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Completeness of Modified Wave Operators
for Long-Range Potentials

By

Teruo IKEBE and Hiroshi ISOZAKI*

§1. Introduction

Spectral and scattering theory for the Schrédinger operator H= —4
+ 7V with V shortrange (V(x) =0 (|x|7'"%),&>0) has been developed
fairly satisfactorily tbat one can talk about the existence and completeness

of the (ordinary) wave operators

: itH —1it1I,
W.=s-lim e*e "™

t—*oo

where H, is the unperturbed Schrédinger operator —4. As compared to
this, rather few have been known about loeng-range scattering. The pur-
pose of the present paper is tc give a proof of the completeness of the
modified wave operators intertwining H, and H= —4+V, where in this
case the potential V' is long-range, i.e. V is assumed to satisfy the follow-

ing:

(4) Vi(x) is a real-valued C*-function over R* (= Euclidean n-space
such that for some 0,>0

D*V(z) =0 (jz| 7)) (lz]|—>00)

for any multi-index a= (a,. -, a). (C”=infinitely differentiable;
’C([ =+t D= (a/axl) @, ., (a/al'n) an) .

The formal differential operators F, and I/ have unique self-adjoint
realizations in the Hilbert space # = L,(R"), square integrable functions
on R", which we shall denote again by H, and H.

In order to define the modified wave operators we consider appro-
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priate (approximate) solutions X, (£, £) of the (Hamilton-Jacobi) equation
% X (&8 =V 2&t+VX (1)

By “appropriate” we mean that they should be “well-behaved” asymptoti-
cally. (The precise conditions on X. (§, £) are specified in Lemma 2. 2).
We call X, (§,2) time-dependent modifiers associated with H. With
X. (&, ) we define the modified wave operators

Wo=W. (V) =slim e~ %00,

t—>too

where s-lim means strong limit, and p the differential operator i V. It
is known that (A) guarantees the existence, isometry and intertwining
property of W., and the range of W., Ran(W.), being contained in the
subspace of absolute continuity relative to H, H,.(H) (Buslaev-Matveev
[3], Alsholm-Kato [2], Alsholm [1], Hérmander [4]). A harder ques-
tion is whether Ran (W.) =Y9(,.(H), in which case W. are said to be

complete. Qur goal is to show the following

Theorem 1.1. Under Assumption (A) there exist time-depend-
ent modifiers X. (&, t), and the modified wave operators W. are

complete.

The idea of proof lies in showing that W. equal the so-called station-
ary modified wave operators £.=82.(V) for which is known the rela-
tion Ran (2.) =%, (H). This will not be carried out in a direct manner,
however. First a sequence of potentials V,, with compact support are
selected which approximate V. It is rather easy to show W.(V,) =
£2.(V,). On the other hand, we can show that W.(V,) -W. (V) and
2.(V,)—>82.(V) as m—oo. Thus the desired conclusion follows by pass-
ing to the limit for m—oo in W, (V,) =2.(V,).

The construction of £. is based on a spectral representation or eigen-
function expansion: One can find unitary operators & . from # onto

jZ=L2 (R.: L,(S*™)) (see §5) such that & . H=M%Y ., where M is the

D The subscript variable as in 7, 7. indicates the variable in question for definiteness’
sake though not logically necessary.
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multiplicative operator by the independent variable on R.; the stationary
wave operators £2. are defined by 2.=F*%F,. (J,. is the F. for V
=0). Although a spectral representation theory has been developed pre-
viously by Ikebe [5] and Saitd [11], we shall propose a new approach
to spectral representation for H utilizing Isozaki’s results [7].

In the sequel we shall restrict ourselves to discussing W, dropping
the subscript +, for W_ can be dealt with in quite a similar way.

Assumption (A) we have imposed on V is not absolutely necessary.
For simplicity, however, we have avoided scrupulous examination of the
regularity to be required of V. The existence of the modified wave
operators has actually been proved under weaker conditions on V by the
authors referred to above.

Recently, Kitada [9], [10] has proved Theorem 1.1 by a different
method. In addition to eigenfunction expansion results his method is
based on his definition of stationary modified wave operators, while ours
leans over an analysis of time-dependent modified wave operators.

The contents of the present paper are as follows. Section 2 discusses
time-dependent. modifiers X (§,¢: V) and time-dependent modified wave
operators W(V), and the continuous dependence on V of these quantities.
In Section 3 we state some known results from Ikebe-Saitd [6] concerning
the so-called limiting absorption principle in which the boundary values
R(A+70: V) for A real of the resolvent of H=H(V) are our main
theme. The continuous dependence on V of R(A+:0: V) is also studied.
In Section 4 we transform the time-dependent modifiers into the stationary
ones via a certain inverse function theorem. Using the stationary modi-
fiers we present in Section 5 an eigenfunction expansion theory and a
stationary definition of the modified wave operator £(V). In Section 6
£2(V) is shown to depend continuously on V. In Section 7 is proved
the relation W(V) =82(V) for compactly supported potentials V. Section
8 completes the proof of Theorem 1. 1.

§ 2. Time-Dependent Modified Wave Operators

In this section we present the results of Buslaev-Matveev [3],

Alsholm [1] and Hérmander [4] on the existence of time-dependent modi-
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fied wave operators, and prove their continuous dependence on the poten-
tial V(x).

First we introduce a function space ¥ of potentials.

Definition 2.1. Let 0<<0<<1. Let V=V, be the totality of all
real-valued C”(R"™) -functions f(x) such that for N=0,1,2, ---

Iflly,y= max sup (1+[z])!*I*[Df (x) [oo.
<N z&R"™

T
||

Equipped with norms ||,y ¥ is a real Fréchet space. Now we
choose a ¢ such that 0<{0<{1, 0<0, and ¢ is irrational (for a technical
reason to be made clear in the Appendix). This ¢ will be fixed through-
out in the present paper. According to our Assumption (A) clearly V
eV=V,

As mentioned in the Introduction, we want to find an (approximate)

solution X (&, ¢: V) of the non-linear equation
@.1) %X(é,t: V) =V (28t +T:X (5, 2: V).

The properties of X (&, ¢: V) needed in the sequel can be summed up in

the following lemma whose proof will be given in the Appendix.

Lemma 2.2. For VeV=V, there exists a function X (&, ¢t:V)
having the following properties:
Q) X(,¢:V) is a real C*-function of £§5£0 and t>0.
(2) Let B be a bounded set of V and K a compact set of R"-{0}.

Then we have

(2.2 IDEDPX(E,t: VY |<CA+p' ™ (lal>0, m=>0),
2.3) ]Dg[%X(é, t: V)=V (28t +V.X (&, ¢: V))]|_<_C(1+t) -2

(la]=0,1),

where the constant C is independent of €K, Ve B and t>0.
8) Let V,—»VinV. Then we have for all « and m DED?X(E, ¢:N,)
—>DEDEX(E,¢: V) pointwise for §50 and >0 as n—oco.
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We shall call X (&, ¢2: V) a time-dependent modifier associated with
V. Before stating the existence results for modified wave operators, we
introduce the following notations.

Let H(V) denote the unique self-adjoint realization in L,(R") of
—d+V(x), where V(x) €V. In particular H(0) =H, Let ¢ ™*®"7"
denote the operator (¢™*®""y) (x) = F [ ¥*“ V7 (8)] (x), where T is

the ordinary Fourier transform

@. 4) (Fu) (&) =a (@) = 2r) "~ Ln =%y (z)dx .

Theorem 2.3. Let VeV, Then the wave operator

(2 5) '{V(‘7> Es-hm eitH(V)e—itIID—iX(p,t'V\
l—co

exists, where s-lim means strong limit in L,(R"), is a partial iso-
metry with initial set L,(R") and final set contained in H,.(H(V))
and has the interiwining property H(V)YW(V)DW(V) H,.

