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On Holonomlc Systems for II (fi+V -10)

By

Masaki KASHIWARA0^ and Takahiro KAWAIC**>

§ (X The purpose of this paper is to give a description of the

characteristic variety of the holonomic ^-Module of which a hyperfunc-

tion of the form 0(.r) =IJ $(&*) II (/iC*0 + V11! °)Al is a solution. The
j=l 1=1

existence of such a holonomic system was shown in [7] (See also [3] „)

The description of the characteristic variety in terms of cpj's and f^s was

announced in Lemma 1 of [8]. The result immediately gives an informa-

tion on the singularity spectrum of (D(x). (See Theorem 18 below0)

Although a little more precise result was announced in [8] (Lemma 2),

we have recently found a gap in our original proof of Lemma 2 of [8].

Even though we have not yet succeeded in filling the gap, we still

believe that our original claim should be true and we feel it worth

while presenting here as a conjecture. We also discuss some examples

in order to show how subtle and delicate the conjecture is. In any case,

we should correct our article [8], so that Lemma 2 still remains a

conjecture and hence the last six lines of Theorem of [8] should be

deleted at the moment/**510 Needless to say, Lemma 2 of [8] follows

immediately from Lemma 1 of [8] if we replace (J?+)N in line 16 of
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page 162 of [8] by CN .

§ 1. The situation we shall discuss is the following:

Let M be a real analytic manifold and X a complexification of M.

Let <p= ($?!, • • • , (pd) and f= (fl9 • • - , fN} be sets of real-valued real analytic

functions defined on M which extend to X. Let Y be a subvariety of

X which satisfies the following conditions:

(1) Y is irreducible.

(2) re {areX^Or)^.. =?,(*) =0}
(3) There exists a proper complex analytic subset Ysins of Y such that

the following conditions are satisfied:

(3. a) Y — Ysmg is a non-singular subvariety of codimension d.

(3. b) dyi, • • • , d^?d are linearly independent at any point of Y — Ysins.

(4) /,|r^0 (1 = 1,. -,N)

(5) ritaBc{a:eX;n /,(*)=()}
1=1

Under these assumptions we can easily show the following theorem

by the desingularization theorem of Hironaka ( [1] , [5] ) .

Theorem 1. For s= (s1? • • - , Sy) ^CN ^v^th Resi>0 and a com-

pactly supported C00 -function g(x) on M, the integral

(x) n s (Vj (x) ) n c/» (*) + v=r o) *d*
y=i 1=1

d

converges and it defines a distribution ®(x\ s) — JJ $(<Pj(x)} X
N __ J=l

X UC/zCo;) + v7 — 1 0)Sz with holomorphic parameters s uolien Re^>0.
1=1

Furthermore this distribution can be extended as a meromorphic

function in s= (sl9 • • - , Sy) ^CN. More precisely, ̂ ve can choose a j-f actor

7" (5) that makes "(s)®(x\s) entire in s and has the for 'm

(6) rW=

r£ PI>IC are non-negative integers such that (Vi j f c , • • • , v^>fc)=^=0 for

any k and dk is an integer.

Remark. If i^Sing — 0? then we can choose dk to be a strictly posi-
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tive integer.

Since the proof is essentially the same as that given in [4] and [2] ,

we omit the details. See also Section 5 and Section 6, especially the proof

of Lemma 14.

§ 2. In order to formulate our main results, we introduce the following

notations:

(7) WftY is the closure of {(ff; x, f) e=C*xT*X; x^Y-Ysins, fi(x)=£Q
d N

(l = I,-~9N) and f = £] Cjd<pj(x) + £] M log /z(x) for some c =

in C*

Remark. It is known that W/,i- is an irreducible analytic set. (Cf.

Whitney [11]). Clearly it is involutory and of dimension ?i-\-N. Note

that Wf>Y depends only on f\Y and Y and not on (p.

(8) W0 = Wf}Yn {ffi = Q,l = l, • • • , N}9 which we consider as a subset of

T*AT.

(9) We denote by C[s] the ring of polynomials in s= (sh • • - , SN~) and,

for a set of N indeterminates £ = (/i, • • • , ^) with commutation relations

([*/,<»]=o
for J, * = !,.• •, JV

([^, ^]=^i-^

we denote by C[s, t\ the non-commutative algebra generated by s and £.

(10) 3) [s] = 5)<8)C W and .0 [5, fl - 3)®C\_s, t] . Here £) = Q Y denotes
e c

the sheaf of linear differential operators of finite order defined on X.

For an integer m and an Ideal <3 of 3) [s~\9 we define <Jfm by

(11)

For f>(s) in cjTm we define the function ^(^(5)) of ((T; x, ?) eCnxT*X

by

(12) S^Ha|(P0)^...(jy,
a

where (Ty(Q) denotes the principal symbol of an operator Q of order at

most j.
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Let 3 be the Ideal of P (s) e 3) \_s\ such that

(13) p«n*fo/)n/i - i=o
j=l 1=1

d

holds. This means that the equality (13) holds in 3) JJ 8(<pj) on Y~ Ysi
2V

— ( U jfr1^)) and for any complex numbers 5. It is clear that 7(5) $(x; s)
1=1

is annihilated by P(Y) in <$, where f(s) is the 7 -factor introduced in

Theorem 1.

