Propagation of Singularities of Fundamental Solutions of Hyperbolic Mixed Problems

By

Seiichiro WAKABAYASHI*

§ 1. Introduction

In this paper we shall deal with hyperbolic mixed problems with constant coefficients in a quarter-space and study the wave front sets of the fundamental solutions under the only assumption that the hyperbolic mixed problems are *S-well* posed. Recently Garnir has studied the wave front sets of fundamental solutions for hyperbolic systems [2]. The author was stimulated by his work. For the detailed literatures we refer the reader to [7], [8].

Now let us state our problems, assumptions and main results. Let \mathbb{R}^n denote the *n*-dimensional euclidean space and write $x' = (x_1, \dots, x_{n-1})$ for the coordinate $x=(x_1,\,\cdots,\,x_n)$ in \boldsymbol{R}^n and $\hat{\varsigma}'=(\hat{\varsigma}_1,\,\cdots,\,\hat{\varsigma}_{n-1})$, $\widetilde{\hat{\varsigma}}=(\hat{\varsigma},\,\hat{\varsigma}_{n+1})$ for the dual coordinate $\xi = (\xi_1, \cdots, \xi_n)$. We shall also denote by \mathbb{R}^n_+ the half-space $\{x = (x', x_n) \in \mathbb{R}^n; x_n > 0\}$. For differentiation we will use the symbol $D = i^{-1} (\partial/\partial x_1, \cdots, \partial/\partial x_n)$. Let $P = P(\xi)$ be a hyperbolic polynomial of order *m* of *n* variables ξ with respect to $\vartheta = (1,0, \dots, 0) \in \mathbb{R}^n$ in the sense of Carding, i.e.

 $P^0(-i\vartheta) \neq 0$ and $P(\xi - s\vartheta) \neq 0$ when ξ is real and $\text{Im } s < \gamma_0$, where P^0 denotes the principal part of P , i.e.

$$
P(t\xi) = t^m(P^0(\xi) + o(1))
$$
 as $t \to \infty$, $P^0(\xi) \neq 0$.

Let $\varGamma = \varGamma\left(P,\vartheta\right) \ (\subset\!\!\mathbb{R}^n)$ be the component of the set $\{\hat{\xi}\!\in\! \mathbb{R}^n;P^0(-i\theta)\}$ 0} which contains ϑ . We also write $\Gamma(P) = \Gamma(P, \vartheta)$. Put

$$
\begin{aligned} \Gamma_0 &= \{ \xi \in \mathbb{R}^{n-1}; \ (\xi', 0) \in \Gamma \}, \\ \dot{\Gamma} &= \{ \xi \in \mathbb{R}^{n-1}; \ (\xi', \xi_n) \in \Gamma \ \text{for some} \ \xi_n \in \mathbb{R} \}. \end{aligned}
$$

Communicated by S. Matsuura, December 23, 1976.

^{*} Institute of Mathematics, the University of Tsukuba.

The localization $P_{\xi^0}(\eta)$ of $P(\xi)$ at ξ^0 and the multiplicity m_{ξ^0} of ξ^0 relative to P are defined by

$$
\nu^m P\left(\nu^{-1}\xi^0 + \eta\right) = \nu^{m_{\xi^0}}\left(P_{\xi^0}\left(\eta\right) + o\left(1\right)\right) \text{ as } \nu_{\varphi}^{\perp} 0, \ P_{\xi^0}\left(\eta\right) \not\equiv 0
$$

(see [1]). We note that

$$
\Gamma \subset \Gamma_{\epsilon^0} = \Gamma(P_{\epsilon^0}).
$$

Now write

$$
P(\xi) = \sum_{j=0}^{m'} P_j(\xi') \xi_n^j, \qquad P_{m'}(\xi') \not\equiv 0.
$$

Then we see that

$$
P_{m'}(\xi')\neq 0 \ \text{for} \ \xi'\!\in\! \mathbf{R}^{n-1}\!-\!i\gamma_0\vartheta'-i\dot{\varGamma}_{(0,1)}.
$$

In fact, $P_{m'}(\xi') = P_{(0,1)}(\xi)$ and $\Gamma_{(0,1)} = \dot{\Gamma}_{(0,1)} \times \mathbb{R}$. It easily follows that $\Gamma_{0}\subset \dot{\Gamma}\subset \dot{\Gamma}_{(0,1)}$. When $\hat{\xi}'\!\in\! \boldsymbol{R}^{n-1}\!-\!i\gamma_{0}\vartheta'\!-\!i\Gamma_{0}$, we can denote the roots of $P(\xi',\lambda) = 0$ with respect to λ by $\lambda_1^+(\xi'), \dots, \lambda_i^+(\xi'), \lambda_1^-(\xi'), \dots, \lambda_{m'-1}^-(\xi'),$ which are enumerated so that $\text{Im}\,\lambda^{\pm}_k(\xi')\!\gtrless\!0.$ We consider the mixed initial-boundary value problem for the hyperbolic operator *P (D)* in a quarter-space

$$
P(D) u(x) = f(x), \quad x \in \mathbb{R}^n_+, \quad x_1 > 0,
$$

\n
$$
D_1^k u(x) |_{x_1 = 0} = 0, \quad 0 \le k \le m - 1, \quad x_n > 0,
$$

\n
$$
B_j(D) u(x) |_{x_n = 0} = 0, \quad 1 \le j \le l, \quad x_1 > 0.
$$

Here the $B_j(D)$ are boundary operators with constant coefficients. Put

$$
P_+(\xi',\lambda)=\prod_{j=1}^l(\lambda-\lambda_j^+(\xi'))\,,\quad \xi'\in\mathbb{R}^{n-1}-i\gamma_0\vartheta'-i\Gamma_0\,.
$$

Then Lopatinski's determinant for the system $\{P, B_j\}$ is defined by

$$
R(\xi') = \det L(\xi') \quad \text{for } \xi' \in \mathbb{R}^{n-1} - i\gamma_0 \vartheta' - i\Gamma_0
$$

where

$$
L(\hat{\xi}') = \left(\frac{1}{2\pi i} \oint B_j(\hat{\xi}', \lambda) \lambda^{k-1} P_+(\hat{\xi}', \lambda)^{-1} d\lambda\right)_{j,k=1,\dots,L}.
$$

We impose the following assumption on $\{P, B_i\}$:

(A) The system $\{P, B_j\}$ is $\mathcal{E}\text{-well posed, i.e.}$

 $R^0(-i\vartheta') \neq 0$, $R(\xi' + s\vartheta') \neq 0$ when ξ' is real and $\text{Im } s \lt -\gamma_1$,

where $R^0(\xi')$ denotes the principal part of $R(\xi')$ and $\gamma_1>\gamma_0$ (see [3]).

Now we can construct the fundamental solution $G(x, y)$ for $\{P, B_j\}$ which describes the propagation of waves produced by unit impulse given at position $y=(0, y_2, \dots, y_n)$ in \mathbb{R}^n_+ . Write

$$
G(x, y) = E(x - y) - F(x, y),
$$

\n
$$
x \in \mathbb{R}_+^n, \quad x_1 > 0, \quad y = (0, y_2, \dots, y_n) \in \mathbb{R}_+^n
$$

where $E(x)$ is the fundamental solution of the Cauchy problem represented by

$$
E(x) = (2\pi)^{-n} \int_{\mathbb{R}^{n- i\eta}} \exp\left[i x \cdot \xi\right] P(\xi)^{-1} d\xi, \quad \eta \in \gamma_0 \vartheta + \Gamma.
$$

Then $F(x, y)$ is written in the form

$$
F(x, y) = (2\pi)^{-(n+1)} \int_{R^{n+1}-i\tilde{r}\tilde{\theta}} i^{-1} \sum_{j,k=1}^{l} \exp[i \{ (x'-y') \cdot \hat{\zeta}'\n+ x_n \hat{\zeta}_n - y_n \hat{\zeta}_{n+1} \}] R_{jk}(\xi') B_k(\xi', \hat{\zeta}_{n+1})
$$

$$
\times \hat{\zeta}_n^{j-1} (R(\xi') P_+(\xi) P(\xi', \hat{\zeta}_{n+1}))^{-1} d\tilde{\xi},
$$

where $\gamma > \gamma_1$, $\widetilde{\vartheta} = (\vartheta, 0) \in \mathbb{R}^{n+1}$ and $R_{jk}(\xi') = (k, j)$ -cofactor of $L(\xi')$ (see [3], [4], [6]). $F(x, y)$ has to be interpreted in the sense of distribution with respect to (x, y) in $\mathbb{R}^n_+ \times \mathbb{R}^n_+$. We put

$$
\widetilde{F}(\widetilde{z}) = F(z', z_n, 0, -z_{n+1}), \quad \widetilde{z} = (z, z_{n+1}) \in X = \mathbb{R}^{n-1} \times \mathbb{R}^1_+ \times \mathbb{R}^1_-,
$$

where $\mathbf{R}^1 = {\lambda \in \mathbf{R}; \lambda < 0}$, and regard $\tilde{F}(\tilde{z})$ as a distribution on X. We note that $\widetilde{F}\left(\widetilde{z}\right)$ can be regarded as a distribution on \boldsymbol{R}^{n-1} and that $\operatorname{supp}\widetilde{F}$ \subset { $\widetilde{z}\!\in\!\mathbb{R}^{n+1};z_{n}\!\!\geq\!\!0$ }. In order to investigate the wave front set $WF(G)$ of $G(x, y)$ it suffices to study $WF(\tilde{F})$. Our main result is stated as follows:

Theorem 1. 1. *Assume that the condition (A) is satisfied and* $that \ \tilde{\xi}^0 \in \mathbb{R}^{n+1}$. Then we have

$$
t^{NL} \{ t^{p_0} \exp \left[-it\tilde{z} \cdot \tilde{\xi}^0 \right] \tilde{F}(\tilde{z}) - \sum_{j=0}^N \tilde{F}_{\tilde{\xi}^0, j}(\tilde{z}) t^{-j/L} \} \rightarrow 0
$$

as $t \rightarrow \infty$, in $\mathcal{D}'(X)$, $N = 0, 1, 2, \cdots$

 $where$ p_0 is a rational number and L is a positive integer. Moreover *ive have*

656 SEIICHIRO WAKABAYASHI

$$
\bigcup_{\tilde{\xi}\in \mathbf{R}^{n+1}\setminus\{0\}}\bigcup_{j=0}^{\infty}\text{supp }\widetilde{F}_{\tilde{\xi},j}(\widetilde{z})\times\{\widetilde{\xi}\}\subset WF(\widetilde{F}(\widetilde{z}))\\ \subset WF_{\mathcal{A}}(\widetilde{F}(\widetilde{z}))\subset \bigcup_{\tilde{\xi}\in \mathbf{R}^{n+1}\setminus\{0\}} K_{\xi}^0\times\{\widetilde{\xi}\},
$$

(1. 1)
$$
\overline{\operatorname{ch}}^{\dagger}[\bigcup_{j=0}^{\infty} \operatorname{supp} \tilde{F}_{\tilde{\xi}^{0},j}(\tilde{z})] \subset K_{\tilde{\xi}^{0}}
$$

$$
(1,2) \t K_{\xi^0} \subset K_{\xi^0}^0,
$$

-where

$$
K_{\tilde{\xi}^0} = \{ \tilde{z} \in X; \tilde{z} \cdot \tilde{\eta} \ge 0 \text{ for all } \tilde{\eta} \in \Gamma_{\tilde{\xi}^0} \},
$$

$$
K_{\tilde{\xi}^0}^0 = \{ \tilde{z} \in X; \tilde{z} \cdot \tilde{\eta} \ge 0 \text{ for all } \tilde{\eta} \in \Gamma_{\tilde{\xi}^0}^0 \}
$$

and Γ_{ξ^0} and $\Gamma_{\xi^0}^0$ are defined by (3. 3) and (3. 4), respectively.

Remark. The inclusion of (1. 1) can be replaced by the equality except in certain exceptional cases (see Example 5.1 in [8]).

The remainder of this paper is organized as follows. In Section 2 we shall study some properties of symmetric functions of $\lambda_1^+ (\xi')$, \cdots , $\lambda_i^+ (\xi')$. In Section 3 Theorem 1. 1 will be proved. In Section 4 we shall give some remarks and examples.

