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Propagation of Singularities of Fundamental
Solutions of Hyperbolic Mixed Problems

By

Seiichiro WAKABAYASHI*

§ 1. Introduction

In this paper we shall deal with hyperbolic mixed problems with
constant coefficients in a quarter-space and study the wave front sets of
the fundamental solutions under the only assumption that the hyperbolic
mixed problems are &-well posed. Recently Garnir has studied the wave
front sets of fundamental solutions for hyperbolic systems [2]. The au-
thor was stimulated by his work. For the detailed literatures we refer
the reader to [7], [8].

Now let us state our problems, assumptions and main results. Let
R"™ denote the 7-dimensional euclidean space and write x” = (xi, ***, Zp-1)
for the coordinate z= (x,, -, x,) in R"and & = (&, -+, &,_), €= G
for the dual coordinate &= (&, ---, &). We shall also denote by R"
the half-space {xr= (z’, z,) ER"; x,>0}. For differentiation we will use
the symbol D=:"'(0/0xy, -+, 0/0x,). Let P=P(£) be a hyperbolic
polynomial of order m2 of # variables § with respect to ¢ = (1,0, ---, 0) e R"

in the sense of Garding, i.e.
P'(—i9)50 and P (§+s9) %0 when & is real and Ims<7,,
where P° denotes the principal part of P, i.e.
P (&) =t™(P'(§) +o(1)) as t—o0, P°(§) £0.
Let I'=I"(P,%) (CR" be the component of the set {£=R"; P'(—if) =
0} which contains 9. We also write I'(P) =I" (P, 9). Put
I'i={eR""; (£,0)l7},
I'={&eR; (¢,&) &l for some §,ER}.
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The localization P, (7) of P(€) at & and the multiplicity 72 of £° rela-
tive to P are defined by

V'P (0T 1) =v™ (P (1) +0 (1)) as »,0, Pe(7) 0
(see [1]). We note that
I'CIw=I(Ps).
Now write
PO =P8  Pu@)=0
Then we see that
P, (&)50 for & R ' —iry® —il oy .

In fact, P, (&) =Pqy (&) and Igp=IonXR. It easily follows that
Irncl'cl'y, When &R —iy —il",, we can denote the roots of
P(&',2) =0 with respect to A by A (&), -, 4 (§"),27 (&), -+, dmr_i (&),
which are enumerated so that Im A7 (§’) =0. We consider the mixed
initial-boundary value problem for the hyperbolic operator P(D) in a

quarter-space
P(D)u(x) =f(x), z<RI, z,>0,
Diu(x) l5,=0=0, 0<k<lm—1, z,>0,
B(D)u(2) layer=0, 1<j<l, 2,0.

Here the B;(D) are boundary operators with constant coefficients. Put
3
P D=1 G@=4ED), §eR T —irg —il,.
e
Then Lopatinski’s determinant for the system {P, B;} is defined by

R(E) =det L(¢)  for &’ ER™ iy —il",

where

L&) = (27117 § B, (&, )P, (&, 1) -w)

Frk=1y1

We impose the following assumption on {P, B;}:
(A) The system {P, B;} is &-well posed, i.e.

R (—79’) <0, R(&' +s9')+0 when & is real and Ims<—r1,,
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where R°(&’) denotes the principal part of R(¢’) and 7,>7, (see [3]).
Now we can construct the fundamental solution G (x, y) for {P, B;}
which describes the propagation of waves produced by unit impulse given
at position y= (0, y,, -+, y,) in RL. Write
Gz, y) =E(x—y) —F(z,9),
.Z‘ER’_:_, .1:1>O, y= (0’ Yoy "% yn) ERi 5
where E(x) is the fundamental solution of the Cauchy problem repre-

sented by

E@=en™ [ ewlizfP@7d 1em+T.
R™—1i7
Then F(x,y) is written in the form

Pz =@ [ 5 enpli{@ —y)-¢

Rn+1-i73 i k=1
+ xnén'—yn$n+1}' ] -Rjk (5,) Blc (‘S,y $n+1)
XETHRE) P (O P, 60n) 'dE,

where 7>7;, 9= (4, 0) €R"" and R;; (&) = (k, j) -cofactor of L (&) (see
[31, [4], [6]). F(x,») has to be interpreted in the sense of distribution
with respect to (x,v) in R} X R:. We put

F@) =F, 2,0, —2,11), £= (2 201) EX=R"'XR.XR.,

where R. = {l=R;1<0}, and regard F (2) as a distribution on X. We
note that F (%) can be regarded as a distribution on R™! and that supp F
c{#€R"""; 2,>0}. In order to investigate the wave front set WF(G)
of G(xz,y) it suffices to study WF(F). Our main result is stated as

follows:

Theorem 1.1. Assume that the condition (A) is satisfied and
that =R, Then we have

~ N )
£ exp[ =2 SE @) — 1 Faoy @) 7% =0
Ji=

as t—oo, in P'(X), N=0,1,2, ---,

where p, is a rational number and L is a positive integer. Moreover

we have
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) U supp F;,; @) x £} CWF(F (®))
FER™MN\{0} j=0

CWF.(F®@)c U Kix{&,
EESR+1\{0}

(1, 1) ;I-HT[.GO supp Fgo,j (%)] CKga
=

(1.2) KaWCKS,

where

Ko={2€X;2-7>0 for all &I},
KYW={2eX;2-5=>0 for all FI)

and Iz and I’} are defined by (3.3) and (3.4), respectively.

Remark. The inclusion of (1.1) can be replaced by the equality

except in certain exceptional cases (see Example 5.1 in [8]).