We define ^ 'fjtp by S)\s\/S. We shall denote by u the differential

operator 1 modulo <JT. Note that the characteristic variety SS(^t
/i?) of

^fl9 contains W/,r, because W/}y is contained in SS(t,
//^/j?,) at generic

points of WftY'

If we define the multiplication of ti by

(14) tl:P(s)u^P(sl, -,*! + !, ••-,^)/^,

^f^ naturally acquires a structure of <fi)[^, ^] -Module.

We also define

(15) Cf,r= n {(ff; x, f) eC* X T*X; 8^(5)) (ff; x, f) =0
m

for P(s)eJM}.

Then we have following

Theorem 2. C/>r = W r
/>F AoWs.

In order to prove this theorem, we introduce auxiliary variables

WieC (Z = l, • • • , JV) and define /=(/i, •••,/y) by (wlfl(x\ • • - , -u)NfN(x)\

We denote C^xX (resp. C^xY) by ^ (resp. ?). Then by defining
9the vector fields ®i(l = l9--yN) by wz^—, we immediately find that

\ / *-'tJ k IkJ k \ $

and

hold. Then we have

(is) ST n ^ c^) n /'• = »r n * fe) n /••n1=1
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for any positive integer m. Hence *sff,v turns out to be a coherent
'd N

S) ̂ -Module generated by the section u = !"[ ̂ (^y)It fil- Since the func-
_ y=i 1=1

tion 6 \ on CNxT*X equals the principal symbol 0(0 1) of @i on W/ fy,

T^;,y is imbedded into T*X by the projection from CNxT*X onto T*X.

Therefore, we regard W/?y as a subset of T*X. Then we can prove

the following lemmas.

Lemma 3. SS( ,̂,) = {(zc;,x; r,£)e T*(CN xX);

Lemma 4.

It is clear that Theorem 2 follows from these two lemmas.

§ 3. We first prove Lemma 3.

Proof of Lemma 3.

We first show that the left hand side of the formula in Lemma 3

is included in the right hand side. Let u be the generator of ^ ~^9,

Let P (s) be an element in Sm. Then we have

-of 9 dp(wr^ — , ~',
\ UWi

Furthermore

, x; r,

, f)

holds. Hence the inclusion relation in question has been proved.

We now prove the opposite inclusion relaton. Let P (w, x, DWj D^)

be an annihilator of u. Let m be the order of P. We decompose P

into the form

(19)

where Pa is of degree di with respect to cwi (by counting d/dwt to be

of degree —1). Then Pa has the form
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(20) (n^fOPiditf/dw.)-01),
«Z>0 ar<0

where P°a is of degree 0 in each wt. It is clear that Pau=0 and hence

we find P"ttu=Q. Since PQ
a has the form PQ

a(w17^-, ••• w^J?—, x, Dx],
\ dwi dwN )

we can define PQ
a e S) \_s\ by

(21) Pl(s

Then vre have

(22) ff(Pi)(w,x,r,f)=c

On the other hand, it follows from the definition of Pa that

(23) <r» (P) = s (n «r o ff (Pi) (n rrao.
This proves the required inclusion relation. Q.E.D.

§ 4. Before giving the proof of Lemma 4, we prepare several auxiliary

results. They have some interest in their own right.

Proposition 5. Let Jtt, be a (non-zero) coherent Qx-Module(*\

and let fj and Qj (j — 1, • • • , / ) be endomorphisms of JM,. Suppose the

following commutation relations hold:

(24)

Then we have

codim Supp JA + l<n = dim X.

Corollary 60 Let 3& be a coherent S ̂ -Module and let ss and

tj (j = ! ,-•• , /) be endomorphisms of Jtt. Suppose the folio-wing con-

ditions hold:

(25) tj\ c_5K->c5K is injective (j = l ? . - - ? / )

(26)

*} (S'x denotes the sheaf of micro-differential operators of finite order.
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Then zee have

codim Supp c_5K -\-l<n = dim X.

Proof of Corollary 6.

By the additive property of the multiplicity of coherent ^-Modules,

the multiplicity of the cokernel of £^: «_3K—»<_3K along an irreducible com-

ponent of the characteristic variety of Jtt is the difference of the multi-

plicity of c_5K and the same one. Hence the characteristic variety of the

cokernel does not contain any irreducible components of the characteristic

variety of M* Therefore, we might assume from the first that tj are

isomorphisms. Then, fj = tj and Qj = fJ1sJ- satisfy the commutation rela-

tions (24) and this result immediately follows from Proposition 5,

Proof of Proposition 5.

If c_5K is holonomic, then E = End(^) is a finite-dimensional vector

space and hence tr I = tr[jf1> {/i] =0, which is a contradiction if 1*>~L. Thus

the theorem holds in this case.

Let us assume that Jli is not holonomic. Let V be the support of

e$K. It is enough to prove the theorem at a generic point of V. Therefore,

by a quantized contact transformation, we may assume that V= {(x, f);

f1=... = fd = 0} with d = codim V. Set Y = {.re.Y; x, = ••• =xd = 0}

and ^ — JM\y Then Supp^/^ = T*Y, and ̂  has the endomorphisms

fj and QJ induced from fj and gjy respectively. The endomorphisms f j

and QJ satisfy also the same commutation relations (17). Hence, by

replacing c_5K with ^9 we might assume from the first that Supp Jtt = T*X.

