
Publ. RIMS, Kyolo Univ.
15 (1979), 631-651
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$ I. IntroductioijL

Let us consider the mixed problem

(x9 y, 1) = f(x, y, f) in R\ X (0, T),

(i.i)
du !

= «i(.r, y) on I?2,
o

o=«oCr, y) on J?2
+

where JR+ == {(.r, y) ::?;>•(), yGE-R1} and 0(y) is a real-valued function be-

longing to ^(E1) = {% (y) e C00 (H1); sup (y) = 0,1,2,.- .}.

When the boundary operator is non-characteristic (i.e. inf \(f)(y) |>0) , it
yGJg

is known that (1. 1) is well-posed (in the sense that the solution exists

uniquely) and has a finite propagation speed (cf . Ikawa [2] ) .

In the present paper we shall study (1. 1) in a singular case, that

is, (f>(y) may vanish in a finite interval. Our main result is the following

Theorem. Let </>(y) be of the form (p(y)* or —(p(y)z where

(e.®00) is real-valued and inf \(p(y) |>0 for a large yQ. Then the
\y\^y0 _ "

problem (1.1) has a unique solution u(x,y,t) in C°° (R2
+ X [0, T] ) for

any (UQ (x, y) , u, (x, y) , f(x9 y,£), g (y, /) ) e C~ («i) X C" («i) X C~ (I2:

X [0, T\) XC°°(R1X [0, T]) satisfying the compatibility condition of

infinite order. Furthermore., the domain of dependence is finite.
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Here 'the compatibility condition of order m9 means that the data

(«o,«i,/,g) satisfy

on

/

for ,- = 0,1,2, . . . ,™ where „,= f"+
9^-2 O=2,3,-,

Freezing the boundary operator of (1. 1) at a point where (/>(y) =0,

we have the problem

f(x,y,t} in «*+x(0,T),

:) on JR 'xCO.T) ,
£ = 0

9& 1 . . x . _x _. . n 2

Obviously this problem is not well-posed (cf. Sakamoto [7]). Our result

shows that in a certain case the existence of the solution holds even if

the mixed problem for the frozen operator is not well-posed at some

points.

Our method is as follows: Consider the Dirichlet problem

and set

Then we can reduce the original problem (1. 1) to the equation Th = g

on the boundary, and investigate it by means of the methods for pseudo-

differential operators.

In § 3 we study the solvability and the estimate of the equation

Th — g, and show the unique existence of the solution of (1. 1). Section

4 is devoted to a study of the domain of dependence. The problem

(1. 1) has not a finite propagation speed, but the domain of dependence

is finite. Namely, for any (x0, y0, £0)
 e ^+ * (0, T) there exists a bounded

set D of 5^X[0, T) such that if the data (z/0, ul9f, g) satisfy
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ary is R* (n^>2) if the boundary operator is of the form -—+ ^2-—+ •

5 y, t) ~v on

? 0 = 0 on

c, y) = Ui(x9 y) =0 on

the solution u(x,y,t) is equal to zero on DPI {x^>0, 0<C^<C^o}- In § 5

we show that the mixed problem (1. 1) is not well-posed if 0(0) =0,

0(y)>0 for y<0 and 0(y)<0 for y>0.

We note that our results are valid also in the case where the bound-
_9_

9yi ' "*9y2
9 9

n + 0GVi) (&i is a real constant).
dyn dx

The author wishes to express his sincere gratitude to Professor M.

Ikawa for his much advice.

§ 2. Preliminaries

At first we state notations and some properties of pseudo-differential

operators with a complex parameter r = 7' + z0' (7^>0, fftER1). We denote

by S™8 (m<E:R, 0<^d<^p<*l, (?<1) the set of functions p(y, if, r)eC°°(JK(yf7))

with the parameter r satisfying for all non-negative integers cc, /?

where the constant Ca/3 does not depend on r when f = Rer^>l. For

™s we define a pseudo-differential operator p=P(y.Dy9r) by

#« =/> (y, DV9 r) u (y) - e*"p (y, 7, r) w (7) ^, ^ (y)

where ^^ = — ̂ , ^ is the space of rapidly decreasing functions and
2n

ft (if) is the Fourier transform of u(y)9 that is,

u(ij*) = 3 [u\ = fe-'^z/ ( y) dy .