The remainder of this paper is organized as follows. In Section 2 we
shall study some properties of symmetric functions of Af (§7), -+, & (&').
In Section 3 Theorem 1.1 will be proved. In Section 4 we shall give

some remarks and examples.

§ 2. Algebraic Considerations

In this section we assume without loss of generality that P(§) is
irreducible. Let & be fixed in R"*"' and s the multiplicity of & re-
lative to P,.(§). Let &R and write

VP TE+) = 25 ¥ Qi (), Qeomer (1) 0.
j=mg®
It is easy to see that Qo me(7) =P (7)),
Qns (M= 31 Lol/5g=P*(¢%) .71,
lalTE=7 ¢!

where P (&) =P°(&) +P'(§) ++--+P™(§) and P*(£) is a homogeneous

t ¢h[M1 denotes the closed convex hull of M in X.
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polynomial of degree m—k. We can write

O, ; (1) = :Z;Qewk @)1, e, (17)FEO i Qp,; (1) #0,
where 7;=r;(§%) depends on &°. It follows that 7 .n:, =m' and r;<m’
if j<<m'+mb. We put ;

h=4i (&) =m+mg

Le=1 (&) =min{(r;,—7y) / Ue—9) s me=j<ji},

Jer1=Jr+1 (§°) =min{j; mu<j<jy and (ry,—75)/Ge—7) =L},
and obtain the sequence {ji, /x}£=0,...s+1 SO that

Jo=m>gi=m" e >Gy > >G> =M

L=0<L <L <[ <lysy=00,

where s=s(€° depends on £°. For p>>0 we define the modified localiza-
tion P,&(7; ) of P at & by

VIP (7Y 4 v v A ) =0 (P (73 2) 0 (1))
as v}0, P, (7; ) %0 in (3, 2).
Then we have
2.1 Poeo (13 0) = Qen gur, (1) N,
me (0) =Jr—73,/0,
if 4,>0>1,_;, 1<<k<s+1, and we have
2.2) Poes (150 = [ro,0, (1) X 37 s
ot ey, (1) 120

Meo (0) =Ji— 75/ 0=Jkt1— 74,/ 0 »
if p=1,, 1<<k<s. Moreover we have

Poeo(;0) =P (', 2+7,), M (0) =g,

if p=1I;,;=00. We note that 7, (£ and l,_;(§° are independent of £ if
l;;<1. In fact, we have

Poow(@;2) =Py o0 (13 4) if Ly <o<<min(1, ).
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Now we define the modified principal part pj(7; 1) and modified degree
deg, =0 for a polynomial p(7;4) by

P £ =" (B (1; ) +0(1)) as t—oo,
Ly ) #£0 in (7, 2).

Lemma 2.1. Let p>0 and put Peow(1;2) = (Poe)o(1;2). Then

we have

oo (15 0) = (P o0 (15 0),  degy Ppeo=me(0).

Proof.
VmPo(l)_1€0/+'7]’, V'lfﬂ-i-v_l/"l—#??n)
=V ((P) 0o (7; ) +Q (1, 45 9)),

where Q(7,;v) is a polynomial in (7,2), continuous in (7, 4,v) and
Q(@,4;0) =0. Therefore we have

y" N J ot PO (TIEY 4, v+ v P A 4 7y,)
=7 (0'*1/07% (P°) .00 (3 A) +0'*//07°Q (7, 25 v)) .
From this it follows that
A B S D)
=" (((P") )~ (15 )"+ 0(1))"* as »)0,
where 7 (7; 2)2=3.18"*/0%"p (7; A) |>. Hyperbolicity of P implies that
[P + 9/, v v 2+ 7,) |
<const. X PO (v7&Y 47,y I&, + v ) +-7,), AER, 7€ R"

(see [5]). Since there exists (7°, 4,) € R such that P, (7°; A,) 5-0, it
follows that ¢,<m. (0). Put

VmPk(V_1€0,+77’, y~1$2+y—1/pl+77ﬂ)
=y ((P*) 0o (7; ) +0(1)) as /0.

Then we have deg,(P*),o=0,—k and (P¥);z0= (P*),e. Therefore it
follows that Gy=m (0). This proves the lemma. Q.E.D.
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Lemma 2.2. Let 0>>0, 0551 and & R\{0}. Then P, (7;2,) is

a hyperbolic polynomial with respect to . Moreover we have
R*— iy — il ((Po,n) @) if 1>0>0,
(2.3) P,u(;d)#0  for 1€ R"—ird —il ((Pp)on) if co>p>1,
Rn—‘i')ﬂﬂ?‘_‘irfo Z:f p=ls+1=00 .
In particular,
I'((Pop)e) if 1>0>0,
2.4) I'(P,e0 (05 20)) DV ((Peo) o) i 00>p>1,
Féo if p=ls+1=00 B
and
(Pgo,l))en (77) Mn, if l120>0 >
(2.5) (Pp,e°)°(77; Ao) =3 (Pd) ©,1) () Ags+r £f oo>p=>1,
Pg"(ﬂ) Zf p=ls+1=°° 5
where (P,e)'(7;4) denotes the principal part of a polynomial
Poe (7520) in 7.

Remark. We note that I'eC I ((Psx) @) and that (Pep)e(n) is
independent of &%.

Proof. Since p=~1, it follows that P, & (7;4) £0in 7. In fact, from

Lemma 2.1 we have

deg s, jir 1, ") =jr— Vg

Thus
(g, j,,rjk) @) A i L= > 1k
and 1>0>0,
2.6) (Ppeo)' (15 2o) = (Gzo, jury,) ‘() AE i > 0=
and p>1,

PL(y) if 0=l =00 .

