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Mixed Problems in a Quarter Space
for the Wave Equation
with a Singular Oblique Derivative
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Hideo SOGA™

$1. Introduction

Let us consider the mixed problem

A S
DuE<W~@_w>u(:c, y, t) =f(.l" y, t) m R+X (0’ T)’
=(9 Lo )yl =g(» :
W Bu—<ay+w(y)ax>u‘r=o—g(_x,1) on R'x (0,7,

ulmo=1(x,y) on R,

where R} = {(z,y): >0, veR'} and ¢(y) is a real-valued function be-
i
longing to B~ (R") = {y(y) €C~(R"); sup ﬂ(y) <o0,7=0,1,2, -}.
YER dyj

When the boundary operator is non-characteristic (i.e. inf [¢(y) [>0), it
YER

is known that (1.1) is well-posed (in the sense that the solution exists
uniquely) and has a finite propagation speed (cf. Ikawa [2]).
In the present paper we shall study (l.1) in a singular case, that

is, ¢ (y) may vanish in a finite interval. Our main result is the following

Theorem. Let ¢(v) be of the form ¢ (v)* or —@(v)? where ¢(y)
(e B*) is real-valued and inf |@(v)|>0 Jfor a large v, Then the
problem (1.1) has a uniquews;;tion w(zx,y, t) in C*(RL %X [0,T]) for
any (u(2,9), w(z, ), f(2:3,8), ¢(.1) €C*(R,) XC* (RY) X C~ (R},
X [0, T]) XC*(R'X [0, T1) satisfying the compatibility condition of

infinite order. Furthermore, the domain of dependence is finite.
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Here ‘the compatibility condition of order 2’ means that the data

(o, 4, f, g) satisfy

0 0 1 0’g
Bu -=—<—+ —>u P T R,
7 ay ¢(y) ax 7 11:0 tj {tzo on v
. ) [0 0* 0 f _
for j=0,1,2 --- m where u;= <5E+ 5;—2> Uj_o+ e z=0(J—2, 3,

Freezing the boundary operator of (1.1) at a point where ¢ (y) =0,

we have the problem

Du(z,v, ) =f(z,5,8) i Rx(0,T),
%ul gy, on Rx(0,T),
6y‘x=0

%%ho:ul(x,y) on R,

ulio =uo(z,y) on RI.

Obviously this problem is not well-posed (cf. Sakamoto [7]). Our result
shows that in a certain case the existence of the solution holds even if
the mixed problem for the frozen operator is not well-posed at some
points.

Our method is as follows: Consider the Dirichlet problem

{Dw(x,y,t):O in RLxXR',
Wl,mo=h(y,2) on R'xR!

and set
Th=Bw.

Then we can reduce the original problem (1.1) to the equation Th=g
on the boundary, and investigate it by means of the methods for pseudo-
differential operators.

In § 3 we study the solvability and the estimate of the equation
Th=g, and show the unique existence of the solution of (1.1). Section
4 is devoted to a study of the domain of dependence. The problem
(1.1) has not a finite propagation speed, but the domain of dependence
is finite. Namely, for any (z,, vy, ;) € R% X (0, T') there exists a bounded
set D of R:X[0,7) such that if the data (u, 2, f,g) satisfy
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Sz, v,2)=0 on DN {x>0, 0<ze<ts},
g(y,2)=0 on DN A{x=0,0<t<¢ty},
uy(x, y) =u;(x,y) =0 on DN {x>0,t=0},
the solution #(x, vy, t) is equal to zero on DN {x>0,0<¢<¢}. In §5
we show that the mixed problem (1.1) is not well-posed if ¢ (0) =0,
¢ () >0 for y<<0 and ¢ (y) <O for y>0.
We note that our results are valid also in the case where the bound-

ary is R} (n=2) if the boundary operator is of the form i+tz, 9 + ..
9 0y, 0y,

+ﬂn—+¢(y1)i (a; is a real constant).
ayn @x

The author wishes to express his sincere gratitude to Professor M.

Ikawa for his much advice.

§ 2. Preliminaries

At first we state notations and some properties of pseudo-differential
operators with a complex parameter 7=7+:0 (7>>0,0€ R"). We denote
by S (me R, 0=0<0=<1, 0<1) the set of functions p (y, 7, r) € C*(R%,,,)
with the parameter t satisfying for all non-negative integers «, B

aa+ﬁ [
T ;Scu 2+ T 2\ (1/2)(m—pa+dB) ,
ayﬁaﬂ“p (y’ 77’ )l__ ﬂ(n l | )

where the constant C,; does not depend on t when y=Rer>1. For

2,7, 7) €S we define a pseudo-differential operator p=p(y. D,,v) by
tu=p(y, Dy, )u(y) = je‘wp ,mamdnrn, wuly) e,

where d‘/]=é:—l—d77, & is the space of rapidly decreasing functions and
Y

@ (1) is the Fourier transform of #(v), that is,
a@)=Y[u]= je‘“’”u (V)dy .
Define the norm || ||y (s&€R) with the parameter t by

a2 = j P+ 1212 () .