For the proof see e.g. Buslaev-Matveev [3], Alsholm [1] and Hor-
mander [4].

Now, we shall study the dependence on V of the operator W (V).
Set TV(ZL: ‘/) :eitH(I')e—iﬁﬂa—i_Y(p,z:V).

Lemma 2.4. Let >0, uc S '(Cy (R™-{0})) and B a bounded
set of V. Then there exists a constant T=T (e, u, B) such that
W VYu—W(VYu|<e holds for all =T and V< B.

The proof of the above lemma can be obtained by a careful examina-

tion of the above cited authors’ proof of Theorem 2.3, though they do

not state explicit dependence on V various estimates concerned.

Lemma 2.5. Let V,—>V in V. Then for an arbitrary fixed ¢
Wt V) >W(t:' V) strongly in L,(R") as m—>oo.

Proof. In view of Lemma 2.2, we have by Lebesgue’s dominated
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convergence theorem e ¥ M PEVw _ pmithy=iX®.EV) gtrongly in L, (R™).
On the other hand, V,—V in ¥ shows that V, tends to V in the
operator norm in L,(R"). By the well-known theorem on the perturba-
tion of semi-groups (see e.g. K. Yosida [14] p. 269), we can thus assert

that €%#"= converges strongly to e"#”. These two facts show that

W(t: V,) >W(¢: V) strongly in L,(R"). B

Theorem 2. 6. If V,—Vin V, we have W(V,) >W (V) strongly
in L,(R").

Proof. Since W(V,), W(V) are isometries (Theorem 2. 3), we have
only to show that W(V,)u—»W (V)u in L,(R") for z in a dense set of
L,(R%). Let uc % *(Cy(R™-{0})). By Lemma 2.4, we see that for
any €>0 there exists a constant 7' independent of V,, such that |W(z:
Vi) u—W (V) u| +|WE: V)u—W(V)u|<e holds for all t=>T. By
Lemma 2.5, W(T: V) u—W(T: V)u in L,(R") as m—oo. Finally, the
inequality

WV u—WV)u| <[ W (V) u—W(T: Va)u|
+ W Vo) u—W(T: V)u|
FI\WT: V)Yu—W(V)u|

shows that W(V,)u—W(V)u in L,(R"). B

§ 3. Continuous Dependence of the Resolvents on ¥

To begin with, we introduce the following notations.

Di=9; (=) :5a—+ n—lfi"i‘/;fj, Zy=z;/r, r=|z|, Im/z>0."

Z; 2r
D=D () = (Dy, -, D).

For a domain G in R™ and a real constant /3, we define L, ;(G) as the

Hilbert space of all measurable functions f such that || f|%e= L a+

Y Im=imaginary part.
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2D ¥ f () 1’dx is finite. If 8=0 or G= R", we often omit the subscript.
E;={x=R": |x|>R}.
Bp={xc R": |x|<IR}.
B, r={xER": p<|xI<R} (V< R).
R(z:V)y=(H(V)—=2)"' (z€C—-R).®

C' and €~ denote the upper and lower half plane in C, respectively.

Let D be an arbitrary bounded set in C— R such that D, the closure
of D, has no intersection with (—o0,0]. Hi. is the space of all measur-
able functions such that their distribution derivatives up to the second
order are locally in L,

The following result has been established in Ikebe-Saits [6].

Theorem 3.1 (Limiting Absorption Method). Let V&V be
fized and g, be a constant such that 0<e,<<0/2. Then the following
assertions hold.

Q) Forany f€E Ly yiepr and =€D, u=u(z: V) =R(z: V) [ satisfies
||u(z:f: )| —(1+s,)zz£cuf” a-epse s
H 9 (z) u ('Zf ‘/> n —<1—e‘,)/2.E1£C“ fi

where the constant C is independent of =€ D, fE L, y.cp

@) u(z:f:V) is continuous in Ly _q,cp,. for €D and fE L, qrepn

(1180072 >

and, as a function of z, can be continuously extended in L, _y.cyp to
DNCY and DNC™. The extended function u(A+:0:f:V), 1+i0&
RN (DNC), satisfies the same estimates as (1) with z=1+70.

(3 u(A+i0:f:V) solves the following problem uniquely:

(=d+V=Du=f, JSEL,u.cpr,
7S 142, S g2 a I_Iﬁm s

D@ +i0ucs L, —a-epse (B

Now, we want to investigate the dependence on V of u#(A+70:f: V).

For this purpose we first prove the following

Y € is the complex plane.
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Lemma 3.2. Let Ve M a compact set in V. Then there exists
a constant C independent of VEM, f€L, iy, and z€DNCT or
2€DNC such that the following inequalities hold:

@) lu(z:f: V) ”—<1+so)/z£C”f” A+ep)/2 s
2) [ ) @u:f: V)] —(1—50)/2,E1_<_C”f“ (1+€9)72
3) oo (z: 2 V)| —(1+s.,)/2,E,,§.CP_E°/2“f” (+gg)/2 o>1.

Proof.” First we note that there exists a constant C independent of

SE€Ly qiepn, 2D and VEDM such that the following inequalities hold:
@G 1) ” D (2) u“ —(1—50)/2.E,£C{|| u” —a+epzt ” f” (1*50)/2} s
3.2 2|2 ey e, 2, <CO™ {let] L reys+ | e,  0>1.

(8.1) and (3.2) have been shown in Lemmas 1.7 and 1.8 of Ikebe-
Saits [6], though the dependence on V of the constant C has not been
taken into account there. If we carefully reexamine the proof, however,

we can find that C in (3.1) and (3. 2) is independent of Vin a bounded

set in V.

If (1) has been shown, (2) and (3) follow from (1) by using
(3.1) and (3.2). We shall prove (1). Suppose (1) is false. Then
there exists a sequence {Z,, fn, Vi) m-1.5... such that [z (zn: fu: Vi) | —asepr
=1, | falarep<<1/m. Let us set u,=u(2y: fn: V) for brevity. Since
V..M, we can assume without loss of generality that =,—z in DN C*
or DNC, and V,—»V in ¥V as m—oo. Let us show that there exists

a function v& Ly _ ey ) Hise having the following properties:

3.3 There exists a subsequence {u,.} of {u,} such that

Up—>0 I Ly _iepn as m'—o00;
(3.4 1D (@) 0] - a-epre.5,<00
In fact, by (3.1) and (3.2) we have
(3.5) letnll - creprmn,<Co™*7%  0>1,

(3.6) I D (z) ttm H —<1—sowz,E,£C >

D Cf. the proof of Lemma 1.11 of [6].
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where the constant C is independent of m. By (3. 5), for any ¢>0, there

exists a constant R>1 independent of m such that for all m

3.7 lotmll - s ey 2,22 <E -

Recall the following well-known elliptic estimate which holds for u& Hp.
and for p<<R

(3.8) 2Llsplz)aulzczx50(p,k)(£z (—d+V—2)ul'de

ja|<2 |I<R

+ iu |2dx>,

|z1<R
where the constant C (o, R) is independent of 2= D and of Vif sngI V(x)l
is uniformly bounded in V. In view of (3.8) | V,umlll;:—i- 7 .
is uniformly bounded in 7. Hence by the usual diagonal process with
(3.7) and Rellich’s selection theorem in mind we see that there exist
v & L, _q.ey. and a subsequence {u,.} of {u,} such that u, —wv in
L, _qieprn.  Moreover, again using (3.8), we see that u, —v in Hj,.
Let R>1. We have by (3.6) [|D (2n) thm |l -a-epr2 5, <<C, where the con-
stant C is independent of m’ and R. Letting m’ tend to oo we have
1D (2) v -a-eprm,<<C. Letting R tend to co we have | D (2) v|-q-ep .z,
<0, so that we have proved the existence of vE L, _ ¢y, Hpe satis-
fying (3.3) and (3.4). As is easily seen v satisfies (—4+V—2)v=0,
VELy _qrepn D(@)VELy _q-epn(E). If *=2%70 is real then the uni-
queness result stated in Theorem 3.1 (3) shows v=0, which contradicts
the fact that |ty | —q+ep2=1. If zis non-real it is much easier to get to

a contradiction. [§

Theorem 3.3. Let V,—V in V. We have for all 2>0 and
fe ki, A+€9)/25 R@A+40: Vo) f»R(Axi0: V) [ in L2,~(1+e,,)/z-