Define the norm ||| • |||s (s^R) with the parameter r by

As is well known, the estimate
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holds for p (y, 77, r) EE S™s, where the constant C is independent of r (f

= Rer]>l) (cf. Calderon-Vaillancourt [1] or Theorem 1.6 in Chapter 7

of [6]). Let xGv, ??) e^(i?2) and x (0, 0)=1, and define the oscillatory

integral Os- J jViw£ (y, 7, r) Jy^fy for p (y, 97, r) <E Sp
w, by

lim
e-*0

<T*W
X (ey,

J J

Then we have the formula (integration by parts)

(2. 1) Os- J §e-tnP (V, fl, r) fdy ety

dy

(see Theorem 6. 7 in Chapter I of Kumano-go [6]). For p (y, y, r)

set

ff (P°q) (y, fl, r) = Os- J J«~""*> Cv, ?? + 7', r) 5 (y+y1, 7, r) rfy' rfj?'.

Then we have ff(P°q) (y, V, r) e 5p
m

8'
H-m2 and

0- (f o?) (y, Dy, r) u (y) =p (y, Dy, r) (gu) (y) , z^ (y) e ^

(see Theorem 2.5 in Chapter II of Kumano-go [6]). Moreover the

following asymptotic expansion formula is obtained for any integer N

(2. 2) ff(pog) (y, 77, r) - S (y, 7, r)D^(y, 7, r)

(see Theorem 3. 1 in Chapter II of Kumano-go [6] ) .

Now let us prove a lemma used later. The equation (in

has a root £+ (??, r) with a positive imaginary part and a one with a
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negative imaginary part. It is easily seen that

(2.3) Im£+07,r)^r ,

(2. 4) |f + (11, r) |^<Jr"2072+ !r|B) "«

Furthermore, there is a function 5(77, r) e5J>0 for positive integers k, I

such that

(2. 5) ~ tf+ (V, r) -*} = g 0?, r) £+ (7, r) -* .

For an integer & (>0) and </i(y) e.S™ we set

P. (y, V, r) = Os- J jV<r''0(y + y') f+ 0? + ̂ Y, r) -*«*/*/,

where the parameter 0 moves on [0, 1] . Then we have

Lemma 2. I. (i) {p0 (v, ^, r) } o^^i f's ^ bounded set in 50~J/2,

zj, ^Ae estimate

holds for a constant Ca& independent of 0 and ? (Re

(ii) {^ (y, 77, r) f + (77, r) }0^si 7"5 <* bounded set in

Proof. Noting (2. 4) and (2. 5) , we can prove (i) of the lemma in

the same way as in Kumano-go [6] (see Lemma 2. 4 in Chapter II of

[6] ) . Let us give the proof only in the case a = 0 = 0. For a positive

integer m we have

Obviously this is a C°° function in (y, 77) . By (2. 5) we can write

MV, V, 0 - J J0 (y, y', 7, 7', r, 0) f + (T? + 0?', r) - Vy W
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- ff
J Jlv'l£

f f
J J|*

+

where \0(y, y', y, T/', r, 0) \<C,(l + ??'2) — (1+y2) — (Q is a constant in-

dependent of y, y' , y, yf , t and 0 (r^Rer^l and 0<^<;i)). Since

ir]2)1/2^-0?2+M2)3/2 when 1 |̂̂ -^ and 0
2 2

^^^1 , it follows from (2. 4) that

Uil^G J J (H-?'2) ~m(l +y2) -mdy'^fif (f+ |r|2) -(fe/4)

Noting that \g+(y + 6y', r)-fe|^C]r]-fe/2, we have

f f
J J|

(r = Rer>l).