Now let us assume that there exists 7"€R"—iy9—iI' such that
P, «(7°; 2))=0. Then there exist positive numbers ¢, § and £°< C" such that

| Ppeo (1" + 8% A) |>e>0  for [uj=0>0,
P4 plE R —ird —il"  for |u|<8.
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Therefore from Rouché’s theorem it follows that there exists a positive
number Y, such that P (™'Y 9% + u&%, v + v~ 2+ 7% + #&2) has zeros
within |u|<C6 if 0<y<{y,, which is a contradiction to P (§) #0 for £ER"
— 170 —12I". So we have

P,o(;2)#0 for neR"—iyd—il.

This implies that P, (7;4,) is a hyperbolic polynomial with respect to
© and that " (P, (7;4y)) DI'. Next let us prove (2.4). We note that
(2. 3) follows from (2.4) (see [1], [3]). One can easily verify (2.5).
Therefore (2.4) holds when co>p=>[; or [,=>0>0. Let us prove (2.4)
when 1>p>0. For we can prove (2.4) in the same manner when
0>1. Now assume that I" (P, (7;40)) DI ((Pwg1)e) when 1>[,>0>0.
Then by (2.1) we have

T (Gensury, (1)) DT ((Po) ).
Thus from (2.6) it follows that
@.7 P ) #0  for neR"—iy ¢ —il ((Pen)e)-
Assume that
Tevjunry,,, (1) =0 for some 7"€ R"—iyd —il" ((Po,n)e) .
From (2.2) we have
AT Py (15 8) > Qoo gy, (1) as 20

(locally uniform), which leads us to a contradiction, using Rouché’s theo-

rem. Therefore,
2.8 Poeo (03 4) = Qeor jguyry,,, (7") 270

when lk+1>p>lk and WER"—iTqﬁ—ir( (P(O,l))fo)- From (2. 7) and (2. 8)
it follows that

I'(Poes(520)) DI ((Pon)e) when [ ,>0>0.
Q.E.D.

We define g=q (") by
(2.9) 0F/0&EP (&Y, 2) =0, 0<k<g—1, 0Y/05IP° (€”,2) #0 in 4.
Put
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p=p(§”) =deg 0%/051P" (§”, 1),
and define 7r=7(&% by
(2.10) 0T /OEDEEP (8 =0, 0<k<r—1,
(2.11) 07" /0§10, P° (§°) #0 .

Then we have the following

Lemma 2. 3.
(2.12) e<mb<m—m', p<min(m’,m—gq),
< ma<g+r<g+p<m’ +mbh<m,

p=m', mi=m—m' if q=m—m’.

Moreover

(2.13) i <j—q Jfor ma<j<m,

(2.14) r<i—q if me<j<g+r or qtp<i<m,
(2.15) r<lm'  if me<j<m'+m,

(2.16) Torr =7, Top=p and P bmly, = m'.

Remark. This lemma yields us the following Newton polygon (Fig.

1).
7y
m, [~ T T T T T T A T )
e
s+1 Js Q+7‘\ JaJ1 m
a+p
Fig. 1.
Proof. If la|+k<q,
2.17) o' /9&*PE (&Y )=0 in A.

In fact, for each ,L,eR
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va (V_IEO, + 77/’ V~1].0+ .'7”)

=510 51 Low/gePr(s”, e

=0 jaftE=7 o)
If 9'*1/9&*P* (&Y, 2,) #0 for some « and % with |a|-+%<(g, hyperbolicity
of P implies that there exists a non-negative integer A such that A<{|«|
+%<g and 9"/0&'P° (&Y, 1)) = h! P 1, (9) #0, which is a contradiction to
(2.9). (2.13) easily follows from (2.17). (2.12), (2.15) and (2.16)
are obvious. Now assume that
p'=max{deg 0'*"| /08 P (£V, ); |a’| +k=q} >p.

Then we have

(2.18) Py v (@30 =0 for 1>0>(m'—p)/(m’'+1—p),

which is a contradiction to hyperbolicity of P, ¢o,0 (7; 40), HE R\ {0}. In
fact, we have 7., =p" and 7,<j—q for g+p'<j<m. Therefore, j—r;/0
>q+p'—p'/0 when 1>0>(m'—p")/(m’+1—p") and j7q+p’. For
it is obvious that j—7;/0=>j(1—1/0) +q/0>q+p' —p"/oif j<gq+p'. If
Jj>q+p’, then

J—ri/o=j—r;+ A=1/0)ry=q+1+ 1—1/0)m'>q+p"—2"/0.
Thus we have P, o0 (7;4) =qeo,0,q+pp (1) ¥, Since qgén',m,qw'p'(i?/)
= (glp’!) 701" /0E0EE P°(€”,0) we obtain (2.18). Therefore we have

p=max{deg 0" /0§’'“ P* (£, 1) ; |’ | +k=g}.

This implies that 7;<j—q if ¢+p<j<<m. Next let us prove that
(2.19) 9"*1*"/0&’*PEEPE (£ =0 for |a’|+k=q and 0<A<r—1.
Assume that

7' =min{k; 8'*1"" /0’ PEEP (£ £0  for some o

and %k with |&/|+k=¢q}<r.

