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Holonomic Quantum Fields III
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Mikio SATO*, Tetsuji MlWA*1} and Michio JlMBO*

Introduction

In this article we shall study an analogue of the Riemann-Hilbert

problem and the monodromy preserving deformation for solutions of the

2-dimensional Euclidean Klein-Gordon and Dirac equations.

The topic discussed here has its own interest from a purely

mathematical viewpoint; to the authors' knowledge, it will provide one

of relatively few examples of deformation theory of linear differential

equations in which calculation of the deformation equations is explicitly

carried out to the end. However, the most salient feature of this theory

consists in its close connection with quantum field operators. In fact, as

has been exemplified in the case of the 1-dimensional Riemann-Hilbert

problem (Chapter II [2]), we shall see that the whole theory is most

naturally and effectively described in terms of a class of field operators

"belonging to the Clifford group" ([!]). This will be done in the forth-

coming Chapter IV. The purpose of Chapter III included here is to

clarify the mathematical aspects and to prepare necessary ingredients so

as to serve a sound basis for the operator theory.

In the first § 3. 1, local (multi-valued) solutions of the Euclidean

Klein-Gordon and Dirac equations are examined. We introduce here a

series of special solutions which will play a role of power functions in

the 1-dimensional case.

The monodromy problem is formulated in the next § 3. 2. For given

branch points {(avy a^)}v=slt...tn and exponents /peJZ (v = l, • • • , »), we

consider the space Wl1;̂ ! •-, a*, (resp. Wfyafc.aJ consisting of solutions v
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(resp. w = t(uv+9 w_)) of the Euclidean Klein-Gordon (resp. Dirac) equa-

tions satisfying the monodromic property

(3. 0. 1) v (av + ez*1 (z - a.) , av + e~M (z -av}} = e'2^ (z, z)

(resp. w±(av + eM(z-aJ, av + e~2iri(z- 5,)) = - e~27rilvw±(z9 *))

as well as the growth order conditions

(3.0.2) \v\, \dv\

(resp.

\z-av\-+0, v = l, • - - , w

(3. 0. 3) |v| (resp. |w; ± j ) -O(^-2TO|Z|), |*|->oo .

Assuming 0</a, • • • , Zn<l(resp. — -o-<^i, • • - , Z»<-^-) we shall establish the\ Z Z /
^-dimensionality of the space W#;a1',

l.*faB. We also show that, for general

/y=/ t fmodZ, an element W*/ai','».?lB is obtained by applying differential

operators with constant coefficients to a basis of W'*1; «;,'*, an. Analogous

results are obtained by specifying in place of (3. 0. 1) a class of n-

dimensional monodromy representation parametrized by a symmetric matrix

A. The case (3. 0. 1) is shown to be a degenerating limit of the latter.

In § 3. 3 we shall derive a holonomic system of linear differential

equations in (z9z) satisfied by a basis of W*l;o1
i
i
I.*.0n. We show further

that a canonical basis constructed in § 3. 2 should satisfy a linear system

of Pfaffian equations in the total set of variables (z9z9 aly aly • • - , any an),

and that the coefficient matrices appearing in this system obey a non-

linear completely integrable system of Pfaffian equations (the deformation

equations). Concerning the latter we note that, for n = 2, there arises

the Painleve equation of the fifth kind [7], which in the case of equal

exponents li = lz reduces to the third kind of restricted type (y = 0 in

[8]). Finally we introduce a closed 1-form associated with the deformation

equations. It will be shown to coincide with the logarithmic derivative

of the r-function later in Chapter IV.

Main results of this chapter has been announced in [3], [6].
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Chapter III. Monodromy Preserving Deformation In

2-DImensIonaI Euclidean Space*

§ 3« 1. The Euclidean Klein- Gordon and Dlrac Equations

Let z = (x1 + ix2) /2, z = (xl — ix2} /2 denote the complex coordinate

of the Euclidean 2-space XEuc = R2. We set d = dz = —, d = dj=~9
dz dz

Ms = zd — zd and MF = zd — zd + — f . Then we have the com-
JL/

mutation relation

(3.1.1) [9,9]=0, [M*9d-] = -d, [AT*, 9] =9

B or p

and {9, d9 M *} spans the Lie algebra of the Euclidean motion group

£(2).

Consider the Euclidean Klein-Gordon equation

(3.1.2) (mz-dd)v = 0

and the Euclidean Dirac equation

(3.1.3) (m-r^w = 0

r (r = _\d

with positive mass m^>0. In this paragraph we shall study the local

solutions of (3. 1. 2) and (3. 1. 3) .

In general let 3) denote the sheaf of differential operators on a

real analytic manifold X. By abuse of notation the sheaf of N X N

matrices of differential operators will also be denoted by S). Let JA :

Pu=0y P^£, be a system of differential equations, where § denotes a

coherent left Ideal of S). We set ^)0 = .0M= {Pe 3)\§'P^$}. Then

3) § is the unique maximal subring of 3) containing § as its bi-Ideal,

and consists of operators with the following property: for any

and any solution u of <_%, Pu is again a solution of 3A,

Let ^=^(mf-9,9r) (resp. /, = .S)(m-r)) and set S),,B

(resp. £DQ)F = <£DQ,#F)- Then we have
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Proposition 3« I. 1.

(i) S)^E = <$B + C[9, 9, MB'] , and the set {P e 3) \ [P, m2 - 99] = 0}
coincides -with C[9, 9, MB~\.

(ii) ^O,F - $* + C[9, 9, M,] , and {P e <2) | [P, m - T] = 0} = C[9, 9,

Proof. Denote the set ^ + C[9, 9, M#] by 3)*t*. The inclusion

, # CI.fi) o,* being obvious, we prove the converse.

First we show (i) . Let P<=2)QB and set P= £] P j ( z 9 z ) (m^d)'
- 3=~l

*, where (m~l9)-1 stands for w^. For any K=£0, Jp£?"K«"»-~-*>

is a solution of (3.1.2), so that 0 = e-m(uz+u^ (m2 -~dd) Pem(uz+u~^
_ _ z

= - (dd + w«-J9 + w«9) P (^, «, «) holds with P («, z, z/) = XI ^y (z, z) uj .

Setting pj = Q for \J\^>19 we obtain Q = mdp j_i -\-ddpj- -}- mdpj+1 for any

j. In particular (m~ldYJ/2WPi-j = ̂  and (m-19)w/23+1^_i+^ = 0, hence

Pj(z,z) are polynomials. Since the operator dd + mu^d -\- mud com-

mutes with zd — zd — udU9 we may assume that P(z, z9 u) is homogeneous

in (z9 zy u)9 i.e. that P(z9 z9 u) =ukP1(uz9 u~lz) , where &eZand PI(J:, y)

is a polynomial. We may assume further & = 0, since Pe «2)o,s is equiva-

lent to P(m-ldd~*^3)*.B. We have then (dxdy + mdx + mdy) P,(x9 y)
= 0. This implies in particular that the highest order term PM of P1

satisfies (9, + 9y) PI, i = 0, and hence PM (x, y) = cl (x - y) l (^z e C) . Sum-

ming up, we have shown P — dMl
B= ]P pj(m~1d')J mod ̂ 5. By induction

l/isz-i
on / we have thus 2)^,3— 3) Q,B- Using this one verifies easily the rest

of (i) by induction on the order of P.

Next let PejZ)o fF. Noting m2 — dd= (m + F) (m — F)9 we see that
each entry of P(m + F) belongs to S)Q)B. It follows from (i) that 2mP

=P(m + r)=zQmod/F for some QeM2(C[9, 9, M J), where Af2(C[9,9,

MB]) denotes the set of 2X2 matrices with entries in C[9, 9, MJ.
k _

Hence Q is uniquely written as ^Q'j(d9d)M£9 or, by rearranging terms,
y=o

as f]Qj(99d)MJ
F, where Q,, Q7,e M2(C[9, 9]). On the other hand, by

.7=0

the definition of j2)0|f, there exists an R^£D such that (m

= R(m — r) eM2(C[9, 9, MJ). Then P commutes with m2-~dd, so that
i _

P also has the form 2 Py (9, d)MJ
F. Since Mj- commutes with /", we see

j=0

that (m — r}Qj = Rj(m — r) by the uniqueness of representation. Set
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mod 3) (m! - 9.50 , q,= q,(m-ld,) = £ q^m'^ (v = 1, 2, 3, 4).
*=-i

From 0=(OT-r)Q,(j)*"p"+11"1) we get « (ft («)-««»(«)) + (ft («)

/ \\ rt T^i • T /^ /<7l — (ftl~ 9Oz-\-O^} \ ,* _i y-,-.
-«(?4(«))=0. This implies Qy = I11 ^ ^ ™-^n}'(l~~m r)

m.od.sF \ —m VQsJ
^O.JF- Similar argument proves the rest of (ii) .

We now introduce a series of multi-valued special solutions of

(3.1.2) and (3.1.3). For / e=C let /,(*) and ^(.r) denote the

modified Bessel functions of the first and second kind, respectively. We

set

(3. 1. 4) vl (z, z) = eiiell (mr) , w* (z, 2) - g-"^ (mr)

VL (z, z) = v*L (z, *) - ^1^+->.K:I (mr) ,

where z = ̂ rei0
9 z = -^-re~i0 (r>0? 0 e= 1?) , and

,o T KN / -X /^"I/2(^^)\ #, -x(3.1.5) w, («,«) = ( L «;?(*,*)=« ; * , * =
V ^i+l/2 («, 2) / \ ^f-1

7T ^7r

For /^Omod^, we have t;z = — - - -( — vt + v*^ . For /^O mod Z,
2 sin nl

yl = i;^_l holds and Vi9Vi are linearly independent. Likewise we have

wt = -- ( — Wi + u>*i) for l^ — mod Z, and Wi = w*i for /^ —
2 cos TT/ 2 2

mod Z. These functions are multi-valued solution (outside the origin) of

(3. 1. 2) and (3. 1. 3) respectively, having the following local behavior

as |s|->0:

(3.1.6) ^,g) = (

vf (z, 2) = (m
^ ' ; ^ !

(3.1.7) w,(z,2) =
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\ (/-*)!

where /! = T (! + /)•

For integral / = 0, 1, 2, • • • we have

(3.1.8) y,(z>g)=l(-)'-zMs(-1 ,j!(/ — 1)!

»,*(«, 2) =*,(*, 2),

and for half integral 1 = 1/2,3/2, ••• we have

(3.1.9) ©,(*, 2) =1 (-)'

-,- 2
; -

— (7 + log m-Jzz) •

X I

In particular t;0 and w±i/2 are fundamental solutions of (3. 1. 2) and

(3.1.3), respectively:

(3.1.10) (m* - dd) v, (z, z) = 2nd (^ 5 (x*)

(3.1.11) (m - n C^i/2 (z, 2), w*/2 (z, 2) )=—/,- 2?r5 (x1) 5 (x2)
m

where « = (x1 + ix2)/2, z=(xl-ix^/2 and J2=
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Remark. (3. 1. 4) or (3. 1. 5) reduce to elementary functions if

-p- mod Z or /==0 mod Z, respectively. For example

^-1/2 0, z) = ~7= -7= cosh (2m \ z \ ) ,
V mn v z

mrc v £

_ 1 / 7T — g
— — J - -7=

2 ^ 771 V Z

-3L cosh (2w *|)

-p
/-

V

-
V

-
v

V*
iv0

JL £-2"il*i

•^•^yc2* »i._..«.,
Proposition 3. 1. 2e W^ have the folio-wing recursion relations:

(3. 1. 12) dvi = mvi-i, dvt = mvl+1, MBvt = lvh

dv? = mv?+i9 dvf = mvf-i, M Bvf = — Ivf .

relations hold if ^ve replace vt by vt and vf by vf. Like-

uuise ive have

(39 10 13) d*w i

dwf = mwf+l9 dwf = mwf_l9 MFwf = — l-wf.