Therefore the estimate \pe (y, f], r) |^C5(^
2+ |r|2) ~fc/4 is obtained.

Next let us show (ii) of the lemma. By Taylor's expansion

we have

Pi(y, V, Of+(7, 0 = 0s-

- Os- J JV^'Xy + y ') f + 0? + 07', 0 -fc

x I f-^^+a-^^'.r)^}^'^^1?'.! Jo dij >

From (i) of the lemma, the first term belongs to 5^J/2+1/2 and is bounded

there when 0<i0<!l. Since — -($, r) = — - - - , the second term is
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of the form

x I ?6+ (1 + 6(1- fin',
( JO

Os-

In the same way as in (i) of the lemma, we see that Jj and Jz belong

to S0:o
fc/2~1/2 boundedly when 0<;0<:i. Therefore (ii) of the lemma is

obtained.

§ 3. Existence of the Solution

Let Hm(M} be the Sobolev space on M of order m and | | - | | m , f f its

norm. We denote by Hm>7 (R
2

+ X R\) (r>0, m = Q, 1, 2, • • • ) the func-

tional space {^ (.r, y, ^) : e~rtu^Hm (U2
h X U^) } with the norm

l*li,r= 2] L wle+J-+j:,j=ra J«5.x«i

In the same way, we define the space HMif (R'X R\) and its norm

< • >ro.r. Let us define the norm [ • ] m,r (m = 0,1, • • •) of Hm (fi2
+) (Hm

y L J "i r — f i \ I / -*~^x-*~^y *^ \"^> 3^/ I Cv*£C*'fy •

In this section we consider the mixed problem

( Uu(x,y,t)=f(x,y,t} in JS2
+X(0, oo),

(3.1)

.; on
*=o

= Ui(x9 y) on «.+ 5

Assume that (p(y) (e^°°) is real-valued and satisfies inf \(p(y) |^>0 for a

large constant yfl. Then we have
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Theorem 3. 1. There exists a constant fm (>0) for m = 293, •••

such that if T^Tm the problem (3. 1) has a unique solution u(x,y, f)

in Hm>7 (R
2

+ X «i) /or any (u0, ulyf, g) e Hm+4 (R*+) X ffm., (fi'+)

X Hm+SiT (R2
+ X 1Z+) X Hm+z>r (R1 X H+) satisfying the compatibility con-

dition of order m + 2. Furthermore, the folio-wing estimate for this

solution holds:

The discussion in this section is applicable to the problem with the

boundary operator - — (p(y)2 - instead of - 2
~ T \-r / s*. s^. < T \~r / ^dy dx dy dx

Combining the following corollary of Theorem 3. 1 with the result in

§ 4 concerning the domain of dependence, we can prove easily Theorem

stated in Introduction.

Corollary of Theorem 3, 1. Let the assumptions of Theorem in

Introduction be satisfied. Then, the problem (1. 1) has a unique solu-

tion u Cr, y, 0 in Hm (R\ X (0, T) ) (m = 6, 7, • • •; T< oo) for any

(UQ (x, y), Ul (x, y) , f(x, y, t) , ff (y, 0 ) e JTm+4 (I?
2
+) X /fm+a (H2

+) X Hm+s(R
2

+

X (0, T)) X / ^ H s C ^ X (0, T)) satisfying the compatibility condition of

order m+2.

Proof of Corollary. Extending f(x, y, t) and g (y, t) in the data to

t^>T continuously, we obtain a solution u(x, y, t) eHm(JR+ X (0, T)) of

(1. 1) by means of Theorem 3. 1.