At a generic point of T*X, 3tt is a free 5^-Module. Hence we

can represent fj and g 3 by matrices of micro-differential operators. Thus

the proposition immediately follows from the following

Proposition 7. Let Ply • • • , Ph Qly -»9 Ql be NxN matrices of

micro-differential operators on Cn, -where N is an integer. If the

relations

(27)
for
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hold, then l<n.

In order to prove this proposition, we prepare the following lemma.

Lemma 8. Let P = (PJk) j}k=1}...}N be an NxN matrix of micro -

differential operators of order <m. Assume that the eigenvalues of

the matrix P — (6m(P jk)} j,k=i,...,N are mutually different and do not

vanish. Then there is an invertible matrix A of micro -differential

operators defined at a generic point of T*X, such that APA~l is a

diagonal matrix.

Proof. Consider ID™ — P as a micro-differential operator defined on

€A X Ct X X.

Then det(tf(A£>r — P)) = det(/ltm — P). Hence, if one denotes by pj

the eigenvalues of P, then hD™ — P is invertible provided

We shall define Aj by

1
,

^l JWf-P

where the integral is a contour integral along a path around p fl'™. It

is easy to see that AjAk = d J k A j and 1 = 2^ hold. Since Aj com-

mutes with £ and Dt, Aj is a matrix of micro-differential operators on

X. Setting Ju—Q1*, we regard P and Aj as endomorphisms of X. Set
27

Xj = AiX. Since P is invertible, X— ®Xi. Since A^ is a matrix of
y=i

micro -differential operators of order <=??z and (7ro(Ay) is a projector onto

the eigenspace for pjy X j is not zero. Hence X j is with multiplicity

1. Thus X j is isomorphic to Q at a generic point ^vith a base &y. If

we take an invertible matrix A corresponding to the base u^ • • - , UN, then

APA"1 is a diagonal matrix. Q.E.D.

Let us return to the proof of Proposition 7.

Let A be an invertible constant matrix whose eigenvalues are

mutually different. For a sufficiently large integer N, we set

and Q,-Q, for ./ = 1, -, /
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+i .
N •/='

We shall regard Pj and Qj as micro-differential operators on CxX.

Then Pl satisfies the condition in Lemma 8. Hence it is diagonalizable

by an inner automorphism. Thus, replacing X "with C X X and Pj and

Qj with Pj and Qj9 respectively, we might assume from the first that

(28) Pl is a diagonal matrix with diagonal components Ai9--9AN.

(29) Aj9 -~9AN are micro-differential operators of order 772 and ffm(Aj')

are mutually different.

Here we note the following

Sublemma 9. Let R be an N X N matrix of micro -differential

operators such that [Pi, R~\ is a diagonal matrix. Then R is also

diagonal.

Proof. Let {Rjk}
 De components of R. Then AjRjk = RjkAk for

j=f=k. If Rjk=£0, then ( J ( A j ) ( J ( R j k ) =ff(RJk)ff(Ak). This is a contradic-

tion. Q.E.D.

Now we resume proving Proposition 7. It follows from Sublemma

9 that all Pj and Qj are diagonal matrices. Set mj = O T d P j and

nj = ordQj (j = l, • • - , / ) . Then mj + nj>l. We shall prove the pro-
i

position by the induction on ^J (mj + KJ ~~1)-
j=i

If ^(mj-\-nj — l')=09 then mj + nj = 'l for every j. Hence we

obtain

{<T (Pi) , ff (RJ } = iff (Q,) , ff (QO } = 0

Then, as is well-known in symplectic geometry, we have l^n.

Next suppose that ^(mj + »/ — 1)>0. Then either m^>l or
y

holds for each J. If nj>l9 by replacing Py and Qj with — Qy and Py,

respectively, we might assume from the first that mj>l. Set Pj=P1j/mj

and Qj = mjPLj~l/mjQj. Then it is easy to see that Pj and Qj satisfy the

same commutation relations as Pj and Qj. Furthermore we have



560 MASAKI KASHIWARA AND TAKAHIRO KAWAI

ord P j = 1 and ord Pj + ord Qj = mj + n$. Hence we may assume without

loss of generality that ordPj — 1 (j = l9---9l) and ni>n2>'-->ni>Q.

Set fj = ff(Pj) (j = I9 -', /). Suppose first that dfl9---9dfi are linearly

independent. Since {fj9 fk}— 0 (1<J, k<l)9 it is well-known in sym-

plectic geometry that /<« holds in this case. Therefore we may assume

that there exists r (1<7"<7) such that J/1? "-9dfr are linearly indepen-

dent and dfr+1=0 mod J/1? -'9dfr. This means that jfr+1 is a function

°f fi, '"ifr, namely, there exists a homogeneous function <p(t^ • • • , £r) °f
9

degree 1 such that /r+i = ̂ (/i, •", /r). Denote -^— ̂ (^, • • - , ̂ r) by ^.

Set Pr+1 = Pr+1-(p(P1, -,Pr), ^ = ̂  O'^ + l), Q;=Qy 0>r) and

Qj=Qj + <f>j(Pi, •••,Pr)Qr+i 0'<r)- Then it is easy to see that

Furthermore we have ord Q/5^7&/, ord Py<l and ordPr+1<;0. Hence

the induction proceeds and we conclude l^n. This completes the proof

of Proposition 7, hence also that of Proposition 5.