As is well known, the estimate
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ll2ulle=Cllulln, uc

holds for p(y,7,t) €S, where the constant C is independent of 7 (7
=Re r==1) (cf. Calderén-Vaillancourt [1] or Theorem 1.6 in Chapter 7
of [6]). Let x(v,7) € (R® and y(0,0) =1, and define the oscillatory

integral Os- j je*%(y, 7,7 dydy for p(v,7,7) €S by

lim j J e ¥y (ey, 1) p (v, 7, ) dy .

-0

Then we have the formula (integration by parts)

@1 Os- ”ep (v, 1, ) 1°dy d7

. .0 \*
= - =y )y T = -7
Os- | [eD5p (v, n, ) dvan (Dy=( Zay> )
(see Theorem 6.7 in Chapter I of Kumano-go [6]). For p(v,7,7)
eSS, a7, 1) ES,75 set

¢ (poq) (y, 7, 7) = Os- ”e*”'p W 1+7, D gty 7, ) dy .

Then we have ¢(p°q) (y,7,7) €S,5*™ and
g(poq) (v, Dy, Yu(y) =p(y, Dy, 7) (qu) (), u(y) €S

(see Theorem 2.5 in Chapter II of Kumano-go [6]). Moreover the

following asymptotic expansion formula is obtained for any integer N

(>0):

N—ll aup .
(2'2) d(poq)(y97711-)—2——' p (y’ﬂ’f)Dy(I(y,”],r)
a=or! 0
1 N-1 N
B e P ,
=D 10% ) )T gy Gh 070

x DY¥qg(v+v',7, 1) dy’d?]’} df e8Spytme ey

(see Theorem 3.1 in Chapter II of Kumano-go [6]).

Now let us prove a lemma used later. The equation (in §)
24+&847=0 (r=Rer>0,7€R)

has a root £,(7,7) with a positive imaginary part and a one with a
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negative imaginary part. It is easily seen that
(2.3 Imé, (n,0=7,
(2. 4) 1€ (1, ) | =0 (P + 1D (6>0),
(7)) ESsy-

Furthermore, there is a function g(,7) €8], for positive integers k, [

such that
o —k —k
2.5) o7 s, )™ =q@, 06 @, 07"
For an integer £ (C>0) and ¢ (v) € B~ we set
Po (¥, 1, ) =0Os- Ije_‘”'”'ﬂb +) 5 (+07',9) *dy' a7,
where the parameter 0 moves on [0,1]. Then we have

Lemma 2.1. (@) {£o( 7,0 }ososs 75 @ bounded set in Sy§*, that

is, the estimate

oo+ —k
9yPoy uPa(y 7, f)l<caﬁ(77 + o]~

holds for a constant C,z independent of 0 and v (Rer=1).

1) e, 0D E (0T Yogogs 15 @ bounded set in Sy

Proof. Noting (2.4) and (2.5), we can prove (i) of the lemma in
the same way as in Kumano-go [6] (see Lemma 2.4 in Chapter II of
[6]). Let us give the proof only in the case a=/f=0. For a positive

integer m we have
pe(y, 77, Z') — jj‘e—ivup (1 +77/2) —-m (1+Di')m(1+ y/2) ""‘gb(y +y/)
@+ D" (EL (407", 0) ) dy dn’.

Obviously this is a C* function in (v,7). By (2.5) we can write

20,0,9= (06,507,508 @+, -y ar
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=[{ _ oearor,orayar
Isinl/2

+ j j 0-&, (n+067",7) " *dy’ &y’
I I=ll/2
EII+IZ,
where |0(y,5,7, 7', 7,0) [<C,(1+7%) ™1+ ™ (C, is a constant in-
dependent of y, 3", 7, 7, v and 0 (r=Rer=1 and 0<A<1)). Since
%(WZHTP) S (@4 07) + o) =S (4 (e when m'zg'zi' and 0
<61, it follows from (2.4) that
BI=G [ [a+an mavyy =ayar o +1e -
(r=Rer=1).
Noting that &, (7+07, 7) *|<<C|r|™?, we have
BISC [ ey @y e
17 1=11/2

xdy’dy (7' + ]~

<c. [[a+ynma+rymrnay ay @+ |oH =
(r=Ret=1).