Let us show the uniqueness of the solution. Let u(x, y, t) EiH6(R
2

+

X (0, T)) be a solution of (1. 1) for zero data. For any £>0 choose a

function %(t) eC03 such that %(t) =1 for O^^T— e and ^ (^ )=0 for

Then *w — yu is a solution of the equation

(3.2)

*, y5 0 - [D, %]^fe y, 0 in R\ X (0, oo),

Bw(y,£)=Q on ffxCO, oo),

9W A EJ9-— -0 011 fi-+,
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where [Q, ^] is the commutator of [U and ^. [B» %]^ belongs to J7"5t7 (JR+

X.R+) and its support lies in {T — e<^t<^T} . Obviously the result in

Theorem 3.1 is valid also when the initial condition is posed on t = T

— £. Therefore there is a solution of (3.2) in H2i r (M.2+ X jRij.) whose

support lies in {T"7— £5^£<^oo}. From the uniqueness of the solution of

(3.1), we conclude supp[^S] C {T— £<,t<^ce} . Since £ is any positive

constant, u is equal to zero in {Q<^t<^T}. The proof is complete.

From now on, we shall prove Theorem 3. 1.

1) At first we reduce the problem to the equation on the boundary,

as is stated in Introduction. Tsuji in [8] also employed the same reduc-

tion. Let us define

#•„,., (I?2, < I?1) - \u (>, v, 0 ^ HM (R\ X JI1) ; supp [u] C. {f^

and H7llir(R
1xR1) in the same way. The following two propositions are

well known.

Proposition 30 1. We have a unique solution nf (x, 3% t) in

Hm<n.r(R*>-R1+) (?'>!, w = 2, 3. • • • ) satisfying the Cauchy problem

n u' (x, .V, 0 = /' (-^, .v, 0 in JR2 X R\ ,
9^x

----- .-- ^A (x9 v) on J{2
 ?

ot l
t==Q

u'M = u'0(x,y') on R2

for any (/', //J , M{) e J7m>r (U
2 X R^) X Hm+, (I?2) X Hm

Proposition 3. 2. For any h (y, t) tE Hm>r (R
: X U1) (r^l, w = 2, 3,

• • • ) there exists a solution iv(x, y, /) e J/m,7 (!?+ X I?1) of the Dirichlet

problem

(3.3) I 7:e;^r>:y> "" m +

' 7-, / ^ A , A ~« I?l \X »1.o1^/^!^. £) on JC X If .
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This solution is unique in H2ir (R2
+X R1) and the following estimate

holds:

\w\2 <—m>r= r

We set for h (y, t) E^ Hm,r (R
1 X R1}

dy

where w is the solution stated in Proposition 3. 2. Let (UQ, u l 9 f , g) be

the data in Theorem 3. 1. Extend u0 (x, y) , iti (x, y) and f(x, y, t) to

:r<0 continuously, and denote them by u'Q (x, y) , u{ (x, y) and /' (a:, y, ̂ )

respectively. For these u§ , 2^1 , /' \ve have the solution u' e Um4.4 (Jl
2 X !?+)

stated in Proposition 3. 1. Define g' (y, 0 =gf (y, 0 — Ba' (y, 0 for ^>0

and g' (y, ^) — 0 for £<()„ Then, noting that the data (uQ,ul9f,g) satisfy

the compatibility condition of order ra + 2, we see that gf (y, t) belongs
+

to Hm+2tr(R
lxR1}. If the equation Th' = g' has a solution h'(y9t)

+
<E H"mpr (R

1 X H1) , then u (x, y, t) = &x (x, y, ^) + vu' (x, y, t) (w' is the solu-

tion of (3.3) for & = &') belongs to Hm,r (R2
+ X R1,) and satisfies (3.1).

So we have only to investigate the equation Th = g.

Lemma 3. 1. There is a constant ?m for m (^>0) such that if
+

we have a unique solution h ofTh = g in HmiT(R1XR1) for any
+

g ^ Hm+2t7 (R
1 X R1) and have the estimate

<A>L.r^-<™>Ur.

It is easy to see that Lemma 3. 1, Proposition 3. 1 and Proposition

3. 2 yield Theorem 3. 1.