Then similarly we have

Ppew(@8) =0 for (g+7"—mup+1)/(q+7" —me) >0>1,

which is a contradiction to hyperbolicity of P, (7; ), A ER\{0}. From
(2.19) it follows that r;<j—q if me<j<lg+r. Q.E.D,
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From Lemma 2.3 it follows that there exist positive integers ¢
=¢(&") and ¢'=¢"(£° such that 1<{¢<<t'<s+1, j,=q+p and j.=q+r.
If »<p, then #’=¢t-+1 and [,=1. If r=p, then t=¢,[,>1 and [,_,<1.
Thus 7 (8" and I,_, (&%, 0<<k<<#(£&"), are independent of &J. Put

Plkf" (ﬂ; A) =Pk,5o (77’; l) AT Tk R
Pk,éo (77’; ]k) =Qeo, jury, (77’) ATie Tk oee @eo, st (77/) )

By Lemma 2.2 we obtain the following

Lemma 2.4. For 1<k<t P, ';A) has no real zeros when 7’
eR ' —iry —il ' ((Pon)e). For ! <<k<s Py o(;2) has no real zeros
when 7' € R —i1,' — il ((Ps) o) -

Denote the roots of Py (1, 2) =0 by 2. (1), -+, A (1), A s (77) « -+,

l;‘o,rmu_l,(n’) so that the 4% ;(7’) are continuous and that

Imas ; (@ —i79)=0 for r>7, and 7€ R,

when 7,,70. Then we easily obtain the following

Lemma 2.5. Assume that r,,70. T hen
{28, 0" Yazizr N i, s (7)) 1Si<rm o=l = %

Zf 77, S5 Rn—l""i')’o&l - Z']._'go.

Put

Pary (i) = 51 251/08%P* (8", 7",
lal+k=q (¥.

We note that P ,(7;4) is independent of 7,. From the proof of Lemma
2.3 it follows that deg Peo,,(7; ) <p in 4 for fixed 7. The coefficient
of 22 in P, q(1;2) is equal to G, q4pp (7'), where &, R.  Since ¢+p =4,
p=r;, and [,.,<1, it follows from (2.1) and Lemma 2.2 that

Geo,q+05 (1) F0 for nER"—i7,—iI" ((Pu,p) &) -

Therefore we have
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deg Pga/,q(’)?; l)=P in A fOI‘ ﬁxed WERn—iTQlQ_iF( (P(O,l))(EU’,U))'

Lemma 2.6. Let &R and 7€ R*—i7,0 —il" ((Pe) ©1). Then
A=8) is a root of 01/0&P"(&",2) =0 with multiplicity r' if and only
if =& is a oot of Peo(1;2) =0 with multiplicity r.

Proof. Now assume that Pew ,(7;8) =0 for some 7€ R"— i7,0
— 1" ((Pg) @,p)- Then we have 8%/0&1P° (£ =0. In fact, if 09/0&LP° (&%)
#0, we have (Pi)o.1(8)= P, (&; E0)F0 for E€R"— i1 —il'((Pe)wn)s
which is a contradiction to P, ,(7;&%) =0. Next assume that there
exists a non-negative integer £ such that £4<r—1 and 0*/04*Pj. ,(7; &
#0 in 7. Then we have 7, =%k, which is a contradiction to (2.14).
For [,,>p>1 we have

P/,,eo('}? A) ———-— ’0’/0/1'P5w q(77 E )

From Lemma 2.2 and this it follows that

0"/0A Per,g (7; €2) 0 for 7€ R"—i7,0 — il ((Pes) 0,0) -
This proves the lemma. Q.E.D.

Lemma 2.6 yields the following

Lemma 2.7. Let WER"—zroé‘——z{ ﬂ r((P;o)(o ) NI (P, p)eor,0)}-
The real zeros of 0%/0&P°(&Y,2) agree with those of P, (7;2)
(éncluding multiplicities). Moreover the number of the roots with
positive imaginary part of Pe.,(1;2) =0 is equal to that of the roots
with positive imaginary part of 8%/0&P°(8Y,2) =

Remark. The non-real zeros of 3?/084P°(£”,2) do not always agree
with those of Pe o(7;4). In fact, for P(§) = P'(£) =& —28(8+8+8)
+ (E24-E+£5/2) €2 we have

tr=r(&" is defined by (2.10) and (2.11). Lemma 2.6 implies that 1=§; is a root of
Po, o(7; ) =0 with multiplicity  and that 8%/0&1P°(£°) =0 if Peo,,o(7; &) =0 for some
ﬂER"—'i‘)’ol?—if'((PeB) (0,1)).
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92/082P*(0,0,1,) = —41+2),
Pon(; ) =—2(1 +2) 7R+ QA +2/2)7; .

Moreover if 87/0&P° (&) 0, then Ps (1) = (Pe)an (1) and Pl o(—i7"; §3)
:Pgo (_Z'.'?O) =0 for WOEaF(P50> T.

Put
GEY =105 (EYE, 1<k,
=

Fo= N Tl T ((Pos) @) -

der

Lemma 2.8. Let 1<k<<l. For any compact set K in R"!
— i1 —il'w there exists v (>0) such that ¢* W€ +7') is well-
defined for 9 €K and 0<yv<lyg and

yrat (T k) = 33 ok (1) ¥, ok (1) 0,
p

whose convergence is uniform in KX {v;0<y<ly,}, where s; is a
rational number and L is a positive integer. Moreover the g ;

are holomorphic in R '—ir,0" —il .

Proof. We can assume without loss of generality that K is small
so that

{44, ; ") 1<j<l’ and 7 €K} N {ls,; (1) ; 1<j<rpo—1'
and 7 €K} =0 if §€R and 7,,70

(see Lemma 2.5). Let &R and @& ; A<j<t (&), ¢ (&) <j<s(&Y))
be simple closed curves enclosing only the roots with positive imaginary
part of P; . (7';4) =0 for 77 €K (see Lemma 2. 4). Let @&, be a simple
closed curve enclosing only the roots A% ; (7)), 1<j<<I’, of Pu(7',2) =0
{for 7 €K if r,,,seﬁ&O and €4 a simple closed curve enclosing only the
roots with positive imaginary part of P 4 (7;4) =0 for 77 €K (see Lemma
2.7). From the relations between the roots of P(y™'&”+%',2) =0 and

t @M denotes the boundary of M.
' The 2} (&) are continuous and Im 2} (&’ —ir®’)>0 for &£ER** and 1>7..
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the roots of P (732 =0, Pu(7',2) =0 and Pg. ,(7; ) =0 there exists
vk (>0) such that {27 (76" +7") by N A7 078" +7) }ijzmi =D for
7K, 0<y<lvk. So we can take &; to be a simple closed curve enclos-
ing only the roots A7 (W'Y +7"), 1<j<l, of P 'Y +7%',2) =0 for 7’
eK, 0<y<yy. For 7€ K and 0<y<vx we have

