f
JD

and the eigenfunctions corresponding to AI are characterized as to mini-

mize the form

As a consequence of Krein's theorem, ^ is a simple eigenvalue and any

eigenf unction subject to ^t does not change sign in D. Therefore, it

is sufficient for concluding Ai<0 if we find such a function y^Hl(U)

as to make M (cp) <0 or as to niake &((p) =0 and change sign in D.

Next lemma will play an important role in the sequel.

Lemma 5. 3. Let D± be a convex domain in Rn -with a smooth

boundary. Suppose zv belongs to C*(D^) and satisfies dw/dn = 0 on

9A. Then

--\Fu>\2<:0 on 9A.
9 n

Proof. Let p be a function of class C2 defined in a neighborhood

of A such that

(5.4)

p<0 in A

P==0 on 9 A

p>0 outside A,

and that Pp never vanishes on 9A- Since Fp is outer normal to 9A
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at each point of dDl9 we have

dw 1 17 17 I= Vp.yw\
on j F p i

where • denotes the usual Euclidean inner product. So it follows from

the boundary condition dw/dn = 0 that there exists a function

such that

(5. 5) Fp - 7u) = pg on A .

Differentiating (5. 5) by xt yields

for z' = l, •••9?i. Multiplying this equality by dw/dxt and then summing

over z' = l, • • • j T z , we get

2 9'P

Therefore

= 0 on 9A ,
2 ' 1 9^9a:, 9

hence

(5-6) -1_|FW|«=-^_S
 yP g^J^ on

As is well-known, for each x^dDi the Hessian of p at ^ induces a

positive semi-definite quadratic form on the tangent hyperplane to dDi

at x, because A is convex. Since the boundary condition dw/dn=0

implies that the vector V*w (x) belongs to this tangent hyperplane, it

follows that the right-hand side of (5. 6) is nonpositive. Q.E.D.

Lemma 5. 4. Let (A') hold and let v be a solution of (1. 3) .

Suppose v is ?iot a constant and that
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Then Aj<0.

Proof. The statement Is trivial if ]T] M(dv/$Xi) <0, for in this

case there exists at least one integer k, ~L<Lk<^ny such that jK(dv/dx^)

<0. So we assume ^3t(dv/dx^=Q.

Now suppose that Ai^O. Then it follows from the above equality

that

M(dv/dxt)=0, i = l, • • • , n,

and that Ai = 0. This means each dv/dxt is an eigenf unction subject to

A! or is identically zero. Since AI is simple, we can find a function

(Pi(x) and constants ct (z" = l, • • • , n) such that

dv

It follows that there exists a function (?) of one variable satisfying

(5. 7) v(xi, -',Xn) =0(c1x1-\ ----- \-cnxn)

for any (x^ • • • , ^:n) eD. Here ^^^^1+ ---- h £n¥=0, because t; is not a

constant. Put

a = min (clxl + ---- h <?n^n) ,
^ez)

^ = max (clxl H ----- h cnxn}
xt=D

and let x be the point of dD where the above minimum a is attained.

It is easy to see that the vector (cly • • • , £ » ) is inner normal to dD at x.

Combining (5. 7) and (1. 3) , and considering the above-mentioned fact,

we get an ordinary differential equation of the form

(5.8a) 0"(y)+C-2 / (0(y))=0, a<y<b,

with the initial condition

(5. sb) rO)=o.
Recall that each dv/dx{ (z" = l, • • • , ri) is an eigenf unction of (5. 3) or is

identically zero. So it satisfies the Neumann boundary condition on dD.

Consequently,
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hence ®" (a) =Q. It then follows from (5. 8a) that

(5.9) /(0(*))=0.

Combining (5. 8) and (5. 9) , we find, by the aid of the uniqueness

theorem for solutions of ordinary differential equations, that

It implies that v is a constant, which contradicts the presumption.

Therefore our supposition that Ai>0 must be false, thus the negativity

of Aj is established. Q.E.D.

