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Holonomic Quantum Fields III

By

Mikio SATO*, Tetsuji MIWA*? and Michio JIMBO*

Introduction

In this article we shall study an analogue of the Riemann-Hilbert
problem and the monodromy preserving deformation for solutions of the
2-dimensional Euclidean Klein-Gordon and Dirac equations.

The topic discussed here has its own interest from a purely
mathematical viewpoint; to the authors’ knowledge, it will provide one
of relatively few examples of deformation theory of linear differential
equations in which calculation of the deformation equations is explicitly
carried out to the end. However, the most salient feature of this theory
consists in its close connection with quantum field operators. In fact, as
has been exemplified in the case of the 1l-dimensional Riemann-Hilbert
problem (Chapter II [2]), we shall see that the whole theory is most
naturally and effectively described in terms of a class of field operators
“belonging to the Clifford group” ([1]). This will be done in the forth-
coming Chapter TV. The purpose of Chapter III included here is to
clarify the mathematical aspects and to prepare necessary ingredients so
as to serve a sound basis for the operator theory.

In the first § 3.1, local (multi-valued) solutions of the Euclidean
Klein-Gordon and Dirac equations are examined. We introduce here a
series of special solutions which will play a réle of power functions in
the 1-dimensional case.

The monodromy problem is formulated in the next § 3. 2. For given
branch points {(a,, @.)},-1,.,» and exponents /,eR (v=1,--- n), we

consider the space Wy,u!n, (resp. Wiyhn ) consisting of solutions v
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(resp. w="*(w,, w_)) of the Euclidean Klein-Gordon (resp. Dirac) equa-

tions satisfying the monodromic property
(3.0.1) v(a,+e"(z—a,),a+e ™ (z—a,)) =" (g, 2)
(resp. w, (a,+ €™ (2—a,), a,+e " (z—a,)) = —e "Pw, (2, %))

0<lz—a,lk1l, v=1 - n,

b b

as well as the growth order conditions
3.0.2) lv], [0v]|=0(z—a,| ")
(resp. lw.|=0(|z— a,| @211

|z—a,|—>0,y=1 - n

(3.0.3) |v| (resp. |w.l) =0, |z]—>o00.

Assuming 0</,, -+, [, <1 (resp.~%<l1, vy L <—é—> we shall establish the

n-dimensionality of the space Wi ;"' We also show that, for general

R

I;=I,mod Z, an element W/, !, is obtained by applyinfT differential

operators with constant coefficients to a basis of Wi ', . Analogous
results are obtained by specifying in place of (3.0. 1) a class of #n-
dimensional monodromy representation parametrized by a symmetric matrix
A. The case (3.0.1) is shown to be a degenerating limit of the latter.

In § 3.3 we shall derive a holonomic system of linear differential
equations in (g, Z) satisfied by a basis of Wi ,,1_ «,- We show further
that a canonical basis constructed in § 3.2 should satisfy a linear system
of Pfaffian equations in the total set of variables (z, , a1, @i, ***, @n, @a),
and that the coefficient matrices appearing in this system obey a non-
linear completely integrable system of Pfaffian equations (the deformation
equations). Concerning the latter we note that, for =2, there arises
the Painlevé equation of the fifth kind [7], which in the case of equal
exponents [;=1[, reduces to the third kind of restricted type (¥=0 in
[8]). Finally we introduce a closed 1-form associated with the deformation
equations. It will be shown to coincide with the logarithmic derivative
of the r-function later in Chapter IV.

Main results of this chapter has been announced in [3], [6].



Horonomic QuaNTUM FIELDS. III 579

Chapter IIl. Moncdromy Preserving Deformation in

2-Dimensional Euclidean Space.

§3.1. The Euclidean Klein-Gordon and Dirac Equations

Let z= (z'+1x%) /2, 2= (x'—ix%) /2 denote the complex coordinate

of the Euclidean 2-space XF*=R? We set 0:0,:62, 5=@;=Q
z

0z
Mp=20—20 and My=20—320+ —;—(1 1>. Then we have the com-

mutation relation
My=Mg or Myg)

and {0, 5, M} spans the Lie algebra of the Euclidean motion group
E2).

Consider the Euclidean Klein-Gordon equation
(3.1.2) (m*—00)v=0
and the Euclidean Dirac equation

3.1.3) (m—TINw=0

r=;") =)

with positive mass m>0. In this paragraph we shall study the local
solutions of (3.1.2) and (3.1.3).

In general let 9) denote the sheaf of differential operators on a
real analytic manifold X. By abuse of notation the sheaf of N XN
matrices of differential operators will also be denoted by 4. Let M:
Pu=0, P4, be a system of differential equations, where 4 denotes a
coherent left Ideal of @. We set Dy=9,,={PeD|J-PCY}. Then
9, is the unique maximal subring of 9 containing 4 as its bi-Ideal,
and consists of operators with the following property: for any P& 9,
and any solution # of M, Pu is again a solution of .

Let Jz=9D(m*—0,0;) (resp. Jr=D(m—T)) and set Dyz=Dy,,
(resp. Do,r=Ds,5,). Then we have
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Proposition 3. 1. 1.

) Diz=93+C[0,0, Mz], and the set {PD|[P, m*—80] =0}
coincides with C[0,0, M].

() Dor=Y9r+C[0,0, Ms], and {Pc D|[P,m—T']=0} =C[d,0,
Mz]@PC[0,0, Ms]T.

Proof. Denote the set J,+C[0,0, M ] by 9Di,. The inclusion
D5« Dy 4 being obvious, we prove the converse.

First we show (i). Let P9, and set P= lep, (2,2 (m™10)’
mod 45, where (m7'9)~! stands for m™9. For anj}:_u#o, Pemzv®)
is a solution of (3.1.2), so that Q=g ™®+¥D (;n? _§§) Pem®:+v'
= — (00 +mu~'0+mud) P(z, g, u) holds with P (2, g, u) = i (2, 2)u’.
Setting p;=0 for |j|>I, we obtain 0=m5p_,-_1+05pj+m10=1;;+1 for any
j. In particular (m=9)0/42*p, ;=0 and (m~'9)U/A*'p_,, ;=0, hence
p;(z, %) are polynomials. Since the operator 00+ mu~'0+mud com-
mutes with 20 — %0 — «0,, we may assume that P (2, Z, #) is homogeneous
in (2, 2, #), ie. that P(2, 2, u) =u*P;(uz, u™'g), where k= Z and P, (x, y)
is a polynomial. We may assume further 2=0, since P& 9y 5 is equiva-
lent to P(m™0,) " 9Dis We have then (0,0,+m0,+m0d,)P;(x, y)
=0. This implies in particular that the highest order term P;; of P,
satisfies (0,+0,) P,,,=0, and hence P, ;(z, y) =c,(x—y)" (c,;€C). Sum-
ming up, we have shown P—c,Mh= >, p;(m~'0)’ mod 4. By induction
on / we have thus 9 z=9, 5. Us]{r'lsgl—‘clhis one verifies easily the rest
of (i) by induction on the order of P.

Next let Pe Dy p. Noting m*—080= (m+I) (m—T), we see that
each entry of P(m+1I") belongs to 9,5 It follows from (i) that 2mP
=P(m+I)=Q mod Jr for some Q& MC[0d, 0, Mz]), where M,(C[0, 0,
M3z]) denotes the set of 2X2 matrices with entries in C[8,0, Mj].
Hence Q is uniquely written as iﬂQ; (0, 9) M}, or, by rearranging terms,

=

as Zkf Q,;(0,d) M#%, where Q;, Q;€ M,(C[0,0]). On the other hand, by
theFZIeﬁnition of Dy, there exists an R4 such that (m—I)Q
=R(m—TI)eM,(C[0,0, M3]). Then R commutes with 7m*—09, so that
R also has the form le R;(®,0) M%. Since My commutes with I", we see
that (m—1I") Q,-=R],-=(om —TI) by the uniqueness of representation. Set
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ds 4
From 0=(m—-I)0Q, <Z1‘> e D we get  wu (g (w) —ugs(w)) + (g (%)
—uqu(#)) =0. This implies Q, = <‘11‘ (m =045+ a1) 13q> C(L—m='T)
3.

mod Jp —m-
+ (m 05+ q) € Dip. Similar argument proves the rest of (ii).

QJE <QI q2> mOd Q (mz - azai) s @u= QD(m_laZ) = Zt qyk(m—layc (D = 1’ 2’ 3’ 4)'
k=-1

We now introduce a series of multi-valued special solutions of
(3.1.2) and (3.1.3). For lIeC let I;(x) and K;(x) denote the
modified Bessel functions of the first and second kind, respectively. We

set

3.1.49) v, (2, 8) =e™I,(mr), vf (2, 2) =e I, (mr)
¥, (z, ) =9%,(z, ) =K, (mr),
0 1

where z=%re , E=—2~re‘” (r=0,0=R), and

G15  we - <'vl_1/2 (=, §)>’ wF (2, 2) = (vi"wz (=, 2)>

Vi (%, 7) vi12(2, %)

W, (2, ) = @*,(2, 2) = <

Vi (2, 5))

Vi1 (2, 2)

=il
For I#0mod Z, we have =L f” (—vi+v%). For /=0mod Z,
2 sinnl
v,=v¥*, holds and v, ¥, are linearly independent. Likewise we have
- wil
’wz:E" e —(—w,;+w*) for lilmOdZ, and w;=w*, for ZE—]'—
2 cos 7l 2 2

mod Z. These functions are multi-valued solution (outside the origin) of

(8.1.2) and (3.1.3) respectively, having the following local behavior

as |z|—0:

(3.1.6) v,(2, %) = (mz)‘(%‘f—}- (;’izlz)r+ )

v} (2, 8) = (1n§)‘<%+%+...>

1 1 mizz
TR E=

1 m'zZ
L R e B BU ko
e e IR i TR

G.1.7 w, (2, &) =
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N1+ 1 mizz
e v TRl

=\ 1—1/2 1 2z
o g e )

wi (2, 2) =

where I!=1"(1+1).
For integral [=0,1,2 --- we have

(.18 #n)=r () DS () En D ey

2 (mz)* 7= J1-n!
—= et 22%
— (7 +log m+z%) - (m=) (F-i- (;71+lz>! +-—->,

%{;k (Z’ E) ::ijl (Z, E) ’
and for half integral /=1/2,3/2 --- we have

3.1.9 w.(z %) =%(_)z—1/z

U=S/DUSE Ly LT =3/ gy

(mz) = 5= iI=3/2)!
B V) S N (s V) L TN
(mz) 7 £, (=)’ a—1/2)! (=274

— (1 +log m+/z%) -

~Ni—iaf 1 m’zz
(m=) /<<z—1/2)!+(z+1/2>z+ )

re12f 1 mizz
(=) /((z+1/2)1+(z+3/2)!+ >

@F (2, %) = (ﬁl" =, E)).

‘in- (z, 2)

X

In particular %, and ®@.,, are fundamental solutions of (3.1.2) and

(3. 1. 3), respectively:

(3.1.10) (m*—00) ¥, (z, ) =270 (") 6 (z*)
G.L1Y)  (m-T) @iz, 2), Bla(z, 7)) =~ 1,210 ()0 ()
m

where z= (2 +iz%) /2, 2= (z'—iz?) /2 and I,= <1 1).
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Remark. (3.1.4) or (3.1.5) reduce to elementary functions if

ZE%— mod Z or /=0 mod Z, respectively. For example
_ 1
v_ip(z, 2) = T w/u cosh(2m|z]),
v, (2,2) = \/_ \/ —cosh (2m|z]),
1 - i —2m|z|
z L e .
o5 2) = 2N m V=
\/k cosh (2m|z])
Wy (z, f) = \/1 s
m| o sinh @mlzl)
R
JzSinh@m]z])
L
wi (g, 2) = Jl ,
mm| 1
e cosh (2m|zl])
i —2m|z|
e \
—[Vz
@y(z,8) =2,/ T
2N m\
z —2m|z|
,__T e
Proposition 3.1.2. We have the following recursion relations:
(3- 1, 12) 0v,= mu_y, 57];: MUy, M gv,=lv,,

Ov¥=mvol, Ovi=muvE, MpoF=—Ilv}.