Therefore the estimate |p, (v, 7, ©) |<<C; (7*+ |t]?) 7** is obtained.

Next let us show (ii) of the lemma. By Taylor’s expansion

=8 00,0 + ] aaf; @+ (A1) 07, Ty dp(—07),

we have
203,71, 9. (0,7 = Os- [ [y (98, 4 007, ) +dy
—Os- j j e ITY(y +3") 6, (0407, T)
| % 1+ A= w07, D) d} ov'dy .

From (i) of the lemma, the first term belongs to S;#**"* and is bounded

there when 0<6<1. Since @é(ﬂ, ) =— 7 , the second term is
o7 €, (1,7)
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of the form

Os- fje"”'”'sb (+y)E (+07,0)7"
X { J:a (+0@—p)7,7) “d/z} 7'dy’dn’ 07
+ Os- fje-“’"’sb(y +v)E (m+ 0y, )"

1
X { j; E,(+0Q—w7',0) A —pn) dﬂ} 72dy’ dy’6*
EJIG’}? +J202 .

In the same way as in (i) of the lemma, we see that J, and J, belong
to S;&”"* boundedly when 0<{0<{1. Therefore (ii) of the lemma is

obtained.

§ 3. Existence of the Solution

Let H, (M) be the Sobolev space on M of order m and |- |, r its
norm. We denote by H,,(R:.XR.) (r>0,m=0,1,2, ) the {func-
tional space {u(x,y,?):e™uc H, (R X R')} with the norm

2

lul,, = le"r*Di{ D D\ u|*dzxdydt .

i+jkl=m Lﬁixlfi
In the same way, we define the space H, ,(R'XR.Y) and its norm
{*>mys Let us define the norm [-],, (m=0,1, ---) of H, (R (H, (R?)

by ['U] fn,r = z I;iDﬁD"'v (x, y) Izdxdy.
v
i+ji+k=m

In this section we consider the mixed problem

Ou(z,9,8) =f(z,y,2) in RLX(0,00),
(2 4o D)al =00 on Rx (O,
ay 0.2: z=0
3.1 9
a_:‘ ‘=0= ul(x’ y) on Ri s

ulimo=u,(x,y) on R:.

Assume that ¢(y) (€ B*) is real-valued and satisfies inf |¢(y)|>0 for a
lyl=Zvo

large constant y,, Then we have
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Theorem 3.1. There exists a constant 1, (>0) for m=2,3, -
such that if y=7,. the problem (3.1) has a unique solution u(zx,y,t)
in H,,(RLXRY) for any (uowu,f,9) € Hpss(R) X Hyoy (RY)
X Hpisr (REXRY) X H, o, (R*X RY) satisfying the compatibility con-
dition of order m-+2. Furthermore, the following estimate for this

solution holds:

TZI u l?n,r.gc (!fIZrH—S,T_{_ <g>3n+3.r + T [uﬂ] 12n+4,r+ T [ul:l fn+3,r) .

The discussion in this section is applicable to the problem with the
boundary operator i—w(y)zj— instead of ﬂ—{—gz;(y) zi.
0y 0x 0y 0x

Combining the following corollary of Theorem 3.1 with the result in

§ 4 concerning the domain of dependence, we can prove easily Theorem

stated in Introduction.

Corollary of Theorem 3.1. Let the assumptions of Theorem in
Introduction be satisfied. Then, the problem (1.1) has a unique solu-
tion wu(x,v,t) in H,(RLX(0,T)) (m=6,7,:;T<0) for any
(o (2, 9), w(z,9), f(2,9,8), ¢, 8))E Hpr g (RL)X Hypoy (RY) X Ho o (R
X (0, T)) X Hy, s (R*X (0, T)) satisfying the compatibility condition of
order m+2.

Proof of Corollary. Extending f(z,v,t) and g (v, £) in the data to
t>T continuously, we obtain a solution u(x,y, ) € H,(R: X (0,T)) of
(1.1) by means of Theorem 3.1.