To consider (1. 3) and (5. 1) in a G (£) -invariant domain, it is

convenient to express J = ]Tj d2/dx\ in the coordinates 8, r, xs, • • • , xn:

where

** /-> o •<-—' ^ 9or 1=3 oxi

We also use the following formula:

(5.11) Fzc'i • Vivz
 = PiVi - ViVz + -, r^>0 ,

where

It is easily seen from (5. 10) that A and 9/90 are commutative. Con-

sequently, differentiating (1. 3a) by 6 yields

This equality should be understood to hold as long as r>0, since

(5.10) is valid for r>0. However, putting 9/90 = 0 when r = 0 and

then regarding 9/90 as a smooth vector field defined everywhere, we

can see (5. 12) hold everywhere in D.
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Lemma 5. 5. Let Dl be a G (jE) -invariant domain -with a smooth

boundary and let -w be a function of class C3(D^ satisfying the

boundary condition dw/dn = Q on dD^. Then

d (dw\ n --r,=0 on aDi .
dn\dQ>

(As is mentioned above, -we understand d'w/dd = 0 if r = 0.)

Proof. Let p be a G (E) -invariant function of class C2 satisfying

(5. 4). (It is not difficult to see that we can actually take such a

function p.) Combining (5. 5) and (5. 11). We get

pg == Fp. Vw ,

where g is a function of Cl(D^). Differentiating this equality by 6, we

then obtain

"90 " V 9 0 / K W

So d(dw/d6)/dn vanishes on 9 A. Q.E.D.

Proof of Theorem 5. 2. First of all, note that if v is a solution

of (1. 3) then it belongs to C3(D) because of the smoothness of /. It

should also be noted that we have only to prove this theorem in the

case U = E since UD is G (E) -invariant and (1.3) does not change its

form under any orthogonal transformation of coordinates.

Using (5. 12) and Green's formula, we get

-L dv
dO

dv d (dv

dx

dd dn\dQ

Consequently, by Lemma 5. 5,

(5.13) •
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As v is not G(J£) -invariant, dv/dd is not identically zero. So (5. 13)

implies that A^O. If ^ = 0, it follows from (5.13) that dv/dd is an

eigenfunction of (5. 3) subject to AI, hence dv/dd does not change sign

in D. But this is impossible because

fJo

Therefore AI must be negative. On applying Theorem 3. 3 we get to

the completion of the proof. O.E.D.

Proof of Theorem 5. 1. We first show the negativity of AI.

Case (Tl): By Green's formula,

(5.14) r(\
V&c.

= yf
* JdD dxi dn \dxj

1 f 9 2 ~
~~ 2 JdD dn

Considering that v e C3 (D) and applying Lemmas 5. 3 and 5. 4, we get

Case (T"2): As is mentioned in the proof of Lemma 5. 5, we can

assume U = E. Further we assume that v is G (-E) -invariant, for other-

wise the negativity of AI is already shown in the proof of Theorem 5. 2.

Let p be as in the proof of Lemma 5. 5. Then

(5.15) ™|Ft>|2 =
an \yp\

Here we have used the fact that \Fv\ = \7v\ and that dp/dd = 0. The

former follows from the assumption that dv/dd = 0. Since SE(D} is

convex and 9Z)= [0, 2n} xdSE(D), applying Lemma 5.3 to D1 = SE(D')

yields the nonpositivity of the right-hand side of (5. 15) . Combining this
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fact and (5. 14) , and then applying Lemma 5. 4, we find h <X).

Case (T3) : Since D is G (U) -invariant for any U e SO (n) , we can

assume that v is G (C7) -invariant for any U, for otherwise the statement

is already established in the proof of Theorem 5. 2. In this case, as is

easy to see, v is a function of \x . So we put v(x) =®(\x\). Then

since j.r|^0 as long as x^D. Hence on the boundary \x\ =rt (z— 1,2)

we have

(5.16) ' ' '
an dn

Considering that

for z — 1, 2, we find, from (5.16), that

(5.17) .Jl_|pt;|2 = o on 9£>.

Combining (5.17), (5.14) and Lemma 5.4, we thus get Ai<<0.

Now that AI is shown to be negative in each case, the rest of the

proof is not difficult. For instance we prove i) and ii). Suppose S+ (t^)

^0. Since v is strongly unstable upward by virtue of Theorem 3. 3, it

follows from Theorem 3.1 that S+ (v) has its minimum v +. Here, by

Cororally 3. 5, v+ is stable from below. And so it is a constant func-

tion, for, as is just shown above, any non-constant solution of (1. 3) is

in these cases unstable both upward and downward. Consequently v +

is a zero of jT(w), and from the minimality of v^ in S+(v) follows

v+ = a+. This means that S+(v}^=0 and A + ̂ 0 are equivalent, hence

the assertions i), ii) follow immediately from Theorem 3. 1 i), ii), re-

spectively. Q.E.D.