The second result we need for the proof of Lemma 4 is the fol-

lowing

Proposition 10. Let f: X-+Y be a proper map of complex

manifolds. Let V be an involutory variety (possibly -with singulari-

ties) of T*X whose dimension is at most dim^C + / at any point,

Then the dimension of Wp~l(V) is at most dimF-}-/ at any point in

Wp~l(V}. Here W (resp. p) is the canonical projection from XxT*Y

to T*Y (resp. T*X).

Proof. Set W = Wp~1(V). The question being local on W, we

can choose a point p in p~1(V^) such that W is non-singular at W(p)y

Q~l(V") is non-singular at p and the projection p~ 1 (V)— >W is smooth

at p. Moreover it is enough to show the statement in a neighborhood

of W(p). Let a)z and CDY be the canonical 1-forms on T*X and T*Y.

Then W*(a)Y} — P*(o)jr).

Let (p: V'-*V be a desingularization of V ([1], [5]). Then there
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exist a manifold [7, $ : U -+ p'1 (V) and 0: t/->V such that 070 = 00 and

that 0 is generically surjective.

<P

(30)

At a generic point of V, we have (^ft)^] F)t+1 = 0, because V is

involutory. Hence (<f (0Vfl*))l+1 = (0*p*rf0z)
I+1 = (0*OJ*Jo)F)'+1 vani-

shes. Since 007 is generically surjective, (<^ft)r |w) l + 1 = 0. This implies

immediately that the dimension of W is at most dimY + Z at any point

in W. Q.E.D.

We shall further prove some related results in contact geometry,

which will be used later.

Lemma 11. Let Y be a submanifold of X (i.e., subvariety with-

out singularities) and let V be an involutory variety in T*X. As-

sume that V is n on- char act eristic ^vith respect to Y, namely

P | T X F : Y xy->T*F is a finite map. Then W=p(YxV) is an
X X X

involutory subvariety of T*Y.

Proof. We denote by n (resp. /) dim X (resp. codimr^y). We

may assume without loss of generality that codim^y = l. Then

codimr*z (Y" x V) = Z -f 1 and dim W — 2(^ — 1) — (/ — I). As in the proof

of Proposition 10, we have

(31)
since (dtix\ F)n- l+1^0 .

Let a be a generic point in W. Then by a suitable contact trans-

formation we may assume that

in a neighborhood of a. Here
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(32)

Then we have

(33)

Comparing (31) and (33) , we conclude

(34) n-l+ l>n-l-max(p, g).

Combining (32) and (34), we have p = 0 or q = 0. This is equivalent

to saying that W is involutory. Q.E.D.

Proposition 12. Let V be an involutory variety in T*X. Let

f(x9 f ) be a holomorphic function 'which is homogeneous in f . As-

sume that df=£Q on {/=0}. Assume furthermore that VQ= {/=0}fl V

is invariant under the Hamiltonian vector field

f d -dfH -^
3 \d£j d

associated •with f. Then VQ is an involutory variety.

Proof. By adding a dummy variable, we may assume without loss

of generality that df/\d)x=^0 and f is homogeneous of degree 1 with

respect to f . Hence by a suitable contact transformation we may assume

that /—<?i. We may also assume that V is irreducible. If V C y^1 (0) ,

then there is nothing to prove. Therefore we may assume that VQ is a

hypersurface of V.

In order to prove the proposition, it is enough to discuss at a

generic point of VQ. Hence, we may assume that VQ and V— VQ are

non-singular and (V ~ VQy V0) satisfies the condition of Whitney. Suppose

that VQ is not involutory. Then there is a point p in VQ such that

TpVo is not involutory. Let us take a sequence {pn} in V— VQ con-

verging to p such that TPnV converges to a linear subspace r.

The space r is involutory and TPVQ is a hyperplane of r. Next we

show that r C df~l (0) . If r c£ df'1 (0) , then TPVQ = r n df'1 (0) . There-

fore (TpVoy = (rridf-1(0^ = i:± + CHf. Since r^cr and Hf^TpVQ

Cr we have r^ + CJff/cTpVo, which contradicts the fact that TPVQ is not

involutory. Thus we have seen r is contained in df~l(G}. Since we
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have assumed f=£i, this implies that V is non-characteristic with respect

to Y ={*! = ()}.

On the other hand, we may assume that V0 has the form {(x, ?);

§1 = gz = ... =fp = 0, jr2 — ••• —Xp — 0} at a generic point of V0, because V0

is invariant by HSl. Then we have

(35) p(Y X F)

Since codimr^p(y X F) = (v — 1) + (# — 1), the left hand side of (35)
x

must coincide with the right hand side of (35) .

On the other hand, the preceding lemma asserts that p(YxV) is

involutory. This means that V — 1 or /£ — 1.

Thus we have proved that VQ is involutory. Q.E.D.

§ 5. Now we embark on the proof of Lemma 4.

By the desingularization theorem of Hironaka ( [1] , [5] ) we can

find an analytic manifold X' , a protective map F from X' to X and a

proper subvariety Z of Y so that the following conditions (36) ^ (39)

are satisfied.

(36) ysingczc{^er;n/1(^)=o}
1=1

(37) Z' — F~1(Z) is a normally crossing hypersurface and F\X,_Z' is

an isomorphism from X/ — Z' onto X — Z.

