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Cauchy Problem for Non-Strictly
Hyperbolic Systems

By

Kunihiko KAJITANI*

Introduction

We consider the Cauchy problem for non-strictly hyperbolic systems
with characteristic roots of constant multiplicity.

We shall indicate some sufficient condition in order that the Cauchy
problem is well posed in C* class. In particular we shall give a necessary
and sufficient condition for first order hyperbolic systems.

We introduce the following notation,

z= (x40, ") = (x0, 23, **+, Za) € R**?,
§=(§,8)=( 6, 0, ) ER™
D= (Dos D’) = (DO’ Dl’ Ty D‘")’

D,=—i 0

0x;
Let G be an open domain in R, Let
P(x,D)u= laIZSmAu(x) D%y ,
where w="(uy, -+, uy), Ay (x) is a N X N-matrix of elements in
C=(G),
P(z,9)= 3 4@ Pz 0= 3 A,

=5
a= (aﬂ, &y ooy, a")s !C(I =g+ -+ Uy,
D“:DgO...D‘;n’ 5“:5‘010...>§ﬁn_

Let # be in G and G(Z) a neighborhood of Z.
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Consider the Cauchy problem

Pu=f in G&) N {x>Z},

ey
gu:gi on G(f)ﬂ{xo——‘-%o}, ij"“am'—'ly

where f and g; are vector valued functions.

Definition 1. The Cauchy problem (1) for P is said to be well
posed at 2€G, if the following conditions hold:

(E) There exists G(Z) CG, a neighborhood of Z, such that for
any f(x) €C*(G(2)) and g;€C~(G(Z) N {xo=2}), there is a function
u(x) €eC*(G(Z)) satisfying (1).

U) If for any G(Z)CG, a neighborhood of Z, there exists
G (2) CG(2), a neighborhood of % such that if ueC=(G(Z)) satisfies
1) and Pu=0 in G (&) N {xo> &} and supp uC {x, > 2}, then u=0in
G (@) N {z> 2}

If for any Z€ G, the Cauchy problem (1) for P is well posed at
Z, then P is said to be well posed in G.

We say that P is a hyperbolic system of constant multiplicity, if it
holds

@ det Po(z, &) = [T (G129 (z, £0)",

here v, is an integer, and A® are real valued functions in C*(G X
(R*—0}), 12 v,=mN and 102D for I#£].

We s’caljt:1 with the Cauchy problem for the hyperbolic systems with
a diagonal principal part. We say that P is a hyperbolic system with
diagonal principal part of constant multiplicity, if the principal part of
P has the form,

Po(a, §) =IT (029 (2, 60,

where I is the identity matrix and A% (x, §”) are real valued functions in
C*(Gx {R"—0}), > v,;=mN.
=1

Denote the phase function of P by ¢™(x), that is

00+ (2, ¢9) =0, 90,
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Definition 2. Let P be a hyperbolic system with diagonal
principal part of constant multiplicity. Let P} be the (s, t)-element
of P. It is said that P satisfies the Levi’s condition in G if there
exist integers n®, I=1 .- r, s=1,--- N such that for any phase

Sunction ¢® (x) and for any scalar function weCy7(G)
(L) e—‘.PfP(”Pi(eiPw“)w)zo(pm—u-‘-n,(l)—ns(t))’ (0—)00),
for s,t=1 - N, I=1, - r.

Remark. This condition was suggested by Leray-Ohya [5]. When
N=1, this is the usual Levi’s condition (c.f. [2], [6]). If we can
choose ' =n{, our condition is same one as Gourdin [3] and Vaillant-

Bersin [9].

Theorem 1. Let P be a hyperbolic system with diagonal princi-
pal part of constant multiplicity. If P satisfies the Levi’s condition
(L) in G then P is well posed in G.

Remark. The condition (L) is not a necessary condition in order

that P is well posed in G. For example

D} 0 D, D,
i O A A
O Do “‘Dl _Dl
is well posed in R?!. But we can never choose integers satisfying (L).

We shall investigate the necessary condition in the section 3 (Theorem

3.2).

We next consider a hyperbolic system of constant multiplicity. We
say that Q is a cofactor system of P, if the principal symbol of Q is the
cofactor matrix of P,(x, §). Then if P is a hyperbolic system of con-
stant multiplicity, PQ and QP are both hyperbolic systems with diagonal
principal part of constant multiplicity.

We obtain the following theorem as a corollary of Theorem 1.

Theorem 2. Let P be a hyperbolic system of constant multi-

plicity. If there exist two cofactor systems Q, R of P such that PQ
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and RP satisfy the Levi’s condition in G, then P is well posed in
G.

Example (Petkov). Let

0 1 0) b by bi
P=ID0+ 0 0 D1+ bzl [722 bzs .
0 by by by

If by (x) =bgy (x) =0 or by (x) =byu(x) =0 is valid, then P is well posed.
Set

010
Q=1ID;— 0 0 |DD,.
0 0

Then PQ satisfies the Levi’s condition (L), when we choose
(nl, g, n;;) = (0’ 1, 1), lf 621263120
= <07 1, 0), if  by=0by=0.

We shall examine more precisely a first order hyperbolic system

of constant multiplicity, that is, m=1,
P(x, D) =IDo+j2 A;(@)D;+B(x),
=1

where A;(z) and B(x) are N XN matrices of elements in C*(G).

Moreover we assume
®)  rank(A0(z, §)1—2 A;(@)8,) =N—1, I=1, -, .
=1

Then we can construct a pseudo-differential operator N(x, D’) of order
zero with respect to D’, which transforms microlocally P into P such

that

P(z, D)N (z, D") =N (z, D") P(z, D),
where
(Pm (z, D) 0

Bz, D) = . :
\ 0 Pz D)
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0 |D’| 0

PO (z, D) =I1(Dy+ 2% (z, D)) + 0 "|ID’| ),
1® (z, D) -7 (z, D)
(=1, r,

b b

7® (x, D) is a pseudo-differential operator of order zero with respect
to D’ (cf. Proposition 2.2).