The same relations hold if we replace wt by wt and wf by w*.

Proof. Using d = e-"(l + ll), d = e«(L-L!L\ and MB =
\dr ird6/ \dr irdd/
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— i—, we obtain (3.1.12)^(3.1.13) immediately from the formula

dr

r-j-K, (r) ± IK, (r) - - rKw (r) .
dr

Proposition 3, 1. 3. Let v be a multi-valued local solution of

(3. 1. 2) at (z9 z) = (a9 a) such that, for some 1Q^C9

(3. 1. 14) v(a-\- e^n% (z — a), a + ^~2sri (^ — a) ) — eZltll°v (z9 z)

ociz-ai8-1 ') (/0^o)
(3.1.15) |f(*,5)| =

I 0(llog|*-a||)

as z — a|->0 a?zJ |Arg(#— a) KC /or <2/zj; C>0. Here the left hand

side of (3.1.14) indicates the analytic continuation of v(z9z) alo?ig

the path z= a + re™, z = a + -re-i0 (r>0, 6: 0->27r). Then v is

uniquely expanded in the form

c?vf[a]

(3. 1. 16) u (z, 2) = " ^

l=l0modZ l = -l0modZ
Re Z^Re Z0 Re Z^Re 10

_ \Jrcfv*[a~]) (Z,,=OmodZ).
= 0 mod Z

Ci,c?9Ci9c?&C9*> and ^ve have set Vi\_a\ = vt(z — a, z — a)9 etc.

Proof. Set z — a = -^-reie, z~a = ~re~i0, r>0 and Os=R. By the

definition v is a function of (r, $) defined on (0, e) X1? (e>0) and is

real analytic there by virtue of the ellipticity of mz~dd. Expanding the

single-valued function e~il°8v into a Fourier series in 0, we have

(3. 1. 17) t; U + ̂ re«, a + ̂  re'" = I] ^«fl/£ (r),
\ 2 2 / i-20niod^

which converges absolutely and uniformly on any compact subset of

w Regarding ^0 = ^* and VQ = V*, we set cQ = cf, c0 = c* to assure the uniqueness of
representation.
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(0, e) X R. Substitution of (3. 1. 17) into (3. 1. 2) yields

* • 1 d
* ' r dr

which implies

cj^mr) + 6-;i/_,(w7-) (l=£Q mod Z)
(3.1.18) /,(r) =

*J/i (?nr) + ̂  (mr) (J=0 mod Z).

On the other hand, assumption (3. 1. 15) gives

-*27T

<C const.

V 2

rRe'° (J0=£0)

I log r | (4-0)

as r-»0. Combining (3. 1. 17), (3. 1. 18) and (3. 1. 19) we obtain

(3. 1. 16). Uniqueness of the expansion follows from that of the Fourier

expansion.

As an immediate consequence of Proposition 3. 1. 3 we obtain

Proposition 3.1.4. A multi-valued local solution of (3.1.3) at

(a, a) satisfying

(3. 1. 20) w (a + eM(~-a),a + e^1 (z- a)) = e2"'

(3.1.21) |w(2,5)i=O(|«-a|R e Z°-1 /2) as \z^t

| Arg (z-a)\ <C for any C> 0

is uniquely expanded as follows:

(3.1.22)

Re £>°Re Z0

x—i /~ ^-w n ~i , ~ ji- r^/«!- r~ ~i \
\' ^^.^,.1 xjrj _|_ c* ^ * LaJ)
i/, ,| '

Z = 1/2 mod Z

1=1/2 mod Z

zvhere Wi[a~\ = ivi(z — a, z — a) ,
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In the terminology of [3], w is said to be of Fermi-type at (<z, a)

if 10^Z in (3.1.22), and of strict Fermi-type if in addition 1Q^Q.

From Proposition 3. 1. 2 we see that the form of the local expansion

(3.1.16) (resp. (3.1.22)) is not changed by applying operators in

C[9, d, MB] (resp. €[9, d, M p\) except for the growth order at the

branch point (ay a) . The following Proposition shows that asymptotic

behavior as J2|-»oo is preserved as well.

Proposition 3. 1. 5. Let v (zy z) be a multi-valued solution of

(3.1.2) in a neighborhood of {2\z\>=R} having the monodromy pro-

perty v(e*Kiz, e~Zniz) =e27ril°v(z9z) (i.e. e~il°6v is single-valued) ivith

some IQ^C. Then the folio-wing are equivalent'.

(i) \e-il»ev\<E

(ii) sup ]£-"°'tf|<oo
2|*l£fi

(iii) v (*, z)= 2] c^'Kj, (mr) (z = ̂ rel\ r>R
l = l0modZ \ ^

(iv) \e-u°°(pv}(z,z}\=oe- (|z|-»oo) for any

Proof. Implications (i) =$ (ii) and (iv) =$ (i) are obvious. We shall

prove (ii) => (iii) and (iii) =» (iv) .

Consider the Fourier expansion

' 2

where fi(r) =CiIi(rtir) +CiKi(mr) with some cz, Ci^C. Now (ii) implies

sup|jfj(r) | <C°°, hence c^^O for all I. This proves (ii) =^> (iii) . To prove
r^R(iii) ==} (iv) 9 it suffices to prove (iv) for ^> — 1, since />t; satisfies the same

condition (iii) if p e €[9, 9, Af^]. From the integral representation

rj^e~r X (monotone decreasing function of r)
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it follows that

Consequently we have

£ \clKl(mr)\=
l = l0modZ

IE H \clKl(mR)\}-^=e-mr.
1 = 10 modZ V rm>i/2

Terms with \l\^— are estimated directly as \Ki(i)ir) — Of —=— g~mr

2 \^ mr
This proves Proposition 3. 1. 5.

§ 30 2a Wave Functions

In this paragraph we shall consider a 2-dimensional analogue of the

Riemann-Hilbert problem**' for solutions of the Euclidean Klein-Gordon

and Dirac equations.

Let (X, av) (V = l, • • - , n) be distinct ^-points of XEuc. Denote by

X' = X'ai>,..ian the universal covering manifold of X' = X'ai,..,an = XEuc

— {(ay, aj)}v=it...i7l with the covering projection niX'-^X'. We fix base

points x0^X'y xQ^X' so that TT(XO) =x0, and denote by 7Ti(X/'; x0} the

fundamental group of X''. We use the following convention: A closed

path 7- = f(£) (0<><^1, 7 (0) = Y (1) = x0) is confused with its homotopy

class in TCi(X/'y x0) . Product of 7, 7' ^711(X
/; XQ) is defined in the order

(rr /)(0=r /(20 (0^^1/2), =r(2^-l)(l/2^^1). An element re

7Ti(Xx; j;0) is identified with the covering transformation it induces on X/.

For a function u on Xx we set (fw) (x) = u (j~l (x)} .(**) Finally we

fix a set of generators fi? - - - j fn^^i^X'; ^0), where rv is a closed path

encircling (aV) av) clockwise (Fig. 3. 2. 1):

First consider the case of the Euclidean Klein-Gordon equation

(3.1.2). For Il9 .» ,Z n eJR, let

c*} For a technical reason we shall exclusively deal with the case of unitary monodromy
in this Chapter III.

(**> We have changed the notation from the one in II. In the notation here the analytic
continuation of u along 7 is denoted by Y~lu.
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(3.2.1) pll....,ln:n1(X';x0)

be a unitary representation of the fundamental group.

Definition 3. 2, 1. For lv&Z (v = l, • • - , »), T^aj.^a* w

/7z£ space consisting of complex -valued real analytic function v o?i

X' with the follo^v^ng properties'.

(3.2.2) (m2-dd)v = Q on X' .

(3. 2. 3) TV = V Pilt...,in (r) for any r e TTi (X7 ; :c0) ,

i.e. (rvv) (*, z)=v(av+ eM (z - a^ , 5y + e~M (z - av} )

(3.2.4)v Iv

(25

(3.2. 4)^ |w |=O (^-2m|2i) as

Since p(^) is unitary, (3.2.3) guarantees that |t;| is a single-valued

function on Xx. From Proposition 3. 1. 3, we see that, under (3. 2. 2)

and (3. 2. 3) , the growth order condition (3. 2. 4) „ is equivalent to the

expansion of the form

(3. 2. 4) ,' v = ± a,T, (z>) • *_,.„ [«J + E c(*/+>, (W) - 1,?,.+ , [a ,]

where ^^+/(^)5 <?+
}Xv) eC and /* = /,- 2 [/J. For definiteness, in

(3.2.4)' we choose the branch of v on the "first sheet", i.e. the value

For 1&R, [/] denotes the integer satisfying [/]<
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v\fv on the lifting Jv of }'„ to the base point x$^X' '.

Likewise WlB','a^
ln,',^lct will denote the space of v's satisfying (3. 2. 2),

(3. 2. 3) , (3. 2. 4) „ and

(3. 2. 4)fict v = ± ^U>) -V-i,+j[.av-] + i}c?MW -*'i%,[>J
y=o j=o

for J> = 1, • • - , « . (for 0</!, •••,/„<! this coincides with W^^.a,') •

We set also W$^;::.^n= {v v eW'^.",«,} , Wlli-~^-^M= {v\v

For the moment we consider the case 0<7y<l (v = l, • • • , ?z)

Example (« = 1). For 0<7<1, Wl
B,a is a 1 -dimensional space

— ^~7ril

spanned by v_i\_a] = -- C^-z[^] — ̂ i*M) • ^ is shown below
2 sin 7T/

(Theorem 3. 2. 4) that Wfe f" BB (0</!, • • - , Zn<l) is exactly ^-dimen-

sional. We note that the exponential fall-off condition (3. 2. 4) co is crucial

for the finite dimensionality. For instance, ^-z+j[^] and ^f+/[^]

0' = 0, 1, 2, • • •) all satisfy (3. 2. 2) — (3. 2. 4) with w = 1 except for

(3.2.4)M.

Now we set

(3.2.5) IB(v,v')=— f f
2 J JX

If v9 v' both satisfy the moiiodromy condition (3. 2. 3) , the integrand is

single-valued on X' and hence (3. 2. 5) makes sense.

Proposition 3. 2. 29 Assume 0</P<1 for v = !9 --9n. Under the

conditions (3.2.2) and (3.2.3), (3.2.4) holds if and only if IB(v9 v)

<oo. In this case -we have

(3. 2. 6) IB (v, v') = - X] c-l O) ' <°° (^0 ' sin 7tlv .