Let us show the uniqueness of the solution. Let % (x,y, ) € H, (R’
X (0, 7)) be a solution of (1.1) for zero data. For any >0 choose a
function y(¢) €C~ such that »(#) =1 for 0=¢t<T—¢ and y(¢) =0 for

t=T. Then w=y# is a solution of the equation

Ow(x,v,2) =[0, 2]#(x,y,£) in RLX(0,00),
Bw(y,t) =0 on R'x (0, ),

3.2) dw
0t 10

w|,_o=0 on R%Z,

2
=0 on R,
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where [, %] is the commutator of [J and y. [[J, x]# belongs to H;, (R}
X R.) and its support lies in {7T'—e<{t=_T}. Obviously the result in
Theorem 3.1 is valid also when the initial condition is posed on ¢=T
—e&. Therefore there is a solution of (3.2) in H, ,(R% X R.) whose
support lies in {7—e<¢<{oco}. From the uniqueness of the solution of
(3.1), we conclude supp[y#] C {T—e<t<(cc}. Since ¢ is any positive

constant, % is equal to zero in {0<¢<{T%}. The proof is complete.

From now on, we shall prove Theorem 3. 1.

1) At first we reduce the problem to the equation on the boundary,
as is stated in Introduction. Tsuji in [8] also employed the same reduc-
tion. Let us define

+
H,, (R XK"Y = {ulr.nv, ) = H, (R: R supp[n] & {¢2>0},
fitl g, ooy (r>0,m=0,1, ),

.
and H,,(R'XR") in the same way. The following two propositions are

well known.

Proposition 3. 1. We have a uwunique solution o' (x,y.t) in

L., (R>RYY =1, m=2,3.--) satis/ving the Cauchy problen

Tu’ (x, v, ) =Ff (x,v,) in RXR.,

ou’ 2
______ o= uy (z, v) on R,
0t '
u’it=o=u6 (.2:‘, y) on R’

for any (f' uy, 1)) €EHy (REXRY) X H, ., (RY) X H,, (R?), and have the

estimalic

7 o, <C (L [+ 7 [0 o 7 [0 15,0 -

+
Proposition 3.2, For any h(y,t) € H,,(R'XRY (r=1,m=2,3,
+
1) there existis a solution w(x,v,!) € H,,(R%2 X R") of the Dirichlet
problem

Ow(x,y,£)=0 in RLxR',

3.3)
| w]emo=h(v,2) on R'xXR.
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+
This solution is unique in H,,(R2 X R') and the following estimate
holds:

C
|w |fn,r§?<k>fnyr :

We set for h(y,#) € H,,(R'X R

Th=Bw <=<aa

TP ) wlans),

where w is the solution stated in Proposition 3.2. Let (u,u,f,9) be
the data in Theorem 3.1. Extend u,(x,vy), u,(x,vy) and f(x,y,%) to
<0 continuously, and denote them by u; (x,y), % (x,v) and f’ (x,y, t)
respectively. For these #;, #{, f’ we have the solution ' € H,,.,(R*X R.)
stated in Proposition 3.1. Define ¢’ (y,#) =¢ (¥, t) —Bu' (y,£) for £>0
and ¢’ (y,#) =0 for £<C0. Then, noting that the data (u,, uy, f, g) satisfy
the compatibility condition of order m+2, we see that ¢’ (y, %) belongs
to ;I,,LH,,(RIXRI). If the equation Th’=¢’ has a solution A’ (y,?)
Eﬁ[m,,(Rl X RY), then u(x, v, t) =’ (x,v,t) +w’ (x,y,2) (w’is the solu-
tion of (3.3) for A=A’) belongs to H,,h (R%XR.) and satisfies (3.1).

So we have only to investigate the equation Th=yg.

Lemma 3.1. There is a constant 71, for m (=0) such that if
+
T=7n we have a unique solution h of Th=g in H,,(R'XR") for any
.
gE Hpsn, (R'X RY) and have the estimate

<h>;,,g$<Th>;+z,r :

It is easy to see that Lemma 3.1, Proposition 3.1 and Proposition
3.2 yield Theorem 3. 1.
2) Let us prove Lemma 3.1. We set

P=D,+¢ ), (Dy,7) (r=7+10)

where £ (%, ) is the root stated in § 2. We define the Fourier-Laplace
+
transform of h(y, t) € H,.(R'XR") by
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h (ny T) = EE'(y.t)—»(ﬂ.o')[e—ﬂ‘h‘ (y) Z)] (f“—")""i(i)

= fe"“””h (y, t) dydt .

Since the solution w (x,v, ) in Proposition 3.2 is expressed by the

form

W@y, ) = [explte+ivy+int, 1,9)F (.9 dndo,
T is of the form

Th(y, t) =i J.e"”'”” (+¢ )% (1,0) h (1,0 dnédo .

Noting that 7+¢ (v)%6, (9, 7) is the symbol of P, we see that Lemma

3.1 is derived from the following lemma.