Then we obtain,

Theorem 3. Let P be a first order hyperbolic system of con-
stant multiplicity. Assume that the condition (R) is wvalid. Then
P is well posed in G, if and only if

(Ly) order v¥ (z, D) <k—v,,

fOT k:_—'_l, ey yl_l’ l:l, e T

Remark. We note that our theorem holds, if we assume instead

of (R),

N-—-1
rank (AP (x, §NI—> ) A;(x)&;) =1 or
N —y,.

In [7] Petkov has given the Levi’s condition as follows; P satisfies
the condition (L;), if for any w(x) €C7(G) and for any phase function
¢ (x), there exist vector valued functions V¥ (z, ¢®, w), (k=1, -,
¥;—1), such that

v—1
Ly e Pt {w () NP (z, o) + 2 07"V (, ¢®, w)}]
k=1
=0(p'™"), (p—00),

where N,® (x, ") is a right null vector of the matrix (A" (x, §)I

—22A4;(2)€).

Theorem 4. Let P be a first order hyvperbolic system of con-
stant multiplicity. Assume that (R) is walid. Then our condition

(Ly)) is equivalent to (L,) given by Petkov.
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In [8] Petkov constructs the parametrix of P under the condition
(Ly). When v,=2, Yamahara has derived the condition (L,) in [10].

§ 1. Systems with Dagonal Principal Part

We shall construct a parametrix of the Cauchy problem for P, a
hyperbolic system with diagonal principal part of constant multiplicity
satisfying the condition (L). It follows from the existence of the param-
etrix that the Cauchy problem for P is well posed. For, if P satisfies
(L), then P™ the adjoint operator of P does so and since the condition
(L) is invariant under a transform of coordinate variables, a solution of
the Cauchy problem for P has a finite propagation speed and therefore
the Cauchy problem for P has the local uniqueness (c.f. [1]).

Denote by L™(G) the class of pseudo-differential operators of which

symbol is developed asymptotically,

a(z, &) =) a;(= ),

where a;(x, §) are homogeneous degree m —j in & and polynomials with
respect to &,.

Let a(x, D) be in L™(G) and w in C*(G). Then we can develop
asymptotically

e **?a(x, D) (e'**w) =i "0, (g, @),
=0

where 0;(p, a) are the differential operators of which principal part is

given by

(8] ) mare

in particular, we have
0.0 (40: a’) =ao (x, gol')

01 (g, @) = ,-Z:“o <% ao> (z, ¢z) D;+ a1 (x, ¢5)

+i3 <<a%>aao) (z, ) D/l .
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Let us consider P, a hyperbolic system with diagonal principal part,
b
u 1
a(z, D) =11 4% (=, D)",
T
where g®(x, §) =& +4®(x, §), > vi=m. We note that a(x, D)
=1
satisfies,
.1 e Va (z, D) (¢ w) =0 (p")

for I=1,---, 7, where ¢®(x) is a phase function corresponding to ¢®.
Let &i(x, D) be in L™*'(G), s,¢=1, -+, N.

Consider the following Cauchy problem;

N,

b

(1. 2) a(x,D)u‘(x)+il]bf(x,D)u‘(x)=0, s=1, -

D‘{uslro=0=ei<z,’5,>gsf (.’L‘, SI), ]=O’ la Ty m_ly

where

05 (2, &) =303 (%, 89 1817,

g5, (x, §’) are homogeneous degree zero in §’. Let us choose a phase

function ¢® (z, §’) such that
1.3) q® (z, 9&?) =0

9O zpma =<', §75/1€7].

Then we have

Theorem 1.1. Let bi(x, D) be in L™ '(G). Assume that
bi(x, D) satisfies the condition (L), that is, for any weC>(G),

(1 4) e““’“’(”bf (JL‘, D) (eip(p(l)w) zo(pm—v;+n,(l>—n,(l>),

then the Cauchy problem (1.2) has an asymptotic solution (u°),
s=1,---, N such that,

(L5)  #'(z,8) =2 2 e (z, )" i, (, §),

1=1 j=0

where 0=|§’|, my=7,+max n®, and u;(x, &) are homogeneous degree
1t

zero in &7,
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Proof. We can write by virtue of (1.1) and (1. 4),

e Vg (x, D) (e w)
=230,(¢%, @)™ "w
= pZD 6P+V¢ (qp(l)) (Z) OM—vl—pw ’

and

e °p; (z, D) (e'**“w)

I
Me

0, (9, &) ™ P

0

3
1l

Il
[Me

i S\ Am—yi+n () —ng () —p
O pivy—14ms—ny (¢ ), bY) pm it : w.,
0

L]
Il

Inserting #°(¢, £’) of (1.5) into (1.2), we obtain

oo

r
lz::i Z etp¢(l)pm+m,,—n,u>—p—j{O-IH_” ((p(l), tZ) u.zj

i, p=0
y L t
5
+ :21 0-1’+Vz—1+":“)~"c(‘) (¢( )s bt) ulj}' =0 ’

for s=1,---, N. Hence we have

(=)

N
1+Z . {0p+u; ((0(‘), a)ui;+ :21 O ptv—14ny0—ny D) ((0(”, ) ujy =
p= =

for [=1, - 7, s=1 .-, N, k=0,1 ... that is,

N
1.6) 0, ((0(1), a)uiy+ tZ_l O 14y —ny® (o(l), ) uiv=ri,

where

N
fie= “H;_k‘)‘pm (9", @) ui; + g Opsvm-temmr—n,m (@0, B) iy .
<k
From the initial condition of (1.2) it follows that