The same relations hold if we replace v, by ¥, and v¥ by T¥.

wise we have
(3.1, 13) Ow,=mw,,, 0w, =mw,,,, Mrpw,=Ilw,
dwF=muwi,, 0wf=mw}, Mrwf=—Ilw}.

The same relations hold if we replace w, by @, and w}¥ by @

Like-

Proof. Using 6=e‘”<ﬁ+l2>, 5=ei"<£_i%> and Mz=

0r irdo
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—i{—, we obtain (38.1.12) ~(3.1.13) immediately from the formula

b

r 21, £, =L ()
dr

7-_j_f<, (P £IK, () = — K yr (7) .
r

Proposition 3. 1.3. Let v be a multi-valued local solution of
(8.1.2) at (z,2) =(a,a) such that, for some l,eC,
(3.1.14) v(a+e™(z—a),a+e ™ (z—a)) ="My (z 7)

O(iz—al®')  (L#0)
(3.1.15) lv(z, 2)|=
[ O(lloglz—all) (L=0)
as |z—a|—0 and |Arg(z—a) | <C for any C>>0. Here the left hand
side of (3.1.14) indicates the analytic continuation of v(z,2) along
the path z= a+%re”, §=c‘z+%—re"“ (#>0,0:0-21). Then v is
uniquely expanded in the form
> cfvfla]l (lh#0mod Z)
=—lomod Z
Re I=Re [, Re 1ZRe Iy

(3.1.16) wv(z,2) = ‘_Elﬂggz(zﬁl[a]+g v#[al)
+ Z (Cﬂl;[(l] +Cl*"(')l*[fl]) (Z”EO mod Z).

1=0mod Z
l=max (1o, 0)

Here ¢, cf, ¢, ¥ eC® and we have sei v,[a]l=v,(z—a,z—a), etc.

Proof. Set :—a=%re”, §—Zz=%re““’, r==0 and 6 R. By the
definition v is a function of (7, #) defined on (0,¢) XR (e>0) and is
real analytic there by virtue of the ellipticity of m?—00. FExpanding the
—il0

single-valued function e v into a Fourier series in , we have

l=lymod Z

(3.1,17) v <a + —;—re“’, a- —; 7'6‘“’) = Y MA@,

which converges absolutely and uniformly on any compact subset of

™) Regarding vo=v§ and To=0F, we set co=cf, & =CF to assure the uniqueness of
representation.
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(0, &) x R. Substitution of (3.1.17) into (3.1.2) vields

(fk f o -0,

which implies
aol,(mr) +c*I_(mr) (20mod Z)
(3.1.18)  filn=
ciI,(mr) +& K,(mr)  (I=0mod Z).

On the other hand, assumption (3.1.15) gives

G119 A0S [[L

e o /\a + %rew, a+—re)

rRet (1,50)
< const.
llog | ({,=0)
as 7—0. Combining (3.1.17), (3.1.18) and (3.1.19) we obtain

(8.1.16). Uniqueness of the expansion follows from that of the Fourier

expansion.

As an immediate consequence of Proposition 3. 1.3 we obtain

Proposition 3. L. 4. A multi-valued local solution of (3.1.3) at
(a, @) satisfying

3.1.20) w(a+e™(z—a),at+e ™ (—a)) ="y (2 7)
(3.1.21) |w(z,2)i=0(lz—al®" %) as lz—al-0,
|[Arg(z—a) |<C for any C>0

is uniquely expanded as follows:
S cwfal+ Y crwila] <ZO$—1—mod z>
a7 2

~ (2
(3.1.22) w(z, %)= ﬁi{ﬁ?&t}zzmwl[a] + @i [a])
+ 3 (awia] +cfwefla]) (\ZOE%mod Z>

1=1/2mod Z
lz=2max(l,,1/2)

where w[a]l=w,(z—a,=—a), etc.
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In the terminology of [3], w is said to be of Fermi-type at (a, a)
if [,eZ in (3.1.22), and of strict Fermi-type if in addition [,=>0.

From Proposition 3. 1.2 we see that the form of the local expansion
(3.1.16) (resp. (3.1.22)) is not changed by applying operators in
C[0,0, M ] (resp. C[0,08, Mr]) except for the growth order at the
branch point (@, @). The following Proposition shows that asymptotic

behavior as |z|-—>occ is preserved as well.

Proposition 3.1.5. Let v(z,2) be a multi-valued solution of
(8.1.2) in a neighborhood of {2|z|=R} having the monodromy pro-

~il46

perty v(e’™z, e %) =¥y (2, 2) (i.e. e ™y is single-valued) with

some [y C. Then the following are equivalent:
(i) |e™*v|e L*({2]|z|=R})

(ii)  sup e ™y| oo

2|z|2B
i) v, 2= > &eVK,(mr) <z=—%—re”’, rﬁR)
l=lymod Z
i e—-2mlzl
(@) e (pv) (29| =0(°, ) (z]->00) for any pe
_ V2|
C[0,0, M5].

Proof. Implications (i) = (il) and (iv) => (i) are obvious. We shall
prove (il) = (ili) and (iii) = (iv).
Consider the Fourier expansion

v <l re”, 1 re‘”) = > e¥fi(r) (r=R)
2 =1 Z

2 o mod

where f,(r) =c,I,(mr) +¢,K,(mr) with some ¢;, & =C. Now (ii) implies
sup| f;(#) | < oo, hence ¢;,=0 for all /. This proves (ii) = (ili). To prove
r(2i§)=>(iv), it suffices to prove (iv) for p=1, since pv satisfies the same
condition (iii) if p»eC[0,d, Mjs]. From the integral representation
<l> %, > O>

K =K@ =y fem it [Tepn 1+ ) e
WOERSVIEN S T 2

T . .
= ~/§e’r X (monotone decreasing function of 7)
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it follows that

0<K,(mr) /K,(mR) <+ Re™* \717;—"" (| l 1>%>.

Consequently we have

ZdZ'ELKz(”ZT‘),:L

Lo
11>1/2

., 16, K, (mR) || K,(mr)/K,;(mR) |

l= =lg
| 1t

1>172
D _mR N ~ ' 1 —mr
<{VRe 1o 1e K, (mR) |} - ——=e
l=1o mod Z \/7‘
11>1/2
Terms with |l}£—1— are estimated directly as | K, (m7) | =O<;1;* e—"W)_
2 N mr

This proves Proposition 3. 1. 5.

§ 3. 2. Wave Fuunctions

In this paragraph we shall consider a 2-dimensional analogue of the
Riemann-Hilbert problem® for solutions of the Euclidean Klein-Gordon
and Dirac equations.

Let (a, a,) (¥=1, .-, n) be distinct n-points of X< Denote by
X'=X;“...,an the universal covering manifold of X’'=X, ., =X"°
—{(a,, @,)},=1,..n with the covering projection 7: X’>X’. We fix base
points e X/, zo= X’ so that 7 (Z,) =x,, and denote by 7w, (X”; x,) the
fundamental group of X’. We use the following convention: A closed
path =7 () (0=:<1, 7(0)=7(@) =ux,) is confused with its homotopy
class in 7, (X’; x,). Product of 7, v/ €7, (X’; o) is defined in the order
) @ =72 (0L:<1/2), =r(2t—1) (1/2<¢t<1). An element y&
T (X’; z,) is identified with the covering transformation it induces on X,
For a function z on X’ we set (yu) (&) =u (G 1(Z)).*® Finally we
fix a set of generators 7y, -+, .M (X’; x,), where 7, is a closed path
encircling (a,, @,) clockwise (Fig. 3.2.1):

First consider the case of the Euclidean Klein-Gordon equation

(38.1.2). For I, ---, l,eR, let

™ For a technical reason we shall exclusively deal with the case of unitary monodromy
in this Chapter III.

%) We have changed the notation from the one in II. In the notation here the analytic
continuation of # along 7y is denoted by 7 'u.
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((lg, (_125 .

Zo

Tn

(al, &1) (an, dﬂ)

Fig. 3.2.1.

B.2.1) oy, (X5 20) 2UQ), 7,oe " (= 1, -, n)

be a unitary representation of the fundamental group.

Definition 3.2.1. For [,&Z (v=1,---, n), Wg'r,, will denote

9 Qn
the space consisting of complex-valued real analytic function v on

X’ with the following properties:
3.2.2) (m*—00)v=0 on X’
(3.2.3) ro=v-0,,.., () for any ren,(X’; z,),
ie. (1) (=, 2 =v(a,+e"(z—a,), a,+ec™(z—a,))
= ety (z, 2)
O<|z—a,|<1; y=1, -, n).
(3.2.4), lo|=0(z—a,|™™), [0v|=0(lz—a,I " )®
as |z—a,|—>0 @=1, - n),

3.2.4). lv|=0 (e~ as |z|—>oo.

Since p(y) is unitary, (3.2.3) guarantees that |v| is a single-valued
function on X’. From Proposition 3.1.3, we see that, under (3.2.2)
and (3. 2.3), the growth order condition (3.2.4), is equivalent to the

expansion of the form
(3.2.0] =30, @) v le]+ 5 et @) vt [a]
= 5=

where ¢%,,;(v), c¥®,;(v)eC and [}=1,—2[l,]. For definiteness, in

(8.2.4), we choose the branch of v on the “first sheet”, ie. the value

0 For [eR, [I] denotes the integer satisfying [[1<I<[/]+1.
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v|;, on the lifting 7, of 7, to the base point e X'
Likewise Wi, 'mstriet will denote the space of v’s satisfying (3. 2. 2),
(3.2.3), (8.2.4), and

(B.2. 45 v= 2 e, 50 v lal +2 ) Cl*,gf)i (v) ~vhylal

j=0
for y=1, -, n. (for 0</, -+, [,<<1 this coincides with Wg ...
We set also Wikl ={g|lve Wy, ), Wiknhesit= {gv
e WB ! L,, strlct .

For the moment we consider the case 0</,<1 (v=1,---, n).

Example (=1). For O<l<1 W4, is a 1l-dimensional space

spanned by "zb’_ll:a}:E e ( _i[a]—vf[al). It is shown below

(Theorem 3. 2.4) that TVB,GI,_,_",% 0y, -+, 1,<1) is exactly n-dimen-
sional. We note that the exponential fall-off condition (3.2.4), is crucial
for the finite dimensionality. For instance, v_;,;[a] and o ;[a]
(j=0,1,2,---) all satisfly (3.2.2)~(3.2.4) with n=1 except for
3.2.4)..

Now we set
3.2.5) Ig(w, v')~—jj ids \dz 0v 09" +m*vo) =1;(v’, v).

If v, v” both satisfy the monodromy condition (3.2.3), the integrand is

single-valued on X’ and hence (3.2.5) makes sense.

Proposition 3. 2. 2. Assume 0<I,<1 for y=1,---, n. Under the

conditions (3.2.2) and (3.2.3), (3.2.4) holds if and only if Ip(v, v)

<{oo. In this case we have
3.2.6) Ip(v, ") ==Y c% (v) - cE® (v’) -sinnl,.
v=1

Proof. In view of Propositions 3. 1. 3 and 3. 1. 5, conditions (3. 2. 4),
and (8.2.4), are equivalent to
3.2.4)7 [v], |0v|e L*(D,¢)
(B.2.9 o], [0v| € L* (D..z)
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respectively, where D, .= {(z, ) € X**||z—a,|<¢} (0<eK1) and D, ¢
= {(z,2) € X®*||2|=R} (R>»1). Hence (3.2.4) holds if and only if
[v], |0v]| € L*(XF*), ie. I5(v, v) <oco. Now assume that v, v’ satisfies

this condition. Notinng
(0v-07" + m*vs’)idz \dz= —id (v07’d2)

for (z,2)+#(a, a,) (v=1, -, n) we have

Iz (v, v’) —lzllnolE J‘J‘XF‘“" 3 0, y—zd(v@‘u dz)

—lim £ Zn] 1v09’d=.

elo v=1 JaD,.