Lemma 3.2. We have for any sER
® IPulls . =C, (r—7) lulls,  « () € (RY.
@) I P*ullse.=C. (r —72) llll},  2€S,

where P* is the formally adjoint operator of P and the constants
Cy, G, 11, 12 do not depend on c=7+i0 (r=1). (|-|ls is the norm de-
fined in § 2).

The following lemma plays an essential role for the proof of Lemma

3. 2.

Lemma 3.3. Let $(v) € B~ (R"). There exist symbols a(v,1,1),
B, 1, 7) €Sey® such that

[¢'5 $4_] = a/Dg/‘i'/? E]
(x(yi 775 I‘)E.-F (7/, T), B(y: 779 T)$+ (77’ T) ESg,o,
where [, §.] =08, —€,.0. (This statement is valid for &. (1,7)).

Proof. By means of the asymptotic expansion formula (2.2). the

symbol of [¢, §,] is expressed by the form
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~ [Hos- [ [ Dy v+ y’)%w +0', ) dy’ '} do.

Since 025} (n,0)=— U it follows that
7

£, )

Os- f je““’"" (Dy6) (v +37) %;_ (+01, D) dy’ 1’
=0 f f eV (D) (y+y') &, (407, 7) T dy dn’ 1

—Os f f e (D) (v+') &, (n+00', ) “'dy’ d7’ -0

=, (%, 7,0 1+8, (¥ 7,00.
Here we have used the formula (2.1). Lemma 2.1 implies that

'{ae (y: 77, f) }05951, {‘85 (y’ 7/3 T) }Dsasl and {059 (y’ 7]; f) S-i- (7]y T) }05051, {BB (y’
7, 7)€+ (7, ©) Yogos are bounded in S;i? and Sj, respectively. Therefore,

setting
1 1
@y, 1,9 = j a1, 9d0, By, 7,7) = j By (v, 7, 7040,

we get the lemma. The proof is complete.

Let A (s&R) be the operator with the symbol (7*+|[c[5)*% We
obtain the following lemma by an easier argument than the proof of
Lemma 3. 3.

Lemma 3.4. Let ¢(y) < B=(RY. There exist symbols
a2 (0, 7,05 b (v,7,7) €517 (s€ER) such that

[, A1 =as_sD,+ b5, .

From the assumption inf |¢(y)|>0, we get
ly1=2y0

Lemma 3.5. For s€R we have
= C (Pl gt cellt el ), v €7,

where the constant C does not depend on v (y=Rer=1).
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Proof. Let y(y) (€ 8%) =1 for |y|<y, 3 () =0 for |y|=y,+1 and
0=y () <1. Then it follows from inf [¢(y) >0 that
A=) vll=Cillgvlle, Il (Dy) vlli=Cilleolls -
By Poincaré’s inequality we have
Necl; < Cs (1 Dy GeAz) flo =+ [} X —30) A2el]o)
S C (IDylls + 1l (Dyy) Auello+ | A =) Lullo) -
Noting that D,=P—¢*¢., we get
Nedlls < Cs (| Peells + | 0& w2ells + llp A2elo) -
By (2.3) and Lemma 3.3, we have

mwumog%mmmumo
g%qua [, 4] allo+ o6 2llu-+ | o, &1 4lls)

g%([uunHmqoaums+mPums).

Therefore the lemma is obtained.

Proof of Lemma 3.2. Noting that P*u=Dyu+§1¢2u, we can obtain
the estimate for P* in the same way as for P. So let us prove only

(i) of the lemma. This is derived from the inequality
(-4  ImUE, Pu, £¢u) = (r—1) ll0&ulls — C (| Peells + ] ,

where the constants 7;, C; do not depend on 7. In fact, combining this

inequality and Lemma 3.5, we get
Il Paefls-alleelle= (7 —70) Calleells — Cs (U P51+ 25

which proves (i) of the lemma.