(38) The proper transform F' = F 1(Y — Z) is a non-singular subvariety

of X'.

(39) At any point a in y/ we can find a local coordinate system (v,

y, *) = (tfi, •", *><!, yi, • • • , y», ^i, • •• ,**) (d+m + k = n) so that the
following conditions are satisfied:

(39. a) 7^(0) =. . -

(390b)

(39. c)
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TO k(39. d) ti^ioF^htv, y Z}Vj n ?!>• n *y«
p=l q=l

(39. e) /,V = /«»l^
9=1

where py > q , p^ and rz>g are non-negative integers,

(^1,9, •", 7>j5)=^0 for each g = l, • • • , £ and 0, and %j are

non-vanishing holomorphic functions.

As a matter of fact, we have

(39. c') Y' n Z'd{(v, y, z) ; 77 =0, n ««=0},

because Zd/f^O) U ••• U/^'C0)- We also find that p^p is actually zero,

because {dtp'i, •••,d%} are linearly independent at any point in Y' — Z'.

We define X' (resp. Y') by C^xX7 (resp. CN xYx) and extend

FtoF:X'->J?( = C*xX). We denote (Wl//, • • • , w*f£ by /7 = (//,

•••,/i)- Then we have the following

Sublemma 13. We

(40)

z';z a neighborhood a = (05 a) e Y'.

Proof. Since the right hand side of (40) is a closed subset, it

suffices to show that the following set W//,?' is contained in the right

hand side and that any point in the right hand side is reached by a

sequence of points in W//,?/.

(41) Wf,.r,= i(w, v, y, z; r, tr, 7, Q

Recall that W//,y/ is the closure of W// fy/ by the definition. Clearly

W//,y/ coincides with the right hand side of (40) in a neighborhood of
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the points where JJ zq=^Q. It is also clear that W /',¥' 'ls contained in
m 9 = 1

the right hand side of (40) . Hence it remains to be proved only that

any point b = (w9 v9 yy z\ r, o~y y, C) in the right hand side of (40) where
k

J j 2 g — 0 can be reached by a sequence of points in W /',?'. Assume
g = l
that z1 = --=zi = Q and zi+1=f=Q9 • • - , zk=£Q hold at b. Here we may as-

sume without loss of generality that 7g^0 (g = l, • • • , z ) at &. Since

f°r any ^> we can ch°ose sequences w^-^Wi and

) so that

(42) I] n,Xm)^
i=i

We also define sequences 7^m) and ^m) by the following:

(43)

Then it is clear that (w(m\ v, y9 2
(m); r(m\ 6, y9 r

(m) -f X] w[^r[^-^— log %z)

is a required limiting sequence which converges to b. Q.E.D.

By using this result we shall prove

(44) W// Y/ X (CN X Z) is an involutory variety.
x

It follows from (39. c') that Y' {\Z' is a union of hypersurfaces

{(z9 yy z) ; v = Q, zq — 0} of Y'. Hence it suffices to prove that W//,?/

fl {^i — O} is involutory. Since W// ty/ is involutory and W/^y / f l {^i = 0}

is invariant by HZl= — 9/9Ci? this set is involutory by Proposition 12.

Now let us consider ^)^/-Module ^^j^^. Then by the aid of Sub-

lemma 13 we find the following

Lemma 14. SS(^/ lj,iqt,) = W},.?, holds.

Proof of Lemma 14. Since SS^/^/^/) clearly contains W//,?/, it
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suffices to prove the opposite inclusion relation. Let u' be the generator

n *?••)*) n <K0,o, y, *)»/ n
d N d k

J=l 1=1 j=\ q=l

Therefore, u' satisfies the differential equations

(45)

log fche; " (H 0y(0, y,

s\ $f / s\ \ ^ \ N ^ ~]
i O ^—i f u i \ 0> \ v—i 0 v—i Izq(——ZI(-— los y.i)wi— — Zln,qWi— + 1] Pj,a x

">;g i=i\dzq / dwi/ i-i 9wz j J

Since the characteristic variety of «^*/'ffl,' is contained in the common

zeros of the principal symbols of the differential operators used in (45),

it is contained in W// fy/. This completes the proof of the lemma.

Q.E.D.

Now we resume the proof of Lemma 4. Since F is a projective

map, j5)j-Module ^' '== I ^^//|?/ is well-defined and coherent and its
JF-i

characteristic variety is contained in C7p"1(W7/fy/) (Theorem 4. 2 of [6]).
zV _ d

Let z; be the section of l^
/ corresponding to l^<-i/(X)n f{*1 JJ ff(^?y) and

1=1 j=i
let .xf"7'' be the sub j2).£-Module of ^f^' generated by v. Then we can

define a natural jj^-linear surjective homomorphism from ^f/ to ^f1<p
d N

by assigning JJ d(<pj} JJ f*1 to v. Since the characteristic variety of ^"

is contained in Wp~1(W^if^? we have

(46) SSC^>,

On the other hand, we have
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because F is an isomorphism outside CN X Z. Clearly

(47) dim Wr^i

Therefore Proposition 10 combined with (44) and (47) entails that

(48) dimWp-1(Wf'.T,x(C*xZ»<2N + n--l.

On the other hand, Corollary 6 claims that

(49) dimpSS (jTjt^ >N+(n + N)=2N-}-?i

holds at any point p of SS(t^/>9,). Thus we finally conclude from (48)

and (49) that

(50)

This completes the proof of Lemma 4, and, hence at the same time,

that of Theorem 2.