Substitution of the expansion (3.2.4), yields

§ (007’ dz
0Dy, ¢

= zdz( c® (v)-M+...)

lz—a,l=¢

e =

=c(_"%y(v) . c;‘;(”) @) -M-i-Zni—i-O(e).
T

This proves (3.2.6).

Proposition 3.2.2 shows that the spaces Wi, »i», and Wy
are mutually dual through the C-bilinear inner product Iz(v,7’) (ve
Whatte,,, vve Wikl ), For ve Wi,iin,,, we set ¢(v) = (c%,(v),

c® (v)). Since Iy is positive definite, (3. 2. 6) shows that the linear

n?

map

c: Wyate, —»C", v>c(v)

1

is injective for 0<(/,, ---, [,<<1. Therefore we have the following result.

Corollary 3.2.3. We have Wgg'n,, =0 if L, -, 1,<0, and
dime Wil o, Zn if 0<ly, -+, L,<1.
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Remark. Injectivity of the map ¢ is also shown by the following
argument. Let ve Wy.tr, (0<l, -+, [,<1) satisfy ¢(v) =0, and con-
sider the real analytic function f=v9>0 on X ... Since f—0 at
the boundary |z—a,| >0 (v=1, -, n) or |z]—>co, f attains its maximum

on X’. On the other hand we have (—00+m?) f=— (|0v|*+ |0v|?

ne

+m?|v]?) <0, hence by the maximum principle we obtain max f=<C0.
This implies f=0.

We shall now show that the equality dimg Wie:!n, =#n holds for
0y, -+, I[,<<1, by making use of some {unctional analysis. In the forth-
coming Chapter IV, we shall explicitly construct a basis of Wi, in

terms of field operators.

Theorem 3.2.4. For 0<l,, -+, [,<1, there exists a unique basis
Uy, oo, Un Of Witaitn, such that ¢, (v,) =0, (4,v=1, -+, n). In par-

ticular dimg Wit =n.

Proof. Uniqueness follows from Corollary 3.2.3. We are only to
prove the existence.

Let 4/, denote the space of C=-functions v on X’ such that v
satisfies (3.2.3) and supp|v!| is compact in X’. On 4, we introduce

a positive definite hermitian inner product hy

2T,(v, o) =% ”XE idz \dz (Bv-00" +0v 00 + 2m*vT”)

=‘fj idz\dZ v+ (—00+mH)T’, v,v eIl
XEuc

Denote by 4, the Hilbert space completion of ¥, with respect to 21,
Note that 9, is nothing but the usual Sobolev space when restricted to
a simply connected open subset UCX’ (more precisely, if we consider
the restriction vz, to a connected component U, of z7'(U) ©X’). Hence
an element v of 4, is identified with a measurable function on X7,
satisfying (3. 2.3) and |v|, |0v], |0v]| € L} (X®*).

Now let ¢, be a C~function on X®* such that ¢,=1 (]z—a,|
<¢/2), ¢,=0 (j]z—a,|=¢) with 0<{c¢«1. Then itis possible to extend
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- T F . .
the function ¢,v_;,[a,] as a C®function ¢,v_;,[a,] on X’ satisfying
(3.2.3). Setting g¢,= (m'—00) (p,v_i,[a,]) we see that g,€ ().

Consider the skew-linear map
G, H,~C, v~ J‘J‘XE idz\dz 9,7 .

By the Schwarz’ inequality G, is continuous in the topology of (.

Hence by the Riesz’ representation theorem there exists a unique v, Y[,

such that 21;(v}, v) =G,(v) for any ve K, This implies (m*—00) v/,
— T TT——— .

=¢,= (m*—00) (p,v_,[@,]) in the sense of hyperfunctions. We set

v,,:'v;—qo;m;]. It is clear that v, satisfies (3.2.2) (and hence is

real analytic on X’), (3.2.3) and (3.2.4).. Since |0v}], |0v}| both

belong to L*(X®<), the local expansion of v, at (a,, @,) has the form
(3.2.7) v,=0uv_[a]+auv g ala]+
+Buwvi[a] + -
This proves Theorem 3. 2. 4.

In the sequel we shall sometimes refer to the above basis as the
canonical basis of Wi »in More generally for any [, -, l,eR—Z,

, @1,y Gnt

we use the wotation v,=wv,(L)=wv,(z,Z; L) to indicate the dependence
A
on parameters L=< > of the functions satisfying (3.2.2), (3.2.3),
Ln

(8.2.4)., and (3.2.7). We also write the coefficients as «,,=a,, (L),
Buw=0RB,.(L) and so forth. Theorem 3.2.4 guarantees the existence of
v,(L) in the case k<l -+, l,<<k+1 with some k= Z, for we are only
to set v,(L+kE)=(m0)*v,(L) ((m0)'=m"9). In particular
o (Lt k) =, (L), B (L+k) =B,.(L).

In the coming § 4.4 and § 4.5 we shall explicitly construct z inde-
pendent canonical elements in Wi »imgtriet for [, ... [,eC—Z under
certain convergence condition. We can then prove that Wiy, »imstict ig
exactly z-dimensional for arbitrary [, ---,[,€R—Z. In fact, it is suf-
ficient to show that, if v satisfies besides (3.2.2), (3.2.3), (3. 2. 4)stit

and (3.2.4), the conditions

¢, @) ¢ (@)=0 (@=1,--, n)),
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then v=0. Let »;Uw,={1, ---, n} be a partition such that ¢%, (v) =0
for yew, and ¢f® (v) =0 forvey, Assume that y,&v,. There exists an
element v, (resp. v}) in Wi nlmstrict (resp, Wiy ntorllnsticty sych that

Blag a0

%, (v,,) =0 for vew, cf¥(v,)=0 for v(5y,) €w. and ¢ (v,,)#0

lvo

(resp. ¢%, (v¥) =0 for vew,, ¢¥¥ (v¥) =0 for v (v, €v; and % (v
=#0). Subtracting some constant multiple of v, or vy, we can reduce
the problem to the case of exponents [y, --- [, +1, -+, [,. By repeating
this argument reduction to the case 0</;, -+, [,<{1 is possible, for which
our assertion is proved.

Now we return to the case 0<(/, ---,[,<1. Comparing the local
expansion of 8v,(L) with that of 7,(—L-+1), we find that dv,(L)
—m élﬁ,w(L) 7,(— L+1) belongs to the kernel of the map ¢. Hence

we have

(3.2.8) dv.(L)=m éﬁ,,v(L)ap(—L+1),

PI'OPOSitiGH 3. 2. 5- Sef [24 (L> = (all-v (L)) pyv=1,-,m B (L) =
(ﬁ/w (L>)/j,p=1,~-.’n. T/l@ll

1) aunL)-sinwl,=sinnl, a,(—L+1) (uv).

Gi) B -B(—L+1) =1, and there exists a unique H (L) ="H(L)
such that B(L)sinwL = —**®),

In particular, if ],,=% (v=1,-,n), we have '‘a=a and f=—c*",

H='H=-H.

Proof. Assuming y+v, we compute [z(v,(L), v,(—L+1)) in two

ways and obtain

lim 3 iv, (L) -0v,(— L+1)d=

£,0 1=1 JoD,.

—lim 3" §M —i5v,(L) v, (— L+1)dz

el0 i=1

or

2, L) sinnl,—c,,(—L+1) -sinwl,) =0.
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This proves (i). Comparing the coefficient of v_;,;[a,] of the local
expansion of (3.2.8), we obtain (L,,:i B (L)B:,(—L+1). Finally
A=1

let k= (ky, -+, k) €C™ and set v=3"k,v,. Then (3.2.6) yields
r=1
0<I,(v,v) =— > k%8, (L)sinl,.
n,v=1

This implies that —B(L)sinwL is a positive definite hermitian matrix,
and hence is uniquely written as e®*® H (L) =*H (L). This proves (ii).

Remark. From (3.2.8) the local expansion of v,(L) has the form

v, (L) =0wv_y[a] +au (L) vy ula] +-

3B (L) - Pevba] e (—L 1) wbala] ).

As long as solutions of (3.2.2) are concerned, we may identify the
operator 89 with m2% The quotient ring €[0,d]/(m*—8d) is isomorphic
to the polynomial ring €[z, #«™] in one variable #=m"'0 admitting its
inverse #™'=m™'9. Thus any element of C[0,d]/(m*—0d9) is a residue
class of a unique element of the form 2 (0,0) = f}pk(m"la) k where
(m™9)~* stands for m™9. We set (C[0, 5]/6‘;:21— 09)) ;= {» (0, 0)
= llqu/pk (m~'9)*}. The following theorem tells the structure of Wi,

for general [,e R—Z.

Theorem 3.2.6. Let 0<[, <1 (v=1,.--,n). Then the space
G Whtiintd s q left C[0,0, My]-module. Moreover we have an
j=0

157 Qn

isomorphism

(3.2.9 (C[0,8]/ (m*—00)) ;QWhrartn . =5 Whtionlnti
C
given by p(0,0) Quv—>p (0, 0)v.

Proof. Let ve Whil:l»*/ peC[0,0, Ms]. Since p belongs to
Dy, 5 (Proposition 3.1.1), pv satisfies (3.2.2). Clearly (3.2.3) remains
valid, and (3.2.4), is also preserved by Proposition 3.1.5. Finally if
ord p==~k, (3.2.4), is fulfilled with [, replaced by /,+ j+%. Hence we
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have shown pWhihwleti CWhtitk mintitk
To prove (3.2.9), let vy, -+, v, be the canonical basis of Wil , |
and take p®= > p®¥ (m~10)* < (C[0,0]/(m*—080)),, #=1,---, n, arbi-
16121

trarily. Then we find
(3.2.10) 25 2@, =pPvla] + -+ (L 2YBW) visla] + -
“= u=

at (a,,a,) (v=1,---n,). Here f=(B,,) is an invertible matrix by Pro-
position 3.2.5. Hence (3.2.10) implies that, for any ve Whiiwin+s,

an

n

there exist unique constants p¥, p¥ (u=1, - n) such that »v—)]
u=1

P (m=9) 7 + p“ (m~'9) ’)'v belongs to WhtiTlh,»!»*/~1 Repeating this
argument we see that v—ﬂZjlp(")(@, Nv,e W}i;i::jiji’;,ﬂ:O for unique p®

e (C[0,0]/(m*—09));. This completes the proof of Theorem 3.2, 6.

We remark here that most of the above results are valid if we admit
some of [’s to be integral. In this case we impose in place of (3. 2. 4),

the condition
O(lz—a,l™) (eZ-{0})
O(lloglz—a,l]) (£,=0)

to define the space Wi, 'n,,, or what amounts to the same thing, assume

the expansion
Ly
v=2 (& (v) -%[a]+f¥ (v) -¥f[a])
1=0

+ > NCHORACA R SJ ORI CH)

l=max(—1y,0

@ (v) =& (v), e (v) =cf® (v))

to hold at (a,, a,). We have then Wgir, CWaying et . ., and
Wharln e =Wio@®---BWh,, if 1), -, l,eZ. Although the inner pro-
duct IB diverges in general if [,=0,1,2 --- for some v, Theorems

3.2.4% and 3. 2. 6 are valid for 0=/, <1 (v=1, -+, 7). Let Wiy insirict

yoe, Gp

denote the space consisting of ©’s satisfying }'0|=O([10g]z—z*][) at

(2*,2*) besides the conditions for Wi, imstt, It is spanned by the

™ We replace ¢f¥ by & if 1,=0.
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canonical basis v,(L) =v,(z; L)® of Wi, s, , and a unique v,(L)
=v,(2% 2z; L) with the characteristic properties (3.2.2), (3.2.3),
(3.2.4),, and

(3.2.11) To[2*] + regular function

at  (z,2) = (2%, 2%)
v, (2%, 2; L) =
o, (2*; L) "U_l,,+1[av] + - 4B (z*; L) -v?j[a,,] +-

at (2,2)=(a,a,) =1, 7).