Proof. In view of Propositions 3. 1. 3 and 3. 1. 5, conditions (3. 2. 4),

and (3. 2. 4) «, are equivalent to

(3. 2. 4) J7 H, |9t

(3.2.4): H, 19*
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respectively, where DVf£= {(z} z) eXEuc| \z- av\<Ls} (0<e<l) and D^R

= {(z,z)£EXEnc\\z\>R} CR>1). Hence (3.2.4) holds if and only if

\v\9 \dv\ eL2(XEuc), i.e. IB(v, v) <oo. Now assume that v,v' satisfies

this condition. Notinng

(dv - dv' + m2vv') idz f\ dz — — id (vdv'dz)

for (z9 z) =£ (av, aj) (y = 1, • • •, ») we have

7a(^O=lim^- f f E u c n -id(vdv'dz)
£40 2 J Jx ~y^i *'*

I n C— lim — 2J t ivdv'dz.
e j , 0 2 "=1 Jsz?v, c

Substitution of the expansion (3. 2. 4) 'v yields

i ivdv'dz
jQDv,s

This proves (3. 2. 6) .

Proposition 3.2.2 shows that the spaces W^/i'j; ?.* 0. and

are mutually dual through the C-bilinear inner product IB(v, v'~) (we

^k'i-;:̂ .., w'e^'i;-.'!.). For weT^fef.-,.., we set c (w) = (c^. (") ,
• • - , ^ln?n(^)). Since /B is positive definite, (3. 2. 6) shows that the linear

map

c: ,

is injective for 0</i, •••,Zn<[l. Therefore we have the following result.

Corollary 3.2.3. We have Wfal; f- ttn - 0 7/ /!, • • - , / „ <0,
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Remark. Injectivity of the map c is also shown by the following

argument. Let v e Wlf'^t
 l.n., an (0</i, • • • , /n<l) satisfy c(v) = 0, and con-

sider the real analytic function f=vv>0 on X'aii...ian. Since f— >0 at

the boundary \z~ay\->0 (v = I9 • • - , 71) or j z | — »oo, / attains its maximum

on X' . On the other hand we have (-09 + mz}f= - (\dv\2 + \dv\2

4- w2|t;|2)<]0, hence by the maximum principle we obtain max /<IQ.

This implies f==0.

We shall now show that the equality dimc W^'aj; ?.?, ttn = » holds for

• • • , Zn<^l, by making use of some functional analysis. In the forth-

coming Chapter IV, we shall explicitly construct a basis of Wl£a[',l.",an
 ni

terms of field operators.

Theorem 3. 2. 4. For 0<<A, • • • , /W<O, there exists a unique basis

Vi, • • - , fn o/ Wka'i:»*.aB
 5WC/Z ^/za^ c-i, (^/.) = ^ (A, v = 1, - - - , n) . In par-

ticular dime Wl£'a'l\
l?i(ln = n.

Proof. Uniqueness follows from Corollary 3. 2. 3. We are only to

prove the existence.

Let S£'p denote the space of C°° -functions v on X' such that v

satisfies (3.2.3) and supp|z;| is compact in X/ '. On J?{'p we introduce

a positive definite hermitian inner product by

2IB(v,v')=— f f
2 J JXEu

= ff i
J JXEuc

Denote by M p the Hilbert space completion of M'p with respect to 2IB.

Note that J){p is nothing but the usual Sobolev space when restricted to

a simply connected open subset C/d-X^ (more precisely, if we consider

the restriction v\ui to a connected component Ui of ft"1 (£7) CXX) . Hence

an element v of SC p is identified with a measurable function on X/ ',

satisfying (3. 2. 3) and | v | , | dv \ , | dv \ e L2 (XEuc) .

Now let ^ be a C°° -function on XEuc such that ^=1 ( |2— a^\

^=0 (|^-^^|>e) withO<s<l. Then it is possible to extend
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the function <ppV_ijt[_aft'] as a C°°-function <p ̂  -i ,\_CL ̂ \ on X.' satisfying

(3.2.3). Setting g^= (m*-dd) (</V^-^[>J) we see that g^M'^

Consider the skew-linear map

i
J JXEtlc

By the Schwarz' inequality G^ is continuous in the topology of <$Cp.

Hence by the Riesz' representation theorem there exists a unique v'^SCp

such that 2IB(v'ft9v} =Gft(v} for any v^JCp. This implies (mz — dd^v'^

= Qp = (ni2 — d&) (0^-^ [#/,]) in the sense of hyperf unctions. We set

Vp = 'u'fl — <p/tv_iii[aft']. It is clear that v ̂  satisfies (3.2.2) (and hence is

real analytic on X') , (3.2.3) and (3. 2. 4) _ Since |9^;|? \dv^\ both

belong to Z/2(J£Euc)? the local expansion of v ̂  at (av, #„) has the form

(3. 2. 7) vft = S/tvv_l9[_a

This proves Theorem 3. 2. 4.

In the sequel we shall sometimes refer to the above basis as the

canonical basis of WlB,'ai,l.-,an' More generally for any lly • • - , ln^R — Z,

we use the notation vfJ, = v/J,(L')=vf,(z9z-yL^ to indicate the dependence

(li. \on parameters L=\ • of the functions satisfying (3. 2. 2) , (3. 2. 3) ,
I 'lJ

(3.2.4)00 and (3.2.7). We also write the coefficients as aluf = a/tlf(L)9

(3^ = 13^(1^) and so forth. Theorem 3.2.4 guarantees the existence of

v ̂ (U) in the case &<C^i, •", ln<^.k + I with some k^Z, for we are only

to set z;/§(L + *) = (w-19)*?7/l(L) ((m~1dy1=m-1d) , In particular

^ (L + *) = a,v (L) , /?,„ (L + *) = ̂  (L) .

In the coming § 4. 4 and § 4. 5 we shall explicitly construct n inde-

pendent canonical elements in W^/a'j; .l.?,'airlct ^or l\9"'9ln^C—Z under

certain convergence condition. We can then prove that W^/i'j; !.?;̂ rict is

exactly w -dimensional for arbitrary lly --9 ln£:R — Z. In fact, it is suf-

ficient to show that, if v satisfies besides (3. 2. 2) , (3. 2. 3) , (3. 2. 4) f rict

and (3. 2. 4) TO the conditions

^»-<wO)=0 (v = !,-,»),
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then t;==0. Let ^ (J ̂ 2= {1, •", n} be a partition such that c^O7) — 0

for vei>! and cf/v) (77) =0 forvey2 . Assume that V0ev2 . There exists an

element vv, (resp. t>*) in Wl7;i;!»;£rict (resp. Wr^;;>;;!.i:jjv
1;-:::^;8trict) such that

c^ly(vj=0 for t; e^, Ci* ( l 0(tfv0)=0 for u (=£v 0 )ey 2 and ^OO^O

(resp. cLt«) -0 for ye*,, c*« «) -0 for *(¥=»«,) €=*, and <V
+°K<)

=^=0). Subtracting some constant multiple of vvo or vfoy we can reduce

the problem to the case of exponents /i, • • • , ^0±1, • • • , ln. By repeating

this argument reduction to the case 0<^/i, •••9ln<^1. is possible, for which

our assertion is proved.

Now we return to the case 0</i, ••• , /n<l. Comparing the local

expansion of 9?^(L) with that of vv( — Z/ + 1), we find that dv^L}
n

~m J^ ^^(L}vv(—L-i-l) belongs to the kernel of the map c. Hence
v = l

^ve have

(3. 2. 8) dz
y = l

Proposition 3. 2. 5. S<tf a(L) - (a^^)) ̂ ,=1,-,,,

(i)

(ii) ^(L) -/9(-L + l) =1, and there exists a unique H'(L) =tH(L)

such that 0 (L) sin rcL = - e2^(i).

In particular, if I v = — (^==1, •", «), ^^ 7iat;^ la = a and ft=—e*H,

Proof. Assuming #=^v, we compute IB(vp(L) , ^v( — L + 1)) in two

ways and obtain

£|0 A = l

= limf] (f -z9
e40 ;=1 j3JD A , e

or

(L) - sin nlv - avfjt ( - L 4- 1) • sin nlj = 00
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This proves (i). Comparing the coefficient of f_zv + i [#J of the local

expansion of (3.2.8), we obtain ff/HI = X] ^ (£)&„(- L + l). Finally
ji=i

let £ = (£,, • • - ,£„ ) eC71 and set v = £]£„*;„. Then (3.2.6) yields

0</* (*, v) = - I] *„*„&,, (Z,) sin 7T/V .
/*,v = l

This implies that —/9 (Z/) sin 7TL is a positive definite hermitian matrix,

and hence is uniquely written as e2H(L\ H (L) = *H (L) . This proves (ii) .

Remark. From (3.2.8) the local expansion of v^(L) has the form

vf (L) = 8pvv_ly [aJ + afv (L) - v^ly+l[aJ + • • •

As long as solutions of (3. 2. 2) are concerned, we may identify the

operator dd with m2. The quotient ring C[9, d^/(m2 — 99) is isomorphic

to the polynomial ring C\_u,u~1^ in one variable u = m~1d admitting its

inverse u~1 = m~1d. Thus any element of €[9, 9]/(m2 — 99) is a residue
_ *8

class of a unique element of the form p(d,d)= Xj Pk(?n~l®)k-> where

(m-ty-1 stands for ^^9. We set (C[9, 9]/(w2l-99)) y= {/> (9, 9)

= Z3 - The following theorem tells the structure of

for general

Theorem 3. 20 6B Le£ 0<Zt;<l (v = l, • • • , » ) . TA^;z the space
00 _

U Wl^^J'.'.'''an+s is a left C[d9d MB~]-module. Moreover -we have an
.7=0

isomorphism

(3. 2. 9)

Proof. Let v e ^tf;.'.'/'̂ ""', peC[d,d,MB']. Since ^ belongs to

S)^B (Proposition 3. 1. 1), pv satisfies (3. 2. 2). Clearly (3. 2. 3) remains

valid, and (3. 2. 4) TO is also preserved by Proposition 3. 1. 5. Finally if

ordp = k, (3. 2. 4)v is fulfilled with lv replaced by lv+j + k. Hence we
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have shown

To prove (3. 2. 9), let vly • • • , vn be the canonical basis of W '̂i'j;.1.? ,̂

and take /»<*> = £] pg> (m~l&) *e (C[9, 0]/(>2--9d)) y, ^ = 1, - . - , w , arbi-
i*i^y

trarily. Then we find

(3. 2. 10) ] P^v^pfv^.^a^ + • • •+(£ />^) • <_,|>,] + •••
0=1 0=1

at (<zv, #„) (v = l, • • • # , ) . Here /?= G?^) is an invertible matrix by Pro-

position 3.2.5. Hence (3.2.10) implies that, for any we Wr^f;.V.';i;+y.
71

there exist unique constants pjM\p^} (# = ! ,••• ,») such that z; — 2

Of (flz-'S) ' + /><?} O-'d) 0 v^ belongs to Wl£+
a{-^ln+j-\ Repeating this

n _

argument we see that v — J] P(/*\d, 9) T^^e Wl£~a^:;:t
ll~l~Q for unique ^>(/t)

_ _ -"=1

e (C[9,o>]/(w2-99))y. This completes the proof of Theorem 3.2.6.