Proof. Set u,,=R(A+1:0: V,)f. Inview of Lemma 3. 2 (3) there exists
for an arbitrary €>>0 a constant R independent of m such that |[u,| - q+e,,2 2,
<e. Keeping this in mind we can argue as in the proof of Lemma 3.2
to conclude that there exist a subsequence {u,.} of any subsequence
{ttm-} of {un} and vEL, _qieyn such that w,—v in L, g,y and v

satisfies (—A+V—2)v=/Fand DA +i0)vEL, ¢ cpr(E;). But Theorem
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3.1 (8) shows that v does not depend on the choice of the subsequence
{t4ney of {un-}. Since every subsequence {#,.} of {u,} contains a sub-
sequence {u,.; which converges to one and the same limit, we see that
the sequence {u,} itself converges, and the limit is just R(A+:0: V)f
by Theorem 3.1 (3). B

§ 4. Time-Dependent and Stationary Modifiers

This section has a preliminary character to the following sections.
We shall transform the time-dependent modifier introduced in Section 2
into a ‘“‘stationary” modifier, which will enable us to develop in the next
section an eigenfunction expansion theory.

First we note the following inverse function theorem.

Lemma 4. 1. Let U be an open set in R, and R, = (0, oo). Let
0,0, ) }norn,.. and O, (p.u) be C>(UXR.) -functions with values in
RY., We assume that 0,(p, 1) (n=1,2, ---;00) have the following pro-
perties:

D) 0L, 1) =P+ (b 11),

2) sup sﬂ;g ;16111} A+ " DEDRg, (p, 1) | <oo for all a and m (la|=0,
m=>0),

3) for all « and m (la|=0, m=0) we have DDy, (p, 1) —
DiDRd.. (P, 1) pointwise as n—>o0,

Let K be an arbitrary compact set in U. Then there exist C*(RY
X R.) -functions {¥.(P, 1) }ner2,, Vulb, /) and a positive constant
R>1 such that the following assertions hold:

4 0,7 (b, 1), ) =p for peK, n=R, n=1,2, -+ o0,

5) sup igg:él}() A+ DsDR (T, (p, 1) —p) |<<oo for all « and m
(la|=0, m=0),

(6) for peK and p=R we have DDV, (p, 1) > DGDR¥ (b, 1t) point-
wise as n—oo for all « and m (la|=0, m=>0),

(7) the function ¥,(p, 1) is unique in the sense thai if UL (b, 1) and
D (p, ) are such functions, we have TP (p, ) =¥P (b, 1) for pkK
and n=>R.
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Proof. Since the proof is just the same as for the usual inverse
function theorem, we only outline it. By our assumption (2), there exists

a constant R such that for p€ U, #>R and n=1,2, ---; oo,
4.1 det (1+ Dy, (P, 1)) >1/2,

where D¢, (p, /1) denotes the Jacobian matrix of ¢, (p, /) with respect to

p. Moreover, we can also assume that

(4.2) sup sup |6, (b, /) — ¢, (g, /) |<|p—ql/2 for all p,q€U.
n #=R

Now, let us set ¥ (p, u) =p, S0 (0, 1) =p— ¢, TP @b, 1), 11),7=0,1,2,

Taking st sufficiently large (#>=>R) we have ¥{ (p, ) €U when
pe K. Thus, this successive approximation scheme is well-defined. By
(4.2) we have for p=K, u=R |[F9 b, u) —FP (b, 1) |<|TP (b, 1)
—FGV(p, 1) |/2. Hence we see that T (p. /1) converges as j—oo uni-
formly for p€ K, #=>R and n. Let us define ¥,(p. ) =lim T (p, ).

J—oo

It is easy to see that ¥, (p, #) has the following properties:

(4.3) V.o, ) =p—¢.Fn, 1), 70) for peK, u=R,

4. 4) V.(p, ) is a continuous function of p& K and #=>R,

and is uniformly bounded for p& K, #>R and 1,

(4.5) U, (b, 1) =¥, (p, ) as n—oo for peK, n=>R.

By (4.3) we have

(4. 6) O, F(p, ), ) =p for peK, n=R.

By assumption (2) and (4.3) we have

(4.7 supsupsup(l +)° 1, (b, 1) —pl<oo.

We can see by (4.3) and an elementary argument that ¥, (p, 1) is diffe-
rentiable with respect to p and satisfies D, ¥, (p, 1) =1— (D) . (0, 1),
WD, ¥, (b, ). By (4.1) the matrix 1+ (Dyd,) (F, (P, &), 1) is invertible,

hence we have
(4. 8) D, @b, 1) =) = — (L+ (Dytp) @, ), 1)) ™"
X (Dypn) @ (P, 1), 11).

In view of assumption (2) and (4.8), we can conclude
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(4.9 sup sup sup (1+4)°| D, (¥, (b, 4) —2) <00,
n  u=R pEK

which proves (5) when |a|=1, m=0. Also by assumption (3), (4.5)
and (4. 8)
(4' 10) Dp(wn(p’la)_ww<paﬂ))_>0 as n—>o0,

which proves (6) when |aj=1, m=0. Again by (4.3) and an elemen-
tary argument we can see that ¥, (p, 1) is differentiable with respect to

4 and satisfies
DY, (b, 1) = — (Dpn) @ (@, 12), 1) DI (D, 1) — (Dyhn) &, 10), 10).
Hence we have
(4.11) DY, (b, 1) =— A+ (Dybn) Tt 0, 0) "
X (Dypn) W (bs 1), 12).
In view of (2) and (4.11) we get
(4.12) sup sup sup A+ D, ¥, (0, ) | <00,

which proves (5) when |a|=0 and m=1. We can further see by (3),
(4.5) and (4.11)

(4.13) D, ¥, 1) =¥ (P, 1)) >0 as n—oo,

which proves (6) when |a|=0, m=1. Againin view of (4. 8) and (4. 11)
Y., u) is a C>function of p€ K and y4=>R. The assertions (5) and (6)
follow thus by induction. For p& K or #<R, we continue ¥, (p, #) in

b
S

a C>fashion. The uniqueness assertion (7) can be shown by (4.2).

Now let us define
(4.14) WE t: V) =¢t|EP+X(&,¢t: V),

and consider the equations

oW b ow
r=—-, A=—"".
ot

0§
Using these equations we want to express & and ¢ as functions of  and

2, which is made possible by the following lemma.

n o3

‘a?—':Ve.
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Lemma 4.2. Let X(§,¢:V) be a time-dependent modifier.
Then there exist C*(R"X R,))-functions <(x,d) =§&(x,2: V), t(x,A)
=t(x,A: V) having the following properties: If A is a compact set
in R,, then there exists a constant R such that
D x=28x, Dz, D+ FX) Ex D, t(x,D): V),

for |z|=R, le4,

@ 1=|&(z, D +< )(5@ D, : V), for |z|=R, 1ed,

where the constant R is independent of V if V varies over a bounded

set in V. If we set

¢(z, 4) =t(z, A) — \//1

Gz, =8, ) —V 2o,
where r=\x|, w=x/r, then we have for everv a and m (|a|=0, m=0)
@ DD (x, D I<CA+|ah e,
|DEDPG (2, ) |<CA+|zh) 77, (l2]>1, 1€ ),
where the constant C is independent of €A and V in a bounded sel

of V.

ow ow

Proof. First we rewrite the equations x=-"—, 1=

o’ ot

as fol-

lows:

w=2e§+%<VeX> € V) (=i, o=z/7),

— &P +< )(e £ VY.