In view of the formula (3.1.10), this w,(z* 2; L) is an analogue of
the Green’s function. Existence of v,(L) is proved by a similar method
for 0<Ly, -+, £,<<1 (for general [, R—Z, see Chapter IV). The coef-
ficients d,, 8, in (3.2.11) are obtained by calculating the inner product
I5(vo(2*,2; L), v,(2;1—L)) and Iz(w,(2*, 2; L), v,(2; L)) respective-
ly, noting I5(v, v’) =Iz(v’,v). We find

(3.2.12) U (2% L) =—" o, (z*;1—L)
2 sin7l,
Bu(z*: L) =——"_v,(*; L).
2sin 7/,
-, Lp,strict

That is, the canonical basis of W, appears as the leading coef-

oba ot
ficient of the local expansion for the “Green’s function” w,(2* =; L).
Likewise we find the following symmetry property by evaluating

Iz(vo(z,2"; L), v,(2*,2"; L)) with respect to g’:
(3.2.13) vo(2¥, 2; L) =v,(2, 2%; L).

Now we proceed to the case of Euclidean Dirac equation (3.1.3).

Let [, -+, [, R be such that Zﬁé%modz =1, 7).

Definition 3.2.7. We denote by Wil ,

of 2-component real analytic functions w="(w,, w_) on X', satisfying

the spuce consisting

n

(3.2.14) (m—T)w=0 on X'

(3.2.15) T w=w:05 1. 1,-12(T) for rem(X’; x),

@ For brevity we write the variables (z,%) simply as =.
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ie. (1) (2,2 =w(a,+e"(z—~a,),a,+e " (z—a,)
=—e by (2,2) 0<l|z—a,|L1;v=1, -, n)
(3.2.16), |w.|=0(lz—a,| ™) g5 |z—a,|>0 @=1,-, 7n)),
(3.2.16).  |w.|=0("")  as |z[—>o0.

Likewise we define W lwsmt replacing (3.2.16), by

(B.210)8%  w=3100,,; () w_i,,,[a] + 3 b0 @) wh, 4]
7=0 j=

for 1):1’ e .

3

Condition (3.2.16), 1is equivalent (under (3.2.14) and (3.2.15))

to

(3.2.16); w= ]}:0"91,,” (w) w4, ;[a] + jZ_ocir;% (w) -wi;[a.]

where lj‘:l,—Z[l,—I—%]. From the definition we have the following

isomorphism

(3 2, 17) WBH‘;: 2, e by =172 0 TVF -

ﬂ-n

[ v_
H\m“é?z’)'
Hence the results for Wgtl/% ;=2 are straightly translated into those

for WF a1

1 1
The e n=1, ——<I<<=.
he case n s 2< <2

Wh.=C =
@alel, @.lal 20072:1

~ (—w_i[a] +wia]).

Inner product
(3.2.18) Ip(w,w’) = _” idz \Nd= (w, @, + w_w")

:IF (w,, 'ZU) .

Assuming ———;-<l1, ey ln<—‘]2L, we find for w, w e Whilr .,

(3.2.18)"  Ip(w,w’)=—3c%, (w) ct® (w’) -cos l,.
y=1
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Theorem 3.2.8. We have W4 ;' ,. =0 for I, -, ln<——;—, and

dimg Whiatke oo =n if ——;—<l1,---,ln<—;—. In the latter case there

exists a unique canonical basis w,(L) (u=1,---,n) such that

(3.2.19) w,(L)=0,w_y[a] +%<L+_;_> @]+
326, (2+ 1) (duwitfad +an(-2+ 1)

X wi[a,]+ )

at (a,,a,) (u,v=1,---, n). Here a,,,,<L+%>, 6’,‘,<L+%) are those

in (3.2.7) corresponding to exponents Zl-i-%, ln—l-l.

’ 2
Theorem 3.2.9. Assume —%<Zl,---,l,,<—;—. Then DW?;{;:Z;L’;‘“’
7=0
is a left C[0,0, M y]-module. We have
(3.2.20)  (C€[0,0]/(m*—00)) ,QcW¥i't.a, > Wit
by the map p(0,0) Rw—>p(0,0)w.

These are immediate consequences of Theorems 3.2.4 and 3. 2. 6.
Extension to the case of half integral [, is also possible. We merely
note here the existence of solutions w{® (L) =w{® (z*,2; L) of (3.2.14)

satisfying (3. 2.15), (8.2.16). and the local behavior
— @} [2*]
(3.2.21)¥ wi® (2*, 2;L) = +regular function
Wiys[2*]
at  (z,%) = (2%, 2%
(8.2.21)®  wf®(2* z; L) =afP (z*; L) -w_;, .1 [a,] + -
+B57 (2*; L) -wit[a,] + -
at (2, §)= (dw av) ()):1, T 71),

where o, ="(as”, af”), Bo="(B5", B5’) are obtained by calculating the

inner product of w{® (2* z;L) and w¥(z;1—L) or w,(z; L), as
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follows.

(3. 2.22) o, (2%; L) = ——ﬂn—w,(z*; 1-L)

Bo, (z*; L) =_01§wa (z*; L).

We also see that (cf. (3.2.13))
(3.2.23) wl (z* z; L) =wO (z, =*; L)
w& (2% 2; L) =w® (2, 2*; L).
In terms of v,(L) =v,(z* =; L), wi® (L) =w® (z*,z; L) are given by
(3.2.24) (wi? (L), wi™ (L))

_ —m™10,v,(L—1/2) vy (L+1/2) >
*< —w(L—1/2)  m™8,v,(L+1/2)

We denote by W@kl minstrict the space of t’s which, besides the con-
ditions for W »i=striet - admit of singularities of the form (3.2.21){® at
,Qn
® ok
(z y )
We remark a few words concerning the special case /,=0, --- [, =0.
p > > ¥n

For a solution w=<$+> of the Euclidean Dirac equation (3.2.14),

define its *-conjugate by w*= (;’) Then assuming —%<ll, ey ln<—%—
+
we have the skew-linear isomorphism *: Wh iz , = Wl =ln These

two are mutuallv dual spaces through the C-bilinear form I (w, w’*)

(weWhiin,, weWsymn, Now if [;=0,--,1,=0, the space

n

ﬁ:';;l‘f,,,,an(z $Tt e, in the notation of [3]) is self-dual, and we have

the R-linear subspace W$iLtX®,
eEWFSt . 0, Clearly W§Et  , =WFEhR, @V —1WFLEE, dim,Wiih B,

=n. An element weW}t,rff...,un (or correspondingly ve W% 2 ) is

consisting of “real” elements o =w*

n

regarded as a function defined on the 2-fold ramified covering manifold
of X% Ryp0,= 1G5, 10=T (=), =11 (—a)} = (X' /Ker
0-1/2,0,—172) U {(a,,, @,)}se1,..,ny and :atxsﬁes there the Euclidean Dirac (resp.
Klein-Gordon) equation with point sources at the branch points (a,, a,);
namely, in the local parameter {,= V/;Z=§i+i§3, the local expansion
(3.2.16);, (vesp. (3.2.4);) implies
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2mg, 6

= T (e (w) 1 2
(3. 2. 25) 5 = MV/m < O (w) >5 (£)0ED),

v

<4m2CPEF-W> &/ T e

;)C (%) — 0 (6) 0 (&).

v v

E)O(E).

Here we have used the formula

The results in this paragraph are generalized to the case of an
n-dimensional monodromy representation of special type, as shown below.
Let A= (A.) 4,u=1,.,n be a positive definite real symmetric matrix such
that 4,,=1 (v=1,---,n). For/l, ---, [, R, we introduce the monodromy

representation

(3, 2, 26) 0;1,...,11“,1: 5 (X/; x0> —‘>GL (n, C)
na (1) =M, =1+ (e —-1)E, A,

E, = 1 =1, -, n).

Since M, satisfies M,A™*M,=A"" 0, ..., is a unitary representation
in the sense 0, ..., 4@ (X"; x0)) CU(n, A) ={9GL (n, C) |'"gA9 = 4}.
In place of (3.2.3), let us now consider the following monodromy pro-

perty for an zn-tuple v= (v® ... v™) of functions on X’:
(3- 2- 27) T. (.Z)(l)’ ) .v(rl)) = (7)(1), Y v(ﬂ)) ‘0L1,~--,zn.4(7’)
(rem(X’; z)).

The condition (3.2.27) will be motivated later in Chapter IV.
(8.2.26) and (3.2.27) imply in particular

(3.2.28) 700 =Ty ® 1 (v® — ) Lo®) =p® — ) o®
(u,v=1, -, n).

Note also that if v satisfies (3.2.27), then |v|,= (v47'*@)?=0 is sin-

gle-valued on X’.
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Definition 3.2.10. For [, ---, l.&Z, Wy,'r, (4) will denote
the space of n-tuples v= (v, .-, v™) of real analytic functions on
X’ satisfying (3.2.2), (3.2.27) and

(3.2.29), 2 =20 (2 62,y (V) vsg[an]

+?_1:06,, 25 () vlslal)

+ single-valued regular function at (a,, a,)
U¥=1,-2[L); p,v=1, -, n)

(3.2.29) . v, =0( ™)  as |z|->oo.

Expansion (3.2.29), is consistent with (3.2.28) (in particular the re-

gular function term for »® is missing av (a,, a,)).

Definition 3.2.11. We define Whitn . (4) for lﬁéé—modz
(v=1,---,n) to be the space of 2n-tuples w= (w®, - w™), w®"

<w(")> (v=1,---, ), of real analytic functions on X', such that
each w® satisfies (3.2.14) and

(3.2.30) 7 ('wél), ey, wén)) = ('wgl), ey, u'?”) Ot~1/2, e ln—1/2,4 (T)
(=4 or —; remX’; xy))
(3.2.31), w®W=4, (L %45 (w) w_p,y;lal] +ZOC?;@J' (w) ~wii;[a])
=

+ single-valued regular function at (a,, a,)

(z#:l,—z[zp+%], /=1, )

(8.2.31)., |w.| ;=0 (e %) as  |g]—oo
(‘Z,Ui: (‘ZUII, ...> Zc"ﬂi)>~

The space Wii,w'=sret (f) (x=B or F) are defined analogously.
Namely we replace (3.2.29), and (3. 2. 31), respectively by

(8.2.29)57 0@ =2, %45 (2) vopslal]
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+ i et (v) -vi,;[a]) +regular function
=
(32308 W =1,(5 0t () ey L]

Z k¥ (w) -wi,;[a,]) +regular function

for u,v=1,---,n. (We note that the definition of Wit 'z (4) given in
VII [5] c01nc1des with Wi orinstmet (f) here). We also define their dual
spaces by Wéelé, l,, strlct (A) {tYJI‘U = WB ot ln strlct (A)}’ and W;La! L,, stnct (A)

= {fw*|lweWhimsnt ()} In this case as well we have

(3.2.32) Wya 2t 2 (NS Wt .. (A4), WH( vl— >
mT0v

Remark. In the trivial case A=1, Wi s+i» , (4) (x=B or F) splits
into the direct sum W% ,@---@Wh,, (the case “with no interaction”).
On the other hand, the space Wil , discussed above is understood
as the degenerating limit 1,,—1 for all u#,vy=1, ... #. See Proposition
3.2.14 below.