We remark here that most of the above results are valid if we admit

some of Ijs to be integral. In this case we impose in place of (3. 2. 4)v

the condition

v\ =

to define the space W^;ai;!.?,oB, or what amounts to the same thing, assume

the expansion

v = % (W (f ) • Vi [« J + cf « (w) • »,* [a J )

• f ,*

to hold at (fl,,^)- We have ^en T^k -i! -%, CI T^ \̂\1.?^^ and

Wl
B\'ai:

l..n,an = Wl
B\ai@--'®Wl

B
n,an if A, -»,/neZ. Although the inner pro-

duct JB diverges in general if /y = 0, 1, 2, ••• for some V, Theorems

3. 2. 4(*} and 3. 2. 6 are valid for 0^/,<1 (v = 1, • • • , * ) . Let W^al^f *

denote the space consisting of v's satisfying \v\ =O(|log|2; — z*\ |) at

(z*y z*) besides the conditions for W^'oj; f.?,'a»ricl. It is spanned by the

(*> We replace cg> by cjv) if Z,=0.
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canonical basis v^^L) =v^(z; L)(^ of Wl^'d'^an9 and a unique vQ(U)

= vQ(z*9 z; L) with the characteristic properties (3. 2. 2) , (3. 2. 3) ,

(3. 2. 4) „ and

(3. 2. 11) [ + regular function

at (z, z) = (z*, z*]
VQ(Z*,ZI L) =<

at (z9 z) = (aV9 av) (v = l, • • • , n) .

In view of the formula (3.1.10), this vQ(z*9 z\ L) is an analogue of

the Green's function. Existence of v0(L) is proved by a similar method

for 0</!, •••,4<1 (for general 1VSER-Z, see Chapter IV). The coef-

ficients a0v, jSov in (3. 2. 11) are obtained by calculating the inner product

and Is(v0(z*9 z; L) , z>y(2:; Z/)) respective-

ly, noting IB(v, v') =IB(v' ', i;) . We find

(3. 2. 12) a0v (z* ; L) - - - V|l («*;!- L)
2 sin 7T/y

.
2 sin

That is, the canonical basis of W^/a j; f.''̂ "* appears as the leading coef-

ficient of the local expansion for the "Green's function" vQ(z*yz;L).

Likewise we find the following symmetry property by evaluating

IB (j;o (z, %' ; £) , ^o («*, £' ; -^) ) with respect to z' :

(3. 2. 13) *0(**, z; L) =v0(z, z*; L).

Now we proceed to the case of Euclidean Dirac equation (3.1.3).

Let ll9-"9ln^R be such that lv^ — mod Z (v = l, • • • , » ) .

Definition 3. 2. 7» TF^ denote by WlF\'a'l^.tan the space consisting

of 2-component real analytic functions zv = t(w+9 zvj) on X' , satisfying

(3.2.14) (m-r)w = Q on X',

(3. 2. 15) 7 - w = ze; • pZl-i/2,... lZn_i/2 (r) /^

(*) por brevity we write the variables (z, z} simply as z.
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i.e. (r»w) (X z) = w(a,+ eM(z — a,^y av^re~M(z — a^

(3.2.16), |w± |

(3.2. IG)^ |w± |-OO?-2m121) tfS |Z|->00.

Likewise we define W^a;.1*;?^, replacing (3.2.16)

(3. 2. 16) frict
 w = f; ^U, («;) • w_lv+j [a J

y=o

Condition (3. 2. 16) „ is equivalent (under (3. 2. 14) and (3. 2. 15) )

to

(3. 2. 16); w = } c»\9+j(w) -W-ly+j\_
j=0 j'^O

where lf = lv— 2u,+ — . From the definition we have the following

isomorphism

(3.2.17) W^^:-^^W'K^,v^(m^v}.

Hence the results for Wj?.t^.'..'o',!"+1/2 are straightly translated into those

for Wfc ;;•.'-...„.

T/xe case w = l, <!^<C—•
' 2 2

2 COS 7T/

Inner product

(3. 2. 18) 7F (w, w7) = — f f idz/\dz
2 J JXEUC

Assuming — — <A, •", ^n<C — , we find for ze;, ze;'

(3. 20 18) x JF (ze;, zc;7) - - ] ̂ 1y (w) • <*JMX)~' cos
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Theorem 3. 2. 8. We have Wl^a^.,an = 0 for /,, ..., /B<--1, and
£i

dimc W
lfta^.,an = n if <Z1? • • - , ZB<—. In the latter case there& &

exists a unique canonical basis w ,,(.£,) (,« = !, • • • ,« ) such that

(3. 2. 19) «;„(£,) =^w_,.[fl,] + £VZ, +-- -w_i,+i[aj + •••

— are those

in (3.2.7) corresponding to exponents ZjH -- , °-^ln^- — .
£.1 £

Theorem 3.2.9. Assume - — <A,---, /„<— . TAw U
^5 ^ j=o

is a left C\_d,d,MF~\-module. We have

(3. 2, 20) (C[9, ^/(m^dd^

by the map p(d, d) (g)wi->/>(9, 9) w.

These are immediate consequences of Theorems 3. 2. 4 and 3. 2. 6.

Extension to the case of half integral lv is also possible. We merely

note here the existence of solutions w0
(±) (L) = w0

c±) (z*, 2; £) of (3. 2. 14)

satisfying (3. 2. 15) , (3. 2. 16) «, and the local behavior

(3. 2. 21) (±)

1/2 [**]

at (z, z) - («*,

(3. 2. 21)v
(±) xe;o(±) («*, *; L) =of?> («*; L) • W-,,+i[

-f regular function

at

where aQv =
 t(a^\ a&) , jS0y = *09^), /SotO are obtained by calculating the

inner product of Z£;0
(±) (^*, z; -^) and TX> * (2; ; 1 — L) or wv(z\ L), as
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follows.

(3.2.22) «„„(>* ;!>)= .
2 cos ?!/„

/?„, (z* • L) - ^L w* (** ; L) .
2 cos nlv

We also see that (cf. (3.2. 13))

(3. 2. 23) -rt'i0 (z*, s; L) = wL-r(c~s*; L)

wL^ (**, 2; -L) - tc4±} (^*7L) .

In terms of vQ(L) = vQ(z*y z\ L) 9 w^±} (L) — zu^ (~*5 ~; L) are given by

(3.2.24) (w<

\

- v0 (L - 1/2) OT-'9,w0 (L + 1/2) / '

We denote by W *̂5,!;!,1;;:::,'!;"110* the space of ze;'s which, besides the con-

ditions for W^a';.'.?.;̂ 0*, admit of singularities of the form (3. 2. 21) $±5 at

We remark a few words concerning the special case /i — 0, • • • > / n = 0.

For a solution w=( ^+j of the Euclidean Dirac equation (3.2.14),

define its ^-conjugate by ze;*— (— ~). Then assuming -- <C^i, •", ^n<C —

we have the skew-linear isomorphism *: Wp] „;/.", an-^ W'^f^'f.'.r^. These

two are mutually dual spaces through the C-bilinear form IF (w, TX;X*)

(we^^;-a;/.:un, wx e Wr?i
lSi;.

I..:i:) . Now if J1==0, - • • , /B = 0, the space

Wr0/;;\^.,aX = T^?fi<ff..,aB in the notation of [3]) is self-dual, and we have

the I?-linear subspace W^^'.^fa^ consisting of "real" elements iu = Z€>*
.— TT/strict P l / i o t - I x T TT/strict _ TT7strict> .K /T\ / T TJ/strict, R j- _ TT/strict, BS VK ̂ , ttlf ..., Ofl. Uieai ly VK 2^, olf -t an — yy F, Ol. -, a^tb v — -L W FI a^ ..., a^aimRW F> alt.', OB

= ?z. An element TC; e W^jjf..., an (or correspondingly v e Wifi'iV'-l^n) ^s

regarded as a function defined on the 2-fold ramified covering manifold

of XE-: ̂ .....^{fe^OiC^fKs-^), C2=n^-^)} = (X'/Ker
v = l v-=l

p_i/2,...,-i/2) U { (^y, ̂ 0 } n = i > . » J 7 i > an^ satisfies there the Euclidean Dirac (resp.

Klein-Gordon) equation with point sources at the branch points (av, #„);

namely, in the local parameter C,v= v7- — av — ̂ \-\- i£l9 the local expansion

(3.2.16)v
x (resp. (3.2. 4),x ) implies
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,

m

Here we have used the formula — f-i) = n8 (? J) d (fj) .

The results in this paragraph are generalized to the case of an

TZ-dimensional monodromy representation of special type, as shown below.

Let A= (A^) ^,y=i,...,n be a positive definite real symmetric matrix such

that /L = l (v = l, • • • , TZ) . For /j, ---,^^11, we introduce the monodromy

representation

(3. 2. 26) Pilf..,i.^: ^(X'; ^0)-*GL(», C)

V

Since Afv satisfies Tkf^"1 1MV — A~l, Pilt...,in,A is a unitary representation

in the sense pll>..,lnjA(n1(X
/ ; x0)} dU (n, A) = {g ̂ GL(n, C) \tgAg = A} .

In place of (3. 2. 3) , let us now consider the following monodromy pro-

perty for an ?z-tuple v = (t>(1), • • • , vw} of functions on X' :

(3. 2. 27) r- (v«\ ..., t,<»>) = (Ww, -., w(»>) -^........Xr)

The condition (3. 2. 27) will be motivated later in Chapter IV.

(3. 2. 26) and (3. 2. 27) imply in particular

(3. 2. 28) r^M = *-2*"'*'(1'), r^)-'U^) =vW-l/u,vV

Note also that if t; satisfies (3.2.27), then v\A= (vA'1 zf;)1/2>0 is sin-

gle-valued on J^7.
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Definition 3. 2. 10. For / ! , - • • , Zn<£Z, Wl£'a'^an(A} will denote

the space of n- tuples v— (f(1), • • • , T'(n)) of real analytic functions on

X' satisfying (3. 2. 2) , (3. 2. 27) and

(3. 2. 29) , ^-^(E *?U (*)•*-!,+/ I>J

+ single -valued regular function at {av,

(3.2.29)

Expansion (3. 2. 29) „ is consistent with (3. 2. 28) (in particular the re-

gular function term for v^ is missing at (a^ <£„)).

Definition 30 28 II. YTr ^^^ TF^; „';>, OB (J) /or /,^— mod Z
£.1

o/ 2n-tuples zv= (w(1\ • • - , 7i;(n)), w(p)

(ze; ̂  \ -~
J)j (v = 1, • • • , ? * ) , o/ r^/ analytic functions on X', such that

each w(v) satisfies (3. 2. 14) and

(3. 2. so) r- W, • • • , wi") = (wi", • • • , w?))Pi1-i/s,...«.-1/.^(r)
(s = + or — ; r e Tti C-X^' ; •£<>) )

(3. 2. 31), w^^A^cf] c^^Cw) •«'-,,+y[aJ +2 *?A (TO) -w?,.+y[aj)
y=o y=o

+ single-valued regular function at (aV) av)

(3.2.31)

The space W!,!;̂ ,'.:'.;̂ 1 (yl) (* = B or F) are defined analogously.