Let us introduce new variables Z=2&¢/r, s=|£|%. Then we have

1 - ¢ ¢,
(4.15) o=C+ 2 (. X)(«/ s V)

A=s+ ( )([él ;f':v).

The function
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05,7 =(C+ 200 (Vs ZoLv) or (B2 (5 5, ZEL v))
< 1€l 245 ( 1€]” 245 )

defines a C”-map of (&, s) and r ({540, s>>0,7>0). Let K be a compact

set in R"{0} containing the unit sphere and 4 be a compact setin R.,.

By Lemma 2.2, we see that @({, s, r) satisfies the conditions (1), (2)

and (3) of Lemma 4.1, where p=({,s), u=rand @,(p, 1) =0((&,s),7)
for all n=1,2, ---; 00, K=K XA and we take for U an open set containj

ing KX 4 bounded away from (0,0). Therefore, there exist C*-functions
C(w, A, 7) and s(w, 4, 7r) satisfving (4. 15) for (w.A) € KX 4 and for suffi-

ciently large . We set
E(@, ) =Vs(, 1, )L A7) /1w 4],
tx, D) =701/ CVs,1,7),

where =|z|, w=xz/7. These functions &(x, ), ¢(x,A) satisfy (1) and
(2) for |z|>=R (R sufficiently large) and A& 4. The estimates (3) follow
from the estimates (5) of Lemma 4. 1.

Next let us choose a sequence of compact sets A4;CR. such that
AT A,C—>R,. For each A, we can construct £9 (x,1) and t? (z, 2)
having the properties (1), (2) and (3) with R=R;. Without loss of
generality we can assume that R;<{R,<{--—>oco. Then the uniqueness
result of Lemma 4.1 shows that if j=kEP (x, ) =E&® (x,R), t9 (x, d)
=t® (z,), for (x,2) € {x: |[x|>R;} X4,. We redefine £ (x,1) and
tP (2, ) by E9(x, ) =€® (x, ), t9(z, ) =t® (x,2) for (x,d) €{x: R,
<|z<R;} X 4.

Let A= U {x: |z|>=R;} X 4,. then the functions & (x, 1) =&% (x, A),
to(x, ) =t® (x,2) for (x,2) € {x: |x|=R:} X4, are well-defined on A.
Choose numbers R; and compact sets A; so that BR,>R;, 4, 4;, 4, 4,
c-+-—>R,. Define A=U {z: z|=>R} xA.CA. Then there exists a
real C*(R"XR.) -functior;c ¢ (x,A) such that ¢(x,A) =1 for (x,4) cA
and ¢ (x,4) =0 for (x,A) € A. Finally we define §(x,4) and #(x,4) by
Sz, ) =¢(x, )& (x, ) for (x,A) €A, 0 otherwise; #(x,d) =¢(x,d)
to(x, A) for (z,2) €A, 0 otherwise. Then we see that §(x, ) and £ (x, )
have all the desired properties. [§

The following lemma will be employed in Section 7.
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Lemma 4.3. If V=V has a compact support, we have the fol-

lowing asvmptotic estimate for r—oco
(4.16) tx V) =r/2VA) +0Q),
E(x, : VY=V Io+0G™, r=lx|, o=x/r.
Proof. Let A(E.t:77) =% X, e V)y—V(@&+V.X(E t:V)).

Then we have
t
Nt V) =X (&1 1) + f [V (254 7.X (8, 5: 1))
1
+ A, s: V)]ds.
By Lemma 2.2 we have for &0

IDEA(E,2: 1) '<CA+9 % lai=0,1.

Taking into account that V has a compact support, we have the following
estimates: For #>1, &40,

PX (2, ¢: V) |gc<1+ [ (1+5) ”2ds>.
1

2 . ‘< ~2
FXEuM[=Ca+n=,

We are thus led, in view of (4.15), to asymptotic relations {(w, 4, 7)
=0+0@F™Y, s(w, A r) =2+0(@?), which give rise to
t(z, 2: V) =7l (w, 4, ") |/ 2Vs (0,2, 7))
=rlo+ 0@ N1/ CWI+0F™))
=r/(2V1) +0(Q),
Ex, 2 V) =Vs(, (0,47 /ICw A7)
=(WAi+00™) w+0E ™) /lo+0 @]
=Vio+0@F™. B

Lemma 4.4, Let V,»V in V. Then for all o and m we have
SJor n—oco DEDT (t (e, X: V) —t(x, 2:V))-»0, DD (E(ar, 2: V) —E(x, 22
Vy)—a0.
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Proof. If weletin Lemma 4.1 @,(p,u) =0, s,7:V,) (= (,s),
#=r), then the conditions of Lemma 4.1 are fulfilled. Reviewing the
proof of Lemma 4.2 with condition (3) and assertion (6) of Lemma 4.1

in regard yields the conclusion of the lemma.

Now, we are to produce the stationary modifier Y (x,2: V) from
the time-dependent modifier X (§,¢: V). Let X(& ¢: V) be a time-depen-
dent modifier defined in Section 2, and &(x,1: V), £(x,4: V) as above.
Choose a sequence of compact sets 4, C 4, C--+—R.. By Lemma 4.2 (3),
we find for each j a constant R; such that &(x, 2: V) <0, £ (x, 2: V) >0 for
|z|=R;, A€ 4;. Let A= U {x: |z|=>R;} X4, Let A be a neighbourhood
of A contained in R"XR:: in which &(x, 2: V)0, t(x,4: V) >0 still
hold. Let ¢(x,2) be a real C*(R"X R.)-function such that ¢(x, 1) =1
on A and =0 outside A.

Lemma 4.5. Let ¢(x,A) be as above. Let for x€R", 1€R,,
VeV

(4.17) Kx,2:V)=¢(x, ) [W(E(x,A2: V), t(z,2: V): V)
—zE(x, 2: V) =t (x,2: V)],

where W (&,t: V) has been defined by (4.14). Then K(z,2:V) is a
real C*(R"X R.) -function verifying the inequality

(4.18) oK (2, 2: V) P=2+V(2) I<CA+|x) 7

where the constant C is independent of A and V if they vary over a

compact set in R, and a bounded set in V, respectively.

Proof. Since by Lemma 2.2, W(§,¢: V) is a C*function of §5-0
and >0, K(x,2: V) is smooth for x&R" and 2>>0. Let 4 be a com-
pact set in R,. Then by Lemma 4.2 there exists a constant R>0 such
that for |z|>R, 1€4

(4.19) x:aavg E(z, 2: V), £(z, 2: V): V),

1=%—‘§7(5(x,/1: VY, t(z, 2: V): V).
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Direct calculation shows that for lz|>R, i€ 4
0 oW o0&, , OW 0¢ 0§, 0t
Kz, 2: V)= AN T4 —1=2L
T = ) Z’fj 98, 0x; 0t 0x; Txkaxj 0x;

=&, (by (4.29)).

That is, for |xz|>R and 14
(4. 20) ez, 1: ) =K 1.
0x
On the other hand, Lemma 2.2 and (4.14) show
0w oW _
4.21 (5, V)= |-V (= (&t: V) ISCA+n
(2 TG V) (P V(T E e V) ) =Ca
In view of (4.19) and (4. 20) we have for |x|>R, i 4
ow g2 oW . \
(&, V) —EP =V (&, V
5 GEM—IEr=V (T @)
==V, K(z, L: V) |*-V ().

This together with (4.21) and Lemma 4.2 (3) shows (4.18). [§

Definition 4. 6. Let ¢(x) be a real C-function such that ¢ (x) =0
for \z|<1 and ¢(x) =1 for |x|=>2. Define Y(x,2: V) by

(4. 22) Y, 2: VY =¢(x) Wir+K(zx, 2: V), lzl=r.