A hermitian inner product is introduced by setting

(3.2.33)  In.(v,v") __“ _idz\dz@v- 47 (09)
+mPv- A7)
for v, v’ €Wz, (A) 0<y, -, ,<1), and
(3.2.34) Ir (w0, w") :Z’zﬁ jjxmcidz/\dz(zm AT, w4 )

for w, w’ e Wgoi, (A) <—-;—<l,, e, ln<~2]i->. To see the convergence

of the integral at |z|—>o0, we note the {ollowing.

Lemma. Let v=(v®, .-, v™) be a solution of (3.2.2) on
X' N{2]z|=R} such that v(e*z, e %) =v(z,z)-M for some Me
U@, 4. 1If sup |v| oo, we have

2z1=
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—2mjz|

|00) (5,0 1=0(5—)  (zl>e0)

ar
for any peC[0,0, Mz].

Proof. Since M is unitary, there exists a P€GL (2, C) which
&
diagonalizes M, ie. P‘IMP=< ), le,|]=1 (v=1,---,n). Setting
€n

vP=(v® - o™, we see that v®’ satisfies the assumption of Pro-

position 3.1.5. Hence our assertion follows.

By a similar calculation we obtain

(3.2.35) I, (v,v")= —fnj c®), (v) - cE¥ (v”) -sin 7/,
y=1

(3.2, 36) Ip(w, w’)= -i c®), (w) - c¥® (w’) -cos nl,
v=1

where {c¢%), (v), c¥® (v)} and {c®), (w), ¢f® (w)} denote those appearing
in (3.2.29), and (3.2.31),, respectively.

Theorem 3. 2.4, Proposition 3.2.5, Theorem 3.2.6 (and the cor-
responding results for the Dirac case) are also generalized to the case
of Wigaiin o (A) (k=B or F). We omit their proofs, which are almost

the same as in the original ones.

Theorem 3.2.12. For 0<{, -+ [,<1, there ecxists a unique
canonical basis v,=v,(L; A) = @P (L; A), -, vP(L; 4)) (u=1, -, n)
of Wiantra, (4) such that

(3 2 37) 'Uff) (L’ A) =l,,,,{6‘“,,71_4”[a,,] +CZ,,,,(L; A) 'U—L,+1[av] + -
20 Bu (L A) - Onvi[a] + 0o (—L+1; 4) -vfa[a]+-)}

+ single-valued regular function at (a,, a,)
for u,v,0=1,--- n.
. . 1 1 . . .
Likewise for —3<l1, S ln<5, there exists a unique canonical

basis w,=w,(L; ) = (WP (L; 4), -, wP(L;4)) (#=1,-,2) of
Wit 0. (A) such that
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(3.2.38)  wf(L; M) =1a{dnw i) +au(L= i d)

X w—ly-kl[av] + e

+’§"1 BM<L~—;—; A> . <6,;y-'wi';[a,,] -1—05,“7?[,—_;.%; A)

<whala]+ )]
+ single-valued regular function at (a,, a,).

(e, v,0=1,---, 7).

The coefficients o,,(L; A) and B, (L; A) satisfy the same relations
(2). (i7) of Proposition 3.2.5.

Theorem 3.2.13. Assume 0<ly,--+,1,<1 for x=B and —%

<l -1, <-;_ for x=F. Then YWiiloi(4) is a left C[0,5, M4]-
i=0

module. We have the isomorphism

(8.2.39)  (C[0,0)/ (m*=09)) QW izt o, () > Widsiiin (4)

given by p(0,0) Qw—p (0, 0) w.

By the same argument as in p. 16-17, combined with the existence
theorem for the basis to be proved in Chapter IV, we may show that
dimcWigwinsrict (f) =n for *=B or F.

Next choose 1= (1, -+, X,) EC™ and (2*, 2*) € X¥*— {(a,, @,) } o1, n
arbitrarily. We let Wk oimsriet (4 ) (y, -+, ln&Z) be the space of
v=(v® ... v™)’s satisfying (3.2.2), (3.2.27), (3.2.29)s (3.2.29),

and having at (2* z*) an additional singularity of the form
(3. 2. 40) v®@=2,-8%(v) -¥,[2*] +regular function,
@) eC; =1, -, n).
By the same method as in the case of wv,(2* z; L), we can show, at
least for 0</,, -+, [,<{1, the existence of a unique v,(L, 4, 1) =v,(2*, z;

L, 4,2) such that & (v, =1 and ¢%,(vy) =0 (v=1,---,7). Clearly
vo(L, 4,2) is linear in A" Denote by 4, the g-th row vector of
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A4, and set vy (s* =z; L, A) ., =v§’ (=¥, 2z; L, 4, X,). We have then for
U, p:l, e

(3.2.41) w,(z*,z; L, A),.= Y mn‘l L (P ¥ 1-L Doy ala]+

+of (&5 L, A) -vfla] + )
(.2.42) wo(c*, =i L, A) .= oe(e. 55 L. A) .
Similarly, for —1/2<Cl;, -+, [,<1/2 there exist unique w§® (L, 4, 1)
=w{® (2% z; L, 4, 2) = (i@, .- w®™) that satisfy (3.2.14), (3.2
30), (3. 2. 31), with %, (w§®)=0 (v=1,---,n), (3.2.31), and at

(=*, 7%)

Tk [k
~ !/ZF ]+1‘egular function.
W[ 2*]

Setting w® (L, 4) ,,=w§®? (L, 4, X)) we find

(3. 2. 43) 20§ =]

(3.2.49) (P (=*, =, L, A) , w§ (5%, 25 L, 4) )

(w_i,ula] i (*;1—-L, A) +--

~ 2 cos 7rl
+wila,] wF® (s*; L, A) + )
(3.2.45)  wP(z* 2 L, A) u=w (z,2% L, 4),,
W@ (&4, 55 L, A) = w® Gz, 2% L, 4).,
for p,v=1, -+, n

For later convenience we shall refer to as W g e mimstrict (4 2) the
space spanned by w{® (L, 4,1) and w,(L, A) (v=1,---, #n). We set also
W*l& la ozstnct (A t/{) _ {t‘UIZI = WOBL; o l,,astnct(A l)}' W;(f)ll pi ln 0, str\ct(A tl)
— {tw* l we Wg;:)zl’),alll l,. strict (A /1)}

For notational convenience we introduce the matrices v=1v (L; A)
=0 (L, Moty a0d =10 (L; 4) = (@ (L3 4)) ppos, e Their local
expansions then read as
(B.2.46) v(L;A)=1l.-v [a]+a(l;A) -v_,[a]+

+B(Ls D) vi[a]+B(L; Ha(—L+1; 4)
XvEala]+-)-EA
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+regular function
1
w(Li 4) = (Lowoy[elta(L— 2 d) -wopula] +-
R S D I SRS U
+B<L E,A) w,v[ay]—k[?(L Z,A) a< L+2,A>
sz?;(_l[a,,]—e—---)-E,,A

+regular {unction.

Since A is non-singular, it is clear that the 7z column vectors v™ (L; A)
(resp. w (L; A)), v=1,--- n, of v(L; A) (resp. w(L; A)) are linearly
independent.

This linear independence {ails in the limit where A tends to a
degenerate matrix A'=‘A"=A° with 1%, =1 (1<y<{n). For the sake of
definiteness we consider w(L; A). Set rank A°=n—r, and let p,, -+, p,
be a basis of Ker A°. Without loss of generality we may assume that
the first 7 X 7 block of P=(p, -+, pr) to be non-degenerate: P="(*"P,, ' Py),
det P,5£0. Setting w(L; 4% =}ir11’10w(L; A) we have

rw(L; A P=w(L; A - A— (e +1)E AP
=w(L; A)P.
Hence by (3.2.46) w(L; A" P is single-valued and regular at each
(a,,a,). Regarding (3.2.31). we then conclude w(L; 4% P=0. That
is, the first 7-columns of w(L; A% are linearly dependent on
w " (L; A%, -, w™ (L; A% (linear independence of the latter follows
from (38.2.46)).

In order to recover the rest we proceed as follows. Choose A’
=iA"=/" so that A,,=0 (y=1,---, %) and A"+ eAd’ is positive definite
for 1>e>0. (In particular det*PA’P=£0). We set

e’'P, 0
(3.2.47) we(L; A, A4) =w(L; A+¢ed") - ( o >
e'P; 1

w(L; A, A) =limw,(L; 4, 47).
el

Proposition 3. 2. 14.  Assume ——%<ll, v <%. Then the
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column wvectors of w(L; A°, A" are lincarly independent. They satisfv

the monodromy property
(3.2.48) Taw(L; A% A) =w (L; A, A7) -M,(L; A, A4)
M,(L; A 4) =1— (e7>*+1)

%

<0 0> (A{P,+A£Ps AS)
— PPt 1) "\ P+ 4Py M)
Proof. From (3.2.31) we have
(3.2.49)  r1an.(L; £, 4)
—10(L; A4 ed’) - (L= (e 1) E, (4'+ e 4)) (e“P (1)>
= w0, (L A, 4 — (74 1)
xw(L; A1+ cd’) - E,- (A’P, (L+ed) @)
On the other hand, w(L;AYP=0 implies w(L; )
0 0 0

0 .. .
—_ . A0 . . A0 .
=w(Ls 49 (L p ps 1) =w@s 4,4 (1 p ps 7). Substituting into
(3.2.49) we obtain in the limit ¢—0

rao(Ls £, 4) =w(Ls £, 4) - (1= (e + 1) L),

0 0 0
L,=< >E,<A’P, A°< >>
— PPt 1 1/,

This shows (3. 2. 48).

To prove the linear independence of the columns of w(L; A°, 4),
set N={ceC"lw(L; 4 4") -¢=0}. Since w® (L; A 4") =w® (L; 4
are linearly independent for y=7r+1, .-, n, N {<69,> EC"} ={0}. So
we are only to show that, if N were not {0}, it would contain a non-

zero vector of the form (CO,,>

\

For ce N we have O=y,w(L; L, A)c=w(L; A, AYM,(L; A, 4")c
so that M,(L; A°, A/YNCN, i.e. LLNCN since e *»41-40. From the
form of L, if L,c~0 for some ¢ N and v, then we are done. Assume
L,c=0, Os£ce N for all y. Since A’P=0 is equivalently written as

A°=A"<O_ P,P; g), we have
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iEﬂL—iEﬂC %E@?A{w
= v V.—v:l v —PsPl—l v ? 1
. 0
— OEAE,) - (A'P, A°<1>>
y=1

~{er.al)

where we have used 15,=1 (v=1,---, #). Hence L,c=0 for all y implies

0=‘P S E AL,
y=1

—r{wr, ")

=(PA'P,0)c,
because ‘PA'=*(4°P)=0. Since ‘PA’P is non-degenerate, we obtain

c= <CO,,> 0. This completes the proof of Proposition 3. 2. 14.

Remark. In the above proof we have tacitly assumed the existence
of lim w,(L; A°, A’). This point is justified if we show that the family
el
w (L; A) depends holomorphically on A. This will be done in Chapter IV.

As an example of Proposition 3. 2.14, consider the case

1.1 L

A= .'. ) A,=Ao_1m P= :
1.1 1
1.1

In this case we have, setting e,=e b (y=1,..-, n),

1
. y=1 -1
. (=1, n=1)
O---e,+1---0|—e,
M,=
1 |
J
y=n
1l (v=n)
\~en—1,---,—en—1’—e,.
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and the z-th column w™ (L; A° A”) =w™ (L; A" coincides with the
vector ‘(*w,(L), -+, 'w, (L)), where w,(L) denotes the canonical basis

(3.2.19) of Wil ..