Namely we replace (3. 2. 29) „ and (3.2.31),, respectively by

(3. 2. 29) frict *(« = A,, (E ^"Uy C« ) • v_,,+, [a,]
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*J+i(p) 'vt+j[.a^ + regular function

(3. 2. 31) frict
 w<*> = ̂  (l c»\,+J (w) - zv_lv+j |> J

.7=0

+ Z3 ̂ f.+K7^) 'wz*+/[0J) + regular function
j=0

for #,v = ! , • • • ,» . (We note that the definition of WLV,"'.',^ (^0 given in

VII [5] coincides with Wlj\^:*£lct(A) here). We also define their dual

spaces by TO;-Ji;^ and W%K:!:^(A)

In this case as well we have

(3.2.32) , n ,
\m ov

Remark. In the trivial case A = l, W*1; «;/», flB (-4) (* = 5 or F) splits

into the direct sum W r^ a i©---@W^ a n (the case "with no interaction").

On the other hand, the space W^| 'ai,l*-,an discussed above is understood

as the degenerating limit A^— >1 for all /£, v = l, • • • , n. See Proposition

3. 2. 14 below.

A hermitian inner product is introduced by setting

(3.2.33) IB,*(v, u ' ) = — ff i
2 J JXEIO

for ^f'eW&;: !.%.(;!) (0</,, -,/.<!), and

(3.2.34) Irt(Wtw")=

r i zfor w, zv' e T'Vr^;a1
i
f
z.*faB (A) ( — — <A, • • • , ^n<C — )• To see the convergence

of the integral at \ z \ — >oo? we note the following.

Lemma. Let v = (v(l\ • • - , t;(n)) be a solution of (3.2.2) on

X'^{2\z\>R} such that v(es"tz,e-Mz)=v(z,z)-][f for some M <=

U(n,A). If sup \v A<^°°, we have
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(N-oo)
\ ~

for any £<EE€[9,0, M J.

Proof. Since M is unitary, there exists a PeGL(?z, €") which

/Si \
diagonalizes M, i.e. P-1MP^ \ , |e j=l (v = l, • • • , « ) . Setting

\ 'en /
t;jP = (t;(1)/, • • • , z;(Tl)/), we see that vw' satisfies the assumption of Pro-

position 3. 1. 5. Hence our assertion follows.

By a similar calculation we obtain

(3. 2. 35) IS,A&,*") = -£ c%,(w) • cF^O 'sin ^

(3. 2. 36) IFiA (TO, w') = - 1] cL"l, (w) • c,* w (TU') • cos TT/,,
V = l

where {^-lv(f), cfv
(tf) (77)} and {c(l\y (w) , cfv

(v) (if) } denote those appearing

in (3.2.29), and (3.2.31),, respectively.

Theorem 3. 2. 4, Proposition 3. 2. 5, Theorem 3. 2. 6 (and the cor-

responding results for the Dirac case) are also generalized to the case

of Wl£\'a'J*,an C<0 (* = B or F*) . We omit their proofs, which are almost

the same as in the original ones.

Theorem 3. 2. 12. For 0<^lly • • • , /n<l, £/iere exists a unique

canonical basis vf,= v/t(L; A) = (v®> (L\ A), -~,v™ (L\ A)) (^ = 1, • • - , »)

(3. 2. 37) v«> (L;A) =^ip{ff^_1,[a

+ single-valued regular function at (av, a

for j U 9 v 9 G = l9 . .- , n.

Likewise for — — <C^i, • • • , ^n^ — 9 there exists a unique canonical
&j Zy

basis
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(3.2.38) w<?(L; A) =A,J^-«;_,,[aJ +aJL-±; A

- single-valued regular function at (avy av) .

coefficients a^v(L'7 A) and ^V(L\A) satisfy the same relations

(i) , (if) of Proposition 3. 2. 5.

Theorem 3. 2. 13. Assume 0<li,-~9ln<l for * = B and — —
Zi

<*i, •~,l»<l-for* = F. Then U W^;":; L;+' (^) is a left C\_d, 9, M*] -
2 J=0

module. We have the isomorphism

(3. 2. 39) (c[d, 9]/(m2-99)
C7

?y p (d ,d) ®w^>> p (d ,d) -W .

By the same argument as in p. 16-17, combined with the existence

theorem for the basis to be proved in Chapter IV, we may show that

dimcW
l^a^T

n
ict(A)=n for * = B or F.

Next choose 1= (^ • • - , An) eCn and (^*, ^*) eZEuc- {(^, ^)},=1,...,n

arbitrarily. We let W%»;£**S?* (A, K) (Il9 -, /,^Z) be the space of

u = (^CD^ ...? vcn)) ,s satisfying (3. 2. 2) , (3. 2. 27) , (3. 2. 29)frict, (3. 2. 29) „,

and having at (z*y £*) an additional singularity of the form

(3. 2. 40) v^ = X f l - c ^ ( v } -?;o[^*] + regular function,

By the same method as in the case of VQ(Z*, z; Z/), we can show, at

least for 0<71? • • - , /„<!, the existence of a unique vQ(L, A, A) =vQ(z*9 z\

L,A,X) such that ?J0)(z;o)=l and c™lif(vQ) =0 (v = l, - • - , » ) . Clearly

•y0(L, yi, A) is linear in AeC71. Denote by A^) the /^-th row vector of
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A9 and set v»(z*, z; L, A) ̂ v = v^ (z*, z; L, A, A(/l)) . We have then for

(3. 2. 41) t,0(**, z- L,
2 sin 7T/,

(3. 2. 42) v, (z*,z-L,A),v = vQ (z, ~* ; L, ^) „„ .

Similarly, for — 1/2 <&, •• -, /n<l/2 there exist unique w0
(±) (L, J, A)

= w0
c ± )(«*,«;i ' ,^,>l) = (wj±)(1), • • • , z < y 0

( ± ) ( n ) ) that satisfy (3.2.14), (3.2.

30) , (3. 2. 31) „ with c^\v (w^O - 0 (v - 1, • • • , n) , (3. 2. 31) „ and at

r — fj;* r-*"l
(3.2.43) Te;0

(±)(^ = ^ 1/2 4- regular function.

Setting z^HL, ^l)^-^±)(y)(^, 4^(/,)) we find

(3. 2. 44) (w*+> (^*, z-L,A) ,„ wJ-> (^*, ^; L, A)

2 cos nL

(3. 2. 45) z<4+) (z*, z-, L, A)^ = ivt> (z, z*; L, ^

for ju9 V = 19 • • - , n.

For later convenience we shall refer to as W^l*^"'.^**11* (A, A) the

space spanned by ze;0
(±) (L, A, A) and wv(L, A) (v = l, • • - , ft) . We set also

î'.-.vi-811101 (^f, A) }.

For notational convenience we introduce the matrices v = v (L; A)

= (v?(L, A)^,v=1,...}n andw = w(L;A) = (w?(L'9 A»»^lt...,». Their local

expansions then read as

(3.2.46) w(LM)=l B -w_ I , [ f l
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+ regular function

w(L\ A) = (ln-w_Iv[<] + a(z,-- —; A

+ regular function.

Since yi is non-singular, it is clear that the ;z column vectors v^ (L\ A)

(resp. w(v^ (Z/; yf)) , V = ! , • • • , 72, of v(L\A) (resp. w(L; A)) are linearly

independent.

This linear independence fails in the limit where A tends to a

degenerate matrix AQ = tA° = A° with AJV = 1 (1<><^) . For the sake of

definiteness we consider w(L\A). Set rank A°=n — r, and let Pi9'--9pr

be a basis of Ker ^4°. Without loss of generality we may assume that

the first rxr block of P = (pl9 • - • , />r) to be non-degenerate: P = t(tP1,
 JP3),

det P^O. Setting u;(L; yi0) =lim w(L; A) we have
Ji-»ii0

r,w (L ; J°) P = w (L ; A*) • (1 - (e~2*

Hence by (3.2.46) w(L\A®)P is single-valued and regular at each

(av,av). Regarding (3. 2. 31) „ we then conclude u?(L; A°)P^O. That

is, the first r-columns of w(L; yi°) are linearly dependent on

i€(r+3)(L; J°), • • - , ii7(71)(jL; ^f°) (linear independence of the latter follows

from (3.2.46)).

In order to recover the rest we proceed as follows. Choose A/

= *A'=A' so that ^v = 0 (V = l, • • • , » ) and AQ + eA' is positive definite

for 1>£>0. (In particular det fjFM'P=£0) . We set

(3.2.47) u;e(i;^0 ,^ /)=u7(L;^+e^)-(g.1p °

w (L ; yf°, ̂ 0 - lim ws (L ; A\ A") .

Proposition 3.2.14. Assume — — </1? • • - , /„< — . T72£?;?
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column vectors of w(L\ AQ, A') are linearly independent. They satisfy

the monodromy property

(3. 2. 48) r ,w(L• A\ A') =w(L\ A\ A'} -Mv(L• A\ A')

/O 0\

-P,Pr1 I '

P/-OO/. From (3. 2. 31) we have

(3.2.49) r,w,(L;A\A')

') • (1- .,

'-P, (Af+eA")l

On the other hand, w(L;yi°)P = 0 implies w(L;yl0)

= w (L ; ̂  (° p p_t 9) = w (L ; ̂ °, yi') - f° p p_! °) . Substituting into
\ £3*1 LI \ £ 3^! J./

(r5. 2. 49) we obtain in the limit £->0

T*w (L -A\A')=w(L; A\ A') • (1 - (e~2^ + 1) L,) ,

This shows (3. 2. 48) .

To prove the linear independence of the columns of w(L\ A°, A'} ,

set N={c^Cn\w(L;A\A'} -^ = 0}. Since wc^ (L; A\ A') =w^ (L; J°)

are linearly independent for V = r+ 1, • • - , n, N fl if ^/) eCw[ = {0} . So
l\c / J

we are only to show that, if N were not {0}, it would contain a non-

zero vector of the form ( ,,j.

For c e= N we have 0 = Tvw (L ; A\ A')c = w(L; A\ A') Mv (L ; A\ A'} c

so that MV(L; A\ A')NciN, i.e. LvNdN since e~27ril^ 1^=0. From the

form of Ly, if Lvc=fcQ for some c^N and V, then we are done. Assume

A^ for all v. Since yf°P — 0 is equivalently written as
^o .o/O 0\ -,A =A{ p p_i , we have\ — r^rl
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where we have used /C = l (v = l, • • • , » ) . Hence L,,c = 0 for all V implies

because tPA° = t(A°P) =0. Since 1PA'P is non-degenerate, we obtain
' 0 \^1=^=0. This completes the proof of Proposition 3.2.14.c i

Remark. In the above proof we have tacitly assumed the existence

of lim w£ (L; A°, A'). This point is justified if we show that the family

w(L; A) depends holomorphically on A. This will be done in Chapter IV.