We shall call Y(x,1: V') a stationarv modifier associated with V.

Lemma 4. 7. Y(x,2: V) is a real C°(R"X R.) -function of x and
A having the following properties:

@ |DDT (x, : V)| =CA+|z])!7 " (Ja| =0, m=0),
@) ;2¢71‘%¥_(x, VY = 7Y (2, A VY [P =V (2) | <C A+ |z])
,-

where the constant C is independent of A and V if they vary over a

compact set in R, and a bounded sei in V, respectively,
3) Y(z,2: V) =0, if |zi<1,

4) if V>V in ¥V, then we have for all « and m DEDPY (x, 2: V)
—=>D¢DPY (x,2: V) as n—>oo.
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Proof. Putting ¢(z,2: V) =t(z,: V) —r/2V2), ¢(z,: V)=

E(x,2: V)=V 2w (r=|z|,0=x/7), one can rewrite Y(z,1: V) as

Y (2, 2: V) =¢(z, ) [X (& (z, A: V), t(z,4: V) : V) +2;7[¢!(x, V)P

+2vVAwp(x, : V) ¢z, A: V)
+(x, 2: V) [¢(x, 2: V) I"].

Then (1) follows from Lemmas 2.2 and 4.2. By direct calculation we
have for |x|>2

7K [P— A4V (2) = .Y ' +V () ~2J7%_Y.
r

which combined with Lemma 4.5 proves (2). (3) is direct from Defini-
tion 4.6. Finally (4) follows from Lemmas 2.2 and 4. 4.

Remark 4.8. The function W(§, £: V) =¢|€[*+ X (&, ¢: V) posses-
ses, according to Lemma 2.2, an asymptotic estimate OW/0¢— |&|*—
V(©@OW/0¢) =0 (¢7%), which means that W (&, £: V) is an approximate solu-
tion of the “Hamilton-Jacobi” equation

o=a (T e)=1erv (2,
where H(x, &) is the classical Hamiltonian H (x, §) =|£|*+V (x). The
variables § and ¢ have the meaning of momentum and time. What we
have done in Lemma 4.2 is to transfer from &, ¢ to the variables z, 4,
which are the position and energy conjugate to the momentum and time,
by means of the “Legendre transformation” x=0W/0&, 1=0W/0¢. The
“Legendre transform” of the function W(&, £: V) is K(x, 2: V)=W(, ¢: V)
—x6—7¢, and this function K(x,A:V) asymptotically satisfies the

“eikonal equation”

x

AR 0K .
H<x,5~—>-—l or !Ei_l V().

The stationary modifier Y (x,1: V) is to the “eikonal” K(x,1: V) what
the time-dependent modifier X (&, £: V) is to the ‘“Hamilton-Jacobi” solu-
tion W (&, A: V). Kitada [10], too, has observed the essentially same re-
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lation between the time-dependent and stationary modifiers {rom a slightly

different point of view.

§ 5. Eigenfunction Expansions and Stationary Wave Operators

We start with defining a stationary wave operator investigated in
Isozaki [7]. Let R,(z) denote the resolvent of Hy= —4, and let E (1),
E(A: V) be the resolutions of the identity for H, and H(V'), respectively.
B(4,: 9(,) will denote the totality of bounded operators from a Banach
space M, to a Banach space ¥,.

Definition 3.1. For 1>0 let E; (1) and E' (A: V) be defined by

E Q) =§%[Ro(l+i0) —Ry(A—i0)],

E V) =%Z_.[R(/1+io:V) —R(A—i0:7)7,

where we notice by Theorem 3.1 that E; (), E'(2: V) €B(Ly, qsrepr:
Lz, -a H-:,,)/z) .

Definition 5.2. Let U(z: V) be the unitary operator of multipli-
cation by the function exp(—iY (x, (RevV2)?: V))?, where Y (x,2: V)
is a stationary modifier (Definition 4.6). We define for Im z=~0

G V)y=H,—2)U(z: V)*R(2: V),
G V)=(HV)—2)U(z: V)R, (2).

The following lemma gives a basis of our subsequent arguments.

Lemma 5.3. (1) For 1>0, there exist strong limits s-lim G (A
. N e}0
+ie: V)=G@A+40: V), slim GQA+ie: V)=G@A+:0: V) in B(L, s-c,.:
el
Lz. (1+eo>/2) .
(2) For an arbitrary f&€ Ly g cpn GA+10: V) fand G (A+i0: V) f are

strongly continuous functions of 2>0.

Y Re=real part.
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For the proof see the proof of Isozaki [7] Theorem 3. Note that
all we need about Y (z,4: V) to follow Isozaki’s arguments are already

stated in Lemma 4. 7.

By Definition 5.1 and Lemma 5. 3 it follows that the following defini-

tion makes sense.

Definition 5.4. For f&€ L, g ¢y, and 0<a<lb<oo we define

I'((a,0): H(V): H) f= Lb E' (: V)G (A+140: V) fdA,

I'((a,b); Hy: H(V))f= f E ()G +i0: V) fdi.

It is easy to see by virtue of Theorem 3.1 that I' ((a,b): H(V): H)),
I'((a,b): Hy: H(V)) € B(L,, (3—gp)/2+ Lz,-(ne,,)/z) .

Theorem 5.5. (1) The operators I ((a,b): H(V): H,) and
I'((a,b): Hy: H(V)) actually map into H = L,(R") and for f&€ Ly ¢

11" ((a,b): H(V): Hy) f||=E,((a,8)) fl
1" ((a,0): Hy: H(V)) fl=1E((a,8): V) f] .
(2) For f&€L, g-¢pn Strong limits

I'(H(V): Ho)fzsb-lim I'((a,b0): H(V): H)f,

a—-0
I'(Hy: H(V)) f=slim I ((a, ) : Hy: H(V)) f

exist in H=L,(R"). TI'(H(V):H,) (I'(H,: H(V))) is uniquely ex-
tended to a partial isometry on Y with initial set H (H..(H(V)))
and final set H,,(H(V)) (K). We use the same notation for this
extension.

@) I'H(V):Hy)*=I(H;: H(V)), I'(Hy:HV))*=I"(H(V): Hy,
where * denotes the adjoint in 9.

(4) The following intertwining property holds:
H(V)I'(H(V): Hy) 2I'(H(V): Hy) H,,
H,I"(Hy: H(V)) 21 (Hy: H(V)) H(V).
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For the proof see Theorems 1 and 3 of Isozaki [7].

Now we turn to the eigenfunction expansion problem.

Lemma 5.6. For f&C; (R, 1>0, 08" '={x=R": |x|=1} let
(go(/D f) (w) — 2—1/2/1(1;—2)/4 (271.) —-n/2 j‘ e—i¢mef<x) dr .
R™

Then we have for f, g=Cy (R"),

B DS, 9) = (FoDS FoD) @) zysnn -

Proof. Almost obvious. Recall (F,(2) f) (0) =22 2 f(V Aw).

Let g=f in Lemma 5.6. Then by Theorem 3.1 we have

6.1 10 fllzasnv=Cllflaseps

where the constant C is independent of A if A varies over a compact set
in R,. (5.1) allows a unique extension € B (Ly, qreps2: L:(S*Y)) by con-
tinuity of & ,(1), which will be denoted by %,() also. Clearly F,(Q)
is strongly continuous in 2>0. Let H=L,(R™ as above and 9 the
Hilbert space of all L,(S*")-valued square integrable functions over R,

with norm || |2 and inner product (, )az.