§ 6. Domains Admitting Non-constanl Stable Solutions

As is seen in Theorem 5. 1 for case (TI), any non-constant solution
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of (1.3) is unstable when » = 1. But it must be noted that when

n^>2 (1. 3) sometimes has non-constant stable solutions. To show this,

we present sufficient conditions on D and f for the existence of such

solutions, by which various examples can easily be made.

Let the nonlinear term / be of the form

f(u}=kg(u},

where k is a positive constant and g is a function of class C2 satisfying

(6. la) ff(*)=P(0)=flr(*)=0

for some a<$<^b and

(6. Ib) «<;0(«)<0, a<u<0

(6.1c) 0<flr(*)^«, 0<u<b.

Cu
From (6. Ib) and (6. Ic) it follows that G(zO— I Q(vo)dtx) is nonnega-

Jo
tive in a<^u<^b and takes its maximum at u — a or at u—b. Without

loss of generality we can assume that G(b) is the maximum.

Secondly, let D be a bounded domain in Rn with a sufficiently

smooth boundary and let Dl9 D2 be subdomains of D in each of which

Poincare's second inequality holds, i.e., there exist positive constants

^2(^1) and /^(Z^) such that for any function ^v^Hl(Di*) the following

inequality holds:

(6,.2) A, (A)"1 f \rw\*dx+UD*wd*y> f w*dx (£ = 1,2).
JDi \Didx JDi

(Here these constants are assumed to be the best possible ones. So they

are nothing but the second eigenvalues of — A under the Neumann

boundary conditions if dDt (z = l, 2) are smooth.) We need some more

notation: Let jLt be the Lebesgue measure in Rn and let J (u) be the

energy form

where F(u)—kG(u). Finally, put

£[-, +] = IweCX^nC'CD); a^tv^b on D,

f w(x)dx<0, f w(
JD, JD2
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We are now going to show that under suitable conditions (1. 3) has

stable solutions belonging to R [ — ,+] . Of course any function belong-

ing this set is not a constant function. The essential part of the result

in this section is based on Theorem 4. 2. To apply this theorem, we

must find a subset Y of J?[ — , +] having the property (5) given in

Definition 3. Let us begin with the following lemma:

Lemma 6. I. Let fy D9 Dl and D2 be as above and put

So - G (b) min {fji (A) min {k, A2 (A) } , V (A) min {k, A2 (A) } } .

Suppose a function xv^R\_ — , +] satisfies the inequality

Then, Q(f)w belongs to R\_- , +] for all £>0.

Proof. Since (6. la) implies that both v = a and v=b are solutions

of (1.3), it follows from the comparison theorem that a^

for all £>0. So what must be proved are the inequalities

(6. 3a) [
JD,

(6. 3b)

Suppose, for instance, that (6. 3a) does not hold. Then, because

of the continuity of Q(t)*w in ^, there exists a positive number tl such

that

f Q(t^wdx = Q.
Jz>i

Therefore, seeing (6. 2) , we get

(6.4) f |F7^|2J.r>A2(A) f wldx
JDi jDi

>2^2(A) f G(wjdx,
JD,

where, for simplicity, the function Q(^i)1^ is denoted by Wi. The latter

inequality follows from (6. Ib) and (6. Ic) . On the other hand, by

virtue of Lemma 2. 7, J (Q (£) w) is monotone decreasing with respect to
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t in the interval (Q, oo) . As a matter of fact, this monotonicity still

holds in [0, oo)? since rw belongs to C1 (Z)) (note that °w is the limit

of a sequence of functions satisfying the Neumann boundary conditions

in the topology of H1 (D)). Consequently

So, considering that the inequality

f J-L | PWl
 2 - F OO 1 dx> - kG (V) /J (D\ A)

JD\Dl ( 2 )

holds because of the maximality of G(&), we find

(6.5) f U-IPw,!' -?•(«;,) U*<e,-)&G(a) MA).
Jz>i (2 )

It follows from (6. 4) and (6. 5) that

{A, (A)-*} f G(Wl)^<e.
Ji>i

Hence, using the inequalities

0^ f G(u,1)dx<G(b')fi(D1~),
JDi

we obtain

-*} f
J/>,

which, however, is impossible by the definition of £0- This contradiction

proves (6. 3a) . Similarly (6. 3b) can be verified. Q.E.D.