2) Let us prove Lemma 3. 1. We set

where f T (77, r) is the root stated in § 2. We define the Fourier-Laplace
+

transform of h (y, t) <E Hm,r (R1 X R1) by
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Since the solution iv (x, y, f) in Proposition 3. 2 is expressed by the

form

w (x, y, t) = exp (ft- + iyfj + 10;?+ (77, r) ) h 07, r)

T is of the form

Th (y, t) = i >^* (97 + 9 (y) 2£+ (97, r) ) h 07, r)

Noting that fj + cp (y) 2?+ (77, r) is the symbol of P, we see that Lemma

3. 1 is derived from the following lemma.

Lemma 3. 2e We have for any s^H

(ii) l|P*«lJ
-where P* 75 ^/?^ formally adjoint operator of P and the constants

Q, CZy Ti9 Tz do not depend on r=/ ' + z<7 (r^l) . ( I l l • III* z*5 ̂ ie norm de-
fined in § 2) .

The following lemma plays an essential role for the proof of Lemma

3.2,

Lemma 3e 3* Let 0 O) e .3°° (U1) . There exist symbols a (y, 9?? r) ,

(y, "^s r) f + (77, r) , /? (y, ?7, r) g+ (97, r)

'where [0, <?+] =$£+ — ?+0. (This statement is valid for £+0?, r)).

Proof. By means of the asymptotic expansion formula (2. 2), the

symbol of [0, <?+] is expressed by the form
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- fJOs- f (e-**'*
Jo I J J

Since —£+ (?7, r) = — — -? - , it follows that

Os-

= -Os- JJVW(£WO

-Os-

=^0 (y, ̂  r) v-^- A (y, ̂  r) 5 .

Here we have used the formula (2. 1) . Lemma 2. 1 implies that

te(y, T?, r)}0<;fi<:2, {AGy^r)}^,^ and {a f l(y,^f)^(T7, r)}^^, {A(y,

f), r) f + (^, r) } os0;si are bounded in 5^5/2 and *SJ|0 respectively. Therefore,

setting

a(y,?,r)= fa .Cy,V,r ) r f f l , /9 (y ,^ r )= f A(y, V,r)^fl,
Jo Jo

we get the lemma. The proof is complete.

Let As (s^R) be the operator with the symbol Of+ |t|2)s/2. We

obtain the following lemma by an easier argument than the proof of

Lemma 3. 3.

Lemma 3, 4. Let 0(y) e ^°° (H1) . There exist symbols

^s-2 (y, ̂ , r) , £s_2 Cy, ̂ , r) e Sf.'o2 (5 e R) 5«cA that

From the assumption inf \(p(y) |>0, we get

Lemma 3, 5. For s e R we have

ll.+IBtf+«|||.+-lll«l.),
r

where the constant C ^/o^5 not depend on r (7 = Re rl>l),



MIXED PROBLEMS WITH AN OBLIQUE DERIVATIVE 643

Proof. Let x(y) (e^°°) =1 for |y|<0y0, xGv) -0 for !vl^3'o + l and

SSx(3;)SSl- Then it follows from inf \<p(y) |>0 that

By Poincare's inequality we have

|||. + 1 (Ax) ̂ «lll. + III (i - x) ̂ «1.) •

Noting that Dy = P— <fg+, we get

By (2. 3) and Lemma 3. 3, we have

lllo^-'lllf+^^lllo
r

^- (Illf + [^, ̂ 1 «lllor

^-7

r
Therefore the lemma is obtained.

Proof of Lemma 3. 2. Noting that P*u = Dyu + £lq?u, we can obtain

the estimate for P* in the same way as for P. So let us prove only

(i) of the lemma. This is derived from the inequality

(3. 4)

where the constants ft, Q do not depend on r. In fact, combining this

inequality and Lemma 3. 5, we get

ll|P«m.^lll«l.^ (r- n) QWIJ-Q (|||Pa|||:,v*+ Wl.') ,
which proves (i) of the lemma.