§ 2. Algebraic Considerations

In this section we assume without loss of generality that $P(\xi)$ is irreducible. Let ξ^{0} be fixed in \mathbb{R}^{n-1} and $m'_{\xi^{0}}$ the multiplicity of ξ^{0} relative to $P_{m'}(\xi')$. Let $\xi_n^0 \in \mathbb{R}$ and write

$$
\nu^m P(\nu^{-1} \xi^0 + \eta) = \sum_{j=m_{\xi^0}}^m \nu^j Q_{\xi^0, j}(\eta), \ Q_{\xi^0, m_{\xi^0}}(\eta) \not\equiv 0.
$$

It is easy to see that $Q_{\xi^0, m_{\xi^0}}(\eta) = P_{\xi^0}(\eta)$,

$$
Q_{\xi^0, j}(\eta) = \sum_{|\alpha|+k=j} \frac{1}{\alpha!} \partial^{|\alpha|}/\partial \xi^{\alpha} P^k(\xi^0) \cdot \eta^{\alpha},
$$

where $P(\xi) = P^0(\xi) + P^1(\xi) + \cdots + P^m(\xi)$ and $P^k(\xi)$ is a homogeneous

 $\overline{\text{ch}}[M]$ denotes the closed convex hull of M in X.

polynomial of degree *m — k.* We can write

$$
Q_{\varepsilon^{0},j}(\eta)=\sum_{k=0}^{r_j}q_{\varepsilon^{0},jk}(\eta')\eta_n^k,\qquad q_{\varepsilon^{0},j r_j}(\eta')\not\equiv0\quad\mathrm{if}\ \ Q_{\varepsilon^{0},j}(\eta)\not\equiv0\ ,
$$

where $r_j \equiv r_j(\xi^0)$ depends on ξ^0 . It follows that $r_{m'+m'_{20}} = m'$ and $r_j \leq m'$ if $j < m' + m'_{\varepsilon}$. We put

$$
j_1 \equiv j_1(\xi^0) = m' + m'_{\xi^0},
$$

\n
$$
l_k \equiv l_k(\xi^0) = \min\left\{(r_{j_k} - r_j) / (j_k - j); m_{\xi^0} \le j \le j_k\right\},
$$

\n
$$
j_{k+1} \equiv j_{k+1}(\xi^0) = \min\{j; m_{\xi^0} \le j \le j_k \text{ and } (r_{j_k} - r_j) / (j_k - j) = l_k\},
$$

and obtain the sequence $\{j_{k},\,l_{k}\}_{k=0,\,\cdots,\,s+1}$ so that

$$
j_0 = m > j_1 = m' + m'_{\xi_0} > j_2 > \cdots > j_s > j_{s+1} = m_{\xi_0},
$$

$$
l_0 = 0 < l_1 < l_2 < \cdots < l_s < l_{s+1} = \infty,
$$

where $s = s(\xi^0)$ depends on ξ^0 . For $\rho > 0$ we define the modified localization $P_{\rho,\xi^0}(\eta;\lambda)$ of P at ξ^0 by

$$
\nu^m P(\nu^{-1}\xi^{0\prime} + \eta', \nu^{-1}\xi_n^0 + \nu^{-1/\rho}\lambda + \eta_n) = \nu^{m} \epsilon^{0} \left(P_{\rho,\xi^0}(\eta;\lambda) + o(1) \right)
$$

as $\nu \downarrow 0$, $P_{\rho,\xi^0}(\eta;\lambda) \not\equiv 0$ in (η,λ) .

Then we have

(2. 1)
$$
P_{\rho,\xi^0}(\eta;\lambda) = q_{\xi^0,j_kr_{j_k}}(\eta')\lambda^{r_{j_k}},
$$

$$
m_{\xi^0}(\rho) = j_k - r_{j_k}/\rho,
$$

if $l_k > \rho > l_{k-1}$, $1 \leq k \leq s+1$, and we have

(2. 2) $P_{\rho,\xi^0}(\eta;\lambda) = [q_{\xi^0,j_\mu r_{\xi}}(\eta')\lambda^{r_{j_\mu}-r_{j_{k+1}}}]$

$$
+\cdots+q_{\varepsilon 0,j_{k+1}r_{j_{k+1}}}(\eta')\,]\lambda^{r_{j_{k+1}}}\,,
$$

$$
m_{\xi^0}(\rho) = j_k - r_{j_k}/\rho = j_{k+1} - r_{j_{k+1}}/\rho ,
$$

if $\rho = l_k$, $1 \leq k \leq s$. Moreover we have

$$
P_{\rho,\xi^0}(\eta;\lambda)=P_{\xi^0}(\eta',\lambda+\eta_n),\quad m_{\xi^0}(\rho)=m_{\xi^0},
$$

if $\rho = l_{s+1} = \infty$. We note that $j_k(\xi^0)$ and $l_{k-1}(\xi^0)$ are independent of ξ_n^0 if l_{k-1} < 1. In fact, we have

$$
P_{\rho,\xi^0}(\eta;\lambda)=P_{\rho,\xi^0\zeta^0,0}(\eta;\lambda)\quad\text{if}\quad l_{k-1}\leq \rho\leq \min(1,l_k).
$$

Now we define the modified principal part $p^0_{\rho}(\eta;\lambda)$ and modified degree $deg_{\rho} p = \sigma$ for a polynomial $p(\eta; \lambda)$ by

$$
\rho(t\eta; t^{(p-1)/p}\lambda) = t^{\sigma}(\rho_p^0(\eta; \lambda) + o(1)) \text{ as } t \to \infty,
$$

$$
\rho_p^0(\eta; \lambda) \not\equiv 0 \text{ in } (\eta, \lambda).
$$

Lemma 2.1. Let $\rho > 0$ and put $P_{\rho,\xi^0}^0(\eta;\lambda) = (P_{\rho,\xi^0})_\rho^0(\eta;\lambda)$. Then we have

$$
P^{\,0}_{\rho,\xi^0}(\eta;\lambda)=(P^0)_{\rho,\xi^0}(\eta;\lambda)\,,\quad \deg_\rho P_{\rho,\xi^0}=m_{\xi^0}(\rho)\,.
$$

Proof.

$$
\nu^m P^0(\nu^{-1}\xi^{0\prime} + \eta\prime, \nu^{-1}\xi^0_n + \nu^{-1/2}\lambda + \eta_n)
$$

=
$$
\nu^{\sigma_0}((P^0)_{\rho,\xi^0}(\eta;\lambda) + Q(\eta,\lambda;\nu)),
$$

where $Q(\eta, \lambda; \nu)$ is a polynomial in (η, λ) , continuous in (η, λ, ν) and $Q(\eta, \lambda; 0) = 0$. Therefore we have

$$
\nu^m \partial^{|\alpha|}/\partial \eta^{\alpha} P^0 (\nu^{-1} \xi^{0\prime} + \eta', \nu^{-1} \xi^0_n + \nu^{-1/2} \lambda + \eta_n)
$$

= $\nu^{\sigma_0} (\partial^{|\alpha|}/\partial \eta^{\alpha} (P^0)_{\rho,\xi^0} (\eta; \lambda) + \partial^{|\alpha|}/\partial \eta^{\alpha} Q (\eta, \lambda; \nu)).$

From this it follows that

$$
\nu^m \widetilde{P}^0(\nu^{-1}\xi^{0\prime} + \eta', \nu^{-1}\xi_n^0 + \nu^{-1/\rho}\lambda + \eta_n)
$$

= $\nu^{\sigma_0}(((P^0)_{\rho,\xi^0})^{\sim}(\eta;\lambda)^2 + o(1))^{1/2}$ as $\nu \downarrow 0$,

where $\widetilde{p}(\eta; \lambda)^2 = \sum |\partial^{|\alpha|}/\partial \eta^{\alpha} p(\eta; \lambda)|^2$. Hyperbolicity of P implies that

$$
|P(\nu^{-1}\xi^{0\prime}+\eta\prime,\nu^{-1}\xi_n^0+\nu^{-1\prime\rho}\lambda+\eta_n)|
$$

$$
\leq \text{const.} \times \widetilde{P}^0(\nu^{-1}\xi^{0\prime}+\eta\prime,\nu^{-1}\xi_n^0+\nu^{-1\prime\rho}\lambda+\eta_n), \ \lambda \in \mathbb{R}, \ \eta \in \mathbb{R}^n
$$

(see [5]). Since there exists $(\eta^0, \lambda_0) \in \mathbb{R}^{n+1}$ such that $P_{\rho, \xi^0}(\eta^0; \lambda_0) \neq 0$, it follows that $\sigma_0 \leq m_{\epsilon^0}(\rho)$. Put

$$
\nu^m P^k (\nu^{-1} \xi^{0} + \eta', \nu^{-1} \xi_n^0 + \nu^{-1/\rho} \lambda + \eta_n)
$$

=
$$
\nu^{\sigma_k} ((P^k)_{\rho, \xi^0} (\eta; \lambda) + o(1)) \text{ as } \nu \downarrow 0.
$$

Then we have $deg_{\rho}(P^k)_{\rho,\xi^0} = \sigma_k - k$ and $(P^k)_{\rho,\xi^0}^0 = (P^k)_{\rho,\xi^0}$. Therefore it follows that $\sigma_0 = m_{\epsilon}(\rho)$. This proves the lemma. Q.E.D.

Lemma 2.2. Let $\rho > 0$, $\rho \neq 1$ and $\lambda_0 \in \mathbb{R} \setminus \{0\}$. Then $P_{\rho, \xi^0}(\eta; \lambda_0)$ is a *hyperbolic polynomial with respect to* #. *Moreover zve have*

$$
(2,3) \quad P_{\rho,\xi^0}(\eta;\lambda_0) \neq 0 \quad \text{for } \eta \in \begin{cases} R^n - i\gamma_0 \vartheta - i\Gamma((P_{(0,1)})_{\xi^0}) & \text{if } 1 > \rho > 0 \\ R^n - i\gamma_0 \vartheta - i\Gamma((P_{\xi^0})_{(0,1)}) & \text{if } \infty > \rho > 1 \\ R^n - i\gamma_0 \vartheta - i\Gamma_{\xi^0} & \text{if } \rho = l_{s+1} = \infty \end{cases}
$$

In particular,

(2.4)

and

$$
(2, 5) \qquad (P_{\rho, \xi^0})^0(\eta; \lambda_0) = \begin{cases} (P_{(0,1)}^0)_{\xi^0}(\eta) \lambda_0^{m'} & \text{if } l_1 \geq \rho > 0, \\ (P_{\xi^0}^0)_{(0,1)}(\eta) \lambda_0^{r_{\xi+1}} & \text{if } \infty > \rho \geq l_s \\ P_{\xi^0}^0(\eta) & \text{if } \rho = l_{s+1} = \infty, \end{cases}
$$

where $(P_{\rho,\xi^0})^0(\eta; \lambda_0)$ *denotes the principal part of a polynomial* P_{ρ,ξ^0} $(\eta;\lambda_0)$ in η .

Remark. We note that $\Gamma_{\mathfrak{so}} \subset \Gamma((P_{\mathfrak{so}})_{(0,1)})$ and that $(P_{(0,1)})_{\mathfrak{so}}(\eta)$ is independent of ξ_n^0 .