(2.20) 0" (7" +77) = (2mi) f | M0/06,P(vIE” +77,2)
XP ™Y+, 2)7'd2
1—1
=2 (2n7) _l.f A¥0/06,P (1Y + 77, v=/42)
7=t “lo,0, 1
X (Plj,(sof,o) (77’, O; l) +0 (1)) ~lym—(b+1)Ly=m eor,0 ) )

+@ri)~t | 2%0/06,P(vEY 7, v7Ih)
o5
X (Peo"q(')],’ O; l) -+ 0(1))_1ym—q—k_ldl
$(€0)

+ 2 [ 2 (@)™

E0ER, 0Y0:IP° (Y, eD)=0 F=t7(0)

x j L OV /05, P (7Y 0, v+ vTA)
&,

§,7

X (Poyu (1, 05 2) +0 (1)) "y =Ha=meséi )

+@1 "‘607-,,,50(60)) X @)t j‘ . e+ )"

£,0
X0/0&,P(»7'& + 77, v71E0+ 1)
X (Peo (7, 2) +0(1)) ™ me°d1],

where each 0(1) is a polynomial of %’, 2 and v"* and vanishes for y=0
and L is a positive integer. So there exists yx (>>0) such that each
integrand in (2.20) can be expanded in a power series of y“%, which

converges uniformly in 7€ K and 0<{y<{yy. From this the lemma easily
follows. Q.E.D.

Lemma 2.9. Let 1<k<l. For any compact set K in R”"l—ifea,,
there exist Vg and rx (0) such that ¢* W 'r” +ry’) is well-defined
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when re) € R =i —il w0, a €K for some acC (lal=1), 0<y
<vg and r=>ry. We have

2 gl () v,

7=03=0

0‘?00',1 (77,) E= 0 l:f O‘g"’,.i (77’) # 0 ’

Me

(vr—l) skgk (V_lrfw +7'77/) _

i

whose convergence is uniform in {(7,v, 7‘);rKW’ER""I—iroﬁ'——ifeu,,
ay €K for some a=C (lal=1), 0<v<yx and r=>r}, where the qy;
are rational numbers. Moreover the 0 ;(7') are holomorphic in

R*'—il'w and homogeneous and
% ’ i/ A ki IN -
O_;w,j<7'7] ):rq"-’ i/ Z}O‘f:/,j(?? )7" 1',
1=

whose convergence is uniform in {7, 7r);rx) ER* ' —ir,® —il 0., ay’

€K for some acC (la|=1) and r=rg}.

Proof. Modifying the curves &, &G 0,5 €& and && ; in the

proof of Lemma 2.8, we have
2.21) 0" +ry’) = (2r) ! I . A0/08, P (v 'rEY” +7y7, 1)
gv
XP@ 7Y +ry’, ) "'dA

= [§ (2ri)~! j . 2¥0/06, P (v~ 'rEY +ry’, v k)
=1

T 0,7
X (Py,, @0 (07, 05 ) +0 (1)) ~tym-EEbAimm@ o U]

+ (Cr) . 250/06, P (v 'rEY + 79", v7r2)

Q’ED,

X (Plorg (77,05 2) +0 (1)) “ym-k-1-143
G )

* 2. > @m)~

SER, 090 IPY Y, 6D=0 F=1"(%)

X J (v1Eh Fy V) *
v

»J
X0/08,P (V778" + 77/, v7irés+ v=Vir )

X (Pl,e(0,0;2) +0()) tym-itimnetng]
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(A=) X @aD 7 [ 07804
0
X 0/08,P (v reY , vy r +72) (Ph (', 2) +0o(1)) ™
XY™} ] X T ER

1

where each 0(1) is a polynomial of %/, 4, ¥** and ™! and vanishes for

y=0, r'=0. In fact, for example, we have
(VT‘_I) mnp (V_ITSO’ + 7")7’, Y€l v‘l/’frl)
= (pr‘l) me"(”)Pl,,eo (7—-77’, 0; r(lj—l)/ljl)

21 (r) ™ Py n (), 05 r&THL),

nA>mE (L)
deg,, Pieon(,0; 2)<n,.
Therefore we have
Wr™PW T rEY +ry’, v+ v V)
=y (P (M’,0;4) +0(1)) as v, r7'=0.

So there exist yx and rx (>>0) such that each integrand in (2. 21) can be

1

expanded in a power series of V% and 7', which converges uniformly in

{(7,v,n);7€K, reC, vel, |r|=rx and 0<|y|<<vx}. We note that
O-g"i’, ; (a,”/) — a{‘lkj'l'f/L—-io-;coil'j (77/)

when a7, 7 € R*'—il’s., where 1%*/2~i=1_ This completes the proof.
Q.E.D.

Let us consider I'w.. Although I'(Pwp) =1 ((Pwp) @pn) does not

always hold, we can prove the inner semi-continuity of I.