§ 3. 3. Holonomic System and the Deformation Egquations

One of the most important consequences of Theorems 3.2.6, 3.2.9,
and 3. 2.13 is the existence of a holonomic™® system of linear differential
equations satisfied by a basis of the space Wit»imstrict op Wi ominstrict ()
(k=B or F). We shall now proceed to discuss this topic. For the
sake of definiteness we shall mainly be concerned with the case x=F

i the sequel. (In view of the isomorphism (3.2.17) or (3.2.32), this

is no restriction.)

Proposition 3.3.1. Let w,, -, w, be an arbitrary basis of
Whatte o, (resp. Wheaokn  (A))  with —~—;~<l1,---,ln<%. Let w=
‘(‘wl,---,‘wn) denote the 2nx1 (resp.2nXmn) matrixz. Then there
exist unique nXn constant matrices B, B¥ and E, depending on

L=(0ul), A= (0ua,) (resp. L, A and A) and also on the choice of
w, such that
(3.3.1) Mrw= (B0—B*0+E)w

holds.¥%

Proof. From Theorem 3.2.9 (resp. Theorem 3.2.13) we have
Mpw, e Whinshtt (resp. Wi iatt(4)) for each y=1,---,n. By
virtue of the isomorphism (3.2.20) (resp. (3.2.39)), there exist unique

constants &,,, b}, and ¢,,€C such that

, , 7

(3.3.2) Mrw,=3 (b,,0—b%0+e,)w, p=1,--
v=1

holds. This proves Proposition 3. 3. 1.

) Concerning holonomic (=maximally overdetermined) <ystems we refer the reader to
[9], [10].

N To be precise B, B*, E are understood as B®IL;, etc. Namely (3.3.1) stands for
(3.3.2).
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Let Cy= (6% s (0,)) pooryorms CF= (652 (,)) ooy be the matrices
of the coefficients of the local expansion (3.2.16), (resp. (3.2.31),).
Comparing the local expansions of both hand sides of (3.3.1), we obtain

the following recursion relations for all j&Z:

3.3.3); CiomA—mBC;+C;(—L+7)
—EC;—C,;_ymA+mB*C;_,=0

(3.3.3)% C¥.mA—mB*C¥,+C¥(L+ )
+ECF—-C . mA+mBC¥_,=0.

Notice that C;=0, C¥=0 for j<0. In particular (3.3.3); and (3.3.3)%
read for j=-1,0,1

(3.3.9) B=C,AC;', B*=C}ACs™*
(3.3.5) E=[C,C;', Com AC;*] — C,LC;*
= —[C*¥C# ', C¥mACE "] —CELCs™
(3.3.6) [C:Cit, ComACT ] +C,(—L+1)Cit
—EC.Ci'—CymAC; '+ C¥mACE =0
[C¥CE, CEmACE ]+ CF(L+1)Cx™?
+ECFCF'—CimACF '+ ComAC;*=0.

For the canonical basis w=w (L) (resp. w(L; 4)) satisfying (3. 2. 19)
(resp. (3.2.38)), we have

(3.3.7) C,=1, C¥=p, Ci=a, Ci=pa’
B=A, B*=RAB!

E=[a,mA]—L=—B([a’,mA]+L)B™"

where a:cx(L—l——;-), a’:a(——L-k%) and B:B(L—i——é—) (resp.af

=a<L+—;—; A>, a’=a<——L+%; A> and B=B<L+%; A>> In either case

Proposition 3. 2.5 implies f= —e* (cos 7L) ~* with H:H(L +é_> <resp.

H(L—i— %; A>> and [a',mA]= (cosnL) - [*a, mA]- (cosnwL)™". This

shows the following:
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Theorem 3.3.2. The canonical basis w(L) (resp. w(L, A))
satisfies the following holonomic system of first order linear differ-

ential equations:

3.3.8) (m—Iw=0
Mrw=(A-0—GAG-0+F)w

where we have set

(3.3.9) F=[a,mA]—L, G=e¢™

a=a<L+%>, H=H<L+%> for w=w(L)

a=a<L+%;A>, H=H<L+%;A> for w=w(L; 4).

These matrices are subject to the algebraic conditions

(3.3.10) ‘F=GFG™, diagonal of F=—L

G='G is positive definite.

Remark. Comparing the diagonal part of (3.3.6) in the case
(8.3.7), we see that the diagonal of « is expressible in terms of 5 and

the off-diagonal part of a as follows.

(3- 3- 11) alm: —m g) (dﬂ—' [L,) ap»auy+ m (ZZ.M_ (BAB—I) FF) s

(=1, n).
. ’ 7 1 e 1 -1
Noting @), =, (1) and B(—L + E> A -3<—L + 5) = (cos 7L)
_ -1
.t<B<L+%>.A.B<L+%> >-(cos71'L)—1, we have then t(a(L—l—%)
-cos7rL>=a<—L—{—l>cos7ZL.
2

It is sometimes useful to rewrite (3.3.8) into the form of a Pfaffian

system with regular singularities:
(3.3.12) d,;w=82"w, £ =Pdz+ P*dz

where
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1 mn o 7
(3.3.13) P=(z_A)—1<F—5 G m(z—A)G>+<m 0>

ES —1/(= A\ —1 1 m
P*=G'(z— A) G\m(z_A) —r-% +<0 >

Here we arrange the blocks according to the partition *w= (., ‘w_),

W= (Wis, o, Wa,e).

Up to present we have fixed the position of branch points (a,, @,).
or Wit . (4) depends on

(a,, a,). Denote by d’,d” and d=d’+d” the exterior differentiation

We now consider how a basis of W' .
with respect to the variables (2,%), (A, A) = (ai, @, ", @, ) and

(2, %, A, A), respectively.

Proposition 3. 3.3. Notations being the same as in Proposition
3.3.1, assume that w depends differentiably on (A, A). Then there
exist unique matrices O, 0* and ¥, whose entries are (z,Z)-independent
1-forms in (A, A)®, such that

(3.3.19) d’w= (0-0+0*-0+¥)w

holds.

Proof. Clearly d”w (that is, each of its coefficient of da, or da,)
satisfies the Euclidean Dirac equation. Differentiation of the expansion
(3.2.16); or (3.2.31), shows that d”w also has the local expansion of
the same type except for the growth order. Regarding Proposition
3.1.5-(iii) we see that the exponentially decreasing property is pre-
served. Hence we have d”we W3 or e Whih izt (4). (3.3.14)

follows by the same argument as in Proposition 3. 3. 1.

The coefficients @, 0* and ¥ are related to C;, C§ (cf. (3.3.3),,
(3.3.3)%) through the formulas

(3, 3_ 15)j C,+1mdA-{— m@Cj“—de—i—?(fC,

“ In the sequel capital roman and Greek letters are used to indicate matrices of 0-forms
and 1-(sometimes 2-) forms, respectively.
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+C;_imdA+m0*C;_,=0
(38.3.15) % C¥umdA +m@*C%,,—dCE+¥C*
+C .imdA+mOCH_,=
for all jeZ. For j=-—1,0,1 they read
(3.3.16) 0= —CydA-Ci*, 0*=—C¥dA-C¥™
(3.3.17) ¥=dC, Ci'+ [ComdA-Ci*, C,Ci']
=dC¥-C¥ '+ [Ce¥mdA-CF, C¥C¥ ]
(3.3.18) [C:CiY, Comd A-Ci*] —dC,-Cit+¥C,Cit
+CondA-Ci'—CFmdA-C¥ =0,
[C¥C¥, C¥mdA -CF ] —dCF-CF +TCHCE?
+C¥mdA -C¥'—CymdA-C;i*=0.

Now we apply Proposition 3.3.3 to the case w=w (L) or w(l; 4).
Although their differentiability in (A, A) is not a priori clear, it will
eventually turn out to be true (Corollary 3.3.11). We assume this for
the moment, but it is logically independent of the arguments given below.
For w=w(L) or w(L; 4) we have, as in (3.3.7),

(3.3.19) 0=-dA, 0*=—-GdA-G, ¥=—[a, mdA].

To sum up we have the following extended system of linear differential

equations
(m—Iw=0,
(3.3.20) Myw= (A0—GAGI + F)w
1 d"w=(—dA-0—G'dA-Go+0)w

where we have set

(3.8.21) 0= —[a, mdA].

Remark. The system (8.3.20) contains the equations

(3.3.22) O+310.)w=0, @+35.)w=0,
y=1 y=1
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n —
(M p+ Z MB,«-, +L)w=0 (MB,ay = aﬁ,,, —a,0,,)
y=1

expressing the Euclidean covariance of w.

The system (3. 3.20) is equivalently rewritten as

(3.3.23) dw=2w, w= <w+>

w_

R=dlog(z—A) <F—% Gq?ﬂ(i—fi)G)

+G'dlog (z— A) ~G(m (z— A) _F_.;_>

6 G'md(z—A)G
* <md (z—A4) 6 )

Thus we have

Theorem 3.3.4. The canonical basis w(L) or w(L; A) satisfies
the extended holonomic system (3.3.20) (or its equivalent (3. 3.23)).

Theorem 3.3.5. The coefficient matrices F, G appearing in
(8.3.20) for w(L) or w(L; A) satisfy the following total differential

equations (“the deformation equations™)

(3.3.24) dF=[0,F]+m*([dA, G'AG]+[A,G'dA-G])
dG=—GO—6*G .

Here 0, 0* denote matrices of 1-forms characterized by

(3. 3.25) [6, A1+ [F,dA]=0, diagonal of ®=0.
[6* A1 +[GFG™ dA]=0, diagonal of @*=0.

Proof. We set O= —[a, mdA] and @*='®. The relations (3. 3. 25)
are immediately verified by using (3.3.9), (3.3.10). Notice that in

terms of matrix elements &= (0,,), @*= (6%) (3.3.25) is equivalent to



HoLoNoMIC QUANTUM FIELDS. III 615

_F2ema)
(3. 3.26) 0,,= a,—a,
N 0 (/l:l)),
[~ (CFG™,2@=2) ()
0% = w—a,
) 0 (r=v).

Now (3.3.6) and (3.3.18) gives in the case of (3.3.7)
(3.3.27) [CypymAl+a- (—L+1) —Fa—mA+G'mAG=0
[Cy, mdA] —da+0a+mdA—G'mdA-G=0.
Since dFF =d([a, mA]—L) =[da, nA]—6, we have
dF = [[Cy, mdA] +0a+mdA -G mdA-G, mA] —0
=—[[mA, C,], mdA]+ [0, mAla+6[c, mA]
' [GdA-G, A] -6
=—[a- (=L+1) —Fa—mA+G'mAG, mdA]
+m[0, Ala+0F+ L) +m[A,GdA-G]—6
—[6, F] +m*([dA, G-AG] + [A, GdA-G]).
Similarly (3.3.17) and (3.3.7) yield
0=dG -G+ [G'mdA -G, G "aG]
=—G'dG—G"OG.
This proves (3.3.24).
Let us now consider in general Pfaffian systems of the form (3. 3.12)-
(3.3.13). (3.3.23) and (3.3.24) without assuming the algebraic con-
ditions (3. 3. 10).

First we treat the linear system (8.3.12)-(3.3.13) in the complex

domain. The integrability condition

(3.3.28) —0P+0P*—[P, P*]=0

is easily verified. We denote the diagonal of F and GFG™ by —L
=—(0L,l) and —L*=—(0,.F), respectively. In the system (3.3.8)
for w (L) or w(L; A) we have L=L%*,
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Proposition 3. 3. 6. Assume lpaé%, l;"sE% mod Z (=1, ---, n).

@) At z=a, z=z%a, (v=1,---,n), there exist 2n—1 inde-

pendent holomorphic solutions and one that has the form
(3. 3.29) (z—a,) ' VX (holomorphic function).

Likewise at z=z%a, (=1, -, n) and 2=a,, there exist 2n—1 inde-

pendent holomorphic solutions and one that has the form
(8.3.30) (—a,)»" " x (holomorphic function).