Proof. Since $\rho \neq 1$, it follows that $P_{\rho,\xi^0}(\eta; \lambda_0) \neq 0$ in η . In fact, from Lemma 2. 1 we have

$$
\deg q_{\xi^0,j_kr_{j_k}}(\eta')=j_k-r_{j_k}
$$

Thus

(2.6)
$$
(P_{\rho,\epsilon^0})^0(\eta;\lambda_0) = \begin{cases} (q_{\epsilon^0,j_kr_{j_k}})^0(\eta')\lambda_0^{r_{j_k}} & \text{if } l_k \geq \rho > l_{k-1} \\ \text{and } 1 > \rho > 0, \\ (q_{\epsilon^0,j_kr_{j_k}})^0(\eta')\lambda_0^{r_{j_k}} & \text{if } l_k > \rho \geq l_{k-1} \\ \text{and } \rho > 1, \\ P_{\epsilon^0}^0(\eta) & \text{if } \rho = l_{s+1} = \infty. \end{cases}
$$

Now let us assume that there exists $\gamma^{0} \in \mathbb{R}^{n} - i \gamma_{0} \vartheta - i \varGamma$ such that $P_{\rho,\ell^0}(\eta^0;\lambda_0) = 0$. Then there exist positive numbers ε , δ and $\zeta^0 \in \mathbb{C}^n$ such that

$$
|P_{\rho,\xi^0}(\eta^0 + \mu \zeta^0; \lambda_0)| > \varepsilon > 0 \quad \text{for} \quad |\mu| = \delta > 0,
$$

$$
\eta^0 + \mu \zeta^0 \in \mathbb{R}^n - i\gamma_0 \vartheta - i\Gamma \quad \text{for} \quad |\mu| \leq \delta.
$$

Therefore from Rouche's theorem it follows that there exists a positive number ν_0 such that $P(\nu^{-1} \xi^{0'} + \eta^{0'} + \mu \zeta^{0'} , \nu^{-1} \xi^0_n + \nu^{-1/\rho} \lambda_0 + \eta^0_n + \mu \zeta^0_n)$ has zeros within $|\mu|\leq \delta$ if $0\leq \nu \leq \nu_0$, which is a contradiction to $P(\xi)\neq 0$ for $\xi \in \mathbb{R}^n$ $-i\gamma_0\vartheta-i\Gamma$. So we have

$$
P_{\rho,\xi^0}(\eta;\lambda_0)\neq 0 \quad \text{ for } \eta\!\in\!\mathbb{R}^n\!-\!i\gamma_0\vartheta-i\Gamma\,.
$$

This implies that $P_{\rho,\xi^0}(\eta;\lambda_0)$ is a hyperbolic polynomial with respect to ϑ and that $\Gamma(P_{\rho,\xi^0}(\eta;\lambda_0)) \supset \Gamma$. Next let us prove (2.4). We note that $(2, 3)$ follows from $(2, 4)$ (see [1], [3]). One can easily verify $(2, 5)$. Therefore (2. 4) holds when $\infty \geq \rho \geq l_s$ or $l_1 \geq \rho > 0$. Let us prove (2. 4) when $1\geq\rho\geq 0$. For we can prove (2.4) in the same manner when $\rho>1$. Now assume that $\Gamma(P_{\rho,\xi_0}(\eta;\lambda_0)) \supset \Gamma((P_{(0,1)})_{\xi_0})$ when $1>l_k>\rho>0$. Then by (2. 1) we have

$$
\Gamma\left(q_{\mathfrak{f}^{\mathfrak{g}},j_{k}r_{j_k}}(\eta')\right)\mathop{\supset} \Gamma\left(\left(P_{\left(0,1\right)}\right)_{\mathfrak{f}^{\mathfrak{g}}}\right).
$$

Thus from (2. 6) it follows that

$$
(2.7) \tP_{l_k,\xi^0}(\eta;\lambda_0)\neq 0 \tfor \eta \in \mathbb{R}^n - i\gamma_0\vartheta - i\Gamma((P_{(0,1)})_{\xi^0}).
$$

Assume that

$$
q_{\xi^0,j_{k+1}r_{j_{k+1}}}(\eta^{0\prime})=0 \quad \text{ for some } \eta^0\in\mathbb{R}^n-i\gamma_0\vartheta-i\Gamma((P_{(0,1)})_{\xi^0}).
$$

From (2. 2) we have

$$
\lambda^{-r_{j_{k+1}}}P_{l_k,\xi^0}(\eta;\lambda)\rightarrow q_{\xi^0,j_{k+1}r_{j_{k+1}}}(\eta') \text{ as }\lambda\downarrow 0
$$

(locally uniform) , which leads us to a contradiction, using Rouche's theorem. Therefore,

(2.8)
$$
P_{\rho,\xi^0}(\eta;\lambda_0) = q_{\xi^0',j_{k+1}r_{j_{k+1}}}(\eta')\lambda_0^{r_{j_{k+1}}} \neq 0
$$

when $l_{k+1} > \rho > l_k$ and $\eta \in \mathbb{R}^n - i\gamma_0\vartheta - i\Gamma((P_{(0,1)})_{\varepsilon_0})$. From (2.7) and (2.8) it follows that

$$
\Gamma(P_{\rho,\xi^0}(\eta;\lambda_0)) \supset \Gamma((P_{(0,1)})_{\xi^0})
$$
 when $l_{k+1} > \rho > 0$.
Q.E.D.

We define $q \equiv q(\xi^{0})$ by

(2. 9)
$$
\partial^k/\partial \xi_1^k P^0(\xi^{0\prime}, \lambda) = 0
$$
, $0 \le k \le q-1$, $\partial^q/\partial \xi_1^q P^0(\xi^{0\prime}, \lambda) \ne 0$ in λ .
Put

$$
p = p(\xi^{0\prime}) = \deg \partial^q/\partial \xi_1^a P^0(\xi^{0\prime}, \lambda),
$$

and define $r\text{=}r(\xi^0)$ by

(2. 10)
$$
\partial^{q+k}/\partial \xi_1^q \partial \xi_n^k P^0(\xi^0) = 0, \quad 0 \le k \le r-1,
$$

(2.11) $\partial^{q+r}/\partial \xi_1^q \partial \xi_n^r P^0(\xi^0) \neq 0$.

Then we have the following

Lemma 2.3 .

(2. 12)
$$
q \leq m'_{\xi\circ} \leq m-m', \qquad p \leq \min(m', m-q),
$$

$$
q \leq m_{\xi\circ} \leq q+r \leq q+p \leq m'+m'_{\xi\circ} \leq m,
$$

$$
p=m', \quad m'_{\xi\circ} = m-m' \quad \text{if } q=m-m'.
$$

Moreover

 $r_i \leq j - q$ for $m_{\epsilon} \leq j \leq m$, $(r_1(2.14)$ $r_j \leq j - q$ if $m_{\xi^0} \leq j \leq q + r$ or (2. 15) $r_j \leq m'$ if $m_{\xi^0} \leq j \leq m' + m'_{\xi^{0'}}$, (2.16) $r_{q+r} = r$, $r_{q+p} = p$ and $r_{m'+m'_{\text{env}}} = m'$.

Remark. This lemma yields us the following Newton polygon (Fig. 1).

Fig. 1.

Proof. If $|\alpha|+k\leq q$,

$$
(2.17) \t\t\t\t\t\partial^{|\alpha|}/\partial \xi^{\alpha} P^k(\xi^{0\prime},\lambda) \equiv 0 \quad \text{in } \lambda.
$$

In fact, for each $\lambda_0 \in \mathbb{R}$

662 SEIICHIRO WAKABAYASHI

$$
\nu^m P(\nu^{-1}\xi^{0\prime} + \eta\prime, \nu^{-1}\lambda_0 + \eta_n)
$$

=
$$
\sum_{j=0}^m \nu^j \sum_{|\alpha|+k=j} \frac{1}{\alpha!} \partial^{|\alpha|}/\partial \xi^{\alpha} P^k(\xi^{0\prime}, \lambda_0) \eta^{\alpha}.
$$

If $\partial^{|\alpha|}/\partial \xi^{\alpha}P^k(\xi^{\alpha},\lambda_0)\neq 0$ for some α and k with $|\alpha| + k < q$, hyperbolicity of *P* implies that there exists a non-negative integer *h* such that $h \leq |\alpha|$ $+ k \lt q$ and $\partial^h/\partial \xi_1^h P^0(\xi^0',\lambda_0) = h! P^0_{(\xi^0',\lambda_0)}(\vartheta) \neq 0$, which is a contradiction to (2. 9) . (2. 13) easily follows from (2. 17) . (2. 12) , (2. 15) and (2. 16) are obvious. Now assume that

$$
p' = \max \{ \deg \partial^{|\alpha'|}/\partial \xi'^{\alpha'} P^k(\xi^{0'}, \lambda) ; |\alpha'| + k = q \} > p.
$$

Then we have

(2. 18)
$$
P_{\rho, (\xi^0', 0)}^0(\vartheta; \lambda) = 0
$$
 for $1 > \rho > (m' - p)/(m' + 1 - p)$

which is a contradiction to hyperbolicity of $P_{\rho,\xi\circ\gamma,0}(\eta;\lambda_0), \lambda_0\in\mathbb{R}\setminus\{0\}$. In fact, we have $r_{q+p'} = p'$ and $r_j \leq j - q$ for $q+p' \leq j \leq m$. Therefore, $j-r_j/\rho$ $>q+p'-p'/\rho$ when $1>\rho > (m'-p')/(m'+1-\rho')$ and $j\neq q+p'$. For it is obvious that $j-r_j/\rho \ge j(1-1/\rho) + q/\rho > q+p'-p'/\rho$ if $j < q+p'$. If $j>q+p'$, then

$$
j-r_j/\rho = j-r_j + (1-1/\rho) r_j \geq q+1 + (1-1/\rho) m' > q + p' - p'/\rho.
$$

Thus we have $P_{\rho,\langle\xi^{\rho\prime},0\rangle}(\eta;\lambda) = q_{\langle\xi^{\rho\prime},0\rangle,q+p'p'}(\eta')\lambda^{p'}$. Since $q_{\langle\xi^{\rho\prime},0\rangle,q+p'p'}^{0}(\vartheta')$ $=(q!p')^{-1}\partial^{q+p'}/\partial \xi_1^q\partial \xi_n^{p'}P^0(\xi^{0'},0)$ we obtain (2.18). Therefore we have

$$
\rho = \max \{ \deg \partial^{|\alpha'|}/\partial \xi'^{\alpha'} P^k(\xi^{0'},\lambda) \, ; \, |\alpha'| + k = q \}.
$$

This implies that $r_j < j - q$ if $q+p < j \leq m$. Next let us prove that $(2, 19)$ $\int_{0}^{1+h}/\partial \xi'^{\alpha'}\partial \xi_n^h P^k(\xi^0) = 0$ for $|\alpha'| + k = q$ and $0 \leq h \leq r-1$. Assume that

$$
r' = \min\{h; \partial^{|\alpha'|+h}/\partial \xi'^{\alpha'} \partial \xi_h^h P^k(\xi^0) \neq 0 \quad \text{for some } \alpha'
$$

and k with $|\alpha'| + k = q\} \leq r$.

Then similarly we have

$$
P_{\rho,\xi^0}^0(\vartheta;\lambda) = 0 \quad \text{for} \quad (q+r'-m_{\xi^0}+1)/(q+r'-m_{\xi^0}) > \rho > 1,
$$

which is a contradiction to hyperbolicity of $P_{\rho,\xi^0}(\eta;\lambda_0)$, $\lambda_0 \in \mathbb{R} \setminus \{0\}$. From (2.19) it follows that $r_j \leq j - q$ if $m_{\epsilon} \leq j \leq q + r$. Q.E.D.

From Lemma 2. 3 it follows that there exist positive integers *t* $=$ $t(\xi^{0'})$ and t' \equiv $t'(\xi^{0})$ such that $1 \le t \le t' \le s+1$, j_t = $q+p$ and $j_{t'}$ = $q+r$. If $r \leq p$, then $t' = t + 1$ and $l_t = 1$. If $r = p$, then $t = t'$, $l_t > 1$ and $l_{t-1} < 1$. Thus $j_k(\xi^0)$ and $l_{k-1}(\xi^0)$, $0 \le k \le t(\xi^{0'})$, are independent of ξ^0_n . Put

$$
P_{i_k,\xi^0}(\eta;\lambda) = P_{k,\xi^0}(\eta';\lambda) \lambda^{r_{j_{k+1}}},
$$

\n
$$
P_{k,\xi^0}(\eta';\lambda) = q_{\xi^0,j_{k}r_{j_k}}(\eta') \lambda^{r_{j_k}-r_{j_{k+1}}} + \cdots + q_{\xi^0,j_{k+1}r_{j_{k+1}}}(\eta').
$$

By Lemma 2. 2 we obtain the following

Lemma 2.4. For $1 \leq k \leq t$ $P_{k,\xi0}(\eta';\lambda)$ has no real zeros when η' $f^1 - i\gamma_0 \vartheta' - i\dot{\Gamma}((P_{(0,1)})_{\epsilon_0})$. For $t' \leq k \leq s$ $P_{k,\epsilon_0}(\eta';\lambda)$ has no real zeros $\forall x \in \mathbb{R}^{n-1} - i\gamma_0 \vartheta' - i\dot{\Gamma} \left((P_{\xi_0})_{(0,1)} \right)$.