T oo
— [2C4% 34 ] —ng()—p—
'] zp0= 21 €45 31 0, (9%, D 0T O] o
= D=

=X 3 g (2, §) 0

Put m®=my—7,—n®. Then we have
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T
Z Z o (¢(l) Dq) ul]|.ru—0 qu
l=1 p+ji=k+ms{l)+q
Noting that the principal part of d,(¢®, Df) is <g> (¢z,) P D3, we have
@ 5 5 (9) @0 " Deutsimo+ B @ D thesmioos)

l=1 p=0 Zo=

=Gok—q >
here B® (z, Dy) are of order p—1. Since ¢@|, o= —2Y(0, z, £"/|§']),
[=1, .-, r, are distinct, the determinant of Van der Monde {( > (p®) -2,
q=0,1, -, m—1,p=0,1, - p—1,I=1, -
can solve (1.7) with respect to {D¥uiiimw—pr, #=0,1 -+, v, —1 I=1,
-, 7, for any %, where uj,=0 if £<{0. Therefore we can solve (1.6)

7‘,} is not zero. Hence we

and (1.7) successively by use of the following lemma. For, we have

0., (¢, @) = Z‘,Hz(x D)y *a’ (), af’(z)+#0,

and

vp—1l+ngd) —ny (1)

Oy —14ngW—ny 1y ((P(l), b)) = kL:‘O i () Hy(x, D) £,
where H,(x, D) =D,+ i‘. AL (x, 9) D;.
=1
Lemma 1. 2. (c.f. [1]). Let b(x, D) be in L™ '(G) and ¢™ be

a phase function satisfying (1.3). Assume that for any phase function
o® and for any weCy(G), p=|¢'|,

e=7*b (z, D) (¢#*“10) =0 (0",
then we obtain
y—1
@.9) 6t 9, 8) =3 b2 (2) Hi (=, D)*,

where

H,(z, D) = Do+Z A (x, 99 D; .

Proof. We transform coodinate variables z’=x’(¢, 2), x,=¢, such
that
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528
o0 (¢, x" (¢, 2),8) =<2, §)/1¢']

that is, x’ (¢, 2") is a solution;
d
5% 62 =22, 27 (@, 2), 02)

z'(0,2") ==’ .

Then
(1.9 D.(w(t, z'(¢,2°) = (D:+ 21 4 Dy) Wloets oo

and

e—iﬁwtl)b(x, D) (eipw(l)w) ,z:(t,z’(t,z’))
=e "% (4,2, D, D,) (*w (¢, 2/ (¢,2)) =0(0"™), o=1§"].

Hence we have

Gu—-l ((0(”, b) ’z=(t,z’(t,z’)) = 5»—1 (<Z,’ 5,/! E, ‘>, Z)
y=1 _

=262 (¢, 2") Di,
k=0

which implies (1.8) with (1.9).

Thus we have proved Theorem 1.1 which implies Theorem 1 and

Theorem 2 in the introduction.

§ 2. First Order Systems

Consider the first order system,

. I'EO illlj(x)l:f B(x)9
i=
Set

here A;(x) and B(x) are N XN matrices of C*(G)-elements

A(2,6) =3 A @S,

and
M®(z,§)=A(x,§) —29(z,§)1.

We suppose that
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[ det (5t Az, 80) =]T (629 (z,87)7,

@1 1 (v;; positive integers),

rank M® (z,§’)=N-1, ({=1,---, N).

Lemma 2.1 ([4]). Under the assumption (2.1), for any (Z, 5')
eGx {R"—0}, there exists a conic neighborhood V (Z, &') and a
matriz Ny(z, §) eC~(V (Z, £)) such that

A(z, ) No(z, §) =No(z, §) 4 (, §7),

A0 (x, §) I+ CO|¢7| 0
Ao(x,g,)= .'- >
\ 0 A9 (z, §)I+CON¢|

0 1 0
¢=lo ")
0

and Ny(x, §") is homogeneous of degree zero and its determinant
does not vanish for (x,§) eV (2, &).

Proposition 2.2. Under the assumption (2.1), for any (%, &")
G X {R"*""\0}, there exists a pseudo-differential operator N (x, D)
of order zero such that

P(z, D)N (z, D) =N (z, D’) P (z, D), (mod L~=(G)),
AN (xz, D)
2.2) Pz, D)=ID,+ 0 0
A" (z, D)

b

symbol of AV=19(z, §)I+C|¢’|

0
4

7 (x, &) - 1 (x, &)
for (z,8) eV (&, &), a conic neighborhood of (Z,£"), here 7¥ (x, &)
eC>(V (2, &) and CY is y,xXy;-Jordan’s matrizx of rank y,—1.

Proof. We shall seek N (x, D’) such that,
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N (z, D") =3 N;(z, D)
7=0

here N;(x,§”), the symbol of N;(x, D’) is homogeneous degree —j in
§’. Then we can write the symbol of PN and NP,

(PN) (z,§) =3 ot A2, £)) N, (2, 8)
+P(z, D) Ny (2, §)

and

(NP) (z,8) =¥ <a§:'>aN (z, &) D*P (z, &) Ja!

=N (5,§)6+ 3 <_§’§>“N, (z, &) DAy (z, £) /! .

Hence we have

2.3) A(x, §)Ny(x, &) + P (x, D) N,-i (x, §) A (, §7),

= i “ ’ a ’ 1
—j+k+zl;x!=p<05> Nj (x’ § )D”A’“ (x3 3 )/a

for p=0,1,---. For p=0, we have
Az, &) No(z, §) =N (z, §) (=, §)
where N,(x, &’) is given in Lemma 2.1. Set

N ,,,.Z+k=,,<¥> N, (z, &) D34, (z, £) /!