In view of (2.3) we have
Im (Pu, w) =Im{(Du, 1) + (§+pu, pu) + ([¢, €. ]u, pu) }
Z1llgulli—1 (Lo, &+Ta, gu) | .
Therefore,
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Im (PA¢ cu, £€.u) Z7|loLéuli— | ([, §.]6+ M0, 94 0) | .
Since we can write
[P, £¢. ] =¢lo, £E]E + [@, £6. 106,
=glo, E] A6 + 06 [o, £16. + [0, E )L 0E +E [0, £] 0L,
we get
Im (€. Pu, A6 .u) Z7]|@ A6 uls
— {21 ([p, £ 146 u, o8 00) |+ | (6 [, A] €, pA'E 1) |
+ 1 (L9Eu, [0, 8 1A ) |+ | (L0 su, A7 [, £ 6. A'0) |}
=1lloA'¢ s — {21 + L+ L+ L}.
Let us show
L=C (| Pulli +losalls + lllls),  (=1,2,3,4).
By Lemma 3.3 there are symbols a;(y,7, 1), &:(y, 7, t) €S, such that
(¢, &) A48 =a,D,+b, (=a,P—a,p*E.+b,).
Similarly, [¢, E.]J4¢. (=[p, EJAE,-EF€.) is of the same form. Fur-
thermore, from Lemma 3.4 it is easily seen that &.[¢, £']€; and
A~ [, A£]E &, A are also of the same form. These facts yield
LG (|| Pulls + llo A& ulls + o - 2ell5 + leelI5)
=G (| Pulli +llps ulli+llulp  (=1,2,3,4).
Hence,
Im (A€ Pu, £€ u) 27|l A€ culls— C (|| Paells + | o€ < ells + 25 -
Noting Lemma 3.4 and D,=P—¢*%., we have
i€ culls<lloA°¢ vuello + Cs (| Peellls-1 =+ | 0& soels-1 + lleels-s) -

Therefore, (3.4) is obtained. The proof is complete.

§ 4. The Domain of Dependence

In this section we shall study boundedness of the domain of

dependence for the problem (1.1). Let the boundary operator in (1.1) be
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of the form —6—+¢(y)2—q— <or —a———qo(y)zi> and ¢(v) satisfy the
0y 0x oy 0x

assumptions of Theorem stated in Introduction. Moreover, for simplicity
we suppose that ¢(0) =0 and ¢ (y) =<0 for y=~0. This is not essential,
and boundedness of the domain of dependence holds without this hypoth-
esis. By Ikawa [2] we see that the propagation speed of the solution
is finite at the points where ¢ (y) does not vanish. So we examine the
domain of dependence near (x,y) = (0,0).

Set

1] 2
0 — @ (s) .
=) Gr ety ®
. . . - . di -1
Then 6(y) is an increasing C” function and (;Z——(yo)> (v~=0) equals
y

the propagation speed for the problem with the frozen boundary condition

(?i_*_(ﬂ(yo) z@i)‘ =g (y, t) (cf. Appendix of [2]). We set for ¢ (>>0),
0y 0z /lz=0

D,,={(z,,8): t—t,+min[0 (V2 +3?), —0(— V2> +»") ] <0}.

Our purpose is to prove

Theorem 4.1. ({) The problem (1.1) has not a finite propaga-
tion speed.

(i) Let u(x,v,t) eH,(R2X(0,T)) be a solution of (1.1) for
data (uy, wy, f, 9) € H, (R%) X Hy (R%) X Hy(R% X (0, T)) X Hy(R' X (0,
7). If

flz,y,8)=0 on D,N {x>0,0<e<2},
4.1) g(y,t)=0 on D, N {x=0,0<z<2},
uﬂ(x’y)=0, ul(x’y)zo on Dtnﬂ{x>0)t=O}’

then u(x,y,t) =0 on D, N {x>0,0<e<¢}.

Remark 4.1. (ii) of the theorem is valid also when u(a,y,?)
eC*(RLx[0,T]).

In fact, take a C* function vy (x, v, £) with compact support satisfying
x(x,y,2) =1 in a neighborhood of D—;oﬂ {xr=0,0=<:¢<t¢,} and consider
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the equation for yz. Then we can easily prove Remark 4.1 from the
case u&€ Hy(R% X (0,7)).

Proof of Theorem 4.1. At first we prove (ii) of the theorem.
Let the data (ug, 2y, f, g) satisfy (4.1). Denote by 0(¢) the inverse of
O0(y) (.e. 0(0())=¢). For any ¢>0 choose a C~ function ¢, (y) such

that 0=¢.(y) =<1, ¢:(0) >0 and supp[%]c[—ig:l, 6—32] We  con-

sider the equation
o, v,8) =f(x,v,¢£) in B x(0,t—¢),
(224 ) +e)IL) =0, on Rx (-,

0 2=
(4.2) ay | z=0
E”’—Lu:ul(x,y) on R,

Viimo=uo(x,y) on R:.

Since the boundary condition of this equation is non-singular, we can
apply the methods of Ikawa [2]. Therefore, there is a solution v (x, y, £)
(e Hy (R X (0, £,—¢))) such that

v(x,y,¢) =0 on D, N{x>0,0<t<¢t—¢}.

Obviously this v(x, v, t) satisfies (1. 1) for 0<¢<f,—e¢. From the unique-
ness of the solution of (1.1) (see Corollary of Theorem 3.1), we can
conclude that #(x,y,£) =0 on D, N {x>0, 0<¢<{t—e}. Since ¢ is any
positive constant, (ii) of the theorem is obtained.