Denote the roots of $P_{\varepsilon^0}(\eta',\lambda) = 0$ by $\lambda_{\varepsilon^0,1}^+(\eta')$, \cdots , $\lambda_{\varepsilon^0,1}^+(\eta')$, $\lambda_{\varepsilon^0,1}^-(\eta')$, \cdots , $\bar{\lambda}_{\sigma,\bm{r}_{\bm{m}_{\bm{\epsilon}}\bm{0}}-l'}(\eta')$ so that the $\lambda_{\sigma,\bm{r}}^{\pm}(\eta')$ are continuous and that

 $\text{Im }\lambda_{\epsilon_0}^{\pm}$, $(\eta' - i\gamma \vartheta') \geq 0$ for $\gamma > \gamma_0$ and $\eta' \in \mathbb{R}^{n-1}$,

when $r_{m_f0} \neq 0$. Then we easily obtain the following

Lemma 2.5. Assume that $r_{m,n} \neq 0$. Then $\bigcap \{\lambda_{\tilde{\varepsilon}^0,\, j}(\eta')\}_{1\leq j\leq r_{m_{\tilde{\varepsilon}^0}}-l'}$ $- \emptyset$ if $\eta' \in \mathbb{R}^{n-1} - i\gamma_0 \vartheta' - i\dot{\Gamma}_{\varepsilon_0}$.

Put

$$
P_{\xi^{o\prime},q}(\eta;\lambda)=\sum_{|a|+k=q}\frac{1}{\alpha!}\partial^{|a|}/\partial\xi^{a}P^{k}(\xi^{0\prime},\lambda)\,\eta^{a}.
$$

We note that $P_{\xi^{0'}},g(\eta;\lambda)$ is independent of η_n . From the proof of Lemma 2.3 it follows that deg $P_{\xi^o,q}(\eta;\lambda) \leq p$ in λ for fixed η . The coefficient of λ^p in $P_{\xi^p,q}(\eta;\lambda)$ is equal to $q_{\xi^p,q+p}(\eta')$, where $\xi^0_n \in \mathbb{R}$. Since $q+p=j_t$, $p = r_{j_t}$ and $l_{t-1} < 1$, it follows from (2.1) and Lemma 2.2 that

$$
q_{\xi^0,q+pp}(\eta')\neq 0 \ \text{for} \ \ \eta\!\in\!\mathbb{R}^n\!-\!i\gamma_0\!-\!i\Gamma\left(\left(P_{(0,1)}\right)_{\xi^0}\right).
$$

Therefore we have

deg $P_{\xi^{\theta'},q}(\eta;\lambda) = p$ in λ for fixed $\eta \in \mathbb{R}^n - i\gamma_0\vartheta - i\Gamma((P_{(0,1)})_{\xi^{\theta'},0})$.

Lemma 2.6. Let $\xi_n^0 \in \mathbb{R}$ and $\eta \in \mathbb{R}^n - i\gamma_0\vartheta - i\Gamma((P_{\xi_0})_{(0,1)}).$ $\lambda = \xi_n^0$ is a root of $\partial^q/\partial \xi_1^q P^0(\xi^0, \lambda) = 0$ with multiplicity r^{\dagger} if and only *if* $\lambda = \xi_n^0$ is a root of $P_{\xi_0}(\eta;\lambda) = 0$ with multiplicity r.

Proof. Now assume that $P_{\xi^{0'},q}(\eta;\xi^n) = 0$ for some $\eta \in \mathbb{R}^n - i\gamma_0\vartheta$ $-i\Gamma\left(\left(P_{\mathfrak{e}^0}\right)_{(0,1)}\right)$. Then we have $\partial^q/\partial \xi_1^q P^0(\xi^0)=0$. In fact, if $\partial^q/\partial \xi_1^q P^0(\xi^0)$ $\neq 0$, we have $(P_{\xi^0})_{(0,1)}(\xi) = P_{\xi^0}$, $(\xi; \xi_n^0) \neq 0$ for $\xi \in \mathbb{R}^n - i\gamma_0 \vartheta - i\Gamma((P_{\xi^0})_{(0,1)}),$ which is a contradiction to $P_{\xi^{0'}, q}(\gamma; \xi^0_n) = 0$. Next assume that there exists a non-negative integer *k* such that $k \leq r-1$ and $\partial^{k}/\partial \lambda^{k} P_{\xi^{0},q}(\eta; \xi^{0}_{n})$ $\neq 0$ in η . Then we have $r_{q+k} = k$, which is a contradiction to (2.14). For $l_{\nu}>0>1$ we have

$$
P_{\rho,\xi^0}(\eta;\lambda)=\frac{1}{r!}\lambda^r\partial^r/\partial\lambda^rP_{\xi^{0'},q}(\eta;\xi^0_n).
$$

From Lemma 2. 2 and this it follows that

$$
\partial^r/\partial \lambda^r P_{\xi^{0'},q}(\eta;\xi_n^0) \neq 0 \quad \text{ for } \eta \in \mathbb{R}^n - i\gamma_0 \partial - i\Gamma((P_{\xi^{0}})_{(0,1)}).
$$

This proves the lemma. $Q.E.D.$

Lemma 2. 6 yields the following

Lemma 2.7. Let zeros of $\partial^q/\partial \xi_1^q P^0(\xi^{0\prime},\lambda)$ agree with those of $P_{\xi^{0\prime},q}(\eta;\lambda)$ *(including multiplicities) . Moreover the number of the roots 'with positive imaginary part of* $P_{\xi^{\alpha},q}(\eta;\lambda) = 0$ *is equal to that of the roots* with positive imaginary part of $\partial^q/\partial \xi_1^q P^0(\xi^{0\prime},\lambda) = 0$.

Remark. The non-real zeros of $\partial^q/\partial \xi_1^a P^0(\xi^0', \lambda)$ do not always agree with those of $P_{\xi^0,\,q}(\gamma;\lambda)$. In fact, for $P(\xi) = P^0(\xi) = \xi_1^4 - 2\xi_1^2(\xi_2^2 + \xi_3^2 + \xi_4^2)$ $+$ $(\xi_2^2 + \xi_3^2 + \xi_4^2/2) \xi_2^2$ we have

[†] $r=r(\xi^0)$ is defined by (2.10) and (2.11). Lemma 2.6 implies that $\lambda = \xi_n^0$ is a root of $P_{\epsilon^{\rho},s}(q; \lambda) = 0$ with multiplicity r and that $\partial^{\alpha}/\partial \xi^{\alpha}P^{\sigma}(\xi^{\sigma}) = 0$ if $P_{\epsilon^{\rho},s}(q; \xi^{\sigma}) = 0$ for some $\eta \in \mathbb{R}^n - i\gamma_0\vartheta - i\Gamma((P_{\epsilon^{\sigma}})_{(0,1)})$.

$$
\partial^2/\partial \xi_1^2 P^0(0, 0, 1, \lambda) = -4 (1 + \lambda^2),
$$

\n
$$
P_{(0,0,1),2}(\gamma; \lambda) = -2 (1 + \lambda^2) \eta_1^2 + (1 + \lambda^2/2) \eta_2^2.
$$

Moreover if $\partial^q/\partial \xi_1^q P^0(\xi^0) \neq 0$, then $P_{\xi^0}(\eta) = (P_{\xi^0})_{(0,1)}(\eta)$ and $P_{\xi^0',q}^0(-i\eta^0;$ $= P_{\varepsilon 0}^0(-i\eta^0)=0$ for $\eta^0\in \partial \Gamma(P_{\varepsilon 0})^+$.

Put

$$
\sigma^k(\hat{\xi}') = \sum_{j=1}^l \lambda_j^+(\hat{\xi}')^k, \quad 1 \leq k \leq l'^{\dagger},
$$

$$
\dot{\Gamma}_{\xi^0'} = \bigcap_{\xi_{\theta}^0 \in \mathbf{R}} \dot{\Gamma}_{\xi^0} \cap \dot{\Gamma} \left((P_{(0,1)})_{(\xi^0',0)} \right).
$$

Lemma 2.8. Let $1 \leq k \leq l$. For any compact set K in \mathbb{R}^{n-1} $-i\gamma_0 \vartheta' - i\dot{\Gamma}_{\xi\vartheta'}$ there exists ν_K (>0) such that $\sigma^k(\nu^{-1}\xi^{\vartheta'} + \eta')$ is well*defined for* $\eta' \in K$ and $0 \lt \nu \leq \nu_K$ and

$$
\nu^{s_k} \sigma^k \left(\nu^{-1} \xi^{0\prime} + \eta' \right) = \sum_{j=0}^{\infty} \sigma^k_{\xi^{0\prime},j} \left(\eta' \right) \nu^{j\prime L}, \quad \sigma^k_{\xi^{0\prime},0} \left(\eta' \right) \not\equiv 0 ,
$$

vohose convergence is uniform in $K \times \{v; 0 \le v \le v_K\}$ *, where s_k is a rational number and L is a positive integer. Moreover the* $\sigma_{\xi^b,j}^k$ \int *are* holomorphic in $\mathbb{R}^{n-1} - i\gamma_0 \vartheta' - i\dot{\Gamma}_{\xi}$.

Proof. We can assume without loss of generality that *K* is small so that

$$
\{\lambda_{\epsilon^0, j}^+(\eta')\,;\,1\leq j\leq l'\text{ and }\eta'\in K\}\,\cap\,\{\lambda_{\epsilon^0, j}^-(\eta')\,;\,1\leq j\leq r_{m_\epsilon^0}-l'\text{ and }\eta'\in K\}=\varnothing\quad\text{ if }\xi_n^0\in\mathbb{R}\text{ and }r_{m_\epsilon^0}\neq 0
$$

(see Lemma 2.5). Let $\xi_n^0 \in \mathbb{R}$ and $\mathcal{C}^+_{\xi^0,j}$ $(1 \leq j \leq t \, (\xi^0), t' \, (\xi^0))$ be simple closed curves enclosing only the roots with positive imaginary part of $P_{j,\ell^0}(\eta';\lambda) = 0$ for $\eta' \in K$ (see Lemma 2. 4). Let $\mathcal{C}_{\xi^0,0}^+$ be a simple closed curve enclosing only the roots $\lambda^*_{f^0,j}(\eta')$, $1 \leq j \leq l'$, of $P_{f^0}(\eta',\lambda) = 0$ for $\eta' \in K$ if $r_{m_{\varepsilon 0}} \neq 0$ and $\mathcal{C}_{\varepsilon 0'}^+$ a simple closed curve enclosing only the roots with positive imaginary part of $P_{\xi^{\alpha},q}(\eta; \lambda) = 0$ for $\eta' \in K$ (see Lemma 2.7). From the relations between the roots of $P(\nu^{-1} \xi^{0'} + \eta', \lambda) = 0$ and

^t ∂M denotes the boundary of M.

^{1t} The $\lambda_j^+(\xi')$ are continuous and Im $\lambda_j^+(\xi'-i\tau\vartheta')>0$ for $\xi'\in\mathbb{R}^{n-1}$ and $\tau>\gamma_0$.

the roots of $P_{j,\xi^0}(\eta';\lambda) = 0$, $P_{\xi^0}(\eta',\lambda) = 0$ and $P_{\xi^0',\xi}(\eta;\lambda) = 0$ there exists ν_K' (>0) such that $\{\lambda_j^+(\nu^{-1}\xi^{0'} + \eta')\}_{1 \leq j \leq l} \cap \{\lambda_j^-(\nu^{-1}\xi^{0'} + \eta')\}_{1 \leq j \leq m'-l} = \emptyset$ for $\eta' \in K$, $0 \le \nu \le \nu_K'$. So we can take \mathcal{C}^+ to be a simple closed curve enclosing only the roots $\lambda_j^+(\nu^{-1}\xi^{0\prime} + \eta')$, $1 \leq j \leq l$, of $P(\nu^{-1}\xi^{0\prime} + \eta', \lambda) = 0$ for η' \in K, 0 \leq ν'_{K} . For $\eta' \in K$ and 0 \leq ν'_{K} we have

$$
(2.20) \quad \sigma^{k}(\nu^{-1}\xi^{0}+\eta') = (2\pi i)^{-1} \int_{\varphi_{\pi}^{+}} \lambda^{k}\partial/\partial \xi_{\pi} P(\nu^{-1}\xi^{0}+\eta',\lambda)
$$

\n
$$
\times P(\nu^{-1}\xi^{\nu}+\eta',\lambda)^{-1}d\lambda
$$

\n
$$
= \sum_{j=1}^{t-1} (2\pi i)^{-1} \int_{\varphi_{(\xi^{0},\theta),j}} \lambda^{k}\partial/\partial \xi_{\pi} P(\nu^{-1}\xi^{0}+\eta',\nu^{-1/4}\lambda)
$$

\n
$$
\times (P_{t_{j},(\xi^{0},\theta)}(\eta',0;\lambda)+o(1))^{-1}\nu^{m-(k+1)/l_{j}-m(\xi^{0},\theta)}(l_{j})d\lambda
$$