Fp(z, &)=
—P(z, D)N,_,(z, ).
Then for p=>1, we have from (2.3),
2.9 A, §)Ny(x, ) —Ny(x, £) A (, §)
=Fy(z,§") +No(z, §) 4,(z, §).
Set
N,=N/'N,, F,=N;'F,,

and
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an an an .., Nya
NGY ... N§ F§ N§

Nz': , F,=
N¢ ... Ng» F¢ ... F¢
0 .- 0
4P 0
Af( > 9= 0 - 0 |, =D,
0 4P
ol o Toh

where N§? and F§? are y;Xy; matrices. Then we can write from

(2.4) for p=>1,

(2' 5) Aéi)N}(Jii) . N;“)Aéi) — F;ii) + AI(;Z)
2.6) APNED — NP AP =FD, (i),
where

AP =20T+COg’].

For (2.6), we can solve N as follows
. vj—1 . 3 , e ,
Nzng):g (A9 = 2D 4 CD|&’|) -IFSN (CD &7 )

for i=j, p==1. We can also solve (2.5), if we choose A suitably.

Lemma 2.3. Let N and F be m Xm matrices and let C be a

Jordan’s matrix of the form,

[l

We consider the following linear equations,
@.7 CN-NC=F.

Then we can seek for a solution N of (2.7), if and only if the
elements {f:;} of F satisfy,

k
(2. 8) gfm_1’k+1_l=o, k=0, 1,"‘,77'1-—1.

Proof. It follows from (2.7) that the elements {n,;;} of N satisfy
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nja=Fs1, J=1, -, m—1,

2.9 ”1+1,1:fj,1, j=1,"', m—1,
(2- 10) n:l'+1,k—nl'yk—1=ff:k ] k=20 Y ms j:17 Y m—]‘ ’
(2 11) —nm,k=f1n.k+1: k:l’-'-,m—l,

O=fm,1 .
Hence we have from (2.10),

min(j, k) -1
Njp1,0= fj—l.k—l P
=0

j=1 - m—1, k=2 .-, m.

In particular,
k
nm,k:Z fm—l,lc+l—l y k=2, e, M.
=1

On the other hand, #,, satisfy (2.11). Hence we have the relation
(2.7). We can choose n,,, (k=1,---, m) arbitrarily.

In order to apply this lemma to (2.5), we put

k
2.12) = =3 (B o

for k=1, ---, v, p=12 .-, where (F§?),, stands for the (s,#) element
of F§?, Then F${ + AP satisfies (2.7). Hence we can solve (2.5).

Proposition 2.4. Let P be the operator given by (2.2). We

assume that

(Ly) order v (x, D) <k—v,, k=1 - v,—1,1l=1 - r,

b

Then there exists Q, a cofactor system of P such that PQ satisfies
the condition (L) for (z,¢®) eV (2, E).

Proof. Set

ov 0
Q:( -'. ) ’
\O Q(T)
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here
v—1
Q® =T] ¢ (z, D) £ ¢ (z, D)~ (—CH| D',
kL k=1
q®(z,§) =&+4Y (=, §),
and set

1=1 l
ns(l,):s’ S= {’cz_lj)k}+1,..., kZ_lyk’

=0, otherwise

Then noting that the condition (L,) implies
yvi—1
e 30 (@, D7) g (z, D)1 (— CO| D7 )=+ (e Pw) =0(1),
k=1

for (z, ¢@) € V (%, €"), we can verify easily that PQ satisfies the condition
@.

Thus applying Theorem 1.1, we can construct a parametrix of the
Cauchy problem for P in some neighborhood G(Z) of %, which implies
the existence of the solution of the Cauchy problem (1) for P in G(x),
(cf. [1]). Concerning with the local uniqueness, we must prove that
the condition (L,) is satisfied for P™)  the adjoint operator of P, and that
(L)) is invariant under the transform of coordinate variables. To do so,
we shall prove that our condition (L;) is equivalent to the condition (L,),
given by Petkov. In [7] he has proved that P™® satisfies (L,), if P
does so, and that (L,) is invariant under the transform of coordinate

variables.

We need the following preliminary. The proof is easy.

Proposition 2.5. Let T (x,D") be an elliptic operator in L"(G)
and S(x, D") be the inverse of T (x, D’), that is, S(x, D')T (x, D")
=JI, mod L==(G). If P satisfies (L)), then SPT does so.

It follows from this proposition that P given by (2. 2) satisfies (Lj)
blookwisely, that is, for any scalar function f(x) eCy(G(%Z)) and for
(z,0®) €V (7, "), there exist y-vector valued functions v® (z, 9@, f)
€C>*(G(Z)) such that
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(iz) e“i"‘”(”ﬁ(”[{f(x) e® + "‘Z—l 2@ (z, oV, o eipw(l)]
k=1

=0(0™*), (p—00), I=1,--,7,

where e is a y,-vector of which % th-component is 1 and otherwise zero.
Proposition 2. 6. The condition (L)) is equivalent to (L,).

Proof. We can expand asymptotically
@8 =518 ),
where functions 7§} (z, ) are homogeneous degree 1—p in &’. Hence
(L)) is equivalent to
@) 19 (x, &) =0, p=1,-,v,—k k=1 -, v—1.

Therefore it suffices to prove that (I:l) is equivalent to (f,z) We

write asymptotically
PO=3" PP,
=0
Then we have

- v —1
e—pq:(l)P(L) eipq:(h e® pWp—k
[ {f (@) e+ 33 00~} ]

=307 D 0,60, PO F@el+ T 0,66, PP},

p=0 7iF=p
Hence (I:Z) is equivalent to
(2.13), j+;=p01 0", PP) f(x) e+ j+k2+s=pd’ @®, PP)vP =0,
for p=1,.--,v»,—1. When p=0,

00@®, BP) e f=CW|g®] el £=0.