Lemma 2.10. Let ¢"€R"' and assume that 0<p<l,(€Y,0).
Then for any compact set M in I’ ((Pa.») @-0) there exist a neigh-
borhood U of & and positive numbers ry, t, such that

P(r& —irty —iry¥, r'°A—irty,) 0
when 1€ M, & €U, 1R, |A=1, r=>r, and 0<t<4t,

Proof. Put
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fW, 6,8, 45,8, =P r" +0{ —irty —i(s+71) ¢,
V) — ity ,

where 0<v<ly,, r=ry,, {'€R" !, |&'|<e, Res=>0, Re >0, |s|<<s, |¢]
<t, 1R, |2]=1 and 7M. Then we have

r Y™, r, &', 24 s, £, 1)
= (r )™ O P oo Pl —irty —i(s+ 1) 8, —irtha; D)
M>mp(§w’0)(vr‘1) " Py eoro,0 (P8 —iriy —i(s+10) 8, —irtna; ),
deg, P, ¢or00,1 (73 2) <11, .
Since 0<p<1,,
Py oo (15 2) = (Pr) o (1) ™.

Since the degree of P, o0, (7; 4) with respect to 1 is not greater than

m’, it follows that
e S e B O N G RO A7)
= (P e (& —ity —ir ' (s+7) %) +0() as vy, 7 '—0,
ie. for any positive number ¢ there exist 7y, ¥, (>0) such that
[pm e @D pmmee 0D 0 g =M (e &L A, S, £, )
= (Pr) e (C' =ity —ir™ (s+79) 9") <0

when 0<<y<<y,, r=>7ry, |8 |<e, |s|<<s,, 1A1=>1, |£|<<t, and 7€ M. So we
can apply the same argument as in Lemma 3. 7 in [7] to f(v, &, 2, s, £, 7)

and we obtain the lemma. Q.E.D.

Lemma 2.11. Let €€ R and M be a compact set in I ..
There exists a neighborhood U of & such that

McI. for &€cU.

Remark. From the proof of Lemma 2.11 it follows that

U I'(Peoen) 21 ((Pon) o) -

énER
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Proof. Assume that there exists a sequence {&,7/'};.,, .. such that
|& — &Y |<1/7, El€ R, 7' €M and P} (—i7’’,0) =0. Then from the in-
ner semi-continuity of I'; (or I')) it follows that |£|—o0 as j—o0. Let
M be a compact set in I ((Pqp) w~p) such that the interior of M
includes M X {0}. Lemma 2. 10 implies that there exist a neighborhood
U of € and 1y, £ (C0) such that

P (&' —ity’, A—ity,) #0
when 7€M, & €U, AR, |1|=>2, and 0<t<#, which leads us to a

contradiction, using Rouché’s theorem. Q.E.D.

§ 3. Proof of Theorem 1.1
Let P(§) be written in the formn
q
P& Z;H;lp" &,

v
where the p;(§) are irreducible polynomials. We assume that T[] p;(§’,
j=1
2)*=0 has roots A (&), -, 4 (&) when &R ‘'—i1, 0 —il, ie.
q
T 2,(€',2)=0 does not have roots with positive imaginary part when
1

=0+

g eR" '—ir,% —il,. Then put

Fo= {0 F((B)n) NI () o) ) }-

i=1l er
We note that
((Pj) o) eo () = ((Pj) @) (€07, 8,) ) for all §,€R.

The following lemma is obvious.

Lemma 3. 1. §Bj($',l)ik‘lP+ (&¢',0)7'dl is a polynomial of &
and ¢* (£, 1<k<<l, when P.(&',2) is well-defined.

From Lemma 2.8 we have the following
Lemma 3.2. Let &= R". For any compact set K in R

— 0708 — il there exists vg (>0) such that R™'&+7') is well-
defined for 7' €K and 0<y<lyyx and
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R +7) = Y Reor s (1) 5
j=u

Reo o (7") =Ru () #0,

whose convergence is uniform in (7', v) € KX {0<y<lv,}, where . is
a rational number and L is a positive integer. Moreover the Ryl ; (")

are holomorphic in R*" '—iyy® —il s

Remark. Reoo(7) =R (7") is the localization of R (&) at &”.
Moreover this lemma for & =0 implies that R(§’) is holomorphic in
R —ir9' —il (see [3]).

The following lemma is also obtained by Lemma 2. 9.

Lemma 3.3. Let &Y€ R*'. For any compact set K in R**
—il"w, there exist vx and ri (O>0) such that R 7& +ry') is well-
defined when rey’ € R ' —i1yd —il e, af €K for some a=C (Ja|=1),
0<v<vg and r=>ryx. We have

co

Z rhj(;’o’)—fyj/L_R:;o;’j (7],) ’

7=07=0

Re ; (") #0  if Rev ; (1) #0,

M

r )R 'rE" +ry") =

Il

whose convergence is uniform in {9 ,v, i) ;rgp ER ' —iry’ ~ifeu,,
an’ €K for some = (lal=1), 0<vy<lvg and r=>ry}, where the h(")
are rational numbers. MNloreover the Rk ;(7') are holomorphic in

R*'—il'«. and homogeneouns and
L&
N hgye L ,
Rev, s (r1) =P/ S4B, (1),
1=

whose convergence is uniform in {4, r); rey €ER" T —ird’ —il s, ay’

€K for some acC (la|=1) and r=>rg}.

Remark. The principal part (Re)°(®) of R (7') is equal to

R s (7). Moreover this lemma for &” =0 implies Lemma 3.2 in [3].

In the above two lemmas we can replace R(§) by R (&) or

P.(&,2) with obvious modifications.
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Lemma 3.4. Let £ R". There exist the localizations P..(§)
and (PY) (&) of P.(&) and P (&) at &, respectively, and

6.1 w0 () =P @) = Pe)' ().