\n
$$
+ (2\pi i)^{-1} \int_{\varphi_{\xi^{0}}} \lambda^{k}\partial/\partial \xi_{\pi} P(\nu^{-1}\xi^{0}+\eta',\nu^{-1}\lambda)
$$

\n
$$
\times (P_{\xi^{0},q}(\eta',0;\lambda)+o(1))^{-1}\nu^{m-q-k-1}d\lambda
$$

\n
$$
+ \sum_{\xi_{\pi}^{0} \in \mathbb{R}, \delta^{q}/\partial \xi_{\pi} P^{0}(\xi^{0'},\xi_{\pi}^{0}) = 0} \sum_{j=t'(\xi^{0})}^{s(\xi^{0})} (2\pi i)^{-1}
$$

\n
$$
\times \int_{\varphi_{\xi^{0},j}^{+}} (\nu^{-1}\xi_{\pi}^{0} + \nu^{-1/l_{j}}\lambda)^{k}\partial/\partial \xi_{\pi} P(\nu^{-1}\xi^{0}+\eta',\nu^{-1}\xi_{\pi}^{0}+\nu^{-1/l_{j}}\lambda)
$$

\n
$$
\times (P_{t_{j},\xi^{0}}(\eta',0;\lambda)+o(1))^{-1}\nu^{m-1/l_{j}-m_{\xi^{0}}(l_{j})}d\lambda
$$

\n
$$
+ (1-\delta_{0r_{m_{\xi^{0}}}(\xi^{0})) \times (2\pi i)^{-1} \int_{\varphi_{\xi^{0},0}^{+}} (\nu^{-1}\xi_{\pi}^{0}+\lambda)^{k}
$$

\n
$$
\times \partial/\partial \xi_{\pi} P(\nu^{-1}\xi^{0}
$$

where each $0(1)$ is a polynomial of η' , λ and $\nu^{1/L}$ and vanishes for $\nu = 0$ and L is a positive integer. So there exists ν_K (>0) such that each integrand in $(2, 20)$ can be expanded in a power series of $v^{\nu L}$, which converges uniformly in $\eta' \in K$ and $0 \le \nu \le \nu_K$. From this the lemma easily follows. $Q.E.D.$

Lemma 2.9. Let $1 \leq k \leq l$. For any compact set K in $\mathbb{R}^{n-1} - i\dot{T}_{\xi^0}$, *there exist* ν_K and r_K (>0) such that $\sigma^k(\nu^{-1}r\xi^{0} + r\eta')$ is well-defined

 α *when* $r_K \eta' \in \mathbb{R}^{n-1} - i r_0 \vartheta' - i \dot{\Gamma}_{\xi^{\varrho}}, \ \alpha \eta' \in K$ for some $\alpha \in \mathbb{C}$ ($|\alpha|=1$), $0 \leq \varphi$ \leq ν_K *and r* \geq *r***_{***K}***. We have**</sub>

$$
(\nu r^{-1})^{s_k} \sigma^k (\nu^{-1} r \xi^{0} + r \gamma') = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} r^{q_{kj}} \sigma^k_{\xi^{0'},j} (\gamma') \nu^{j/L} r^{-i},
$$

$$
\sigma^k_{\xi^{0'},j} (\gamma') \not\equiv 0 \quad \text{if } \sigma^k_{\xi^{0'},j} (\gamma') \not\equiv 0,
$$

 i *whose convergence is uniform in* $\{(\eta', \nu, r)$; $r_K\eta' \in \mathbb{R}^{n-1} - i\gamma_0\vartheta' - i\dot{\varGamma}_{\xi\upsilon'}$, $\alpha \gamma' \in K$ for some $\alpha \in \mathbb{C}$ ($|\alpha|=1$), $0 \leq \gamma \leq \gamma_K$ and $r \geq r_K$ *, where the* q_{kj} are rational numbers. Moreover the $\sigma_{\xi^{\nu},j}^{ki}(\eta')$ are holomorphic in $\bm{R}^{n-1}\!-\!i\dot{\varGamma}_{\mathfrak{g}\mathfrak{o}}$, and homogeneous and

$$
\sigma_{\xi^{0'},\,j}^k(\textit{r}\,\eta') = \textit{r}^{\,q_{kj}+\,j/L}\sum_{i=0}^{\infty}\sigma_{\xi^{0'},\,j}^{ki}\,(\eta')\,\textit{r}^{-i},
$$

 w hose convergence is uniform in $\{(\eta', r) ; r_K\eta' \in \mathbb{R}^{n-1} - i\gamma_0\vartheta' - i\dot{\varGamma}_{\varepsilon^{\mathfrak{d}\prime}}, \, \alpha\eta\}$ \in *K* for some $\alpha \in \mathbb{C}$ ($|\alpha|=1$) and $r \geq r_K$.

Proof. Modifying the curves \mathcal{C}_{ν}^+ , $\mathcal{C}_{\xi^0, 0, j}^+$, $\mathcal{C}_{\xi^0}^+$ and $\mathcal{C}_{\xi^0, j}^+$ in the proof of Lemma 2. 8, we have

$$
(2.21) \quad \sigma^{k}(\nu^{-1}r\xi^{0\prime} + r\eta') = (2\pi_{i})^{-1} \int_{\sigma_{\nu}^{+}} \lambda^{k}\partial/\partial \xi_{n} P(\nu^{-1}r\xi^{0\prime} + r\eta', \lambda)
$$

\n
$$
\times P(\nu^{-1}r\xi^{0\prime} + r\eta', \lambda)^{-1}d\lambda
$$

\n
$$
= \left[\sum_{j=1}^{t-1} (2\pi i)^{-1} \int_{\sigma_{\langle \xi^{0\prime}, 0), j}} \lambda^{k}\partial/\partial \xi_{n} P(\nu^{-1}r\xi^{0\prime} + r\eta', \nu^{-1/4}r\lambda)
$$

\n
$$
\times (P_{i,j,(e^{0\prime}, 0)}^{0}(\eta', 0; \lambda) + o(1))^{-1}\nu^{m-(k+1)/l_{j}-m(e^{0\prime}, 0)}(i,j)d\lambda
$$

\n
$$
+ (2\pi i)^{-1} \int_{\sigma_{\xi^{0\prime}}^{+}} \lambda^{k}\partial/\partial \xi_{n} P(\nu^{-1}r\xi^{0\prime} + r\eta', \nu^{-1}r\lambda)
$$

\n
$$
\times (P_{\xi^{0\prime}, q}^{0}(\eta', 0; \lambda) + o(1))^{-1}\nu^{m-k-1-q}d\lambda
$$

\n
$$
+ \sum_{\xi_{n}^{0} \in \mathbb{R}, \partial^{q}/\partial \xi_{n}^{0} P(\xi^{0\prime}, \xi_{n}^{0}) = \int_{j=t^{'}(\xi^{0})}^{s(\xi^{0})} (2\pi i)^{-1}
$$

\n
$$
\times \int_{\sigma_{\xi^{0}, j}^{+}} (\nu^{-1}\xi_{n}^{0} + \nu^{-1/l_{j}}\lambda)^{k}
$$

\n
$$
\times \partial/\partial \xi_{n} P(\nu^{-1}r\xi^{0\prime} + r\eta', \nu^{-1}r\xi_{n}^{0} + \nu^{-1/l_{j}}r\lambda)
$$

\n
$$
\times (P_{i,j,e}^{0}(\eta', 0; \lambda) + o(1))^{-1}\nu^{m-1/l_{j}-n_{e}o(l_{j})}d\lambda
$$

668 SEIICHIRO WAKABAYASHI

+
$$
(1 - \delta_{0r_{m_{\xi^0}}(\xi^0)}) \times (2\pi i)^{-1} \int_{\mathscr{C}^+_{\xi^0,0}} (\nu^{-1}\xi^0_n + \lambda)^k
$$

 $\times \partial/\partial \xi_n P(\nu^{-1}r\xi^0', \nu^{-1}r\xi^0_n + r\lambda) (P_{\xi^0}^0(\eta', \lambda) + o(1))^{-1}$
 $\times \nu^{m-m_{\xi^0}}d\lambda \}] \times r^{-m+k+1},$

where each $o(1)$ is a polynomial of η' , λ , $\nu^{\nu L}$ and r^{-1} and vanishes for $y=0$, $r^{-1}=0$. In fact, for example, we have

$$
(\nu r^{-1})^m P (\nu^{-1} r \xi^{0} + r \eta', \nu^{-1} r \xi_n^0 + \nu^{-1/l_j} r \lambda)
$$

=
$$
(\nu r^{-1})^{m_{\xi^0}(l_j)} P_{l_j, \xi^0} (r \eta', 0; r^{(l_j-1)/l_j} \lambda)
$$

+
$$
\sum_{n_h > m_{\xi^0}(l_j)} (\nu r^{-1})^{n_h} P_{l_j, \xi^0, h} (r \eta', 0; r^{(l_j-1)/l_j} \lambda),
$$

 $\deg_{l_1} P_{l_1,\xi_0,h}(\eta',0;\lambda) \leq n_h$.

Therefore we have

$$
(\nu r^{-1})^m P(\nu^{-1} r \xi^{0} + r \eta', \nu^{-1} r \xi_n^0 + \nu^{-1/l_j} r \lambda)
$$

= $\nu^{m_{\xi^0}(l_j)} (P_{l_j, \xi^0}^0(\eta', 0; \lambda) + o(1))$ as $\nu, r^{-1} \to 0$

So there exist ν_K and r_K (>0) such that each integrand in (2. 21) can be expanded in a power series of $\nu^{\nu L}$ and r^{-1} , which converges uniformly in $\{(\eta', \nu, r); \eta' \in K, r \in \mathbb{C}, \nu \in \mathbb{C}, |r| \geq r_K \text{ and } 0 \leq |\nu| \leq \nu_K\}.$ We note that

$$
\sigma_{\varepsilon^{o\prime},\,j}^{ki}(\alpha\eta') = \alpha^{q_{kj}+j/L-i}\sigma_{\varepsilon^{o\prime},\,j}^{ki}(\eta')
$$

when $\alpha\gamma',\gamma'\!\in\!{\mathbf R}^{n-1}\!-\!i\dot{T}_{\mathfrak{f}^{\mathfrak{g}\prime}},$ where $1^{q_{kj}+j\prime L-i}\!=\!1$. This completes the proof. Q.E.D.

Let us consider $\dot{T}_{\varepsilon^{0}}$. Although $\Gamma(P_{(0,1)}) = \Gamma((P_{(0,1)})_{\varepsilon^{0}}/0)$ does not always hold, we can prove the inner semi-continuity of $\dot{\varGamma}_{\epsilon}$.

Lemma 2.10. Let $\xi^{0} \in \mathbb{R}^{n-1}$ and assume that $0 \leq \rho \leq l_1(\xi^{0}, 0)$. Then for any compact set \widetilde{M} in $\Gamma((P_{(0,1)})_{(e_0,0)})$ there exist a neigh*borhood U of* ξ^{0} and positive numbers r_0 , t_0 such that

$$
P(r\xi'-irt\eta'-i\gamma_0\vartheta',r^{1/\rho}\lambda-irt\eta_n)\neq 0
$$

when $\eta \!\in\! \widetilde{M}$, $\xi'\!\in\! U$, $\lambda \!\in\! \boldsymbol{R}$, $|\lambda|\!\geq\! 1$, $r\!\geq\! r_{\scriptscriptstyle 0}$ and $0\!<\! t\!\leq\! t_{\scriptscriptstyle 0}$

Proof. Put

PROPAGATION OF SINGULARITIES OF HYPERBOLIC MIXED PROBLEM 669

$$
f(\nu, t, \zeta', \lambda, s, t, \eta) = P(\nu^{-1}r\xi^{0} + r\zeta' - irt\eta' - i(s + \gamma_0)\vartheta',
$$

$$
\nu^{-1/\rho}r^{1/\rho}\lambda - irt\eta_n),
$$

where $0 \lt \nu \leq \nu_0$, $r \geq r_0$, $\zeta' \in \mathbb{R}^{n-1}$, $|\zeta'| \leq \varepsilon$, Re $s \geq 0$, Re $t \geq 0$, $|s| \leq s_0$, $|t|$ $\leq t_0$, $\lambda \in \mathbb{R}$, $|\lambda| \geq 1$ and $\eta \in \widetilde{M}$. Then we have

$$
\begin{split} \left(\mathfrak{p}r^{-1}\right)^{m} &\ f(\mathfrak{p},\,r,\,\zeta',\,\lambda,\,s,\,t,\,\eta) \\ &= \left(\mathfrak{p}r^{-1}\right)^{m_{\rho}\langle\xi\mathfrak{p}',\,0} P_{\rho,\,\langle\xi\mathfrak{p}',\,0\rangle} \left(r\zeta'-irt\eta'-i\left(s+\gamma_{0}\right)\vartheta',\,-irt\eta_{n};\,\lambda\right) \\ &\quad + \sum_{n_{h} > m_{\rho}\langle\xi\mathfrak{p}',\,0\rangle} \left(\mathfrak{p}r^{-1}\right)^{n_{h}} P_{\rho,\,\langle\xi\mathfrak{p}',\,0\rangle,\,h}\left(r\zeta'-irt\eta'-i\left(s+\gamma_{0}\right)\vartheta',\,-irt\eta_{n};\,\lambda\right), \end{split}
$$