Theorem 5.7. (1) For f,9E Ly qiep. we have
(Es VS, 9) = (FoD S, Fo(D) Q) 1yesn00 A>0.
(2) For fELz.(Heo)/z define F.f by (Zof) Q) :go(l)f- Then %,

EB(Lg,(Heo,,z:jZ). Moreover, &, can be uniquely extended to a uni-
tary operator from H onto -ﬂA[, which will be denoted by F, also.
(3) For feY and any bounded Borel function «(2) defined on the
real line we have

(GFox(Hp) ) D) =a@) (Lof) (A a.e 21>0.
(4) The inversion formula holds for fe9(;

f=slim jN Fo()* (Fof) (D) dA.
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Here F,(A)* is defined by (Z.()*¢-g) = ($, Fo(Dg) for any ¢
L,(S"™") and g€ L, (1+go) /20

Proof. (1) is immediate from Lemma 5. 6 and Theorem 3.1. The
other assertions can be proved by recalling again that &, is essentially

the Fourier transform. [§

Now we want to arrive at similar results associated with H(V), and

begin with

Lemma 5.8. F(: V)=F,() GA+i0: V)EB(Lo.s-epa: L (™).
F (A: V) is strongly continuous in 1>0.

Proof. Direct from Lemma 5.3 and the remark after Lemma 5. 6.

With the aid of & (4: V) we can get a spectral representation for
H(V). Our first step is to show the following lemma.

Lemma 5.9. (1) For f,9S L, g-cp=
(E@WNL9)=(F @V D @A V)G) sy -
(2) For any Borel set BC (0, ) and f, g€ Ly g-¢s2

(EB: V)00 = [ (F V), F @ V) g) vl
In particular, for fE L, g-cpn and B=R.
1Pt 1= (71 @ V) Fltsendt,
where P,,=E(R.:V) is the projection onto H,.(H(V)).
Proof. It suffices to show (1), since (2) follows from (1) by in-
tegration on B. For proving (1) we replace f, g of Theorem 5.7 (1)

by G(A+1:0: V)f and G(A+:0: V)g. Then we have with Lemma 5. 8 in

mind
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(Es (DG (A+40: V) f,G(A+i0: V) g)
=(FHGQA+i0: V) f, G0 G(A+i0: V) g) 1,50
=(F AL F @A V)9 s -
The resolvent equation and Definition 5. 2 vield

g%(I:ROU“’"’E) —Ry(A—1e)]G(A+ie: V) f,G(A+ie:V)g)
2mi

%(Ro(l—ie)Ru(l-l-ia) (Ho— (A+ie))U (A +ic: V)*

XRA+ie: V) f, (Hi— (A+ie))U A +ie:V)*
XR(A+ie:V)g)

=%(R(}.~ie:V)R(l+i8:V)f, 9

=1 ([RG+ie: V) —RG—ie:M)1F, 0),
2ni
where we have used the fact that U(A-+ie: V)* is unitary. Letting ¢
tend to 0 we have by Lemma 5.3 and Theorem 3.1
(Es QD GQA+i0: VY, GQA+70: V)g) = (E'A: V) q9),
so that

EQVLED=(F QWL A V)Q) s -

For feL, g-sp. weset (£ (V) ) (D)= @A:V)f. Then by Lemma
59 (), F(V)eB(L, (3_50,,2:j2), and hence is uniquely extended to a
partial isometry on 4 with initial set H,,(H(V)) and final set contained
in ﬂ?, which we denote by < (V) also.

Theorem 5.10 (Spectral Representation (Eigenfunction Expan-
ston) for H(V)).
Q) < (V), defined above, is a pariial isometry on H with initial
set Ho.(H(V)) and final sel 9.
2) If aQ) is a bounded Borel function defined on the real line we
have for €9, (H(V))
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(E VN a(HV) L) D =a@) (E V) ) @A) ae 2>0.
(B For feH.(H(V)) the following inversion formula holds:

fzi-iiin ﬂ:’ F@AVYX(E V) DA

4 FA:VY*EeB(L(S"): Ly —g-cpn) is an eigenoperator of H(V)
with eigenvalue 1 in the sense that for any JEL,(S*"Y) (—4+YV)
XF Q:VY*$=21%F (2: V) *¢ holds in the distribution sense.

Proof.” (1) has already been shown above, except for the fact that
% (V) maps onto ﬂ?, which will be proved in Corollary 5.12.

To prove (2), it suffices to show the assertion for a (1) =y (4), where
B is any Borel set in R, and y3(1) is the characteristic function of B,
since any « can be approximated by a sequence of step functions. First
let us note that for f,9g=H . .(H(V)) (EB:V)S,9)) = zF WS,
% (V)g) z, which follows from Lemma 5.9 (2). We have, therefore,

Lll (FWMEMB: V) D) —(F V) ) @ |Lysnndl

= [1E o @@V -0H @ hesd
= |EB: V) (E(B: V) =) fI'=0,

(1@ E®V)H D st
~|E®B: VEB: V) f'=0 (B=R.—B).

It follows that (& (M EB: V) ) Q) =(F (V) f) (A) for a.e. 1B and
(F(VYE(B: V) f) (A) =0 for a.e. 1B, which was to be proved.

To prove (3), let B be a bounded Borel set in R, whose closure
does not contain 0, and consider the operator % 3z(V)* defined by

EEB(V)*f=j FQ: V) FQ)dL for Fedl. Obviously F,(V)*e
. B
B(ﬂ{‘z Ly _g-cpn). Let 9E Ly g_¢y» Then

(F (V)7 g) = L(C:f @ VY*EQ), g) di

" Essentially the same as the proof of Theorem 2.8 of lkebe [5].
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= [, G@, % @ Vo) ndd

= [ 0@, @ 79@) nemar

=(f{ F(WVYEB: V)2
=((F(VYEB: V)*F q),

where in passing to the fourth equality we have used ¢ (V)E(B: V)yg
=34 (V)¢ which has been already proved in (2). Since L, ¢, is
dense in Jf, this shows F z(V)*= (F (V) E(B: V))*, so that Fz(V)*f
eJdl. Putting Ey(V)=E([N,N]:V), we have Ypyum(V)*=
(F(VYEy(V)*=Ey(WV)*E (V)*=Ex(V) <4 (V))*. Letting N tend to
oo we have &y, 5y (V) ¥— 4 (V) *, which shows the inversion formula (3).

For (4), as can be checked easily, it suffices to show < (1: V) (—4
+V)u=29% A: V)u for ucCy(R"). Set f=(—4+V-2DucsCy(RY).
Then by Theorem 3.1 (38) u=R(A+10: V) f, which means G(1+:0: V) f
= (H,— ) e*u (see Definition 5.2). But since () (H,—A)v=0 for
an arbitrary v€Cy(R"), we have S V=S, (DGA+i0: V)f=
FoD) (Hy— N eu=0, ie. FQA:VY(—A4+V)u=29F A: V)u

The above spectral representation alows us to give the following

representation of the stationary wave operator I"'(H(V): H,).

Theorem 5.11. Let (V)= (V)*4, Then TI'(H(V): H,)
=2(V).

Proof. Let f&€L, 4 cpn §ELsa ey Then we have by Theorem
5.7 (1).

(BN GQA+i0: V) f,9) = (Fo(DGA+10: V)., Fo(D) 9) 1,e50-0)
=(F QLG o) @) rysns »
which integrated over R, yields (see Theorem 5.5 (2), Theorem 5.7 (2),
Theorem 5.10 (1)) (I'(Hy: H(V) f, 9)=(F (V) f, Fog) 2. Since Ly, qiepe
and L, ¢, are dense in I, we have I'(H,: H(V)) =4§4 (V). Tak-

ing the adjoint and using Theorem 5.5 (3) we get I'(H(V): Hy)
=" (Hy: HV)))*=F (V)*F,=2(V). B
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Corellary 5.12. The final set of F (V) is I

Proof. Since the range of % (V) is contained in 9 and &, is an
isometry with final set ﬂ?, we have by Theorem 5.11 & (V) =%, (H,:
H(V)). Since I'(H,: H(V)) has range 4 by Theorem 5.5 (2) and
since F, maps H onto H by Theorem 5.7 (2), the assertion holds. [§

We shall further state some results which relate the eigenoperators
Fo(D)*, F (A: V)* to the asymptotic properties of the solutions of the
inhomogeneous Schrédinger equations, which will be utilized in § 7.