Proof. The existence of P.n(§), (PL)#(§) and (P.wn)’(£) follows
from Lemmas 3.2 and 3.3 and the above remark. It easily follows that
Pu(®) =Pie ()Pt (§), (Pe)'(§) =(P)0(8) = (P e(§) (PL)0(§) and
deg! (P.s) " (&) <deg (PY)«(€). This implies (3.1). Q.E.D.

Let us denote by I"(R.) the component of the set {“//’EI'TEW; (Reor)®
(—1i%") 50} which contains §'". Then we have the following

Lemma 3.5 ([8]). Let §Y<R"'. I'(Rw) is an open convex
cone and
R... (£') 50 Sfor e R —ir ' —il" (Re.),
(Reor)(8) 0 for &€ R —il (Rer).

Let us denote by I'(P.n) the component of the set {7&% X R;
Pl (—in) #0} which contains §. Then we have also the following

Lemma 3.6. Let °cR". I'(P.n) is an open convex cone and

P.o()F0  for s€R"—i1,0 —il (Pis),
Plo(®)F#0 for EeR*—il (Pin),
I'(Pig) DI

In our case we can prove Lemma 3.2 in [8].

Lemma 3.7. Let &R and let M be a compact set in [ s
Then there exist a conic neighborhood 4, (CR™Y) of & and positive
numbers C, t, such that P, ({’,2) is holomorphic in (&',2) €4AXC,
where

A=A =& —it|€' |7 —ir0'; &' €4, |§'|=C,v e M
and 0<t<t,}.

' deg p°(¢) denotes the degree of homogeneity of p°.
T (Reor)*(—i/) 20 was shown in [7].
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Therefore R(C') and R;, () are also holomorphic in A.

Proof. The lemma is trivial for £”=0. So we assume that &
eR*"\{0}. Let 2(¢") be a root of p;({’,A) =0. We can assume that
2(¢’) is continuous in 4 when C and ¢, are suitably chosen. In fact,
there exist a conic neighborhood 4; (CR™™) of & and C, % (>0) such
that

Lion (E—itl§ln—ird) #0 il &4, [§'|=C, 7€M
and 0<#<4¢,.

For pjen (&) is independent of &, and MCI'w.CI ((bj00)en). The
argument in Section 2 shows that lim A (v 7'&Y — i’ —i7,9") =4, exists if
linoziIm YA — iy —ir,8") | =0, W}ul-(:;‘e 7 € M. Moreover from Lemmas
2y.—>4 and 2.7 it follows that u,is a real root of 0/0&ip%(£”,2) =0. Now
let us assume that 4, is a real multiple root of 9%/0&ip% (6,4 =0. We
can assume without loss of generality that M is small so that {(7’,7.);
7 €M and 7, <7,<73} CI (P;¢v, uy) for some 71, 72 R. Then it follows
that there exist a conic neighborhood 4 of (&Y, #,) and C, t, (>>0) such
that

P (8" —itl§ Iy —ired’, A—it|€ |1,) #0
if (¢, €4, |€1=C, 7eM, 1,<7,<7, and 0<t<t,.
This implies that
Im A(§" —it|&' |7 —ird") & [—itl& i7n, — 1€’ |7m]
for & &4, |&1=>C, 7 €M and 0<t<t, modifying 4,, C and £, if neces-
sary (see Lemma 3.2 in [8]). If §’& M, we choose a continuous curve
7 (0) in I'w such that 7’ (0) =9’ and 7" (1) € M and we repeat the above

argument for each small neighborhood of %’ (), 0<<{6<<1. This proves
the lemma (see Lemma 3.2 in [8]). Q.E.D.

Put
t;=1t;(§") =heo + 1y (§7),

where /.. and /1;(§”) are defined in Lemma 3. 3. Then it is easy to see
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that £ (§) is an integer and that # (§”)<<#,(0)'. Put
t=¢(§") =max £;(§”), w=w(§") =min{j; £(§”) =4 (£")}.

It easily follows that #z(&") =£,(0). From Lemma 3.3 we have the fol-

lowing

Lemma 3.8, Let & R*. The principal part R° (') of R(&")
is well-defined and there exists the localization (R")e. (7') of R°(€)
at &Y. DMoreover for any compact set K in R”“l—ifea, there exists
v (>0) such that
3.2 yheor “ho @ —a@L RO (20 L 'y

(G—w(€0))/L 120 ’
= > YITEERL (1),
GO0

whose convergence is uniform in {(7,v);7 ER*'—il'w., ay €K for

some aceC (lal=1) and 0<y<y,}, and

(R) - (1) = Reor, w00y (1) .

Let I'((R% ) be the component of the set {7/ € ; (R e (—i7’)
=0} which contains §'.

Lemma 3.9 ([8]). Let é&€R"". I'((R%«) is an open con-

vex cone and

(R ¢ (§7) 50 for &R —il' (R &)

Lemma 3.10 ([8]). Let & R*'. For any compact set M in
T'((RY ), there exist a conic neighborhood 4, (CR*™) of & and
positive numbers C, t, such that

RE& —it|lg' |7 —ind)#0 if " €M, §'€4, |§|=C
and 0<t<¢,.

Let &R and put
T RGy") =r' v 55, 7~ Rio,o (7).
1 (R% 0, (—7i9) 520 was shown in [8].
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3.3 To={FcR"; 0, Mo € F(P<év',sﬂﬂ>)}
VT (Pro) XR) N (TN (Rer) X RY),
3.4 In={cR"; 0, M) € (P, p)}
NI (Pieo) XR) N (I ((RY) g0r) X BY).

Then Theorem 1.1 can be proved by the same arguments as in [7], [8].
(1. 2) follows from Lemma 4. 1.

§ 4. Some Remarks and Examples
Lemma 4.1 ([8]). Let &R I'((R)2)CT (Ra).