As an example of Proposition 3. 2. 14, consider the case

* i1--1],-,-1 P i1-- \Mi.::iH-'-I-Pt,..lJ
In this case we have, setting Qv=e~Zn1lly (v = l, • • • , TZ),

f 1
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and the n-th column w(n} (L; A", A') = ww (L\ A°) coincides with the

vector t(^Wi(L), • • - , twn(L}} , where w^^L) denotes the canonical basis

(3. 2. 19) of

§ 3. 3. Holonomic System and the Deformation Equations

One of the most important consequences of Theorems 3. 2. 6, 3. 2. 9,

and 3. 2. 13 is the existence of a holonomic(*) system of linear differential

equations satisfied by a basis of the space W^'^T^ or Wl^a'J.^ict (A)

(* = B or F) . We shall now proceed to discuss this topic. For the

sake of definiteiiess we shall mainly be concerned with the case * = jP

in the sequel, (In view of the isomorphism (3.2.17) or (3. 2. 32) , this

is no restriction.)

Proposition 3. 3* 1. Let wly--,wn be an arbitrary basis of

Wll>;^an (resp.Wl^.,an(A)} vuith - — <ll9 '"Jn<^ Let w =
£ Zi

*C^i, • • • , *^n) denote the 2nxl (resp.2nXn) matrix. Then there

exist unique n X n constant matrices B9 5* and E, depending on

L=(d^lv\ A=(dp»av) (resp. L9 A and A) and also on the choice of

iv, such that

(3. 3. 1) MFw =(Bd-B*d + E)w

holds. <**>

Proof, From Theorem 3. 2. 9 (resp. Theorem 3. 2. 13) we have

MPw,E:Wl*%;:rt;L (resp.T^X+«V".l.\+1W)) for each /£ = !,..-,». By

virtue of the isomorphism (3. 2. 20) (resp. (3. 2. 39) ) , there exist unique

constants b b f y and ev^.C such that

(3.3.2)
v = l

holds. This proves Proposition 3. 3. 1.

(*} Concerning holonomic ( = maximally overdetermined) systems we refer the reader to
[91 [10].

(+t> -p0 ^e precibe ^ Jg*j £ are understood as B®h, etc. Namely (3. 3. 1) ^tandb for
(3.3.2).
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Let Cj= (^t+X^))^=i,.,n, C? = (4(
+

v)y(^))^-i,..,n be the matrices

of the coefficients of the local expansion (3. 2. 16) 'y (resp. (3. 2. 31) „) .

Comparing the local expansions of both hand sides of (3. 3. 1) , we obtain

the following recursion relations for all j

(3. 3. 3) j CJ+1mA - mBCJ+1

- ECj - Cj^mA + mB*Cj-i = 0

(3. 3. 3)? C?+1mA-mB*C?+1+C?(L + j)

+ EC? - C?-1mA + mBC?.! = 0 .

Notice that C, = 0, CJ = 0 for j<fl. In particular (3. 3. 3),- and (3. 3. 3)

read for j =—1,0,1

(3. 3. 4) B =

(3. 3.5) E= [dCif1, C0

=:: L^i ^o ? ̂ o 77£-tiv_/o J '^o

(3. 3. 6) [CtCiT1, ComylCo-1] +C1(-L + 1)C0-
1

- -EdCo"1 - C0m ACo'1 + CfmACf-1 = 0

[CfC,*-1, Cfm ACo*-1] + Cf (L + 1) Co*-1

For the canonical basis w = w(L~) (resp. w(L; A)~) satisfying (3. 2. 19)

(resp. (3. 2. 38) ) , we have

(3.3.7) C, = l, C0* = & Ci = a, Cf=/3a'

5 = A, 5*

£= [a, «A

where a = aL + — V a '=a-L + — and fl = /? / , + — resp.

1 \ / / r 1 \ o/T 1 \\ T -—: A , OC =C£ — L + —; A] and p = p ( Z/ + —; ^1 . In either case
2 / V 2 / \ 2 //

/ 1 \ /
Proposition 3.2.5 implies /?— — g2H(cos nL) ~* with H = HlL + —j (resp.

- —; A]} and [a', wA] - (cos TrL) • ['a, wA] • (cos TrL) -1. This
£i ' '

shows the following:
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Theorem 3* 3. 2. The canonical basis w(L) (resp. w(

satisfies the following holonomic system of first order linear differ-

ential equations'.

(3.3.8) (m~r)w = Q

where zue have set

(3.3.9) F=[a,mA]-L, G=e~2H

— ), H = H(L + —) for w =

— ;A for

These matrices are subject, to the algebraic conditions

(3. 3. 10) 1F = GFG~\ diagonal of F = - L

G = *G is positive definite.

Remark. Comparing the diagonal part of (3. 3. 6) in the case

(3. 3. 7) , we see that the diagonal of a, is expressible in terms of j3 and

the off-diagonal part of (X as follows.

(3. 3.11) a^=-m 51 (a^ - «„) apvavll +m(afl- (M/?""1) „„) ,
»(¥=A)

(^ = 1, » - ,» ) .

Noting a'^a'Vft = aflvav/l(/ji^v) and /9^ — L + — j -A-(i( — L + — \ = (cos;rL)

—YA-@(L + —} V(cosTTL)-1, we have then *(a(L + —

cos Tr ) =a( —L + — )cos nL.

It is sometimes useful to rewrite (3. 3. 8) into the form of a Pfaffian

system with regular singularities:

(3. 3. 12) d,-zw = ti'w, ®'

where
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tw l r-^™(v A\r\ / 0'(3.3.13) P=(z-A)-lr ~~^ ^ m(z-^)tr\ + i
\m

p*=G-^-Ar>G(m(z_A) _^|) + (0
 m

Here we arrange the blocks according to the partition *w= (£w+)
 £M?_),

Up to present we have fixed the position of branch points (aV9 av).

We now consider how a basis of Wl$\'a^™.,a,n °r Wlj]a^.?.,an (^0 depends on

(av, aj). Denote by d', d" and d = d'-}-d" the exterior differentiation

with respect to the variables (z, z), (A, A) = (aly al9 • • • , an, 5n) and

(z9z9A9A), respectively.

Proposillon 3. 3. 3. Notations being the same as in Proposition

3.3.1, assume that w depends differentiably on (A, A). Then there

exist unique matrices 09 0* and ¥, -whose entries are (zy z)-independent

\-forms in (A, A) (*\ such that

(3. 3.14) d"w= (0-d+0*-d + ¥)w

holds.

Proof. Clearly d"w (that is, each of its coefficient of dav or daj)

satisfies the Euclidean Dirac equation. Differentiation of the expansion

(3. 2. 16) 'y or (3. 2. 31) „ shows that d"w also has the local expansion of

the same type except for the growth order. Regarding Proposition

3. 1. 5- (iii) we see that the exponentially decreasing property is pre-

served. Hence we have d^w^W^aii'--'^*1 or e^^1
1
i,"'',loB

fl(-^). (3. 3. 14)
follows by the same argument as in Proposition 3. 3. 1.

The coefficients 0,0* and W are related to Cy, Cf (cf. (3.3.3),-,

(3. 3. 3) J) through the formulas

(3.3.15), C,

In the sequel capital roman and Greek letters are used to indicate matrices of 0-forms
and 1-(sometimes 2-) forms, respectively.
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+ Cj^mdA + m®*CJ-1 = 0

(3. 3. 15) f Cf+1mdA + m®*Cf+1-dCf + ¥Cf

+ Cf^mdA + m0C^ = 0

for all j'eZ. For j= —1,0,1 they read

(3.3.16) ®=-CQdA.C»\ ®*=-

(3. 3. 17) ¥ = dCQ- Co"1 + [C0mJA • Co'1,

^1(3. 3. 18) [CjCo"1, C0m dA - Co'1] - rfCi • C

+ C0mdA - C^-

[C2*C0*-\ C0*m^A-C0*-1]

+ C0*m JA • Co*"1- C0m ̂ A - Co'1- 0 .

Now we apply Proposition 3.3.3 to the case w=w(IJ) or w(L\A).

Although their differentiability in (A, A) is not a priori clear, it will

eventually turn out to be true (Corollary 3. 3. 11) . We assume this for

the moment, but it is logically independent of the arguments given below.

For w = w(L} or w(L\ A) we have, as in (3.3.7),

(3.3.19) ®=-dA, 0*=-G-WA-G, ¥=-[a,mdA].

To sum up we have the following extended system of linear differential

equations

(3.3.20)

where we have set

(3.3.21) 8=-[a,mdA].

Remark. The system (3. 3. 20) contains the equations

(3.3.22)
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71

expressing the Euclidean covariance of w,

The system (3. 3. 20) is equivalently rewritten as

(30 3. 23) dw = Qw. w = [\ o . y w, v i

\w_

0_ ,, , ,, /-F-— G~1m(z-A')G\
wa — W lOg \̂ 5^ — jrLj ° I 2 I

/I \ /^ I

^ '^InxCz-A) -F--

0 G~lmd(z-A)G\

md(z-A) & )'

Thus we have

Theorem 30 3e 48 The canonical basis w(L) or w(L; A) satisfies

the extended holonomic system (3.3.20) (or its equivalent (3.3.23)).

Theorem 3S 38 5. The coefficient matrices F, G appearing in

(3. 3. 20) for w (L) or w(L; A) satisfy the folio-wing total differential

equations ("the deformation equations")

(3. 3. 24) dF= [@, F] +m2([WA, G~1AG~\ + [A, G

dG=-G®-®*G.

Here &, 0* denote matrices of l-fo?~ms characterized by

(3. 3. 25) [0, A] + [F, ^A] - 0 , diagonal of 0 = 0 .

[0*, A] + [CFG"1, rfA] - 0 , diagonal of <9* = 0 .

Proo/. We set 0= -[a, mJA] and 0*-^®. The relations (3. 3. 25)

are immediately verified by using (3. 3. 9) , (3. 3. 10) . Notice that in

terms of matrix elements 0=(0A H ,) j 0*=(0*v) (3.3.25) is equivalent to
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(3.3.26) <?„„:

' -(GFG-1},

Now (3. 3. 6) and (3. 3. 18) gives in the case of (3. 3. 7)

(3.3.27) [C2,

[C2,

Since rfF = rf([a, wA] — L) = [rfa, mA] — 8, we have

<£F= [[C2, mdAl+ea+mdA-G^mdA-G, mA]

, C2], wrfA] + [8, mA]a + 8[a, mA]

= - [a- (-L + 1) -Fa-mA + G^mAG, mdA]

+ w [fi, A] a + 6) (F + L) + w2 [A, G" ldA - G~\ - 8

= [0, F] + m*([dA, G~1AG\ + [A, G'V/A • G]) .

vSimilarly (3. 3. 17) and (3. 3. 7) yield

& = dG~l - G + \G-*mdA • G, G-"aG]

= -G-1rfG-G-"9G.

This proves (3. 3. 24) .

Let us now consider in general Pfaffian systems of the form (3. 3. 12) -

(3. 3. 13) , (3. 3. 23) and (3. 3. 24) without assuming the algebraic con-

ditions (3. 3. 10) .