Iet us define the operator %,(4,r) by
(Fo(h, ) ) (@) =CQ) r* =22~ (R, (A+10) f) (w),
CQ) =™ 0™Ag= 2, (3>0, f€ Ly asepn) -

Lemma 5.13. Let f€Cy(R"). Then the jollowing strong limit
exists in L,(S"Y):

s-lim go(l, 'I')f: go(l)f.

>

Proof. It is well-known that the operator R,(1+70) has an integral
kernel

N >n/2-—1 W

G(z—y, V1) =%<m D (VA z—y]),

where H{ (2) is the Hankel function of the first kind (see Titchmarsh

[12], p. 79). The asymptotic form of H{’ (2) as z—oo is given by
H (2) =2"%(1=) exp{i(z— (v+ D7/} A1+0 (™))

(see Watson [13], p. 196-198). Noting that feCy (R") we have thus

by a straightforward calculation

Fon)f=F,Df+O0CEH. R

We have already known that both < ((X)f and < ,(4, r)f have mean-
ing when f€ L, qiep It may thus be inferred by Lemma 5.13 that
even for f€ L, giepn Fo(d, ) /=% ,(A)f as r—oo. This will turn out

to be the case in a sense by the following two propositions.
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Proposition 5.14. Let f€L,,.

(1) There exists a sequence {rn,; tending to oo such that for m— oo

yoon j |Ro (1 +i0) F|*dS—0,
|z|=Tm

r j | D (A+30) Ry (A +70) f|*dS—0 .
lz|="m

(2) There exists the following strong limit in L,(S"™):

slim F oy ra) f=F (DS,

m—co

where {r,} is any sequence specified in (1). The limit E’?o(/l)f is
independent of the choice of {rn}.

3 1o (D) FllLasn-n=Cl fllarepre -

In particular 5‘0(/1) is extended by continuity to an operator &
B(Lz. (1+60)/2+ Lz (S"_I))-

Proof. The proof is given in Lemmas 1.3, 2.2 and 2.7 of Ikebe

[5] under a more general situation. [

Proposition 5.15. For [<=L,qg.ep. the following assertions
hold.

(1) There exists a sequence {r,} tending to oo such that for m-—oo

o j |Rs (A +10) £|*dS—0,
|z|=rm

res j‘ DA+ Ry@+i0) £'dS 0.

(2) For an arbitrary ¢ L,(S™™)
@& F o) ) zysnn =1im (8, F oA, 70) 1) sasrn

holds, where {r,} is any sequence specified in (1).
Proof. For the proof see Lemma 3.2 of Ikebe [5].

Now for f&L, g ¢y, we define & (4, 7: V) f by
(F 72 V) £) (@) =CQ P25 (R(A4-10: V) £) (ro),
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Where C(l) =e(n~3)ni/4n.—l/zll/4,

K@, 2:V)=—VIr+Y(z,2: V), r=|z|=2.

Lemma 5.16. Let f<=L,g-cpn and set u(Q+10: V: f) =R,(
+20)G(A+1:0: V)f. Then:

(1) There exists a sequence {r,} tending to oo such that as m—>co

rmeo j |4 (A+i0:V: £) '"dS—0,
|z|=Tm

o j DA+i0) u(A+i0:V: £)|’dS—0.
|z|=rm

(2) For any ¢=L,(S*™Y)

(¢7 g (l : V) f) Ly(Sn-1) :ilill<¢’ g ('{a Tm: V) f) Ly(Sn-1) >

where {r,} is any sequence specified in (1).

Proof. Let us replace f of Proposition 5. 15 by G(1+:0: V)f. Then
(1) follows from Proposition 5.15 (1), since G(A+120: V) fE L, q+ep2 by
Lemma 5.3. By definition we have R,(A+:0)G(A+:0: V)f=¢e"*R(A+10:
V)f, and hence 4,4, 7)GA+:0: V)f=% (A, r: V)f. Thus by Proposi
tion 5.15 (2)

m (@, & (4, 7m: V) ) LytSn-1)

m—so0

= (¢, Fo(N)G@A+30: V) f) rasns -

Therefore, it suffices to show &,() =§0(/1) because of Lemma 5. 8.
However the latter is obvious from the fact that go(l)fz () f for
feCy (R") by Lemma 5.13 and Proposition 5.14 (3). B

The above lemma shows that < (4,7,: V)f converges weakly to
F@Q:V)fin L,(S*"), but we can further prove its strong convergence.
In fact Ikebe [5] and Saitd [11] have established the strong convergence
of F (4, 7,: V)f. Their definition of & (A: V) f is by slim & (A, 7n: V) £,

m—>co

which is apparently different from ours (Lemma 5. 8). By what we have

stated, however, our eigenoperators & (A: V) and theirs coincide.
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§ 6. Continuous Dependence of ¥ on the Stationary Wave Operator

In the following arguments D denotes an arbitrary bounded domain
of C—R such that D does not intersect with (—0,0]. We set
(v(z: f: V) () =@ RYDEN (R (2: V) F) (x) for brevity.

Lemma 6. 1. Let f€ L, 4 cpn and let V vary on a compact set
K in V. Then there exists a constant C independent of z=D and
VeKkK such that

”,@ () v(z: f: V) ” (1—ao)/z,E1§C||f” (8—gg)/2 +
Furthermore, the following strong limit exists in Ly q-sepn(Ey):

sllim 9 () v(z: £ V) =D A+i0)v(A+i0: £ V), 1>0.

z—2+10

Proof. We have only to show that Cis independent of V& K| since
the remaining assertions of the lemma are given in Lemma 2. 7 of Isozaki

[7]. In Proposition 6 of [7] it has been proved that
“Q () U(21f3 V) N (1—g9) /2, By
gC("R(: Vv) ” ~1- e,)/z+ “f" (s—sa)/z) »

where the constant C is independent of z=D. Although Isozaki [7] has
not explicitly stated the fact that C can be taken independently of V in
a bounded set of ¥, this can be seen by carefully examining the argument

given in [7]. On the other hand we have seen in Lemma 3.2

“R(z V)f"f(he.,)/zSC“f“ (3—80)/2 »

where the constant C is independent of z=D and Vif Vis in a compact

set in ¥. The above two facts prove the independence on V of C.

Lemma 6.2. Let f€ L, 3 ¢, Then for p=>1

f” (3—E9)/2 >

where the constant C is independent of V if it varies over a compact

set in V.

HQ (A+10) v (A+40: f: V) | (1—3&0)/2,E,£C0_50

Proof. This fact is proved from Lemma 6.1 as follows:
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[D@A+i0) v (A+70: £ V) | ucsenss 2,

= A+ |zt | DA+i0) v (A+10: £: V) |*dx

1z1>0
so‘““f, _ A1)l D @+i0) v (A+i0: f: V) 'd
Ti>0

=Co7"| fllozenr- B

Lemma 6.3. Let fE L, g-cpn Let V,—>Vin V. Then we have
DA+i0vA+:i0: £ V,) >DA+i0)v@A+:0: /2 V) in L, q-sep.(E;) as

nm—>00,

Proof. By Lemma 6.2, for an arbitrary €>0, there exists a con-
stant p>>1 such that for all m=1,2, --- | D (A+70) v A+70: f: Vo) | a-sep 2.5,
<e. We also have by Theorem 3.3 and the elliptic estimate (3. 8)
R(A+:0: V) f>R(A+40: V)f in HpY, so that it follows for m—oo
DA+i0)v(A+i0: £+ V,) > DA+i0)v(A+:0: /2 V) in L,(B,,). These

facts prove the lemma.