(i) At ==a, and T=a,, there exist 2n—2 independent holomor-
phic solutions and two that behaves like (3.3.29) and (3. 3.30),

respectively.

Proof. Set P,=P,() =Res P, Pf=Pf(z)=Res P*. A simple

calculation shows P,‘<PF+ L.+ —;—) =0, PF <P;“ —IF+ %) =0. It is also
clear that P, P} are of rank 1. Hence P, and P} are semi-simple matrices

with eigenvalues —/7,— —;:—, 0, -, 0 and [} — é—, 0, ---, 0, respectively. More-

over the integrability condition (3.3.28) implies [P,(a,), P} (a,)]=0,
so that P,(a,) and P} (a,) are simultaneously diagonalizable. If c¢= (%)

is an eigenvector of P,(a,) corresponding to —ll,—% (and hence an

eigenvector of P¥(a,)), then P}(a,) ¢ has the form <CO,,>, so that

P¥(a,)c=0. Hence at (z,2) = (a,, a,), P, and P} are simultaneously
—-{,—3% 0 )
. . . I¥—% .
diagonalized into the form . and i’ 2._ , respectively.
0 0
On the other hand, from the assumption ZVEE-;—, l,?‘:,—é% mod Z

(v=1,---,7) we conclude as follows.* In the case (i) the system
(3.3.12) admits a fundamental matrix solution of the form Y (2, 2)
=U(z, %) (z—a,)’® or U(z,2) (2—a,)"®), and in the case (ii) of
the form Y (z,2)=U(s, %) (z—a,)P*®(&—a,)?" . Here U (g,?)
denotes an invertible holomorphic matrix at (a,, %), (=, @.) or (a,, a,),

™ For the local theory of a linear Pfaffian system with regular singularities, see [7]
where complete results are obtained.
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respectively. The assertions of Proposition 3. 3. 6 follows from the above

observations.
Next consider (3. 3.23) and the associated non-linear system (3.3.24).

Proposition 3.3.7. The non-linear system (3. 3. 24) is complete-
Iy integrable.

Proof. Define matrices of 1- and 2-forms 2, %, & and £F as

follows.
(3.3.31) £2,=dF—[6,F]—m*([dA,G'AG] +[4,G'dA-G])
2,=dG+GO+0*G
Qy=dO—ONO—-m*[dA, G'dA-G] .
Q¥ =dO* +0* \O* + m*[dA, GdA-G], .
We have then
(3.3.32) [0, A+ [2, dA], =0, diagonal of 2,=0
[2F, A1+ [GRG '+ [2G™, GFG™], dA], =0,
diagonal of £F=0.

These equations are obtained by differentiating the defining equations
(8.3.26) for @, 0% and using (3.3.27) (in particular [@,dA],=0 and
[6*,dA],.=0). Noting the Jacobi identity [[X, 0], ¥].+[[0, ¥]., X]
—[[¥, X], 0],=0 (X: Oform, @, ¥: 1-{form), we calculate df, and d@,.

After a little computation we get
(3.3.33) d,=[2,0],+[F, 2]
+m*([dA, [GAG, G'2,]].
+[4, [G'dA-G,G2].]),
d2=2N\0—0* \ 2+ G2+ 25G.

On the other hand, (3.3.32) shows that the matrix elements of £, and

£¥ are linear combinations of (I-form) A (matrix elements of 2, or 2,),

® X, Y], =XY+YX.
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hence so are the right hand sides of (3.3.33). Therefore by Frobenius’
theorem the Pfaffian system £,=0, £,=0 is completely integrable.

Proposition 3.3.8. The system (3.3.24) has the following
properties.

() For any solution F and G, F’ ='G“F'G and G’ ='G give an-
other solution. In particular we have ‘F=GFG™ and ‘G=G if they
hold at some (A°, A").

(i) L= —diagonal of F,L*=—diagonal of GFG™ and
det G are first integrals of (3.3.24).

(i) For any solution F,G, we have
(3.3.39) F(e“A+b,e%A+b)=e¢"F (A, A)e**?
G(c"A+b,eA+b)=e "G (A, A)e'™’ .

Proof. Set @ ='®* and @*' ='®. We have then in the notation
of (3.3.31)

(8.3.35)  G'MQ,G’+[F’,G’'2,]
=dF’ — [0, F']—m*([dA, G ~*AG"]
+[A,G''dA-G']),
10,=dG’ +G'0’ +6*'G’,
[0, A]+[F’,dA]=0,  diagonal of @ =0
[6% A]+[G'F'G’"',dA]=0, diagonal of ©* =0,

Assertion (i) follows from (3.3.35). To see (ii) we note that diagonal
of [0, F]=0 by (3.3.26). Hence (3.3.24) implies dL=0. From ()
the diagonal of GFG'='F’ is also constant. On the other hand, we
have by (3. 3. 24)

d log det G=d trace log G
=trace G~ 'dG
=trace (— O —G™'0*G)

=0.
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This proves (ii). Finally let ¢: E(2) x (X®*)"— (XE<)", (5,5,0; A, A)
> (e®A+b,eA+b) denote the action of the Euclidean motion group
E@) on (X®)". Set F=¢*(F), G=0*(G), @=0*(0) + (F+L)ido,
G*=0c* (0% — (GFG'+L*)id0. Then the pullbacks of (3.3.24),
(3.3.26) to E(2) X (X®)" read as follows.

(3.3.36) dF=[6, F]—i[L, F]do
+m*([dA,GAG] +[4A, G'dA-G))
dG=—GO—6*G+:i(GL—L*G)do
[6, A]+[F,dA]=0, diagonal of @=0
[6* A]1+[GFG,dA]=0, diagonal of B*=0.

In particular @, @* do not contain the terms of db, db and d0. Hence
(3. 3. 36) implies

a_F=o’ 0_{7:0, 211:—:’[L,F]
0b 0b 00
0b 0b 00

This shows (8.3.34), and the proof of Proposition 3.3.8 completes.
We remark that ¢*(0) = g~iL? (6— (F+L)id0) eiLﬂ, o* (6%) = g—iL" *
+ (GFG™'+ L*)id0) ¢*** hold.

Remark. In Chapter IV we shall construct a family of solutions
w,(z; L) of (3.3.8) which depend holomorphically on L and coincide
with those in § 3. 2 for real L. The corresponding matrices F=[a, mA]
—L, G=— (coswL)'f~" are then contained in those leafs of (3.3.24)
satisfying diagonal of F =diagonal of GFG™, because both members are

holomorphic in L and coincide if L is real.
Proposition 3. 3. 9. The linear system (3. 3.20) (or its equivalent
(8.3.23)) is completely integrable if F and G satisfy the non-linear

system (3.3.24).

Proof. Set Q=82'+8”, where £ is given in (3.3.12) and &7
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=—dA-P—G'dA-GP*+6. Noting (3.3.28), we see that the inte-
grability condition reads d”8&" +d’R2”+d"Q" =2, 2"],.+ 82" N®”. Singl-

ing out the coefficients of dz and dZ, we obtain
d’"P+dA-0P+G'dA-GoP*
=[P, dA1P+[P,G'dA-GP*]—[P, 0]
d”P*+dA-0P+G'dA-GoP*
=[P* dA-P]+[P* G 'dA-G]P*—[P* 6]
dANA"P+G'dA-GANd"P*+[G'dA-G,G'dG] ,P*+d@
=dA-PNdA-P+G'dA-GP* NG 'dA-GP*
+OANO+[dA-P,G'dA-GP*],
—[dA-P,0],—[G'dA-GP*,0], .
After some calculation these equations are equivalently rewritten as
(3.3.37) dF =[6, F]+m*([dA,G*AG] +[A4,G'dA-G])
[4,dG-G '+ GOG+6*]=0
dO=0NO+m*[dA,G'dA-G],,

which are direct consequences of (3.3.25). This proves Proposition

3.3.9.

Remark. Conditions (3.3.37) are derived more directly as follows.
Set Q=My— (A0—GAGo+F), 2”=—dA-0—G'dA-Go+6. (3.3.

20) is then written as
(3.3.20)" (m—I)w=0, Qw=0, d’w=2"w.

Noting that Q, d” —9” commutes with m—1I, we obtain as the con-
sistency condition for (3.3.20)’ 0= (d”Q—[2”,0])w and 0= (d”2”
— 2" AN2")w. These conditions hold if

(3 3. 37) ’ d//Q_ [gl/’ Q] 507 d”_@”—_ﬁ”/\ﬁ”zo mod mz__ag

It is easy to verify that (3. 3. 37)" is equivalent to (3. 3. 37). Note that in

the case of w=w(L) or w(L; ), (3.3.37)" is also necessary, since
d"Q—[2”, Q] and d2” — 2” A 2” both belong to C[d, 8] (7 X 7 matrices
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of differential forms in (A, A)).

Now let (A% A" ={(a}, @)},1,.,» be distinct z-points of XF
Choose matrices F° G° arbitrarily. Since the right hand side of the
system (3. 3. 24) is analytic in F', G and (A, A) provided (a,, a,) # (a., @,)
(u#==v), the complete integrability ensures that there exists a unique
solution F, G of (3.3.24) in a sufficiently small (simply connected)
neighborhood U, of (A’ A% such that F=F’, G=G"at (A, A"). Next
let W'(g, 2) be a 2x# X 22 fundamental matrix solution of (3.3.12) cor-
responding to F° G® and (A°, A%). Then Proposition 3.3.9 guarantees
the existence of a unique solution W (z, £; A, A) of the extended system
(3.3.23), such that it assumes the initial value W°(z,2) at (A4, A)
= (A" A%. Clearly W is analytically prolongable to the universal
covering manifold of {(z, , A, A) € (XF)"*| (4, A) €U, (=, 2)+#(a,, a,)
(vy=1,---,#)}. For each fixed (A, A) €U, let

(3. 3. 38) 04,7: 74 (X;l_...,un; x,) >GL (2, C)
T W=W-04:0), T€M X0, ..a0 To)

be the associated monodromy representation. Since 7d”"W =d” (W)
=d"(W-042(r)), we have Q2"Wo,:(7) =2"Woaz () +Wd"04,1(7),
hence d”0p4.5(7) =0. Observe also that, as |z|—o0, |W (s, g; A, A)|
<const.|TV°(z, 2) | hold since the matrix elements of £” are bounded in

<, %) there. Summing up we have

Proposition 3. 3. 10. Notations being as above, the monodromy
representation (3.3.38) stays constant along each integral manifold
of (8.3.24). DMoreover the exponentially decreasing property for a

column of W is also preserved.

Corollary 3.3.11. The canonical basis w(L) (resp. w(L; A))
of Wit o, (resp. Waartn o (A)) depends analytically on (A, A) pro-

vided that these n-points are distinct.

Proof. We prove the case w(L) for definiteness. Let w’(L) and

F°, G° denote the canonical basis and the cprresponding matrices at
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(A°, A", respectively. Let w(z,%; A, A) denote the unique solution of
(3. 3.23) obtained from w’(L), F® and G" by the procedure described
above. We shall prove that w(z, ; A, A) coincides with the canonical
basis of W', for each fixed (A, A). Since the analyticity of
w(z, 2; A, A) is obvious, our assertion then follows.

Clearly (3.3.23) implies the Euclidean Dirac equation (3.2.14).
The monodromy property (3.2.15) and the exponential fall-off condition
(3.2.16) , follows from Proposition 3. 3. 10. The local behavior (3.2.16),
is a consequence of (3.3.23) and Proposition 3.3.6. It remains to
prove that the O-th coefficient matrix C, is identically 1. From the ex-
tended system (3.3.23) we have (3.3.4) with B=A, so that C, must
be diagonal. Comparing the diagonal of (3.3.17) with ¥ =0 we see that
dCy=0, hence Cy=constant=1. This proves Corollary 3. 3. 11.