§ 6e In order to study the holonomic character of the distribution $(.r; s)

we further need the following geometric result.

Proposition 15. The set WQ is Lagrangian.

Proof. We shall first show that WQ is isotropic. Again by the

desingularization theorem of Hironaka, we can find a complex manifold

W, a proper analytic subset and a proper surjective map G from W

onto Wftr. Let F be the projection from CNxT*X onto T*X. Let

a)x = ̂ £jdxj be the canonical 1-form on T*X. Here we may assume

the following:

(51) W is a closure of G~l({x; f[ /iGO ̂ 0}).

(52) G-'CWo) ^ a hypersurface of W.

The question being local on W0, it is enough to show that O)X\WQ = 0 at

a generic point p of W0. We may assume that W^ is non-singular at

p and that there exists a point p' in G~l(p) such that G~1(W0) is non-

singular at p/ and G^^Wo) — >W0 is smooth at p' '. Let 0 be a defining

function of G-1(^o). Then, we have fi°G = Oi</)vl and (TloG = %z0
A:£

J
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where Oi and %z are holomorphic functions on W defined in a neighbor-

hood of p such that their restrictions onto G~1(Wo) do not vanish iden-

tically. Here we have ki^JL, Then, we have

N

(FG) *(dx— 21
1=1

outside

N

1=1

Therefore we have

N N

1=1 1=1

in a neighborhood of p'. Thus (FG)*(dx\wQ vanishes at generic points

and hence vanishes in a neighborhood of p1'. Since G~1(W0)-*W0 is

smooth at //, &X\WQ vanishes at p. Therefore WQ is isotropic, and hence

dim WQ<n.

On the other hand, W0 is defined as the common zeros of N func-

tions on Wf)Y, and hence we have dim W0>;z. Thus dimWQ = n, and

this implies that WQ is Lagrangian. Q.E.D.

Here we note the following interesting property of WQ (Theorem

16), even though we do not need it in our subsequent discussions of this

paper.

In stating the theorem we use the following notation:

For a set of complex numbers a = (aly • • • , aN\ W(a) denotes the closure

of {(r, x, ?) €=Cx T*X; x^Y~Ysins, f[ /,(*)=£() and f = g Cjd^x) +

+1 XI aitd log fi{x) f°r some complex numbers Cj and r} and Wo(tf)

denotes the intersection of W (a) and r"1^). We identify W0(#) with

the subset of T*X.

N

Theorem 16. The set WQ(a) coincides -with WQ9 if XI

holds for v,eZ+={0, 1,2, • • • } Te;zYA (v1? • • - ,%) ^ (0, • • - , 0).

Proof. At least one of at does not vanish, say a^ We can normalize
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to be 1. Let W be the subvariety of Wf.Y defined by 61 = 0,$^ (1 = 1,

• • - , A T ) . Let E be the subvariety of WfiV defined by H /*(*) =0- It:

'
is enough to show TV' — -

We shall prove it by the reduction to absurdity.

If this were not true, there should be a point p in W0 and a

neighborhood U of p such that U f| £=> £7 0 W. Again by the desingu-

larization theorem of Hironaka, we can find a complex manifold W and

a surjective proper map G: W— >W/,r which satisfy the following condi-

tions.

(53) W is the closure of G~\WJtY-E).

(54) G~\W'} is a hypersurface of W .

Let 0 be the defining function of G~1(W /). Then, at a generic point

of G-'C*/ (W), we have

(55) ( f f i - a i f f J o G ^ t o ^ (1 = 2, .-, JV)

(56) /IoG = flI0
I" (/ = 1,-,JV),

where %z and 0Z are non-vanishing and ^^^1 and Vz^0. Since we have
IV

supposed U /"j (-^O = 0 on W7 in a neighborhood of />, we have also
1=1^

T] Vj^l. Hence we have there

(57)

= (2 a&i) ° d<P+ (holomorphic form).
1-1 0

N

Since ft) is a holomorphic form, this is a contradiction if ]T]
1=1

Q.E.D.

After proving these preparatory results, it is now easy to study the

holonomic character of 7" (A) 0 (x\ A). Here 7* (A) denotes the f -factor

introduced in Theorem 1. First we define the coherent 3) ̂ -Module ^T ^

by

(58) ^"
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for A= (Ai, • • • , iN) eC^. It immediately follows from the definition of

dT i that the distribution f(/l)0(.r; /I) satisfies the system of linear

differential equations ^ im

The sheaf ^^[5] is contained in £DxxcN ^ we regard Sj as

the coordinate functions on C^. In the sequel we shall denote by

^r< the .Sjrxcw-

Then we have the following

Theorem 17. (a) The characteristic variety of ^ \ is contained

in WQ (hence ^ \ is a holonomic system) .

(b) The characteristic variety of ^f,9 is co?itained in

Proof. Let a(x, f) be a holomorphic function on T*X vanishing

on W0 and homogeneous of degree r in ?. Then, by Hilbert's Nullstel-

lensatz, there exist an integer m and holomorphic functions Q i ( G 9 x 9 $ }

which are homogeneous of degree rin — 1. in (<7, £) such that

,O on Wf)Y.
1=1

By Theorem 2 we can find an integer m' and P(s)^t3mm,r such that

Therefore, if we regard P (s) as a differential operator on CNxX (or

if we substitute A into 5), then the principal symbol of P(V) is <z(.r, f)m m / .