 $\deg_{a} P_{a,\xi^{a\prime},0,\hbar}(\eta;\lambda) \leq n_{\hbar}.$

Since $0 < \rho < l_1$,

$$
P_{\rho,\,\langle\xi^{0\prime},\,0\rangle}(\eta;\lambda)=(P_{m\prime})_{\xi^{0\prime}}(\eta')\lambda^{m'}.
$$

Since the degree of $P_{\rho,(\xi^0,\omega,h)}(\eta;\lambda)$ with respect to λ is not greater than m', it follows that

$$
\begin{aligned} \n\mathcal{V}^{m-m_p(\xi^0\prime,\,0)}r^{-m+m'(\rho-1)/\rho}\lambda^{-m'}f(\nu,\,r,\,\zeta',\,\lambda,\,s,\,t,\,\eta) \\
&= (P^0_{m'})_{\xi^{0\prime}}(\zeta'-it\eta'-ir^{-1}(s+\gamma_0)\,\vartheta') + o\,(1)\quad\text{as}\;\;\nu,\,r^{-1}\rightarrow 0\,,\n\end{aligned}
$$

i.e. for any positive number δ there exist r_0 , ν_0 (>0) such that

$$
|y^{m-m_p(\xi^0\prime,0)}r^{-m+m'(p-1)/p}\lambda^{-m'}f(v,r,\zeta',\lambda,s,t,\eta)
$$

$$
-(P_{m'}^0)_{\xi^0\prime}(\zeta'-it\eta'-ir^{-1}(s+\gamma_0)\vartheta')|<\delta
$$

when $0 \lt \nu \leq \nu_0$, $r \geq r_0$, $|\zeta'| \leq \varepsilon$, $|s| \leq s_0$, $|\lambda| \geq 1$, $|t| \leq t_0$ and $\eta \in \widetilde{M}$. So we can apply the same argument as in Lemma 3. 7 in [7] to $f(\nu, r, \zeta', \lambda, s, t, \eta)$ and we obtain the lemma. $Q.E.D.$

Lemma 2.11. Let $\xi^{0} \in \mathbb{R}^{n-1}$ and M be a compact set in $\dot{\Gamma}_{\xi^{0}}$. *There exists a neighborhood U of* ξ^{0} such that

$$
M{\subset\!\dot{\varGamma}_{\mathbf{f}'}}\quad\text{ for }\mathbf{f}'{\in}U\,.
$$

Remark. From the proof of Lemma 2. 11 it follows that

$$
\bigcup_{\xi_n\in\mathbf{R}}\Gamma(P_{\langle \xi^{0\prime},\xi_n\rangle})\supset\Gamma((P_{(0,1)})_{\langle \xi^{0\prime},0\rangle}).
$$

Proof. Assume that there exists a sequence $\{\xi^j, \eta^{j'}\}_{j=1,2,\dots}$ such that $|\xi''-\xi^{0'}|<1/j$, $\xi_n^j\in\mathbb{R}$, $\eta' \in M$ and $P_{\xi_j}^0(-i\eta^{j'},0) = 0$. Then from the inner semi-continuity of Γ_{ϵ} (or Γ_{ϵ}) it follows that $|\xi_n^j| \to \infty$ as $j \to \infty$. Let \widetilde{M} be a compact set in $\Gamma((P_{(0,1)})_{(g_0',0)})$ such that the interior of \widetilde{M} includes $M \times \{0\}$. Lemma 2.10 implies that there exist a neighborhood U of $\xi^{0'}$ and λ_0 , t_0 (>0) such that

$$
P^{0}(\xi'-it\eta',\lambda-it\eta_n)\neq 0
$$

when $\eta \in \widetilde{M}$, $\xi' \in U$, $\lambda \in \mathbb{R}$, $|\lambda| \geq \lambda_0$ and $0 \leq t \leq t_0$, which leads us to a contradiction, using Rouche's theorem. Q.E.D.

§ 3, Proof of Theorem 1. I

Let $P(\xi)$ be written in the form

$$
P(\xi) = \prod_{j=1}^{q} p_j(\xi)^{\nu_j},
$$

where the $p_j(\xi)$ are irreducible polynomials. We assume that $\prod_{j=1}^{q'} p_j(\xi')$, $\lambda^{y} = 0$ has roots $\lambda_1^+ (\xi'), \dots, \lambda_l^+ (\xi')$ when $\xi' \in \mathbb{R}^{n-1} - i\gamma_0 \theta' - i\Gamma_0$, i.e.
 $\prod_{i=1}^q p_i (\xi', \lambda)^{y_i} = 0$ does not have roots with positive imaginary part when $\xi'\in\mathbb{R}^{n-1}-i\gamma_0\vartheta'-i\Gamma_0$. Then put

$$
\dot{\Gamma}_{\xi^{0}} = \bigcap_{j=1}^{q'} \big\{ \bigcap_{\xi_n^0 \in \mathcal{R}} \dot{\Gamma} \left((\rho_j)_{\xi^0} \right) \cap \dot{\Gamma} \left((\phi_j)_{(0,1)} \right)_{(\xi^{0'},0)} \big\}.
$$

We note that

$$
((p_j)_{(0,1)})_{(\xi^{0\prime},0)}(\eta)=((p_j)_{(0,1)})_{(\xi^{0\prime},\xi_n)}(\eta) \text{ for all } \xi_n\in\mathbb{R}.
$$

The following lemma is obvious.

Lemma 3.1. $\oint B_j(\xi',\lambda)\lambda^{k-1}P_+(\xi',\lambda)^{-1}d\lambda$ is a polynomial of $\sigma^k(\xi'), 1 \leq k \leq l$, when $P_+(\xi',\lambda)$ is well-defined.

From Lemma 2. 8 we have the following

Lemma 3.2. Let $\xi^{0} \in \mathbb{R}^{n-1}$. For any compact set K in \mathbb{R}^{n-1} $-i\gamma_0\vartheta' - i\dot{T}_{\xi\vartheta'}$ there exists ν_K (>0) such that $R(\nu^{-1}\xi^{\vartheta\prime} + \eta')$ is well*defined for* $\eta' \in K$ and $0 \le \nu \le \nu_K$ and

$$
\nu^{h_{\xi 0'}} R(\nu^{-1} \xi^{0'} + \eta') = \sum_{j=0}^{\infty} \nu^{j/L} R_{\xi^{0'},j}(\eta'),
$$

$$
R_{\xi^{0'},0}(\eta') = R_{\xi^{0'}}(\eta') \not\equiv 0,
$$

whose convergence is uniform in $(\eta', \nu) \in K \times \{0 \leq \nu \leq \nu_K\}$ *, where* $h_{\mathfrak{g}\nu}$ *is a rational number and L is a positive integer. Moreover the* $R_{\epsilon \nu}$ *, (* η' *)* \int_0^{π} are holomorphic in $\mathbb{R}^{n-1} - i\gamma_0\vartheta' - i\dot{\varGamma}_{\vartheta}$.

Remark. $R_{\xi^{0\prime},0}(\eta') \equiv R_{\xi^{0\prime}}(\eta')$ is the localization of $R(\xi')$ at $\xi^{0'}$. Moreover this lemma for $\xi^0 = 0$ implies that $R(\xi')$ is holomorphic in $R^{n-1} - i\gamma_0 \partial' - i\dot{\Gamma}$ (see [3]).

The following lemma is also obtained by Lemma 2. 9.

Lemma 3.3. Let $\xi^{0} \in \mathbb{R}^{n-1}$. For any compact set K in \mathbb{R}^{n-1} $-i\dot{\Gamma}_{\varepsilon}$, there exist ν_K and r_K (>0) such that $R(\nu^{-1}r\xi^{0\prime} + r\eta')$ is well*defined when* $r_K \eta' \in \mathbb{R}^{n-1} - i \gamma_0 \vartheta' - i \dot{\Gamma}_{\xi^0}$, $\alpha \eta' \in K$ for some $\alpha \in \mathbb{C}$ ($|\alpha| = 1$), $0 \leq \nu \leq \nu_K$ and $r \geq r_K$. We have

$$
(\nu r^{-1})^{\hbar_{\xi}\circ\prime}R(\nu^{-1}r\xi^{\circ\prime}+r\eta')=\sum_{j=0}^{\infty}\sum_{i=0}^{\infty}r^{\hbar_{j}(\xi\circ\prime)-i}\nu^{j/L}R_{\xi\circ\prime,\,j}^{i}(\eta'),
$$

$$
R_{\xi\circ\prime,\,j}^{0}(\eta')\not\equiv0 \quad \text{if}\ \ R_{\xi\circ\prime,\,j}(\eta')\not\equiv0,
$$

 i *vohose convergence is uniform in* $\{(\eta', \nu, r)$; $r_K\eta' \! \in \! \mathbb{R}^{n-1} \! - \! i\gamma_0\theta' \! - \! i\dot{\Gamma}_{\epsilon\sigma'}$ $\alpha \gamma' \in K$ for some $\alpha \in \mathbb{C}$ ($|\alpha|=1$), $0 \leq \nu \leq \nu_K$ and $r \geq r_K$, where the $h_j(\hat{\xi}^0)$ are rational numbers. Moreover the $R^i_{\xi^{v},j}(\eta')$ are holomorphic in $R^{n-1}-i\dot{\Gamma}_{\varepsilon}$, and homogeneous and

$$
R_{\xi^{0\prime},j}(r\eta')=r^{\hbar_j(\xi^{0\prime})+j/L}\sum_{i=0}^{\infty}r^{-i}R_{\xi^{0\prime},j}^{i}(\eta'),
$$

 z *vehose convergence is uniform in* $\{(\eta', r) ; r_{\chi}\eta' \in \mathbb{R}^{n-1} - i\gamma_0\vartheta' - i\dot{\varGamma}_{\xi^0}, \alpha\eta' \}$ \in *K* for some $\alpha \in C$ ($|\alpha|=1$) and $r \ge r_K$ }.

Remark. The principal part $(R_{\epsilon 0})^0 (\eta')$ of $R_{\epsilon 0}$ (η') is equal to $R^0_{\xi^0}',(\eta')$. Moreover this lemma for $\xi^{0'}=0$ implies Lemma 3.2 in [3].

In the above two lemmas we can replace $R(\xi')$ by $R_{jk}(\xi')$ or $P_=(\xi', \lambda)$ with obvious modifications.

Lemma 3.4. Let $\xi^0 \in \mathbb{R}^n$. There exist the localizations $P_{\pm \xi^0}(\xi)$ *and* $(P^0_{\pm})_{\epsilon^0}(\xi)$ of $P_{\pm}(\xi)$ and $P^0_{\pm}(\xi)$ at ξ^0 , respectively, and (3. 1) $P_{+\xi^0}^0(\xi) \equiv (P_{+\xi^0}^0(\xi) - (P_{+\xi^0})^0(\xi)).$

Proof. The existence of $P_{\pm \xi^0}(\xi)$, $(P^0_{\pm})_{\xi^0}(\xi)$ and $(P_{\pm \xi^0})^0(\xi)$ follows from Lemmas 3. 2 and 3. 3 and the above remark. It easily follows that $P_{\xi^0}(\xi) = P_{+\xi^0}(\xi) P_{-\xi^0}(\xi)$, $(P_{\xi^0})^0(\xi) = (P^0)_{\xi^0}(\xi) = (P^0_+)_{\xi^0}(\xi) (P^0_-)_{\xi^0}(\xi)$ and $\deg^{\dagger} (P_{\pm \xi^0})^0(\xi) \leq \deg(P_{\pm}^0)_{\xi^0}(\xi)$. This implies (3. 1). Q.E.D.