Next let us show (i) of the theorem. The idea of the proof is sug-
gested by Kajitani [4] and Appendix of Ikawa [2]. We construct an

asymptotic solution
N -

4. 3) uy(x, y, £) = e** 0y (x, v, t) (k)"
n=0

in the same way as in [5] such that

Ouw(x,y, ) =™ oy (@GR) ™ in RIX[0,T] (6(<T),
Buy(y,©)=0 on R'x[0,T1].

By an easy calculation we have
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e ™ Huy= (ik)* (01— 02— 03) 30, (k) ™"

. CN 0v, 0v, 0.\ ;-1 —n
RGNS +zz(,5%—@z»b;—@y§;)<zk> |

+ 22 (0w G 77,
¢ Buy= (ik) (BO) X)v, (ik) 7"+ 3 (Bv,) (ik) ",
00 00 00

where @,, @,, @, denote -—-, ~—, — respectively. Therefore, we
0t 0x 0y
obtain the following equations for the phase function @ (xz,y, ) and the

amplitude function v,(x,y,t) (v_;=0):
4.4 G—-0,—0,=0, =0, 0=:<T,

(4.5) (0,49 (M)*) lo-0=0, 0=:<T;

(4. 6) 2(@‘3’;"_ ﬁa‘z_@ﬂ%ﬁ) + (100, = — (v, >0, 0=EST,
0v ov

4.7 Un Lo (9)?0P) =0, 0<t<<T.

@n  (Praeey®) o, o<

Combining (4.4) and (4.5) on the surface {x=0}, we have the equation
for l(y’ z) :(D|.r=0:

(4. 8) I,—PVE—B=0.

Here we do not use the other equation ly+¢2\/l{:[§=0. As is easily

seen, the function
4. 9) Iy, ) =0() +1

is a solution of (4.8). By Hamilton-Jacobi’s theory we have a solution
O(x,v,t) of (4. 4) with @|,,=I(yv.#). Thus we obtain a real solution
O (x,y, ) satisfying (4. 4) and (4.5). (4.6) and (4.7) yield the follow-

ing equation for ¥, (y, ) =v,|e—:

(4.10) (0] eoo— B, 1) 0% 4 0, |, 0T ¥ I8 lomey
Oy 0 2

Ay

“d

= __;/_Dvn—lix:o .

The characteristic curve of this equation through (0, #) coincides with



648 HIDEO Soca

the curve {(y,%):0(y) +¢=¢} since @Ilpoz—wﬁﬁ——?fg, Oyloo=1,, B4locy
=1, and I(y, £) =0(y) +¢t. Solving (4. 6) for x>0 with v,|,-e=%,(y, 2),
we get v,(x,v,t) satisfying both (4.6) and (4.7). Note that every
characteristic curve of (4.6) reaches in the direction x>0, £>0.

Now, let the mixed problem (1.1) have a finite propagation speed
v. Then, if the data (u,, uy, f,g) of (1.1) satisfy

f(z,y,6)=0 on C,N{x>0,0<et<s,

(4.11) g(y,t) =0 on C,N{x=0,0<s<t},
wo(z,y)=u(x,y)=0 on C,N{x>0,r=0},
the solution #(x,y, ) is equal to zero on C, N {xr>0,0<¢< ¢}, where

C,= { (Z, v, 8): t— 1+ 1 @*+5 1’2<0} . Since cdl—e (0)=0, we can choose
v y

a small constant # (>>0) such that vtogé—ﬁ(to) (where 000 (8) =2). If
|z;— ¢, is small enough, the intersection of y-axis and the characteristic
curve of (4.10) through (0, #,) lies in {%6(t0)<y<—§—6(t0)}. Therefore,
we can take {¥, (¥, £) }n=q1... S0 that T, C>, ¥, (0, &) =0 and supp[T, (v, 0)]
c [%6(4,), i;:-a(to)] Hence, we can construct the asymptotic solution
uy(x,y,t) satisfying
Oun(z,v,8) =e™Hoy(x, v,2) ()™ in R x(0,7),
J Buy(y,8) =0 on R'x (0,7),

auN

ot

=u#ylieo=0 on C, N {x>0,z=0}.