In view of (2. 3) we have

Im (Pu, u) = Im { (Dyti, u) + ($+<pu, (pit) + ( [p, $+] u, cpu) }

Therefore,
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Since we can write

[P, Asf +] =<p[<p, As

= (p\ff, S .] As? T + ^+ |>, As] $+

we get

Im (A*£ +Pu, As^u) ^rlM'f +«|||S

^rlM'ff+wlll! - {27,

Let us show

/«^C4(|||P«|||: + l^+«|||J + |||«i;), (*• = !, 2, 3, 4).

By Lemma 3.3 there are symbols as(y,rj,T) , bs (y , TJ, r) €E 5^ 0 such that

Similarly, [^, F+]/isf+ (= |>, f+]^'?r
+ -F;1^) is of the same form. Fur-

thermore, from Lemma 3. 4 it is easily seen that ?+ [0>, Js] f + and

A~s[(p, As~\f +?-rA
s are also of the same form. These facts yield

||I + |||«|||;) (»• = !, 2, 3, 4).

Hence,

Noting Lemma 3.4 and Dy^=P — (pz^, we have

Therefore, (3. 4) is obtained. The proof is complete.

§ 4- The Domain of Dependence

In this section we shall study boundedness of the domain of

dependence for the problem (1. 1) . Let the boundary operator in (1. 1) be



MIXED PROBLEMS WITH AN OBLIQUE DERIVATIVE 645

of the form -— -\-<p(y)z (or — V(yY ) and (p(y) satisfy the
dy dx \ dy dx/

assumptions of Theorem stated in Introduction. Moreover, for simplicity

we suppose that ^(0) —0 and (p(y)^=0 for y^=0. This is not essential,

and boundedness of the domain of dependence holds without this hypoth-

esis. By Ikawa [2] we see that the propagation speed of the solution

is finite at the points where (p(y) does not vanish. So we examine the

domain of dependence near (x, y) = (0, 0).

Set

= P
Jo

Then 0(y) is an increasing C°° function and ( - (yfl) i (vo^O) equals
\dy i

the propagation speed for the problem with the frozen boundary condition

=ff (y, 0 (cf- Appendix of [2]). We set for tQ (>0) ,
ay dx

Our purpose is to prove

Theorem 40 !„ (i) The problem (1. 1) has not a finite propaga-

tion speed.

(ii) Let u (x, y, t) G H6 (R2
+ X (0, T)) be a solution of (1.1) for

data («„, KJ,/, g) e H"7 (H
2,) X H6 (R\} x /J8 (R\ X (0, T)) X HQ (R1 X (0,

T)). I/

^o (a:, y) - 0, Ml (x, y ) - 0 on D , ^ = 0} ,

then u(x, y, t) =0 on Dto H {

Remark 4.1. (ii) of the theorem is valid also when u(x,y,t)

In fact, take a C°° function %(x9y9 t) with compact support satisfying

yt(x9y9f)=\ in a neighborhood of A0 H {.rl>0, 0<[ £<[£<,} and consider
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the equation for yii. Then we can easily prove Remark 4 1 from the

case u^HQ (R2, X (0, T) ) .

Proof of Theorem 4. 1. At first we prove (ii) of the theorem.

Let the data ( u Q , u l y f , g ) satisfy (4.1). Denote by d(t) the inverse of

0(y) (i.e. 0(8(1)) =t). For any £>0 choose a C°° function q?s(y) such

that 0^8(y)^l, <?£(0)>0 and supp[>£] C [~-^_, ̂ -1. We con-
L. £/ £ J

sider the equation

( Hv(x,y,t)=f(x,y,t) in R\ x (0, *,-e),

^+(^(y)2+^(y))|^)j = ff(y,0 on H'x(0,*,-e),
9W|^

= «i(:r, y) on R2
+,

-UQ(x^y) on -f?4 .