Let us prove the inner semi-continuity of I"((R%.) and, therefore,
0
I

Lemma 4.2. Let "R and let M be a compact set in
TI'((RY ). Then there exist a neighborhood U of & and positive
number t, such that R°(&') is holomorphic in U—iD and R°(€")s~0
Sfor &€ cU—iD, where D=4ty ;7 €M and 0<t<t}"

Proof. We can assume without loss of generality that P(§) is ir-
reducible. Since MC ]%((P«,_D) @-.0), it follows that there exist a neigh-
borhood U of £ and ¢, vy, (>>0) such that

Poyn (7€) =P (v7IE) F0
i §eU—iD—wrld, 0<y<y<y, Let K be a compact setin U—:iD.
Then there exists vx (>0) such that vy, and KCU—ZiD—1iyg7,0". Let
25(§";v) be a root of P(¥7'¢,y72) =0 such that 25 (&;v) =vi7 (v ¢
when & €K and 0<|y|<yx. In fact, since P,. (v7'&")=£0 for & € K and
0<|v|<vx, modifying vy if necessary, the above statement is meaningful.
Moreover we can assume that 17 (§’;v) is continuous when §’€K and
0<|y|<vx Since AF(£’;0) is a root of P°(&’,2) =0, the same argument

as in Lemma 3.7 gives

T M denotes the interior of M.
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A;E50N{7(E;00 =0 for £€K,

modifying U and #, if necessary. Therefore it follows from cntinuity of
23 (&';v) that
4.1) {7EMIN{A;E ;=0 for &K and |vI<vg,

modifying vx if necessary. Put

i
Po(&,20) = Q=25 (§30) =8 +65 ¢ 0) X7+ 408 (§730),
i=

P.(&,0 =1l(l—l}-“ @) =3+ar @)1+ +af (&).

(4.1) implies that the &} (§';v) are holomorphic in {(§,v);§ K and
[v|<vi}. Moreover we have a} (v7'€) =y b} (&’;v). Therefore we

have
bi (§5v) =ah (&) +vahi (§) +Viaph (§) + -,

whose convergence is uniform in {(§, 4); & €K and |v|<vg}. al (&)
is holomorphic in U—¢D and homogeneous of degree j—4. So R’(&)
is well-defined and holomorphic in U—ZD. (3.2) and the above result

yields us
R'(&"Ys£0 for & €U—iD,

using the same argument as in the proof of Lemma 3.7 in [8].

Q.E.D.

Theorem 4.3. Let YR and let M be a compact set in
T'((RY ). There exists a neighborhood U of & such that

McI'((RY,) for &eU.

Proof. It is obvious that MCI'}, for & €U, shrinking U. Now
assume that there exist €& U and %" € M such that (R% . (—i7") =0,
where U is sufficiently small. Since (R (—77') %0, there exists &%
e such that &/ —i(y” +ul”) €U—iM for |¢|<1 and (R%)a (—7i (7"
+&”))=0. Therefore it follows that there exist & 0 (>>0) such that

[(RY) e (=i (7" +48")) |=28  for |ul=0.
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On the other hand from (3.2) we have

‘thﬂ’_t"(O)_mév)/LRO (51,—it (770/ _!__IuCo/))
— (R (=2 (@ +pL")) [<e  for |ul=0 and 0<t<ty (<ty),
where ¢, and ¢, are suitably chosen. Rouché&’s theorem implies that

R (&Y —it (" +uZ")) has zeros within |u|<(0 for 0<z<{#, which is a
contradiction to Lemma 4. 2. Q.E.D.

Theorem 4. 3 yields us the following

Theorem 4. 4. U KX {E} is closed in T*X\O0.
EER™ (0}

In Section 2 the developments of ¢*(v'” +7’) and ¢*(v "7 +77’) was
given. However we can similarly obtain the developments f(v™'&" +7")
and S 'rE” +77), where

rey =em [ g@PE,
o
and ¢g(&,2) is a polynomial of (¢’,2) and ¥* encloses only the roots
WY, -, (&) of P(§,2) =0. This will be useful for hyperbolic sys-

tems.

Next let us consider some examples.

Example 4.5. Put z=4 and
P =(E—-&8-&—-8&+aé) &G—-¢&), a>0,
B, (&) =1, B,(§) = (—&1—i) & 6L

Then we have R (&) =i&+VE—&—&+af,. It is obvious that {P, B,,

B,} satisfies the condition (A). We can show that U K;X {€} is not
EER5\{0}

closed in T*X\0 and that

U DSUPI’Fg,jX{g}= U Kéx{g}

EESR5\{0} j=0 FERS\{0}
EWF(F)CWF,(F) <, Y K%x {&}

(see [9]). Moreover we have

Ch[WF (F)|s] =ch[WF4(F)|s] =K% for &0,
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Example 4.6. Put n=3 and
P& =((&—8&)"—8+a) (26—86&)"—5),
B (§) =1, B(§ =6.

Then R(¢’) = —1 and {P, B,, B;} satisfies the condition (A). We note

that (&,—§&,)?—&+a is irreducible when a==0. It is easy to see that

WEF(F) |l 1n=EEX;2=a (2, —1,0, —1) +£(2, —1,1,0)
+r@d, —1,0,0), o, >0 and y=>0} when a=~0,

WF(F) gy -1n=F€X;2=a(2, —1,0, —1) +£8(2, —1,1,0)
and «, 3>0} when a=0.

This shows that so called lateral wave appears when a=~0.

for

[1]
[2]
[3l]
[4]

[5]
[6]
[71
[8]
[91l

In conclusion, the author wishes to thank Professor M. Matsumura

his valuable advices and helpful discussions.
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