Put AW (z) =|¢®|. For p=1, we have

ROCOHo® 4 (6,(p®, PP) +0,(¢®, PP)) eP F=0.
Hence there exists v® if and only if

‘€200 (0, P) +0,(¢®, PPy el f=7 (z, 02) £ =0,
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which implies
79 (2, 8") =0.

Then we can find v® of the form

1
o=y 5 DI @k,

noting,

0,00, PP) = Hy(, D) +.CO®, D',

n
where H,(x, D) =D,+ jzllg) (z, 99) D;.
In general we shall prove our statement by induction. Assume that

there exist v satisfying (2.13),, g=1, ---, p—1, of the form

41
2.14), 2O =349 (z, D) f(2)e®, g¢=1, - p—1,
§=2
here,
1 q
2.15), af(z, D) =~ Hi(x D)),

if and only if
2.16), 1P (x, ) =0 for s+q=<p.

Then we shall prove that we can find v{ satisfying (2.13), of the form

(2.14) 5,4, if and only if (2.16),,, holds. We have from (2.13), and
2.14),, ¢<p-—1,

(2.17) hPCY0®+ Y g,(®, BO)vP+ 3 0, (0%, PP)ed f
J;;;ETP jt+k=p

q+1 ~
) 1 i 1 1) )
=hOCOP+ 3 3G, (e®, PP) a® fe®
jH+k+q=p s=2
g<p-1

+ 31 0;%, PP) fe =0,
Jj+tk=p

Hence we can find »{’ if and only if

jrk+g=p
g<p-1

~ q-1
(2.18)  fe{ X 0;(¢, PP) 2 al® (x, D) fe”



536 KUNIHIKO KAJITANI
+ ,f;:f’ (¢®, PY) fef} =0.
It follows from (2.16), that
o0, (00, PP) e =0, (0", 1) =0, s+k=p,
for any j. Hence we have from (2.18)
S 0,60 ) ¥ @ D)+, 1) f

j+k+q=p
g<p-1

= 23 6u(¢®, 1) @ (z, D) F+00(0, 752) £=0.

k+q=p

Since {1, a®,(z, D), g=1, ---, p—1} is linearly independent from (2.15),,
g<p—1, we obtain (2.16),,,. Inserting (2.14), into (2.17), we
obtain by virtue of (2.16),,,,

@19) 3 0, P)al (z, D) el +0, (o), PP) fef? =0.
j+a=p

Hence, noting that
6;(¢®, PP =10,(o®, ¢®) +0, %, | D')CY
we obtain from (2.19)

1

a® (z, D) = —W

p—1 p—1
{s§_1 Op—s ((0(”, ) aés) + s;q Ops (@®, | D) ﬂé‘?]

for g=1, -, p, where a®=1. In particular for g=p, we obtain (2.15),.

§ 3. Proof of the Necessity Part of Theorem 3

In this section we shall show that the condition (L,) is necessary
in order that the Cauchy problem for P is well posed. Assume that the
Cauchy problem for P is well posed at Z&G. Then for any neigh-
borhood U (£) of %, there exists a neighborhood G(Z) CU (Z) and a

positive integer s, such that
@G.1 [#]o,6:6=C () {Pt]s 000+ | %5560}

for ueC”(U (2)), where G*(Z) ={xeGZ), x>2} and G,(Z) = {x
G (%), xy="=2oy. This inequality is derived by the closed graph theorem.
We shall prove the necessity of Theorem 3 by contradiction, that is,

we shall construct an asymptotic solution which does not satisfy the
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inequality (3.1).
By virtue of Proposition 2.2 we can transform P to P by N, where
P has the form (2.2). Then we assume that the property (L) is not

valid for some [, and some %,, We introduce a cofactor system Q% of
P® gsuch that

Vig—1
Q(lo):_. kz-n q(l“) (.23, D)ylo—l—-k(_caa)iD/D}c’

where ¢® (z, D) =D+ 2% (z, D). Then we have
P (z, D)Q (x, D) =1, (¢ (z, D))" + {6 (x, D)} s,0m1,3,, »
where
bi(x, D) =0, <s<y, —1,
(3.2 bivi(x, D) =[q" (z, D)%, | D" [](— D" ",

s=1 - v, —k, k=1 - v, -1,

b:l,n (x, D) =k2;7'1(c“) (x, D’)q"“) (.r, D) k~1(_ ,D/Dulo—l-t«rk ,

We shall construct the asymptotic solutions of the following equations

(put y,,=v for simplicity),

(3.3 q(“’)(x,D)"'z;‘—i—i‘,bi(x, D)v'=0 s=1, .-
t=1

b ’

V.

We seek v'=1v*(x, p) of the form,

V' (z, 0) =0~ X 07} (),

d
E (o, 2) =3 09 (),

1= 0-(0)> 0(1)> > O‘(d)> 0 ,

and e7' is the common denominator of the rational numbers ¢ (j=1,

-+, d). We shall determine (6, ¢¥) inductively.
At first we define ¢® as follows

o5+ A (x, o) =0

(0(0) !1‘0=i“u = <x’! (1)(0)>’ w(o) € R"\O *
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We put
L=q" (z, D)"+&,(x, D)
=2 Ly(x, D) q" (z, D)**,
k=0
where L,=1 and L, are pseudo-differential operators in 2/. We denote
by d® the order of L,. Then from (3.2) we have
(3.5) v,,—k=d{P>order 7{?+v, —k, k=1, -, v, .
We define
LE,O)‘ZU — e—ip¢(°)L (eipqa(o)w)

= Z Od"m"l(f, (Lk, (p(O)) Z p"kO‘k_H.j (q("a)("-l)’ ¢,(0))
1>0 7=>0

=3 310%~LP,(z, D),

k=0 s>0

where

(3.6) L= 22 0 (L, ) 145 (gD, @)

Then from Lemma 1.2 it follows that the principal part of ¢,_,(g%?%*™, @)
is given by

3.7 H(z, &))"

where H (x, &) =&+ 2 287 (x, ¢0)&,. We note that the order of L, <
=
k—1+s. We put

Q)
VY= max ——% |
1<ksv-1Y — k41
©
20— {k, i zg(n}.
y—k+1

Then if (L,) is not valid, we have from (3.5)
dP@>0,

for some k. Therefore we have

3.8) 0<aW <.