Since the boundary condition of this equation is non-singular, we can

apply the methods of Ikawa [2]. Therefore, there is a solution v(xyy, t)

(^HQ(R\ X (0, tQ — e))) such that

v (x v t} — 0 on D 0 •)

Obviously this v(x, y, t) satisfies (1. 1) for 0<^t<^t0 — e. From the unique-

ness of the solution of (1.1) (see Corollary of Theorem 3.1), we can

conclude that u(x,y,t) = 0 on Dto D {x^>Q, 0<^t<^tQ — £}. Since e is any

positive constant, (ii) of the theorem is obtained.

Next let us show (i) of the theorem. The idea of the proof is sug-

gested by Kajitani [4] and Appendix of Ikawa [2]. We construct an

asymptotic solution

(4. 3) uw(x, y, t) = f] eM(*'"• %„ (x, y, t) (ik) ~n

71=0

in the same way as in [5] such that

nuy(x9y9f)=eiM\3^(ikry in «', X [0, T]
BuN(y,i)=Q on JJ'x^T].

an easy calculation we have



MIXED PROBLEMS WITH AN OBLIQUE DERIVATIVE 647

-" + 2

e ikfJ)BuN= (f/e)

1 xr r 1 9$ 9$ 90 - T r™ rwhere 0i5 0X9 0y denote , , — respectively. ihereiore, we

obtain the following equations for the phase function 0(x,y,t) and the

amplitude function vn (~K, y, t) (i;_j = 0) :

(4.4)

(4.5)

(4. 6) 2 (0,9w- - 0 j? "-• - 0,9?-i) + (Q0X = - n W.-L
V at ax ay/

(4. 7)

Combining (4. 4) and (4. 5) on the surface {x = 0}, we have the equation

for l(y, t) =0L= 0 :

(4. 8) ly - (f? v7 Z l̂| = 0 .

Here we do not use the other equation ly-{-(p2vl2
t~ly = Oa As is easily

seen, the function

(4.9) l ( y , t ) = 9 ( y ) + t .

is a solution of (4.8). By Hamilton-Jacobi's theory we have a solution

0(x,y,t) of (4.4) with @\x=Q = l(\\ t). Thus we obtain a real solution

0(.r,3>,/) satisfying (4.4) and (4.5). (4.6) and (4.7) yield the follow-

ing equation for vn(y, t} =vn X=Q:

(4.10)

The characteristic curve of this equation through (0, ^) coincides with
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the curve { (y, *) : 8 (y) + 1 = t£ since ^3?L=o= — V/? — /J, (SyL=o = ^ 0J*=o

= Zt and Z(y, *) = 0(y) + *. Solving (4 6) for .r>0 with vn\x=Q = Vn(y, t) ,

we get vn (x, y, t) satisfying both (4. 6) and (4. 7) . Note that every

characteristic curve of (4. 6) reaches in the direction .r>0, £>0.

Now, let the mixed problem (1. 1) have a finite propagation speed

v. Then, if the data (u0, ul7f, g) of (1. 1) satisfy

= on
(4.11) g (y ,0=0 on

u0(x9 y}=ul(x,y'}=® on C,op,

the solution u(x,y,t) is equal to zero on C£(J fl {x>0, 0<^<C^o}> where

2 2 1 / 2 Since -^-(0) = 0, we can choose

a small constant ^ (>0) such that vt0^—d(t0) (where 0 (<?(*)) = 0 • ^
o

Ui — ̂ ol is small enough, the intersection of y-axis and the characteristic

curve of (4.10) through (0, O lies in \2L8(t1d<y<—8(t0)\. Therefore,
v O O )

we can take {vn(y, £)}n=o,i.- so that vn^C°°, vQ(Q, £0) ^0 and supp[vn(y, 0)]

C — d ( t o ) 9 — 5 ( 4 ) • Hence, we can construct the asymptotic solution
L <j G J

uN(x,y,t) satisfying

D ##(•£, y, 0 — £l**n^vC£, y, 0 (ify~N i° J?+x(o,T)?