Let us denote by $\Gamma(R_{\xi^0})$ the component of the set $\{\eta' \in \dot{\Gamma}_{\xi^0}; (R_{\xi^0})^0\}$ $(-i\eta')\neq0$ which contains ϑ' th. Then we have the following

Lemma 3.5 ([8]). Let $\xi^0 \in \mathbb{R}^{n-1}$. $\Gamma(R_{\xi^0})$ is an open convex *cone and*

$$
R_{\mathfrak{e}^{\mathfrak{g}}}\left(\xi'\right) \neq 0 \qquad \text{for } \xi' \in \mathbb{R}^{n-1} - i\gamma_1 \vartheta' - i\Gamma\left(R_{\mathfrak{e}^{\mathfrak{g}}}\right),
$$

$$
(R_{\mathfrak{e}^{\mathfrak{g}}})^{\mathfrak{g}}\left(\xi'\right) \neq 0 \qquad \text{for } \xi' \in \mathbb{R}^{n-1} - i\Gamma\left(R_{\mathfrak{e}^{\mathfrak{g}}}\right).
$$

Let us denote by $\Gamma(P_{+\xi^0})$ the component of the set $\{\eta \in \Gamma_{\xi^0} \times \mathbb{R}\}$; $P_{+\varepsilon 0}^{0}(-i\eta) \neq 0$ } which contains ϑ . Then we have also the following

Lemma 3.6. Let $\xi^0 \in \mathbb{R}^n$. $\Gamma(P_{+ \xi^0})$ is an open convex cone and

$$
P_{+\xi^0}(\xi) \neq 0 \quad \text{for } \xi \in \mathbb{R}^n - i\gamma_0 \vartheta - i\Gamma(P_{+\xi^0}),
$$

$$
P_{+\xi^0}^0(\xi) \neq 0 \quad \text{for } \xi \in \mathbb{R}^n - i\Gamma(P_{+\xi^0}),
$$

$$
\Gamma(P_{+\xi^0}) \supset P_{\xi^0}.
$$

In our case we can prove Lemma 3.2 in [8].

Lemma 3.7. Let $\xi^{0} \in \mathbb{R}^{n-1}$ and let M be a compact set in $\dot{\Gamma}_{\xi^{0}}$. Then there exist a conic neighborhood \varLambda_1 ($\subset \mathbb{R}^{n-1}$) of ξ^{0} and positive *numbers* C, t_0 such that $P_+(\zeta', \lambda)$ is holomorphic in $(\zeta', \lambda) \in A \times C$, where

$$
\Lambda = \{\zeta' = \xi' - it | \xi' | \eta' - i\gamma_0 \theta'; \xi' \in \Lambda, |\xi'| \ge C, \eta' \in M
$$

and $0 \le t \le t_0\}$.

[†] deg $p^{\circ}(\xi)$ denotes the degree of homogeneity of p° .

^{tt} $(R_{\xi^{0}})$ ^o $(-i\vartheta') \neq 0$ was shown in [7].

Therefore $R(\zeta')$ and $R_{jk}(\zeta')$ are also holomorphic in A.

Proof. The lemma is trivial for $\xi^{0'}=0$. So we assume that $\xi^{0'}$ $\in \mathbb{R}^{n-1}\setminus\{0\}$. Let $\lambda(\zeta')$ be a root of $p_j(\zeta',\lambda)=0$. We can assume that $\lambda(\zeta')$ is continuous in Λ when C and t_0 are suitably chosen. In fact, there exist a conic neighborhood \mathcal{A}_1 ($\subset \mathbb{R}^{n-1}$) of ξ^{0} and C , t_0 ($>$ 0) such that

$$
p_{j(0,1)}(\xi - it|\xi|\eta - i\gamma_0\theta) \neq 0 \text{ if } \xi' \in \mathcal{A}_1, |\xi'| \geq C, \eta' \in M
$$

and $0 < t \leq t_0$.

For $p_{j(0,1)}(\xi)$ is independent of ξ_n and $M\subset \dot{T}_{\xi^0}\subset \dot{T}((p_{j(0,1)}),\xi^0,\xi_0))$. The argument in Section 2 shows that $\lim_{\nu} \nu(\nu^{-1} \xi^0 - i \gamma' - i \gamma_0 \vartheta') = \mu_0$ exists if $\lim_{\nu\to 0}$ $\lim_{\nu\to 0}$ $\nu\lambda(\nu^{-1}\xi^0 - i\eta' - i\gamma_0\vartheta')$ $\mid = 0$, where $\eta' \in M$. Moreover from Lemmas 2. 4 and 2.7 it follows that μ_0 is a real root of $\partial^q/\partial \xi_1^ap_j^0(\xi^{0\prime},\lambda) = 0$. Now let us assume that μ_0 is a real multiple root of $\partial^q/\partial \xi_1^q p_j^0(\xi^0',\lambda) = 0$. We can assume without loss of generality that M is small so that $\{(\eta',\eta_n);$ $\eta' \in M$ and $\eta_n^1 \leq \eta_n \leq \eta_n^2$ $\subset \Gamma(p_{j(\xi^0', \mu_0)})$ for some $\eta_n^1, \eta_n^2 \in \mathbb{R}$. Then it follows that there exist a conic neighborhood $\widetilde{\mathcal{A}}$ of $(\xi^{0\prime},\mu_{0})$ and $C,$ t_{0} (${>}0)$ such that

$$
p_j(\xi'-it|\xi'|\eta'-i\gamma_0\theta',\lambda-it|\xi'|\eta_n)\neq 0
$$

if $(\xi',\lambda)\in\tilde{\Lambda}, |\xi'|\geq C, \eta'\in M, \eta_n^1\leq\eta_n\leq\eta_n^2$ and $0.$

This implies that

$$
\text{Im }\lambda(\xi'-it|\xi'|\eta'-i\gamma_0\theta')\not\in[-it|\xi'|\eta_n^2,-t|\xi'|\eta_n^1]
$$

for $\xi' \in A_1$, $|\xi'| \geq C$, $\eta' \in M$ and $0 \lt t \leq t_0$, modifying A_1 , C and t_0 , if necessary (see Lemma 3.2 in [8]). If $\vartheta' \notin M$, we choose a continuous curve $\eta'(\theta)$ in Γ_{ξ^0} such that $\eta'(0) = \theta'$ and $\eta'(1) \in M$ and we repeat the above argument for each small neighborhood of $\eta'(\theta)$, $0 \le \theta \le 1$. This proves the lemma (see Lemma 3.2 in [8]). **Q.E.D.**

Put

$$
t_j\!\equiv\!t_j\left(\xi^{0\prime}\right)=h_{\xi^{0\prime}}+h_j\left(\xi^{0\prime}\right),
$$

where $h_{\epsilon v}$ and $h_j(\xi^{0\prime})$ are defined in Lemma 3. 3. Then it is easy to see

that $t_j(\xi^{0\prime})$ is an integer and that $t_j(\xi^{0\prime}) \leq t_0(0)^{\dagger}$. Put

$$
t = t(\xi^{0}) = \max t_j(\xi^{0}), \ \omega = \omega(\xi^{0}) = \min \{j; t(\xi^{0}) = t_j(\xi^{0})\}.
$$

It easily follows that $t(\xi^{0'}) = t_0(0)$. From Lemma 3. 3 we have the following

Lemma 3.8. Let $\xi^{0} \in \mathbb{R}^{n-1}$. The principal part $R^0(\xi')$ of *is well-defined and there exists the localization* (R^0) $_{\epsilon}$ $_{\epsilon}$ (η') of $R^0(\xi')$ at ξ^{0} . Moreover for any compact set K in $\mathbb{R}^{n-1} - i\dot{\Gamma}_{\xi^{0}}$, there exists ν_K (>0) *such that*

(3. 2)
$$
y^{h_{\xi^{0}}-t_0(0)-\omega(\xi^{0})/L} R^0(\xi^{0'}+\nu\eta')
$$

$$
=\sum_{t_j(\xi^{0'})=t_0(0)} y^{(j-\omega(\xi^{0'}))/L} R^0_{\xi^{0},j}(\eta')
$$

 i *whose convergence is uniform in* $\{(\eta', \nu) \, ; \, \eta' \in \mathbb{R}^{n-1} - i\dot{\Gamma}_{\varepsilon^{\nu}}, \, \alpha\eta' \in K$ for *some* $\alpha \in \mathbb{C}$ ($|\alpha|=1$) and $0 \leq \nu \leq \nu_K$, and

$$
(R^0)_{\xi^{0}}(\eta') = R^0_{\xi^{0},\omega(\xi^{0})}(\eta').
$$

Let $\varGamma\left(\,(R^0)_{\,\mathfrak{s}^{\mathfrak{o}\prime}}\right)$ be the component of the set $\{\eta'\!\in\!\dot{\varGamma}_{\mathfrak{s}^{\mathfrak{o}\prime}};\,\,$ \neq 0} which contains ϑ ^{'††}.

Lemma 3.9 ([8]). Let $\xi^{0} \in \mathbb{R}^{n-1}$. $\Gamma((R^0)_{\xi^{0}})$ is an open con*vex cone and*

$$
(R^0)_{\xi^{0'}}(\xi')\neq 0 \ \text{for} \ \xi'\in \mathbf{R}^{n-1}-i\Gamma\left((R^0)_{\xi^{0'}}\right).
$$

Lemma 3.10 ([8]). Let ξ^{0} \in \mathbb{R}^{n-1} . For any compact set M in (\mathcal{L}) , there exist a conic neighborhood \mathcal{A}_1 ($\subset \mathbb{R}^{n-1}$) of $\hat{\xi}^{0}$ *positive numbers C, tQ such that*

$$
R(\xi'-it|\xi'|\eta'-i\eta_1\theta') \neq 0 \text{ if } \eta' \in M, \xi' \in \Lambda, |\xi'| \geq C
$$

and $0 \leq t \leq t_0$

Let $\tilde{\xi}^0 {\in} \boldsymbol{R}^{n+1}$ and put

[†] $R(r\eta') = r^{t_0(0)} \sum_{i=0}^{\infty} r^{-i} R_{\xi^0}^i$, (η') .

^{tt} $(R^0)_{\xi^0}$ ($-i\vartheta'$) \neq 0 was shown in [8].

PROPAGATION OF SINGULARITIES OF HYPERBOLIC MIXED PROBLEM 675

 \cap $(\Gamma(P_{+\varepsilon0}) \times \mathbb{R}) \cap (\Gamma((R^0)_{\varepsilon0}) \times \mathbb{R}^2)$.

(3. 3)
$$
\Gamma_{\bar{\xi}^0} = \{ \tilde{\eta} \in \mathbb{R}^{n+1}; \ (\eta', \eta_{n+1}) \in \Gamma(P_{\langle \xi^{0'}, \xi^0_{n+1} \rangle}) \}
$$

$$
\cap \ (\Gamma(P_{+\xi^0}) \times \mathbb{R}) \cap (\Gamma(R_{\xi^{0'}}) \times \mathbb{R}^2),
$$

$$
(3. 4) \qquad \Gamma_{\bar{\xi}^0}^0 = \{ \tilde{\eta} \in \mathbb{R}^{n+1}; \ (\eta', \eta_{n+1}) \in \Gamma(P_{\langle \xi^{0'}, \xi^0_{n+1} \rangle}) \}
$$

Then Theorem 1.1 can be proved by the same arguments as in
$$
[7]
$$
, $[8]$.

(1. 2) follows from Lemma 4. 1.

§ 4. Some Remarks and Examples

Lemma 4. 1 ([8]). Let $\xi^{0} \in \mathbb{R}^{n-1}$. $\Gamma((R^0)_{\xi^{0}}) \subset \Gamma(R_{\xi^{0}})$.

Let us prove the inner semi-continuity of $\Gamma((R^0)_{\varepsilon})$ and, therefore, $\Gamma^{\scriptscriptstyle{0}}_{\tilde{z}}.$

Lemma 4.2. Let ξ^{0} $\in \mathbb{R}^{n-1}$ and let M be a compact set in $_{\mathbf{f}}^{\mathbf{g}\circ}$). Then there exist a neighborhood U of $\xi^{\mathbf{0} \prime}$ and positive *number* t_0 such that $R^0(\xi')$ is holomorphic in $U-iD$ and $R^0(\xi')\neq0$ *for* $\xi' \in U - iD$, where $D = \{t\eta' : \eta' \in \mathring{M} \text{ and } 0 \lt t \leq t_0\}^+$.