We define



CAUCHY PROBLEM FOR NON-STRICTLY HYPERBOLIC SYSTEMS 539
LY = exp{—ip* ¢} LY exp {ip" "o}
— Z pdk(OJ—S+a(‘>(k—1+s~J’)O'j (L;co’)o, (0(1))
=0 {(H (z, D) ¢") " 2, 0oL o) o}
We put
h® (z, ) =H (z, ¢+ 3 00(Lid, ¢,

which is a polynomial in ¢, But from (3.6) and (3.7) it follows that
the principal part of L is given by 0,(L, ¢®) H (x, £)*~*. Hence

rY (z, ¢P) is a polynomial in H (x, ¢) and is decomposed
hO (z, ¢2) = (H (z, ¢¢) —CP ()" "QP (z, H)

for zeU®, an open set, where Q®(x, H) is a polynomial in H,
QP (x, CP) 0 and CP(z) is a C=-function in U®, We note that we

can choose CW(x) such that
(3.9) ImC®(x) <0 in U®,
For, we have

h® (z, ¢P) =H (z,¢P)"+ 3 Lz, ¢0) H (z, o)

kEHW
N )
=h® (z, H, ¢

where zk(x, @), the principal part L,, is a polynomial of order oWk

for k=2®. Hence we have

RO (z, H, —o®) =H'+ ¥ (=1)"“*Ly(z, @) H**

kEEW
— (_1) uau)ﬁ(l) (x, (—1)“”H, <0($0))_

Therefore (—1)"“C®(x) is a root of AW (x, H, —¢®) =0. Since
CO(x)=0 and 0<6®P <1, we can choose a branch of (—1)°" such that
Im (—1)="“C? (x) <0.
We choose ¢ as a solution
H (2, ¢) = C® (2)

(3.10)
D, s, =<z, 0®>, 0P e R™0.

Then (3.9) implies
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(3.11) ImpP <0, z€UD, z>37,.

We define LY ¢P g% and A9 (x, H) inductively, for j=>2,
L = exp {—ip" "6} LY Vexp i ¢,

MDD —kEWD ;
=p"" 3 07HTLY,

k>0
LY =hY (z, H (z, ¢))
= (H (.2:, (0;1')) —C¥ (x))me(j) (.z:, H) in UYCUY-» ,
d{?=order LY, (d{’= —co, if L{=0),

(G- (-1 (-1

m o —ke

09 = max -
o<k <m I~ DglI=1 se(4-1 mYb -4y -

b

g1 the common denominator of the rational numbers ¢®, ... ¢@,

mI-DgU=1 _ pet-1

mU-D d;ﬁi—l)

20 — {O<k<m”‘1)o‘("“)/e("‘l) =0(”} U {0},

MWD =MD 4 U= (g —g=b)  JfO=pg®
VS mO> S m@ | TS0 g
and ¢ a solution as
H (z, o) =C¥ (2)
0P|z, =Lz, 0D,

where H (x, §) =§,+ i 289 (z, o) €.
i=1

We must prove that L{?, the coefficient of the leading power o

in LY is a polynomial in H (x, ¢¥?). To do so, we decompose L{~?
such that
) d (-2
L¢2="57"Lg: (@, D) H (s, D)~
§=0

where L{;® is a differential operator in x’ of order s. We rewrite

H (x, D)* as
H (z, D)*= (H (z, D) —pCY™> (z) +pCY (x))"

k
=2 C¥7" (@) 07 (H ~pCY™> (2)) ",
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where C{;?=1. Then we have
LY=9 =M™ 31 ke VeIV p Gon oD, (H — pa“'“)c(j—l))dé’;—sz_)p_
Hence we obtain
LY =exp {—i0°" "oV} LY Vexp {1077 pli-b}
=pM™ S BB 4 (4s-1ys D g (] G- , @I CET e (2)
X H (x, D) %92 =-7
=0Mu-1> Z p——te”_l)ij—l) )
t

Therefore we have
LI =31 0, (LEF?, 097) Cllit o @) H (@, DY 557
where the summation is
ke D — (p+s—1) Y04 mU-(gU-D U= =gelib
On the other hand, we have
ng) =exp{ zp"(”(o(“}Lf,"“)exp {ipa(j)¢(j)}

MU-D el gD g, D i1 ;
=" 200 rer T 0g, (LY, )

=0"7 (210, (LF, ¢P) +o(D)).

=10

Hence we have

L= Y 6,(LY¢D, ¢9).
LERWD

In order to prove that L{” is a polynomial in H (x, ¢¥’), it suffices to
know that the principal part of LY for z€2Y is a polynomial in
H (z,¢{”), that is, in the expression of LI for t=2? the terms
0, (LD, 9¥) become zero for [>>0. The principal part of LD

is given by
316, (LET?, 990) H (z, §) %0
where the summation is
I+di—s=dV",

for, the order of LY is equal to d{™, where 6,(L{;?, ¢ ~Y) stands

for the principal part of ¢,(L{,?, ¢¥ ). Assume that for some [=£0
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(3.12) > 0i(LEF, YD) £0.