Now we are ready to present the main theorem in this section.

Theorem 6. 2. Let /, Z), D1 and D2 be as above, and suppose

that there exists a function °w^R\_ — , -f ] satisfying

(6.6) J(«;G)<e0-AG(*)A(^),

Cohere £0 /5 ^A^ number introduced in Lemma 6. 1. Then, (1. 3)
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has at least one stable solution belonging to R\_ — , +].

Proof. Let J0 be the right-hand side of (6. 6) and set

m

for ra = l, 2 , - - - . It is clear from Lemma 6.1 and from the monotone

decreasing property of J (Q (f) w} that each Ym is invariant under

i.e.,

for all ?x>eym. Moreover, each Ym is bounded in L°° (D) and closed

in C'CD) nC2(D). So it is not difficult to see that Y= fl Ym has the
m=l

property (£), for y is contained in the interior of each Ym in the

topology of C1 (D) H C2 (£)) . The nonemptiness of Y follows from the

fact that zvQ^Y. Therefore, by Theorem 4.2, Y contains at least one

stable solution of (1.3). Considering YdR [ — ,+] , we get to the

completion of the proof. Q.E.D.

It may not be immediately clear that the sufficient conditions given

in the above theorem are really possible conditions. So we next make

,i concrete description of a domain with which above conditions can be

realized.

(P) 1) D is a bounded domain in Rn with a smooth boundary.

2) D1 and D2 are subdomains of D in each of which Poincare's

second inequality holds (such as convex domains, domains with

piecewise smooth boundaries, and the like) .

3) There exists a connected component (or a union of connected

components) of D(~] \x\ — — ̂ ^i^ — [, denoted by Z)3, such
( £ £i )

that Z)\Z)3 is divided into disjoint open sets Oi and Qz containing

{ Ix\ xl= — —

and 9An9O2Clx;x1-— (see Figure).

4) The (;z — 1) -dimensional measure of the intersection of Z)3 and

the hyperplane {x\xl = %} does not exceed S for -- <^< — .
2 2
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Figure Example of domain D for n = 2.

In terms of the above notation we can derive from Theorem 6. 2

some more simplified sufficient conditions:

Corollary 6.3. Let (P) hold and let f(u)—kg(u) satisfy

(6. 1) . Suppose

zvhere £0 is as in Lemma 6. 1. Then (1. 3) has at least one stable

solution belonging to R[ — 9 +].

Proof. To apply the previous theorem, we must show the existence

of such a function ze;0ejR[ — , +] as to satisfy (6.6). Let w be a

function on D such that

b (x

Obviously w belongs to Hl(D) and satisfies

f r1 w (x) dx <0 , 1 w (x*) d.
JDi JZ>2
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In addition,

= -kG(a)/t (00 - kG (V) {/Ji (A) + fJL (O,) }

4- f \—\7®\*-kG(w)+kG(p)\dx
JD,(2 )

<-kG(a)# (00 - kG (*) {// (A) + A (O.) }

Therefore, as C1 (D) f| C2 (D) is dense in H 1 (D) , there exists a function

7^0G^[ — , +] satisfying (6.6). Hence, by Theorem 6.2, J?[ — , +]

contains at least one stable solution of (1.3). Q.E.D.

Remark 6. 4. From the above corollary it immediately follows that

given any function / satisfying (6. 1) there exists a domain D such that

(1. 3) has a non-constant stable solution. To see this, put /«(DO — P-(Pi)

<^(Z)2) and &<^2(Z)0 (z — 1,2), and then take a sufficiently small S.
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Note added after submission: After completing this work, the author got acquainted
with the following paper: Casten, R. G., and Holland, C. J., Instability results for reac
tion diffusion equations with Neumann boundary conditions, J. Differential Equations 27
(1978), 266-273.

It contains the same results as in our Theorem 5.1. Further it is shown that any
nonconstant solution of (1. 3) is unstable if f(u) is convex or concave. But the problem
of finding / and D with which there exists a nonconstant stable solution of (1. 3) is
still unsolved there, the answer to which can be found in our Theorem 6. 2 and Corol-
lary 6. 3.