^^^(y,^)^0 °n Rl*(Q,T},

B = 0 on C £ n ^
dt

Let % (^) (GEC00) =1 for O^.r^'^T' and %(~r) —0 for ^^i;7^4-l. Then,

A Cr, y, 0 = - ^"^ D ̂ v (^, y, 0 % (j:) belongs to Hm^ (R\ X (0, T)) (m

= 6, 7, • - • ) • Furthermore, we have 5 -.-=( + ^?2 —j—r/V, =0 for

j = 0, 1, • • • . Therefore the data (UQ, ul9 /, g) = (0, 0, fN, 0) satisfy the

compatibility condition of infinite order. By the result in § 3, there ex-

ists a solution ZVN (x, y, f) ( e C°° (5^ X [0, T] ) ) satisfying

*(y,0=0 on B^^T),

J=o = 0 on 121.
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and the estimate

sup \wN(x9 y, t) \^Ci\fN\ttR^QiT)<£2k*

holds, where the constant C2 does not depend on k (>0). We take the

integer AT>9, and set

u(x, y, t) = WN(X, y, t) (ik) ~N + uN(x, y, t) .

duThen, (u0,icl9f,g) = u , Bit] satisfies (4. 11), but u(x, y, t)

does not equal zero in a neighborhood of (x, y, t} = (0, 0, £0) when

&>>0 is large enough. This is a contradiction. Therefore, (i) of the

theorem is proved.

Remark 4. 2. (i) of Theorem 4. 1 can be verified also by the methods

Ikawa [3] has employed to study the propagation speed of the mixed

problem.

§ 5* A NoM-well-posed Case

In this section we shall prove the following

Theorem 5* I. Let the function 0(y) in (1.1) satisfy 0(0) =Q9

0Gv)>0 for 3/<0 and 0(y)<0 for ;y>0. Then the problem (1. 1) is

not *well-posed.

Here 'well-posed' means that there exists a unique solution of (1. 1)

in C00 CR^ X [0, T]) for any fa,, u,9 /, g) e C^° (R^) X C°° («^) X C°° (S^

X [0, T] ) X C00 (R1 X [0, T] ) satisfying the compatibility condition of

infinite order.

Proof. If (1. 1) is well-posed, there exist a positive integer I and

a compact set K (cl?+) such that

(5.1) sup |a(0,0,

= Q\l,K
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where K' — K fl {x — 0} and the semi norm \v\iiM denotes

I] sup
\a\<l

d_
dx

-) v(x'} . Let us construct an aymptotic solution

uy(x, y,t) = E ettct^'nvn(x, y,

which is of the same type as in the proof of Theorem 4. 1 and breaks the

inequality (5. 1) as k—> + oo. By the same procedure as in the proof of

Theorem 4.1, we get the following equations (cf. (4. 4) ~ (4. 7) ) :

(5.2) 0?

(5.3) «

(5.4) 2^,^-(5r^-(5/''-
\ at ox ay

(5.5)

We have a real solution &(jc,y, f) of (5. 2) and (5. 3) with (5ar<0,

Combining (5. 4) and (5. 5), we obtain the equation for vn(y, t) =vn\x=0

(5. 6) (0,U,-0(P, UO

From the assumption of Theorem 5.1, any characteristic curve t — t(y)

of (5.6) is concave (i.e. --- (y) <0 for — 5i<C:V<CO and — -(y)>0 for
\ dy dy

i, where <Ji is a small positive constant). Therefore we can choose

the to(*,y,*)},,-o.i...... so that tfB(*,y,*)eC-(fij;x[0,Tj) (» = 0,1,2,
/T>7-»

for some i» (0<tQ<T) and VB (*, j, 0) = (x, y, 0)

- 0 on Rl (K = 0, 1, - • •) - Then, «A- (x, y, *) = 2 ^**ww (^) "w satisfies

- n
0=0 on Jl 'xCO.T),

=M j v | i = 0 = 0 on U2
+ )
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and |w^(0, 0,^0) |-»l^o (0,0, ^ 0) |=^=0 as k-» + oo. This violates (5.1) (if

A^>/). The proof is complete.
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