It is instructive to rewrite the system (3.3.8), (3.3.20) by in-

troducing the formal Laplace transformation

~ 5 — du \/Z m (2% +zu-1)
(3. 3. 39) w = |2 <ﬁ_l>e ®(u).

Then (3. 3. 8) is transformed into a system of ordinary linear differential

equations
(3. 3. 40) (uzid—-l—mAu—G“mAGu“—}—F)ib(u) =0
u

having irregular singular points of rank 1 at #=0 and at #=o00. The
deformation equations (3. 3. 24) are then regarded as an irregular-singular
version of the Schlesinger’s equations (cf. Chapter II [2], (2. 3.38)~
(2.38.43)). Setting F=[a, mA]—L (L: diagonal), the extended system
(3.3.20) reads
(3.3.41) d+2)w=0

Q=d(umA) +G'd(u"'mA) -G

+ [, u'd(umA)] — Lu'du.

Exumple. Let us write down the system (3. 3.24) more explicitly

in the case =2, We assume the algebraic conditions (3.3.10). Let
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(ll l>=—diagonal of F(l,LheR) and let A=<“1 a) with a@—a,
2 2.

=te**/2m, £>0. Regarding the Euclidean covariance (3.3.34) and the

hermiticity of G, we see that F, G are of the form

-1 ""“’f+> G < kcosh¢ e *¥¢ sinh </)>
\ wg g ) ¢ e¢g sinh ¢ £ 'cosh¢

l=1—1, c=(detG)*=constant>0
¢=F, ¢=(b—, eg=1

(3.3.42) F=

where f., k, ¢ and ¢ are functions of £>>0 independent of §. The condition
'FG=GF implies further

(3.3.43) (Ef.—ef)sinh¢p=0, (f,—ef,)sinh¢p=0
(kfy—Kf )cosh ¢+ le sinh ¢p=0.

If ¢=0 the system (3.3.24) decouples into linear ones which are im-
mediately integrated. We omit this case. From (3. 3. 43) we have then

(3.3.449) fi=cek ' (f—Itanh ¢) /2, f_=¢ek(f+Itanh¢)/2
f=r.
Substituting (3. 3. 42) and (3. 3.44) into (3.3.24) we obtain after some

calculations

(3.3.45  f= zd‘/’, t-glt—logﬁzltanhng, %:o
(3. 3. 46) dt( Z%’) 7t anh ¢ (1 — tanh’ §) + sinh 2¢ .

For [=1[,—1,=0, equation (3. 3. 46) coincides with an equivalent of the
Painlevé equation of the third kind of restricted type (¥=0) studied by
McCoy-Tracy-Wu [8]. In general (3. 3. 46) is converted into the follow-
ing Painlevé equation of the fifth kind by the substitution s=¢
0 =tanh® ¢:

3.3.47)™®
( ) 20 0—-1

@=<ﬂ>2<1 L1 )_ida (-1 r_ 1

t —0'+ a.
ds* ds s ds st 2 2s

* The general form of the Painlevé equation of the fifth kind reads y”=4y"* (‘

2’+*—‘1>
Y, (y—1)* B\  ry Oy(y+1D v
+——2—~(ozy+—)+—»-+——-—
x x y -1

4

, where / means - .

dx
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Arguments for the case of half integral [, go quite parallel. Let
w{ (L) be the solutions (3.2.19) which satisfy (3.2.13), (3.2.14)
with -——;—<ll, ey l,.<%, ¢®, (wi®) =0 (v=1, ---, n), and have an addi-
tional singularity at (2% 2*). We set ‘@™ (L) = (w{® (L), 'w(L)).
By the same argument we have the following extended holonomic system

for W™ =w® (L).
(m—TI) % =0
(3.3. 48) M pip® = (A9 — G- AT®F + Fe) g5
1 d"w® = (—dA-0—-G» di-f’;‘i>§+@(t>) o,

Here the coefficients are given as follows.

(3. 3. 49) A“=<z ) A= )
Al T\ T,

| F
1|8 (coswL)G \
) —
0 G

0 | ‘afPmd (2*— A) )
0 6 '

In (3.3.49) F,G,® are those corresponding to w (L), and ‘af® = (afP,
Lafd), B = B, -, BF) are given in (3.2.21)*. Moreover F®
and G® satisfy the deformation equations of the same type as those for

F and G, namely
(3.3.50)  dF®=[G®, F©] 1 m!([d4, GO AG]
+[4, G®1dA-Ge))
dGE = _GoOE® _ GErsGE
[0, A]+ [F®, dA]=0, diagonal of §® =0,

[0*® A+ [G®F®G®-1 JA]=0, diagonal of @*® =0,
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Writing down the equations (3. 3. 48) involving w,= (w{" (L), wi (L))
and using (3. 2. 22),

(3.3.51) (m—T)w,=0
0.+ ;‘, 04,4 0.) wy=0
(3. 3. 52) @t 328, +8.) w00 =0
v=1

(M;k’,z*"i_Zl]\{B,a,“i_MF,z) w0=0

[ m0,,wo= ~—Lw, (=5 L) *w,(=*;1—-L)
2 cosml,
(3. 3.53)
1 M0, we= — m wi(z;1—-L) 'wf(z*; L)
2 cos i,
(v=1,-, n).

Here we have set M% ,.w,= (2%0,.—%%0,.) w(,—{»u'n%(l _1>, Mp,.,
=a,0,—a,0,,. Equations (3.3.52) are consequences of the Euclidean
invariance of w, It is also possible to derive (3.3.53) directly by com-
paring the local behavior of both hand sides (notice that the singularities
at =2* are absent in m™'0,,w,, m"0,,w,). The integrability condition
(3.3.50) for (3.3.48) splits into the deformation equations (3. 3. 24)
for F, G, and a linear system for af* and 3{®. The latter is nothing
but the linear total differential equations (3. 3.23) for wj (z*; L).

Equations for w™® (2* 2; L, 4, A) are obtained in the same fashion.
Set wo(z*, 2; L, A) .= (PP (2%, 2; L, 4, 2y), w§7P (=¥, 2; L, 4, X))
where A¢,= the p-th row of 4. Then w,=w,(z*, z; L, 4),, satisfies
(3.3.51), (3.3.52) and

m™0,,wo (2%, 2; L, A) ,,

== w? (5 L, A) w (2F51— L, A)
cos i,
(3.3.54) _
M 0a,w0 (2%, 23 L, 4) ,,
T

— wE® (23 1— L, 4) - wf® (2% L, A)
2 cos i,
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Remark. Likewise the ‘“Green’s functions” wo=wv,(z¥ 2;L) or
vo (¥, 2; L, A) ,,.=v{’ (=%, z; L, 4, A(,y) satisfies the following (besides the
Euclidean Klein-Gordon equation (3.1.2)):

[ (0t 320, +0) vo=0
y=1

(3. 3. 55) @t 33, +8) va=0

m0,,v, (2%, =; L) = —Z—.n—l—vu(z*; 1-L)-v,(2; L)
sin 7Z,
(3.3.56) ¢
m0,,, (2%, 2; L) = — 5 siz 7174),(2*; L)-v,(z;1-L)
\ v

m 0,00 (2%, 25 L, 4)
T

=——— " _o®(*1-L, A) v (z; L, 4)
2 sin wl4

—~13
m™0,,v,(2*,2; L, A)

— T P L A) 0P (1L, ).
2 sin wl,

We shall now introduce a closed 1-form o associated with a solution
of the non-linear system (3.3.24). It will be shown to coincide with

the logarithmic derivative of the r-function in Chapter IV.

Proposition 3. 3.12. For a solution F,G of (3.3.24), set
(3. 3. 57) 0= — % trace (FO+ O*GFG™)

+ m* trace (d (AA) —G*AGdA—GAGdA).

Then w is a closed 1-form.

Proof. Making use of (3.3.24) and
(3. 3. 58) dO=0/N0+m*[dA,G'dA-G],
dO*= —0* \O* —m*[dA,GdA-G™],
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d(GFG™) = —[0* GFG™] —m*([4, GdA-G™]
+[dA,GAG™]),
we calculate dw. We have

do=T+II+1II,

where
(3.3.59) I= _% trace {([@, F] +m*([dA, G AG]
4 [A, GdA-G]))O+F(ON\O+m [dA,GdA-G],)}
— _L’Zi trace {F[dA, G- dA-G],
+ ([dA,GAG] +[A, G'dA-G]) 6}
(3.3.60) II=— % trace {— (0* \O* + m*[d A, GAA-G],) GFG
—0*(—[0*, GFG] —m*([A, GdA-G™]
+[dA, GAG-T))}
~ —m?z trace {— [G-'dA -G, dA] . F

+0*([A,GdA -G+ [dA, GAG™])}
(3.3.61) = —m?trace ((G*AG, G-dG]dA + [dG -G, GAG ] d A)
= m? trace ([G*AG, 0]d A +G[6, A]G'dA
+[6*%, GAG™]dA +G™'[A, 6%]GdA).

Here in deriving (3. 3.59) we have used

(3, 3, 62) trace OF 0O = AX: @l,uf;w/\@ul_dzl,ul;)@l,u/\@pl

distinct

1 1
:Ta" ; f)-,uf/wfvl c)%l-ilc dlog‘ (a}. - a,u)/\dIOg (av— a’l)

14
distinct

=0

)

and similarly for (3.3.60). Hence we have
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do= %2 trace (— [dA, G-'AG]0—6*[dA, GAG]
+2[G'AG, 0]d A +2[6*, GAG-]dA)
+ _”212- trace (— [A, G-'dA-G]6—6*[A, GdA-G-]
+2G[6, A1G-'dA+2G[A, 0*]GdA).

The first term vanishes by virtue of [0, dA], =0, [0* dA],=0. The

second term reads

2 —_ —_
172L trace (—G[F, dA]1G'dA -G [dA,GAG]GdA)

- —ﬁ; trace (FdA -G-'dA-G—dA-F-GdA.G

+GdA-G-FdA—FG-'dA-G-dA)
=0.

This proves Proposition 3. 3.12.

Remark. In the case of the system corresponding to w=w (L) or

w(L; A), the 1form o is given by w=trace (amdA+amdA), «

=a<L+%> or a<L+—;—;A> (cf. (3.3.11)).

The transformation property of w under the Euclidean motion group

is deduced from Proposition 3.3.8. We set
(3.3.63) 0: E(2) x (XB)"— (XE)",
(6,6,0; A, A)—>(e®A+b,e A +D).
Proposition 3. 3.13. We have
(3.3.64) Fo=0 ~% trace (L' — L**) id.

Proof. Using (3.3.34) and the remark at the end of the proof

of Proposition 3. 3.8, we have
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(3.3.65) ¢* trace (FO+ @*GFG™) =trace (F (0 — (F+ L)id0)
+ (@* + (GFG™+ L*)id0) GFG™)
=trace (F@+O*GFG™)
—trace (FL— L*GFG™)id0 ,
(3.3.66) ¢* trace (d(AA) —G'AGdA—-GAG'dA)
=trace (d (e®A+b) (e A +D)
—G (e ®A+b)Gd (e A +b)
—G(ePA+b5)G'd (e PA+D)).

A little calculation shows that (3.3.66) reduces to trace (d(AA)
~G1'AGdA—-GAGdA). Noting L= —diagonal of F and L*= — diag-
onal of GFG™', we obtain (3. 3. 64).

Remark. As mentioned in p. 43, we shall be concerned only with
the case L*=1L in Chapter IV. In this case the l-form ® is invariant
under E(2).
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Note added in proof: After the preparation of the manuscript the authors have come
to know the existence of the short letter (Phys. Rev. Lett., 31 (1973) 1409-1411) by E.
Barouch, B. M. McCoy and T. T. Wu, in which there is already announced the Painlevé
representation of the 2-point function for the Ising model. They wish to thank Prof. E.
Barouch for drawing their attention to this article, which should be included in the
references of our previous papers [1], [2].