Proof. We can assume without loss of generality that $P(\xi)$ is irreducible. Since $M\mathcal{L}\dot{T}((P_{(0,1)})_{\langle\mathfrak{S}^{0\prime},0\rangle})$, it follows that there exist a neighborhood U of ξ^{0} and t_0 , ν_0 (>0) such that

$$
P_{(0,1)}(\nu^{-1}\xi) = P_{m'}(\nu^{-1}\xi') \neq 0
$$

if $\xi' \in U - iD - i\nu_1\gamma_0\vartheta'$, $0 \leq \nu \leq \nu_1 \leq \nu_0$. Let K be a compact set in $U - iD$. Then there exists ν_K (>0) such that $\nu_K \leq \nu_0$ and $K \subset U - iD - i\nu_K \gamma_0 \vartheta'$. Let $\lambda^{\pm}_{j}(\xi';\nu)$ be a root of $P(\nu^{-1}\xi',\nu^{-1}\lambda) = 0$ such that $\lambda^{\pm}_{j}(\xi';\nu) = \nu \lambda^{\pm}_{j}(\nu^{-1}\xi')$ when $\xi' \in K$ and $0 < |v| \leq \nu_K$. In fact, since $P_{m'}(v^{-1}\xi') \neq 0$ for $\xi' \in K$ and $0<|\nu|\leq \nu_K$, modifying ν_K if necessary, the above statement is meaningful. Moreover we can assume that $\lambda_j^{\pm}(\xi';y)$ is continuous when $\xi' \in K$ and $0 \leq |\nu| \leq \nu_K$. Since $\lambda_j^{\pm}(\xi';0)$ is a root of $P^0(\xi',\lambda) = 0$, the same argument as in Lemma 3. 7 gives

^{\dagger} \mathring{M} denotes the interior of M .

$$
\{\lambda_j^+(\xi';0)\}\cap\{\lambda_j^-(\xi';0)\}=\varnothing \quad \text{ for } \xi'\!\in\!K,
$$

modifying U and t_0 if necessary. Therefore it follows from cntinuity of $\lambda_j^{\pm}(\xi';\nu)$ that

$$
(4, 1) \qquad \{\lambda_j^-(\xi'; \nu)\}\cap \{\lambda_j^-(\xi'; \nu)\}=\varnothing \quad \text{ for } \xi'\in K \text{ and } |\nu|\leq \nu_K,
$$

modifying ν_K if necessary. Put

$$
P_{+}(\xi', \lambda; \nu) = \prod_{j=1}^{l} (\lambda - \lambda_{j}^{+}(\xi'; \nu)) = \lambda^{l} + b_{1}^{+}(\xi'; \nu) \lambda^{l-1} + \dots + b_{l}^{+}(\xi'; \nu),
$$

$$
P_{+}(\xi', \lambda) = \prod_{j=1}^{l} (\lambda - \lambda_{j}^{+}(\xi')) = \lambda^{l} + a_{1}^{+}(\xi') \lambda^{l-1} + \dots + a_{l}^{+}(\xi').
$$

(4.1) implies that the $b_j^+(\xi';\nu)$ are holomorphic in $\{(\xi',\nu); \xi'\in K$ and $|\nu| \leq \nu_K$. Moreover we have $a^+_j(\nu^{-1}\xi') = \nu^{-j}b^+_j(\xi';\nu)$. Therefore we have

$$
b_j^+(\xi';\nu) = a_{j0}^+(\xi') + \nu a_{j1}^+(\xi') + \nu^2 a_{j2}^+(\xi') + \cdots,
$$

whose convergence is uniform in $\{(\xi', \mu); \xi' \in K \text{ and } |\nu| \leq \nu_K\}$. $a_{jk}^+(\xi')$ is holomorphic in $U-iD$ and homogeneous of degree $j-k$. So $R^{\circ}(\xi')$ is well-defined and holomorphic in $U-iD$. (3.2) and the above result yields us

$$
R^0(\xi')\neq 0 \quad \text{ for } \xi'\!\in\!U\!-\!iD\,,
$$

using the same argument as in the proof of Lemma 3.7 in [8]. Q.E.D,

Theorem 4.3. Let $\xi^{0} \in \mathbb{R}^{n-1}$ and let M be a compact set in . There exists a neighborhood U of ξ^{0} such that

$$
M\subset \Gamma((R^0)_{\xi'}) \quad \text{for } \xi' \in U.
$$

Proof. It is obvious that $M\subset \dot{T}_{\epsilon'}$ for $\xi' \in U$, shrinking U. Now assume that there exist $\xi^{1\prime}\!\in\! U$ and $\eta^{0\prime}\!\in\! M$ such that $(R^{0})_{\epsilon^{1\prime}}(-i\eta^{0\prime})=0,$ where U is sufficiently small. Since $(R^0)_{\xi \mu}(-i\eta') \not\equiv 0$, there exists $\zeta^{0'}$ $\in \mathcal{C}^{n-1}$ such that $\xi^{1\prime}-i(\eta^{0\prime}+\mu\zeta^{0\prime}) \in U-iM$ for $|\mu|\!\leq\! 1$ and $(R^0)_{\xi^{1\prime}}(-i(\eta^{0\prime})-\mu\zeta^{0\prime})$ $+ \zeta^{0'}$) \neq 0. Therefore it follows that there exist ε , δ (>0) such that

$$
|(R^0)_{\xi^L}(-i(\eta^0'+\mu\zeta^0'))|\geq 2\varepsilon \quad \text{for } |\mu|=\delta.
$$

On the other hand from (3. 2) we have

$$
|t^{h_{\xi^{1'}-t_0(0)-\omega(\xi^{1'})/L}} R^0(\xi^{1'}-it(\eta^{0'}+\mu\zeta^{0'}))
$$

– $(R^0)_{\xi^{1'}}(-i(\eta^{0'}+\mu\zeta^{0'}))|\leq \epsilon$ for $|\mu|=\delta$ and $0\leq t\leq t_1$ ($\leq t_0$),

where t_0 and t_1 are suitably chosen. Rouché's theorem implies that $R^{0}(\xi^{1} - it(\eta^{0} + \mu \zeta^{0}))$ has zeros within $|\mu| < \delta$ for $0 < t \leq t_1$, which is a contradiction to Lemma 4. 2. $Q.E.D.$

Theorem 4. 3 yields us the following

Theorem 4.4.
$$
\bigcup_{\xi \in \mathbb{R}^{n+1}\setminus\{0\}} K_{\xi}^{0} \times \{\tilde{\xi}\} \text{ is closed in } T^{*}X\setminus 0.
$$

In Section 2 the developments of $\sigma^k(\nu^{-1}\xi^{0\prime} + \eta^\prime)$ and $\sigma^k(\nu^{-1}r\xi^{0\prime} + r\eta^\prime)$ was given. However we can similarly obtain the developments $f(\mathfrak{v}^{-1}\xi^{\mathfrak{g}\prime} + \eta')$ and $f(\nu^{-1}r\xi^{0\prime} + r\gamma')$, where

$$
f(\xi') = (2\pi i)^{-1} \int_{\mathscr{C}^+} g(\xi', \lambda) P(\xi', \lambda)^{-1} d\lambda
$$

and $g(\xi', \lambda)$ is a polynomial of (ξ', λ) and \mathscr{C}^+ encloses only the roots $\lambda_1^+(\xi'), \dots, \lambda_i^+(\xi')$ of $P(\xi', \lambda) = 0$. This will be useful for hyperbolic systems.

Next let us consider some examples.

Example 4.5. Put $n = 4$ and

$$
P(\xi) = (\xi_1^2 - \xi_2^2 - \xi_3^2 - \xi_4^2 + a\xi_3) (\xi_1^2 - \xi_4^2), \quad a > 0,
$$

$$
B_1(\xi) = 1, B_2(\xi) = (-\xi_1 - i\xi_3) \xi_4 - \xi_4^2.
$$

Then we have $R(\xi') = i \xi_3 + \sqrt[4]{\xi_1^2 - \xi_2^2 - \xi_3^2 + a \xi_3}$. It is obvious that $\{P, B_1, \xi_2\}$ B_2 } satisfies the condition (A). We can show that $\bigcup_{\tilde{\xi} \in \mathbb{R}^3 \setminus \{0\}} K_{\tilde{\xi}} \times \{\tilde{\xi}\}\$ is not closed in $T^*X\setminus 0$ and that

$$
\bigcup_{\tilde{\xi}\in \boldsymbol{R}^{\mathfrak{s}\setminus\lbrace 0\rbrace}}\bigcup_{j=0}^{\overset{\infty}{\cup}}\text{supp }\widetilde{F}_{\tilde{\xi},j}\times\lbrace \tilde{\xi}\rbrace=\bigcup_{\tilde{\xi}\in \boldsymbol{R}^{\mathfrak{s}\setminus\lbrace 0\rbrace}}K_{\tilde{\xi}}\times\lbrace \tilde{\xi}\rbrace
$$

$$
\subsetneq WF(\widetilde{F})\subset WF_{\boldsymbol{A}}(\widetilde{F})\subset \bigcup_{\tilde{\xi}\in \boldsymbol{R}^{\mathfrak{s}\setminus\lbrace 0\rbrace}}K_{\tilde{\xi}}^{\mathfrak{g}}\times\lbrace \tilde{\xi}\rbrace
$$

(see $[9]$). Moreover we have

$$
\overline{\ch} \big[W F (\widetilde{F}) \, |_{\xi^{\mathfrak{g}}} \big] \! = \! \overline{\ch} \big[W F_A (\widetilde{F}) \, |_{\xi^{\mathfrak{g}}} \big] \! = \! K^{\mathfrak{g}}_{\xi^{\mathfrak{g}}} \hskip25pt \text{for} \hskip2mm \widetilde{\xi}^{\mathfrak{g}} \! \neq \! 0 \ .
$$

Example 4.6. Put $n=3$ and

$$
P(\xi) = ((\xi_1 - \xi_2)^2 - \xi_3^2 + a) ((2\xi_1 - \xi_2)^2 - \xi_3^2),
$$

\n
$$
B_1(\xi) = 1, \qquad B_2(\xi) = \xi_3.
$$

Then $R(\xi') = -1$ and $\{P, B_1, B_2\}$ satisfies the condition (A). We note that $(\xi_1-\xi_2)^2-\xi_3^2+a$ is irreducible when $a\neq0$. It is easy to see that

$$
WF(\tilde{F})|_{(1,1,-1,1)} = \{ \tilde{z} \in X; \tilde{z} = \alpha(2, -1, 0, -1) + \beta(2, -1, 1, 0) + \gamma(1, -1, 0, 0), \alpha, \beta > 0 \text{ and } \gamma \ge 0 \} \text{ when } a \ne 0,
$$

$$
WF(\tilde{F})|_{(1,1,-1,1)} = \{ \tilde{z} \in X; \tilde{z} = \alpha(2, -1, 0, -1) + \beta(2, -1, 1, 0) \text{and } \alpha, \beta > 0 \} \text{ when } a = 0.
$$

This shows that so called lateral wave appears when $a\neq 0$.

In conclusion, the author wishes to thank Professor M. Matsumura for his valuable advices and helpful discussions.

References

- [1] Atiyah M. F., Bott, R. and Gårding. L., Lacunas for hyperbolic differential operators with constant coefficients. I, *Acta Math.,* 124 (1970), 109-189.
- [2] Garnir, H. G., Solution elementaire des problems aux limites hyperboliques, to appear.
- [3] Sakamoto, R., E-well posedness for hyperbolic mixed problems with constant coefficients, *J. Math. Kyoto Univ.,* 14 (1974), 93-118.
- [4] Shibata, Y., A characterization of the hyperbolic mixed problems in a qurter space for differential oprators with costant coefficients, Publ. RIMS, Kyoto Univ., 15 (1979) , 357-399.
- [5] Svensson, S. L., Necessary and sufficient conditions for the hyperbolicity of polinomials with hyperbolic principal part *Ark. Mat.,* 8 (1970), 145-162.
- [6] Tsuji, M., Fundamental solutions of hyperbolic mixed problems with constant coefficients, *Proc. Japan Acad.,* 51 (1975), 369-373.
- [7] Wakabayashi, S., Singularities of the Riemann functions of hyperbolic mixed problems in a quarter-space, *Publ. RIMS. Kyoto Univ.,* 11 (1976), 417-440.
- [8] \longrightarrow , Analytic wave front sets of the Riemann functions of hyperbolic mixed problems in a quarter- space, *Publ. RIMS, Kyoto Univ.,* 11 (1976), 785-807.
- [9] , Propagation of singularities for hyperbolic mixed problems, *Proc. NATO Advanced Study Institute,* Reidel, 1976.