1+ —g=a

Since the principal part L(’ D (z, &) of LYy is a homogeneous poly-

nomial in & of order § and G;(L{;?, ¢?) is given by

l i “e (:—ﬂ) G-nygre
lal=1 a!<05’> (z, g27)¢

which homogeneous in ¢, Hence if (3.12) is valid,

(3.13) b G1o (LY, gli=)

I+dgU-2) —§=d,(G-1

does not vanish, if we choose a suitable w“ =, the direction of the initial
data of ¢¥~". On the other hand

Jz 1<L(J 2) (J—l))H(x’ 5) dy(i-2) -5

I4+dptd-0—§=d, (J-1)
is involved in the terms of Lgi;(lj)—l)/s(j—l). Hence we have
dy ,(1—1)/£<J—1>>d(j -
which contradicts to the definition of 6. For,

mU-DgU-b _ gD
mU=b _ gu-n

G =

and on the other hand, ¢¥~9Y>¢" implies

mI=DgU=D _ (4 gli=-b /gd-b) S mI=-DgU=D _ G- 4 5G-D
-1 -1 - -1
m=h — dgj_,,(,)'—n/c(/—v mY™D gD 41

>O‘(J') .

Thus we have proved that L{” is a polynomial in H (z, ¢¢’), that is,

G.1) RO H o) =LY = 3 6(LI, ).

Then the coefficient of the leading power H™*™ in L{ is QU (x, CY~D)
#0. Hence there exists an open set UYWCUY™ such that we can

decompose
K (2, H) = (H—CY ()"0 (@, H) in U,
where C¥ (2) e C*(UY) and QW (x, C¥) 0. Moreover we note that

(38.15) mP L m¥=n
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if ¢9>0, that is, LY V50 for some k<{mUDgl-b/cl-b,
Next we shall prove that
(3.16) AP <keW /gD for 0<k<<mWg@ /e
We have
L =exp{—ip° P} LY~ exp {i0° VoD

:pMU"‘)E p—eﬁ"‘)p+n<”(dp<i-1>—s>0-s (Lz(,j'l), <0(]‘))

:pf"(”z p~¢PELGY
Hence we obtain
(3.17) LY =X16,(LY™, ¢)

where the summation is,
(3.18) 2UDp— gD (YD —5) 4+ mUD (0D — gUD) = e,

If ke /69 is not an integer, it is evident that (3.18) implies (3.16).
When ke /g9 is an integer, it {ollows from (3.14) that the term of
order ke /g in L{’ is given by

N G-D .
2 0 (LYY, 09
PEHD

1 < 0 >s
=—(—| A9 (x, H(x, ¢{°)) =0,
T\sH (z, H (z, 95”))
for s=keP /gD <mP, if k<mPgD /e Thus we have proved (3.16).
It is evident that (3.16) implies that ¢¥*"<g¥, if ¢=0. Moreover
from (3.17) we have

md

3.19) LY =31 LY (2) H (x, D)"‘w“

for k=mPa¥P/eP where LI)=0QY (z, CY¥ (x)) =0 for k=mPg? /e,
Thus it follows from (3.15) that in the finite step we have

(3‘ 20) L;d) — pM(d> 2 p"ekaff) ,

k=E(d)

where k(d) =m®0® /e and L{%, is given by (3.19) with j=d.

Now we return to construct asymptotic solutions of the equations

(3.3). Noting that from (3.2) we have, (n,=1—0%)s),
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p Mg~ E®D o) (2 D) vgiE(prD)
— e (H (2, ¢9)"+0(07°)),
0 e~ EPD RS (x, D) @D = () (p~ eI D =D

s=1,-,v—1, =1, .-y,

p—me—ibeta (.Z‘, D) eiEZO (p}l{(d) . 72,,),

t=1, -, v—1,

H

and inserting v’(x, p) into (3.3), we obtain by virtue of (3.20),
q(lo) (1.’ D)”‘Z}s—i- Zlbg(x D) ot
t=

= i) pra® E» 0~ (H (z, o) v5+93),

q(lo) (JL‘, D) Yo” 4 il b‘,’(x, D) ot
t=

y—1
=L(x, D)v'+ > b (x, D) v*
t=1
= DS 03 (LB 4 07,
=

where we put y=y, and 0=¢“, and ¢i are functions of (z,ws, -,

1 13 v v : 1 1 y—1 y—1
i, v, 0L, 0, 0%-) and @4 functions of (z, v, --r, vy, -, UET, ooe, U

2 3 b ’

v}, -+, v%_1), and in particular ¢§{=0,s=1 ---, v, and L{® is given by
(3.19).

Thus we have the following equations,

H (z, o) 0% +04=0, s=1,

b H

y—1,
(3.21)

Li% (x, D)vi+95=0,
for j=0,1,2, ... Since H (z, ¢P) =C?P (z)#0 and L%, involved only
the differential operator H (x, D), and ¢,=0, we can solve (3.21) succes-
sively. Since ¢§=0, s=1, .-, y—1 and ¢;=0 for v{=0, s=1, ---, v—1,

(3,22) ‘z}z—_—o’ s:l

Hence we can seek v} and an open set UCU™ such that
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(3. 23) =0 in U.
Decompose N (x, D) = (N® (z, D), ---, N® (x, D’)) which is given by

Proposition 2.2, where N,® (x, £’) the principal part of N®(x, D’) is

generated by eigen vectors of A (x, &) corresponding to A®(z, §’). Put

M ( - () 'Ulj
u(z, ) = 0 N® (z, D'YQ® (x, D)| . gEen | 1),
F=0 \ O

o™ v’

Then by virtue of (3.22) and (3.23) we have

u(z, 0) =" P{NG? (x, ¢) (= [¢P]) " vi(x) +0(0™N)},
where N9 (z, §’) is the y-th eigen vector of A (x, §’) corresponding to
A%, Therefore it follows from (3.11) that u(x, p) violates (3.1), if

M is sufficiently large and p tends to oo. Thus we have completed the
proof of Theorem 3. 1.