This proves the desired results. Q.E.D.

§7. Concerning the singularity spectrum of f ( s ) ( D ( x \ s ) (regarded as a

distribution in (x,s) \vhich depends holomorphically on 5), Theorem 17 (b)

immediately gives the following Theorem 18. (See Theorem 2. 1. 1 of

[10] Chap. III. § 2. 1. Note also that a distribution on M with holo-

morphic parameters s^CN is a distribution on Mx€N which satisfies

the Cauchy-Riemann equations in 5.)
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Theorem 18. The singularity spectrum of ? (s) 0 (x ; s) is con-

fined to

r=0,

However, the conclusion of this theorem is not the best possible one

of the sort. One of the typical examples which manifest this fact is

given by considering the case where

f] a, grad.^ (x~) (a,>0, £; a, = 1)
1=1 1=1

is contained in a proper convex cone. In order to take into account such

phenomena, we introduced the following set W0 ( + ) in [8]. Unfortu-

nately, our proof for the claim announced in Lemma 2 of [8] turns out

to be incomplete. (*> Still we believe that the claim itself should be true.

Hence we feel it worth while presenting here as a conjecture.

Conjecture. The singularity spectrum of j (k)fl)(x; A) (considered

as a distribution in x) is contained in the following set WJ( + ), if

Wo( + ) = {(x, v7-!?00) e ^/-IS*M\ there exist a sequence

such that ^J(xm)=0 (j = l9--9d) and that converges to x -with

E[/i(*)=0 and sequences am = (a(m\ • • - , c4m)) e (R+)N and 0m= (fcm\

•"-, /5f})e€d such that

(59) a^/iOO-^0 (Z = 1,-.,N)

(60)
N

s<1=1

The rest of this paper is devoted to the discussion on some examples

which support this conjecture and indicate that it should be very difficult

to improve it much. In the study of the examples given below, we

concentrate our attention on delicate points and leave the complete argu-

ment to the reader.

One rather trivial case covered by our original argument is the case where N=l.
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Example I. Let 0 be (tx + ̂ ~^l fy*(ty + ^^l 0)*(A, #>0). Let

(t, x, y; /-iCr, ?, 77)00) denote a point in /^T S*R\ At the origin,

the prescription given by Theorem 18 allows the following set I as a

possible singularity set over the origin for 0.

(61) /^{(O; V=l(r ,£,7)oo); (r, £, 7) =£0} .

On the other hand, the prescription given by the conjecture allows only

the part J+ of / where ???>0.

Actually, we find

(62) S.S.0CI {(*, x, y ; v^

In order to see this, we first decompose 0 as follows:

(63) 0 = 0+ + 0_, where 0+ - (^ + v^ 0) l (ty + y7^ 0) "Y (0

and ^_^

Here Y(£) is the Heaviside function. Since 0+ (resp. <5_) is a hyper-

function which is holomorphic in {(x} y) eC2; Im x>0, Im y>0} (resp.

{(>, y ) e C 2 ; Imx<0, Im y <0», we find by [10] Chap. I., §3.2

(p. 308) that

(64) S.S.0±C{??7>0}.

Hence we find (62) . Thus in this case, the more delicate prescription

based on the conjecture turns out to be a correct one.

Example 2. Let 0 be (tx + z2 + J~^I OY(ty +z2+ /=! 0)" (A, fji > 1).

Let (t,x9 y, z\ v^ICr, S9 fj9 C)°°) denote a point in V11! *5*/Z4. Again,

at the origin the prescription based on the conjecture gives rise to an

intriguing condition f^^O, which is not derived from the result stated

in Theorem 18. In this case, again the prescription based on the conjec-

ture is correct. To see this, we again decompose 0 into the sum

ti)Y(t)-}- @Y ( — £). Then the same argument as in Example 1 succeeds.

From the viewpoint of applications to the problems in physics (e.g.,

[9], [12]), it would be more desirable if we could choose xm to be

real in the definition of WJ(-I-) . The following Example 3 might give
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us a hope for such an improvement. Such a hope, however, is nullified

by the subsequent Example 4. See also a very interesting paper [12]

for related topics.

Example 3. Let 0 be \ts\ *(xt* + ys*y+ (A, /*>0).(*> Let (*,?,*,

5; V --"!(£, ??, r, (J)oo) denote a point in V"— 1 S*R\ Then after some

calculation we have

(65)

where c(fjf) =2ni exp (juni/2)r(ju, + 1) . Then S.S.0 is contained in the

set (?T?>0} due to the factor d(fs2 — ~f]t2). The prescription given by

the conjecture does not give this result, while this constraint naturally

appears if we assume xm to be real in the definition of W'01

Example 4. Let 0 be (x3-~:y3)UAc£7V, ^>0). Let (x,y; V-l(f,

if) oo ) denote a point in ^ — 1 S*R2. If we use the recipe given by the

conjecture, then there is no constraint on the cotaiigenlial component of

the possible singularity spectrum of 0 at the origin. On the other hand,

if we suppose that xm should be chosen to be real in the description of

W o ( - f ) , then we have there an additional constraint £^<0. However,

as we shall see below, a point (0,0; y7 — 1 (£, rf) oo) with ?^>0 really

appears in the singularity spectrum of (^.(**) This implies that we cannot

keep xm to be real.