First we treat the linear system (3. 3. 12) - (3. 3. 13) in the complex

domain. The integrability condition

(3. 3. 28) -~dP+dP*~ [P, P*] = 0

is easily verified. We denote the diagonal of F and GFG~* by — L

= — (Sf.vl^ and — L*= — (5^1?), respectively. In the system (3.3.8)

for it?(L) or w(L;A) we have L — L*.
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Proposition 3. 3. 6, Assume lv^—, If E£ — mod Z (v = 1, • • -, ;z) .
£j £j

(i) At z = a^ z = zQ=^=av (v = l, • • - , » ) , there exist 2n — I inde-

pendent holomorphic solutions and one that has the form

(3. 3. 29) 0 - a^ -l*-V2 x (holomorphic function}.

Likewise at z = z^a^ (jtt — 1, • • •, ?i) and z = av, there exist 2n — 1 inde-

pendent holomorphic solutions and one that has the form

(3. 3. 30) (z — av)
 lv*~1/2 X (holomorphic function}.

(ii) At z = a^ and z = av, there exist 2n~2 independent holomor-

phic solutions and two that behaves like (3.3.29) and (3.3.30),

respectively.

Proof. Set Pl§ = P / l(z)=ResP, P* = P*(z) =Res P*. A simple
2 = aA z = a v

calculation shows P^P^ /„+ —) -0, P* (P* -1* + —) = 0. It is also

clear that P^ P* are of rank 1. Hence P^ and P* are semi-simple matrices

with eigenvalues —l^ — —, 0, --,0 and/* — —, 0, • • • , 0 , respectively. More-

over the integrability condition (3.3.28) implies [P p (av) , P* (a^) ] = 0,

so that Pp (#„) and P* (fl^) are simultaneously diagoiializable. If £ — ( rv

is an eigenvector of Pfi(a^) corresponding to —l^ — — (and hence an

eigenvector of Pf (a^)), then Pf (a^) c has the form ( / / ) , so that

P*(a^c~Q. Hence at (z9 z) = (a^ aj), P^ and Pf are simultaneously

diagonalized into the form | . and v 2. L respectively.

'o/ \ 'o/
On the other hand, from the assumption lv^=£—, 1*3=— mod Z

LJ Zi
(1; = ! ^ - - ^ ;z) ^ve conclude as follows.(*} In the case (i) the system

(3.3.12) admits a fundamental matrix solution of the form Y(z9z)

= U (z, z) • (z~~ a^)Pli(z^ or U (z, z~) • (z — a^)Pv*(ZQ}
J and in the case (ii) of

the form Y(z, z) =U (z9 z) - (z- a^ p*<a"> (z- av}
 p/(a^. Here U (z9 z)

denotes an invertible holomorphic matrix at (a^z^9 (z^a^) or (a^ av)9

(t) For the local theory of a linear Pfaffian sybtem with regular singularities, see [7]
where complete results are obtained.
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respectively. The assertions of Proposition 3. 3. 6 follows from the above

observations.

Next consider (3. 3. 23) and the associated non-linear system (3.3.24).

Proposition 3. 3. 7» The non-linear system (3. 3. 24) is complete-

ly integrahle.

Proof. Define matrices of 1- and 2-forms ft, J22, J23 and Q* as

follows.

(3. 3. 31) Q, = dF~ [0, F] - m*([dA, G~1AG\ + [A, G^

We have then

(3. 3. 32) [ft, A ] + [ft, dA] + = 09 diagonal of £3 - 0

diagonal of J2* = 0 .

These equations are obtained by differentiating the defining equations

(3.3.26) for 0,0* and using (3.3.27) (in particular l9,dA] + = Q and

[»*, dA] + = 0) . Noting the Jacobi identity [ \X9 0] , ST| + + [ [(2), 5T] +, X~\

-[[?r,-X"],(5] + = 0 (X: 0-form, (5, F: 1-form) , we calculate J^ and dS2,

After a little computation we get

(3. 3. 33) dS1 - [ft, 0] + + [F, £3]

On the other hand, (3. 3. 32) shows that the matrix elements of J23 and

Q* are linear combinations of (1-form) /\ (matrix elements of ft or ft),
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hence so are the right hand sides of (3. 3. 33) . Therefore by Frobenius'

theorem the Pfaffian system ^ = 0, S2 = Q is completely integrable.

Proposition 3. 3. 8. The system (3. 3. 24) has the following

properties.

(i) For any solution F and G, F' = tG~nFtG and G' = 1G give an-

other solution. In particular tve have tF = GFG~1 and*G = G if they

hold at some (A\ A°) .

(ii) L== — diagonal of F, L* = — diagonal of GFG'1 and

det G are first integrals of (3. 3. 24) .

(iii) For any solution F, G, ive have

(3. 3. 34) F (ei6A + b, e~ie A + i) = e~iL6F (A, A) eiLB

G (eieA + *, e-wA + 5) - e~iL*BG (A, A) eiLe .

Proof. Set &' = *&* and ®*' -1®. We have then in the notation

of (3.3.31)

(3. 3. 35) G'-'^G' + [F', G'-1J£2]

x, A] + [Fx, dA\ = 0 , diagonal of ®' - 0

0, diagonal of 0*' =0 .

Assertion (i) follows from (3. 3. 35) . To see (ii) we note that diagonal

of [®?^]=o by (3.3.26). Hence (3.3.24) implies dL = 0. From (i)

the diagonal of GFG~l = tF/ is also constant. On the other hand, we

have by (3. 3. 24)

d log det G = d trace log G

- trace G-WG

= trace(-<9 — G

-0.
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This proves (ii) . Finally let ff : E (2) X (XEuc) n-> (XEuc) ", (b, b, 6 ; A, A)

*-+(ei0A + b9e~i8A-\-b) denote the action of the Euclidean motion group

E(2) on (XEuc)n. Set F = fi* (F) , G = ff* (G), ff = (T* (») + CF + L) WO,

® * = <;* (g*) _ (GFG-1 + L*) W0. Then the pullbacks of (3. 3. 24) ,

(3.3.26) to £(2) X (XEuc)n read as follows.

(3. 3. 36) dF = [® , .F] - z [L, F] dO

+ m2([dA, G-'AG] + [A, G^ A-G])

dG=-G®--®*G+i(GL--L*G)dO

[®, ^1 + [^, ^^1 = °> diagonal of & = 0

[® * , A] + [GFG-1, dA] = 0, diagonal of ©* - 0.

In particular ®, @* do not contain the terms of db, db and dO. Hence

(3. 3. 36) implies

This shows (3. 3. 34) , and the proof of Proposition 3. 3. 8 completes.

We remark that ff* (<9) - e~iLe(0- (F + L) W0) «"*, (T* (»*) - e~iL*Q (9*
L" hold.

Remark. In Chapter IV we shall construct a family of solutions
rwv(z\ Z/) of (3.3.8) which depend holomorphically on L and coincide

with those in § 3. 2 for real L. The corresponding matrices F= [a, mA]

~L, G = — (cos TrL) ~1/9~1 are then contained in those leafs of (3.3.24)

satisfying diagonal of F = diagonal of GFG~l, because both members are

holomorphic in L and coincide if L is real.

Proposition 3. 3. 9. The linear system (3. 3. 20) (or its equivalent

(3. 3. 23)) is completely integrable if F and G satisfy the non-linear

system (3.3.24).

Proof. Set £-1g' + 1S
/'5 where Q' is given in (3.3.12) and J2"
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= -dA-P-G-1dA-GP* + 0. Noting (3.3.28), we see that the inte-

grability condition reads d" Q' + df Q" + d" Q" = [£', J2"] + -f &" /\Q" . Singl-

ing out the coefficients of dz and dz, we obtain

dA-dP + G^d

= [P, dA] P + [P, G-ldA - GP*] - [P, ff]

d"P* + dA-dP + G-ldA - G0P*

- [P*, dA • P] + [P*, G-1 dA - G] P* - [P*,

- P, <9] + - [G-1 d A • GP*? 0] + .

After some calculation these equations are equivalently rewritten as

(3. 3. 37) dF= [», P] 4- 77^2([^A, G'1AG~\ + [A, G

[A, ^G - G-1 + G0G-1 + 0*] - 0

which are direct consequences of (3. 3. 25) . This proves Proposition

3. 3. 9.

Remark. Conditions (3. 3. 37) are derived more directly as follows.

Set Q = MJ,-(A9--G-1AG9 + F), 6" = - dA-d-G^dA-Gd + e. (3.3.

20) is then written as

(3.3.20)' (w-r)u? = 0, Qw = 0, ^w7 = ,£Ki;.

Noting that Q, J/x — J2/x commutes with m — F, we obtain as the con-

sistency condition for (3.3.20)' 0- (d"Q- [£", Q]) w and 0=(d"G"

w. These conditions hold if

(3.3.37)' rf"Q-[£",Q]=0, ^''^"-^"A^^O mod m2- 99.

It is easy to verify that (3. 3. 37)' is equivalent to (3. 3. 37). Note that in

the case of tc? = n?(Z/) or w(L;A), (3. 3. 37) ' is also necessary, since

d"Q- [J2", Q] and dfi" - &' f\&" both belong to C[9, 9]&)(7z X ;z matrices
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of differential forms in (A, A)).

Now let (A°, A°) = {(«)K=i,..,n be distinct ^-points of XEuc.

Choose matrices F\ G° arbitrarily. Since the right hand side of the

system (3. 3. 24) is analytic in F, G and (A, A) provided (a^ a^)^ (av, ay)

(^^=V), the complete integrability ensures that there exists a unique

solution F, G of (3. 3. 24) in a sufficiently small (simply connected)

neighborhood UA of (A°, A°) such that F = F\ G = G° at (A°, A°) . Next

let WQ(z,z) be a 2nx2n fundamental matrix solution of (3.3.12) cor-

responding to F°, G° and (A°, A°) . Then Proposition 3. 3. 9 guarantees

the existence of a unique solution W (z,z\ A, A) of the extended system

(3.3.23), such that it assumes the initial value WQ(z,z) at (A, A)

— (A°, A°) . Clearly W is analytically prolongable to the universal

covering manifold of {(z, z, A, A) e= (XEuC)n+1| (A, A) e £7^, (~, z)=£(av, aj)

(v = l, - • - , »)}. For each fixed (A, A) e C74, let

(3. 3. 38) pAti: ^(X;, ..,.,; ^0) ̂ GL(;z, C)

r • TF - w • PA!I (r) , r e 7rt (X,. .... ft7i ; ̂ 0)

be the associated monodromy representation. Since fd"W =

= d"(W-pA,i(r», we have ^WpA}I(T) =Q"WpAlA-(r) + Wd"pAtI(r) ,

hence ^0^00=0. Observe also that, as is|->oo5 |TF (s, z; A, A) |

^const. | W° (z9 z) | hold since the matrix elements of J2" are bounded in

(z, z) there. Summing up we have

Proposition 3. 3. 10. Notations being as above, the monodromy

representation (3. 3. 38) stays constant along each integral manifold

of (3. 3. 24) . Moreover the exponentially decreasing property for a

column of W is also preserved.

Corollary 3.3.11. The canonical basis xt?(Z/) (resp. w(

of W^\a[ln.,an (resp.Wlft'Zl*tan(A)) depends analytically on (A, A) pro-

vided that these n-points are distinct.