We shall here give a necessary condition in order that the Cauchy
(1) for P, a hyperbolic system with diagonal principal part of constant
multiplicity, is well posed. It seems that our condition is deeply con-
nected with that given by Mizohata in [11].

We consider

Pi(x, D) =0ja(x, D) + Bij(x, D), s,t=1,---, N,

b b b

where a(z, D) =Q(z, D)q(z, D)*, q(z, D) =Dy+1(z, D’) and Q(z, 2
X (x,€),8)=0 (Q the principal part of Q) and order a(z, D) =m,
order Bi<m —1.

We decompose
m—1
B; (z, D) =jZ=]OBff (z, D) Ci; (=, D),

where Bj; is a pseudo-differential operator in '’ €R" of order m—1—j

and

a;
{5, D) = 3 @) aa, D),
We note that m—j—1+d;;<m—1, that is

3.24) di;<j.
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We develop for a phase function ¢ corresponding to 4,
e~ Bi(x, D) e =3 0, (Bl;, ) 0styu1 (Cy, ) 071+
=>10"""""'Bi;i(z, D),
where

Biji= k§iak (Bij, 9) 0az;+1(Ciy, 9),
order B};;<<d},+1.
In particular, the principal part of Bj; is given by
(3.25) Bl (xz, &) =B, (x, ¢.) Ciyo(2) H (x. &) s,
where
H (2, 8) =61+ 3 2 (@, 0 6.
We put
E (o, x) =0¢(z) +0°¢(2), 0<0<1.
Then we have
=) B (oiE ()
= ¥ g, (B, §)
=21 0" (00 (Bigo, ) +0(D)).
We set
w
(3.26) d; =max g dzwi/ N,
where 7 stands for a permutation of [1, ---, N]. We choose the rational
number ¢ such that
m—j—14+0d;<m—y+0y

for any j. To do so, we put

(3. 27) G—max 2=I 1
0<ji<y l)—'dj

By (3.24) we have 6<1. We put
Mi=max (m—j—1+4d};),

0=<j<vy
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#={0<j<y, m—j—1+di,=M:3}.
Then we obtain by (3. 26)

N
max y  Msu/N=m—v+0y.
s=1

T

Volevich’s lemma (c.f. [11], [12]) implies that there exist the rational

numbers m,, s=1, ---, N, such that

Mi<m—y+oy+m,—mg, s t=1, .- N.

5 3 Y

We define Bi(x, H) such that

~ >3 Bii(x,0.) Cipo(x) Ho: if Mi=m—y+0v+m,—m;,
Bi(z, H) = | i<#!

0 otherwise.
We denote by A (x, H) the matrix of which (s, #)-element is given by
010 (=, ¢:) H'+ Bi (=, H).

Then it is evident that all elements of A (x, H) are polynomials in H
of order v. Then we have the following theorem whose proof is

analogous to that of Theorem 3. 1.

Theorem 3.2. Let P be a hyperbolic system with diagonal
principal part of constant multiplicity. If the Cauchy problem for P
is well posed in G and ¢ given by (3.27) is not zero, then all the
roots with respect to H of the determinant of the characteristic

matrizx A(x, H) are zero in G.

Example 1. Let
1 0 a B a b
P:< >Dg+< >D1+< >Do.
0 1 r 0 c d
Then we have

A(x,H)=<H2+a 8 >

H 40
Hence if P is well posed in R? we obtain

(3. 28) a+06=0
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ad—Br=0.
Assume 7 (x)==0. We put
a 1
N=< )
v 0
Then
3 0 1 1/x = 1 /% =
P=N“PN=D2+< D+—< D+—< )
’ OO>1 TBI*>D 7 \B; *
where

B,=yDy—aD,+7(ac+by) —a(ac+dr)
B,=71Dia—aDir +7(aDyc+bDyy) —a(c Dyt + dDyy) .

Since P is also well posed at #, and the characteristic matrix is given
by
H* 1
A1) = ).
B.H H?
we have B;=0. Moreover when B,=0, we have
A(x, H) (HZ ! >
x = .
’ Bg l’{2
Hence we obtain B,=0. Thus we have (2.28) and B,=B,=0 as the
necessary conditions. If the rank of <? g) is constant, then (2. 28) and

B,=B,=0 is also sufficient.

Example 2. Let

1 0 1 /bn b1y by
P= 1 D,+ 0 0 Drl‘kbﬂ by bys | .
1 0 by by by
Put
1 0 \
1
Q = 1 Do - O O)Dl >
1 0

which is evidently well posed. If P is well posed,
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1 0 by O
PQ= 1 D%"‘ 0 bgl 0 D1+BD|)
1 0 by O

is also well posed. Then the characteristic matrix for PQ

H* by, O
Az, H)=|0 H*+by 0
O b31 H2

Hence 4, =0 is necessary. Moreover when by, =0, we have

H* b, O
A(z,H)=|0 H* b H|.
0 by H?
Therefore bg0,3=0 is necessary. Thus we obtain as the necessary con-
dition
{ b21=O
bmbzs =0 5

which Petkov has already derived by a different method from ours in

[7]. In general, let

1 0‘10 \ bll b]N
P=| " | Dy+ - e |ID+ .
1 .0
0

le"'bNN

If P is well posed in R? it is necessary,
bﬂ:O;
N
Z bklek = O B
k=3

Example 3. Let

1 01 0000
Pe 1 Dot 00 Dt abcd
1 01 0000

1 0 afBrd

If P is well posed,



550

KUNIHIKO KAJITANI
a+0=0,
ald—ac=0,
a(ab+ad) —a(af+ad) +2(@Dya—aDyx) =0,
a(bDya+dDyx) — a(BDya+0Dyx) +aDja—aDiax=0,

a
(24

are necessary conditions. If the rank of ( g) is constant, these con-

ditions are sufficients.
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