In order to see this, it suffices to show that the following Radon

transform R(syy) of 0 does not vanish identically for (£, ff) e Rz with

c*} Note that I/W \l and f(x)+ are expressed as a linear combination of (f(x) + V—1 0)*
and (/Or) — V ^ I O ) * for generic A.

(**> ^s a matter of fact, the argument below implies that S. S. 0 contains any point
(0,0; V11! (£?)«>) with (£,?) ̂ (0,0).

(***) Since (j;3— y)+ is homogeneous in (xty)t we can use the Radon transform of 0
instead of its Fourier transform. Note also that there is no contribution to the set
tftf^O} from the points different from the origin. This is the reason why we do
not need to use a cut-off function with respect to (x,y}~variables.



574 MASAKI KASHIWARA AND TAKAHIRO KAWAI

(66) £(£,?) = f (x3-
JSl

= f (:c
J*-J/ = 1

Here we may assume without loss of generality that £ + ^ = 1. Then

what we should show is that the resulting integral I (iff) does not vanish

identically. In order to see this we calculate I (iff) by shifting the path of

integration f0= ( — °°, oo) to Jl described in the figure below.

Imx 33

s'"/

/

/

/
/

/
/

0

"
1

T

]

X
\^J

\
"^\

\
l+Jl/3i \

a- 2 x

1

1/2 Re x
X7?

V

l-Vl/Sz

Such a change of the path of integration is legitimate if A>0, as the

integral along the dotted circle tends to zero as its radius tends to zero.

In view of the + y7 — 10 in the integrand of /(??), we may regard fj to

be a complex number running over the domain {Im ^<CO}. If we move

fl so that it lies on the segment joining a and /?, I(j)} acquires the form

r-Wa 2V 3/ \ 2V 3

Clearly the integral

f*oa
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converges for A>0. Furthermore, its integrand is non-negative if ^ = —--f
1 ^

4-V — 1C with C<C0 /-o=- Therefore /(??) is different from zero for
i 2V3

fl= + y / _ i ^ with C<—T=. This implies that /(??) cannot be identi-
^ <o y O

cally zero for real ?y. This completes the proof of the assertion that a

point (0, 0; V~^(f, ^) °°) with £C>0 really appears in the singularity

spectrum of 0.

References

[ 1 ] Aroca, J. M., H. Hironaka and J. L. Vicente, The Theory of the Maximal Contact.
Memorias de Matematica del Institute Jorge Juan, 29. Madrid: Consejo Superior
de Investigaciones Cientificas, 1975.

[2] Atiyah, M. F., Resolution of singularities and division of distributions, Comm. Pure
Appl. Math., 23 (1970), 145-150.

[ 3 ] Bernstein, I. N., Modules over a ring of differential operators, Study of the funda-
mental solutions of equations with constants, Funkcional. Anal, i Prilozen, 5
(1970), 1-16(in Russian).

[4] Bernstein, L N. and S. L Gel'fand, Meromorphic properties of the function P\
Funkcional. Anal, i Prilozen, 3 (1969), 84-85 (in Russian).

[5] Hironaka, H., Introduction to the theory of infinitely near singular points, Memo-
rias de Matematica del Institute Jorge Juan, 28, Madrid: Consejo Superior de
Investigaciones Cientificas, 1974.

[ 6 ] Kashiwara, M., J3-functions and holonomic systems, Invent. Math., 38 (1976), 33-
53.

[ 7 ] Kashiwara, M. and T. Kawai, Micro-local properties of II f j i , Proc. Japan Acad.,
51 (1975), 270-272.

[8] , On a conjecture of Regge and Sato on Feynman integrals, Proc. Japan
Acad., 52 (1976), 161-164.

[ 9 ] Kashiwara, M., T. Kawai and H. P. Stapp, Micro-analytic structure of the S-matrix
and related functions, Publ. RIMS, Kyoto Univ. 12 Supp., (1977), 141-146. A full
paper titled " Micro-analyticity of the S-matrix and related functions" will appear
in Commun. math. Phys., 66 (1979).

[10] Sato, M., T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equa-
tions, Lecture Notes in Math., 287, 263-529. Berlin-Heidelberg-New York, Springer,
1973.

[11] Whitney, H., Tangents to an analytic variety, Ann. of Math., 81 (1964), 496-549.
[12] lagolnitzer, D., The u=Q structure theorem, Comm. math. Phys., 63 (1978), 49-96.

Added in proof: The statement in page 9, line 4 is erroneous, because P/s and Qj's
do not satisfy the commutation relation. Hence the proof of Proposition 7 is not correct.
Although the proof of Theorem 2 depends on Proposition 7, if we replace JTjt9 with
-^O.pO^, £), it does not depend on Proposition 7. Here a= (ai, •••, ai), /9= (/?i, ••• , &) eCl

and Jfjt<f(ct,$) is obtained from J^s.9 by letting sj subject to the relation Sj—ajS+fij with
one indeterminate s. Theorfore the proof of Theorem 18 is complete as it stands. The
detailed corrections will be submitted to this journal. See also our paper "On the charac-
teristic variety of a holonomic system with regular singularities," which will appear in
Adv. in Math. It gives a complete proof for a generalization of Theorem 18.