=0

Let y(x) (€C) =1 for 0=<2x<vT and y(x) =0 for x=vT+1. Then,
fN(xy Y, t) = ~eikmDvN (.Z', Y, l) X(x) belongs to Hmﬂ‘s (R%{— X (O’ T)) (m

_ or O fy_(0 , 0N\ 1 _
=6,7,---). Furthermore, we haveBatfj-—<—07+¢ a;>wf1v.‘z=o—-0 for

j=0,1, . Therefore the data (a2, f,g) = (0,0, fy, 0) satisfy the
compatibility condition of infinite order. By the result in § 3, there ex-

ists a solution wy(x,y, £) (€C=(R% X [0, T])) satisfying

wazv(x,y,l)=fzv(x,y,t) in Rix(0,T),
Bwy(y,t)=0 on R'X(0,7),

Oy

ot

— 2
=wy|;=o=0 on R%,
=0
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and the estimate

sup lwy (z, v, ) |=Ci| frlls, r2x 0. =C:k’

& B HERLX(O,T)
holds, where the constant C, does not depend on &2 (>0). We take the
integer N >9, and set

u(x,y, ) =wy(x,y, ) (k) " +uy(x,y,1).
Ou

>

Then, (uy, 4, f,q) = <u
t=0 t=0

does mnot equal zero in a neighborhood of (z,v,t%) =(0,0,%) when

, O, Bu) satisfies (4. 11), but u(z, y, £)

£>0 is large enough. This is a contradiction. Therefore, (i) of the

theorem is proved.

Remark 4.2. (i) of Theorem 4.1 can be verified also by the methods
Tkawa [3] has employed to study the propagation speed of the mixed

problem.

§5. A Non-well-posed Case

In this section we shall prove the following

Theorem 5.1, Let the function ¢(y) in (1.1) satisfy ¢(0) =0,

d () >0 for y<0 and P (v) <0 for yv>0. Then the problem (1.1) is
not well-posed.

Here ‘well-posed’” means that there exists a unique solution of (1.1)
in C=(B x [0, T]) for any (u a, £, g) € C*(RY) x C* (BL) x C* (RS,
X [0, T]) XC=(R'X [0,T]) satisfying the compatibility condition of

infinite order.

Proaf. If (1.1) is well-posed, there exist a positive integer [ and
a compact set K (CR%) such that

G.1 sup |« (0,0,) |<C (D%l xxpo,ry + Bty 5 w13
0=t<r

+lulz=o‘ 'I“au‘ | )
|

1,K I@t 1t=0{1, K
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where K =KN{r=0} and the semi norm |v|,, denotes

> sup !( 9 > v (x") I Let us construct an aymptotic solution
&=L = e)m 0x’ [

N
uy(x, y,2) =3 "0y (z,y, )ik) ™
n=0

which is of the same type as in the proof of Theorem 4.1 and breaks the
inequality (5.1) as A— -+ oco. By the same procedure as in the proof of
Theorem 4.1, we get the following equations (cf. (4. 4)~(4.7)):

4. 2) 0;—0:—0:=0, >0, 0=:<T,
(5.3) @, +¢ () 0) |ey=0, 0=t<T
0vn _» 0v, 5 0v, v — —
(5. 4) 2(@, 0.0 0, >+(D@) vp=— v,y (v_1=0),
>0, 0<r<T,
|
(5.5) (0?" +9() O7) =0, 0<e<T .
0x Jx 0

We have a real solution @ (&, y, £) of (5.2) and (5. 3) with @,<70, @,>0.
Combining (5.4) and (5.5), we obtain the equation for ¥, (y, £) =v,|,-0:

(5. 6) (O oeo— 00, _0) @E’JL_ + 90, 0 a@in + ¢D§Ix=0®/n

= —%(Dvn—l) Ez=0 .

From the assumption of Theorem 5.1, any characteristic curve =% (y)

of (5.6) is concave (i.e. _;?E (y) <0 for —8,<y<0 and gL(y)>o for
¥y y

0<y<(0;, where 8, is a small positive constant). Therefore we can choose
the {vﬂ. (x‘, y’ t) }71:0,1,2.~~ So that 'U”, (‘r: )’, t) S Cao (Ei X [07 TJ) (n:()! 1) 2,

), (0,0, ) 70 for some ¢ (0<t,<T) and v,(z, y,0) =@ajﬂ(x, v,0)

N
=0 on R: (n=0,1,---). Then, uy(x,y,2) =3 *°v, (Gk) ™ satisfies
n=0

[DuN(x,y,t)ze““p[l‘vN(ik)"N in R:.x(,7),
Buy(y,2) =0 on R'x(0,7T),
Oun|

0t |0

2
=uy|ieo=0 on R?,
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and |uy (0,0, #) | =11, (0, 0, £)) |50 as k—>+oco. This violates (5.1) (f
N>1[). The proof is complete.
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