Proof. We prove the case w(L') for definiteness. Let w° (L) and

.F0, G° denote the canonical basis and the cprresponding matrices at
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(A°, A°), respectively. Let w(z, z\ A, A) denote the unique solution of

(3. 3. 23) obtained from w° (L) , F° and G° by the procedure described

above. We shall prove that w(z9 z\ A, A) coincides with the canonical

basis of WX'ai'.Z*-,a» for each fixed (A, A). Since the analyticity of

w(z9z
m, A, A) is obvious, our assertion then follows.

Clearly (3. 3. 23) implies the Euclidean Dirac equation (3. 2. 14) .

The monodromy property (3. 2. 15) and the exponential fall-off condition

(3. 2. 16) „ follows from Proposition 3. 3. 10. The local behavior (3. 2. 16) „

is a consequence of (3. 3. 23) and Proposition 3. 3. 6. It remains to

prove that the 0-th coefficient matrix C0 is identically 1. From the ex-

tended system (3. 3. 23) we have (3. 3. 4) with B = A, so that C0 must

be diagonal. Comparing the diagonal of (3. 3. 17) with ¥ = & we see that

dCQ = Q, hence C0 = constant = 1. This proves Corollary 3.3.11.

It is instructive to rewrite the system (3. 3. 8) , (3. 3. 20) by in-

troducing the formal Laplace transformation

(3.3.39) u;
J 2nu

Then (3. 3. 8) is transformed into a system of ordinary linear differential

equations

(3.3.40)
du

having irregular singular points of rank 1 at u = Q and at u = oo. The

deformation equations (3. 3. 24) are then regarded as an irregular-singular

version of the Schlesinger's equations (cf. Chapter II [2] , (2. 3. 38) ~

(2. 3. 43) ) . Setting F = [a, mA] —L(L: diagonal) , the extended system

(3. 3. 20) reads

(3.3.41)

3 = d(umA) +G~1d(u-1mA) -G

+ [a, u~ld(umA)~\ —Lu~ldu.

Example. Let us write down the system (3. 3. 24) more explicitly

in the case n = 2. We assume the algebraic conditions (3.3.10). Let
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1 = — diagonal of F(llfl2^K) and let A=(ai } with a^ — a2
\ &2/

= teie/2m, £>0. Regarding the Euclidean covariance (3. 3. 34) and the

hermiticity of G, we see that F9 G are of the form

/ - /! e~il0f+\ / 1C cosh 0 e-il°e sinh 0'
(3.3.42) F=(etuf_

/ == /j - /2, c = (det G) 1/2 = constant> 0

where f±9 K, 0 and £ are functions of £>0 independent of 6. The condition

*FG = GF implies further

(3. 3. 43) (e/_ - £/_) sinli 0-0, (£/+ - e/+) sinh 0 = 0

(£/+ — /C-1/_) cosh 0 + /£ sinh 0^0.

If 0^0 the system (3. 3. 24) decouples into linear ones which are im-

mediately integrated. We omit this case. From (3. 3. 43) we have then

(3.3.44) /+ = eyc-1(/-/tanh0)/2, /_ = ££(/+/ tanh 0)/2

/=/•

Substituting (3. 3. 42) and (3. 3. 44) into (3. 3. 24) we obtain after some

calculations

(3.3.45) f=At i— log K = l tanh2
t — ,

at at dt

(3. 3. 46) A^(t
d^\= — tanh 0 (1 - tanh2 0) + — sinh 20 .

dt \ dt ' t 2

For l = ll — 4 = 0, equation (3. 3. 46) coincides with an equivalent of the

Painleve equation of the third kind of restricted type (y = 0) studied by

McCoy-Tracy- Wu [8] . In general (3. 3. 46) is converted into the follow-

ing Painleve equation of the fifth kind by the substitution s = t2,

ff — tanh2 0 :

(3.3.47)
^ ;

'*)
ds2 \dsl\2G ff-l s ds 52 2 25

The general form of the Painleve equation of the fifth kind reads y"=y/z (~~ + ~_~j

(oiy-r—M 1 :—, where ' means --.
\ yj x y — l dx



624 MIKIO SATO, TETSUJI MIWA AND MICHIO JIMBO

Arguments for the ease of half integral /„ go quite parallel. Let

w^ (L) be the solutions (3. 2. 19) which satisfy (3. 2. 13) , (3. 2. 14)

with -!-<£,..., ln<— , cLv),,(wS±))=0 0-1, - • • , » ) , and have an addi-
£ £

tional singularity at (z*9 z*) . We set lw(±^ (L) = ('te^±} (L) , lw (L) ) .

By the same argument we have the following extended holonomic system

for w^ = w(

(3.3.48)

Here the coefficients are given as follows.

(3.3.49)

G

& I\ 0

In (3. 3. 49) F, G, 8 are those corresponding to w (L') , and £a$±) = (aif\

-,afi)), ^^OS^,-,^?) are given in (3. 2. 21),<*>. Moreover F(±>

and G(±) satisfy the deformation equations of the same type as those for

F and G, namely

(3. 3. 50) dF^ = [®(±\ F(±^ 4- m2(ldA9 G(±)-1AGC±)]

±^= -G(±)©(±)-©*(±)G(±)

(±>, A] + [F(±), rfA]=0, diagonal of ® ( ±> = 0.

*(±), A] + [G(±)^(±)G(±)-1
?^A]=0, diagonal of
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Writing down the equations (3.3.48) involving WQ= (te>o+) (L), tv^ (L))

and using (3. 2. 22) ,

(3.3.51) (77z-r,)wo = 0

(9.* +1! 9-,+ 9.) w>o = 0(3. 3. 52)

m 1d0vwQ = — — wv (z; L) •£w v (z*; 1 — L)
2 cos nlu

(3. 3. 53)

I "" 2 cos nL

Here we have set MFJZ*WQ= (z*dz* — z*dz**) WQ + WQ—f 1, MB>av
£ \ J.'

= avdav — avdav. Equations (3.3.52) are consequences of the Euclidean

invariance of w0. It is also possible to derive (3. 3. 53) directly by com-

paring the local behavior of both hand sides (notice that the singularities

at z = £* are absent in m~ldaw^ in~ldav?v^). The integrability condition

(3. 3. 50) for (3. 3. 48) splits into the deformation equations (3. 3. 24)

for F, G, and a linear system for ao±) and (3^. The latter is nothing

but the linear total differential equations (3.3.23) for w*(£*;L).

Equations for w(±) (z*y z; L, A, A) are obtained in the same fashion.

where A(/!i)= the ju-th row of A. Then WQ = WO(Z*, z; L, A) ̂  satisfies

(3.3.51), (3.3.52) and

^9z\L9A)f1f

— *-—w?> (z; L, A) - '«#•> (s*;! - L,,
2 cos ntff

(3. 3. 54)

lL—-tv*^(z'9 1-L, A) • W("}(**; L, A)
2 cos nlff
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Remark. Likewise the "Green's functions" vQ = v0(z*y z\ L) or

v0(z*9 z; L9 A) fLV = v^>} (z*9 z\ L9 Ay A(/0) satisfies the following (besides the

Euclidean Klein-Gordon equation (3. 1.2)):

(3. 3. 55)

2 sin rcl
(3. 3. 56)

MBfav + MBiZ)vQ = 0

-^P,^*, «;!,) = ——-— w , ( z* ; L) •»,(*; 1-L)
2 sin TT/,,

2 sin

7t
. 7 ~ U V J —9 / ~ 0 V » 9 / •

2 sm 7T/0-

We shall now introduce a closed 1-form a) associated with a solution

of the non-linear system (3. 3. 24). It will be shown to coincide with

the logarithmic derivative of the r-function in Chapter IV.

Proposition 3. 3. 12. For a solution F, G of (3. 3. 24) , set

(3. 3. 57) a) = - — trace (F® + &*GFG~^

+ m2 trace (J (A A) - G~l AG dA - GAG~ldA} .

Then a) 75 a closed \-form.

Proof. Making use of (3. 3. 24) and

(3.3.58) d0
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d (GFG-1) = - [9*, G.FG-1] - m* ([A, GdA • G"1]

we calculate d(D. We have

where

(3. 3. 59) 1= -— trace {([0, F] + w2([^A? G~1AG\

= _ trace {F [<^A, G~WA • G] +

+ (\_dA, G~1AG] + [A, G-l

(3.3.60) 11=-— trace {-(®*/\&* + m2[dA, GdA -G-
£i

_ ®* (_ [@*; GFG'1] - m2 ([A, GdA • G~:]

= _ trace { - [G" VA -G,dA\ +F
Zi

+ ®* ( \_A, GdA • G-1] + [^A, GAG-1] ) }

(3. 3. 61) III = - w2 trace ( [G"1 AG, G~ldG~\ dA + \dG • G~\

= m2 trace ( [G'1 AG, 0] dA + G [0, A\ G~ldA

+ [®*, GAG"1]dA +G~X[.

Here in deriving (3. 3. 59) w^e have used

(3. 3. 62) trace
distinct

3 ^AV cyclic
distinct

and similarly for (3. 3. 60). Hence we have
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de> = — trace (- [dA, G^AG] ®-&* [dA, GAG'1]
£

+ 2 [G-1 AG, ®]dA + 2 [_&*, GAG-1] dA)

+ -^L trace ( - [A, G^dA • G] 6 - &* [_A, GdA • G-1]
£j

+ 2G [0, A] G~ldA + 2G'1 [A, 0*] GdA) .

The first term vanishes by virtue of [_0,dA'] + = 0, [0*, rfA] + =0. The

second term reads

— trace ( - G [F, dA\G~ldA - G'1 \_dA, GAG'1} GdA)
£j

= - — trace (FdA - G^dA -G-dA-F- G~ldA - G

+ G-ldA - G - FdA - FG~ldA • G - dA)

-0.

This proves Proposition 3. 3. 12.

Remark. In the case of the system corresponding to w = w(L) or

w(L',A), the 1-form CO is given by a) = trace (am dA + amdA), a

— or a(L + — ;A\ (cf. (3.3.11)).

The transformation property of CD under the Euclidean motion group

is deduced from Proposition 3. 3. 8. We set

(3. 3. 63) ff : E (2) X (XEuc) n-+ (XEuc) n,

(4, b, 6; A, A)t-+(e«A + b, e~idA+b).

Proposition 3. 3. 13. We have

(3. 3. 64) <T*fl) - a) - — trace (L2 ~ L*2) idd.
Zi

Proof. Using (3. 3. 34) and the remark at the end of the proof

of Proposition 3. 3. 8, we have
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(3. 3. 65) ff* trace (F8 + @*GFG~1} - trace (F (9-(F + L) idd}

+ (6>*+

- trace (FL - L*GFG~1} idd ,

(3. 3. 66) cr* trace (d (A A) - G'1 AG dA - GAG~ldA)

- trace (d (eieA + b} (e~id A + 4)

- G (*"A + 4) G-1^ (<r"A + 5) ) .

A little calculation shows that (3.3.66) reduces to trace (W(AA)

- G-1 AG^ A - G AG~VA) . Noting L - - diagonal of F and L* = - diag-

onal of GFG~l, we obtain (3. 3. 64) .

Remark. As mentioned in p. 43, we shall be concerned only with

the case L* = L in Chapter TV. In this case the 1-form o) is invariant

under £(2).
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