Lemma 6.4. Let f€L,g cpn Va—V in V. Then for A€
DNR., |GQA+i0: V) flarep<Cl flla-epns where the constant C is
independent of Ae DN R, and m, and also we have GQA-+i0: V,) —
G@A+1:0: V) f in Ly qicprn

Proof. By a direct calculation it follows that

6-1) G(x+io;V,,,)f=efff—i<%zl:+4r§>v(1+io:f;Vm)v
r

~<1VY|2+V,,,,——2«/EQ¥—>U(Z+1'O:f:Vm)
or

20 - DA+i0) v (A+:0: £: V),
where Y=Y (z,4: V,) (see (3.3) of [7]). We have by Lemma 4.7

210 v, nysCatien
!

Y A is the Laplace-Beltrami operator on S*%.



COMPLETENESS OF MODIFIED WAVE OPERATORS 709

217 7
\6 Y +A1
lor*  #*

Y| =CU+|z),

<c@+izh™,

where the constant C is independent of m. We have thus by Lemmas
3.2 (1) and 6.1 proved the Arst half of the lemma. Lemma 4.7 also
shows D2Y (x,4: V,,) >D3Y (x,4: V) as m—>co. In view of these facts
and taking note of Theorem 3.3 and Lemma 6.3 we see that each term
of the right hand side of (A.1) converges to the corresponding term of
GQA+i0: V) in Ly gecp This proves the last half. [§

Lemma 6.5. Leif€ L, g cpp Let Vo—Vin V. Then there cx-
ists a constant C independent of m and 2=DNR, such that

“ =3 (li "Vm)f” Lgs»—ugcnf” (8—€9)/2 +
Moreover, we have for 22>0 F (A:V,)/—F Q:V)f in L,(S* 1.

Proof. The lemma follows from Lemmas 5.8 and 6. 4.

Theorem 6.6. Let V,—V iu V. Then 2(V,)—>2(V) strongly
in Y=L, (R".

Proof. Since £(V,), (V) are isometries, it is sufficient to show
RV = RO g) for £, ¢ in a dense set of L,(R"). Let f€
GHCy (R"—{0})), 9= Ly, 3-e.- Then by the definition of 2(V) in Theo-
rem 5.11 and the definition of <% (V) before Theorem 5.10 we have

@V 0) = (F (VD *F W f, )
= (Fof. F (V) )
= [[@f g @ V)0t
Since fe % ~1(Cy (R*— {0})). the integration is actually performed on a

compact set of B.. With this in mind we see by Lemma 6.5 aund Le-

besgue’s dominated convergence theorem that (2(V,)f.¢)— (2, ¢9).
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§7. W)=2(V) for Compactly Supported ¥

When V&V has a compact support, the scattering problems for
H(V) have been thoroughly investigated so far. We shall briefly look
at known results and prepare the final stage for proving the completeness

of W(V).

Theorem 7.1. Let VEV be compactly supported. Then the fol-

lowing strong limit exists in 9(:

s-lirn eitH(V)e—itH.,Ew(s) (V) .

t—oo

W (V) is an isometry on I with final set H,.(FH(V)).
For the proof see e.g., Kato-Kuroda [8].

Definition 7.2. Let G® (z: V), G®(2: V) be defined by
G®(z:V)=(H,—2)R(z: V),
G?®(z: V)= (H(V) —2)R,(z), =2€C—R

Lemma 7.3. Let VEV have a compact support. Then the fol-
lowing strong limits exist in B(Ly qreprt Lo avepn) Jor A>0:

s-lim G¥ (A+ie: V) =G A+i0: V),

el0

slim G® (A+ie: V) =G® (A+:0: V).

€10

G® (1+1:0: V) and G® (A+40: V) are strongly continuous in A>0.

Proof. By the resolvent equation we have G®(2: V) =1—VR(z:
V), G®(2: V) =1+ VR,(2). Hence the assertion of the lemma readily
follows from Theorem 3.1 if it is noted that VR (z: V) and VR,(2) lie

in B(L,, a+eg/2- L, <1+eo)/z) .

We define for f& Ly qreps2 0<<a<<lb<loo

' ((a,b): H(V): Hy) f= Lb E' (: V)G® A+i0: V) fdl.



COMPLETENESS OF MODIFIED WAVE OPERATORS 711

Then s-lim I"® ((a, b) : H(V): Hy) f=I""" (H(V): H,) f is seen to exist (see
b0
a—0

e.g. Theorem 6 of [7]), and I'® (H(V): H,) is uniquely extended to an
isometry on H with final set K, (H(V)).
Let us define F°: V) €B (L, asepn: L (S"Y)) by

FO@A:V)=F,DGY A+i0: V)
and (V) by
(FTWNHD=FCA:WVS  (fELna-cpn)-

The arguments given in Section 5 also hold for & “(V). We can thus prove

the following theorem in the same way as Theorem 5.11.

Theorem 7.4. Let V&V be compactly supported. Define
RV(VY by Q9(V)y =G (VY*F,.  Then we have 2° (V) =T (H(V):
H,).

Theorem 7.5. If V&V has a compact support, we have WO (V)

:g(s) (V) .
This is well-known (see e.g. Kato-Kuroda [8]).

Next we shall consider the relation between modified and non-modi-

fied wave operators.

Lemma 7.6. Let VeV be compactly supported. Let X(§,¢:V)
be the time-dependent modifier constructed in Section 2. Then the limit
lim X (&, ¢: V)=X,,(§: V) exists if £§50, and the convergence is uni-

t—oo

form for & when § lies in a compact sel in R"—{0}.

Proof. Set AG.t:V)=2X(@E 1 V)~ V@it +1XE 1 V).

Then we have
X, 6: V) =X (& 1: V) + f[V(Zés—HQX(&‘, s 7))

+ A, s: V)]ds.

Since V7 has a compact support, taking note of Lemma 2.2, we see the
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integrand of the right hand side integrable if £~0. Hence the limit
lim X (€, ¢: V) exists if §5£0. The uniformity of convergence is guaran-

t—>co

teed by Lemma 2.2 (2).

Lemma 7.7. Let VEV be compactly supported, and let Y (x, A:
V) be the stationary modifier constructed in §4. Then for 2>0 the
mit im Y (ro, 2: VY=Y, (0, 2: V) (weS"") exists, and Y.(w,2: V)

(Y

=X, (Vio: V).

Proof. Let &(x,A: V) and £(x,A: V) be the functions specified in
Lemma 4.2. We set ¢(z,2: V) =¢t(z,2: V) —r/(2V2), ¢(z,2: V) =
E(x,2: V) —+Aw, r=|z|, wv=x/r. By Lemma 4.3 we have for r—>co
¢(x,2: V)=0Q), d(x,42: V)=0(@"". By Definition 4.6 Y(x,4:V)

takes the form
Y(z,2: V) =X(VAw+¢, 7/ @VA) +¢: V) +7/ 2V 2) [
+2V 20dd+olo?

for sufficiently large r. Letting 7 tend to infinity, and taking note of
Lemma 7.6 and the above asymptotic estimate, we have lim Y (rw, 1: V)

=X, (Wilo: V). B o

Lemma 7.8. Let VeV be compactly supported. Then we have
Jor 2>0 G (A: V) =P NGO V) in B(Ly qrepn: L (S™Y)).

Proof. Since both sides are in B(Ly qiepe: Lo (S*™)) (see Lemma

5.9" and the statements preceeding theorem 7. 4), we have ouly to prove
(F A V) f) (0) =2 (FPA: V) f) (0), 0EST,

when f&€ L, _¢,,, which is dense in Ly q:cpn- Let fE Ly g-epn  Put
u=u(l+:0: V: f) =R,A+i0)GA+:0: V) f,
u®=u® Q+i0: V: f) =Ry (A+i0) G® A+:0: V) f,
F (A, 7: V) f=CQ) r® e VIrreiP (R +i0: V) f) (r-),

D Plus some arguments involving the limiting absorption method (Theorem 3.1).
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FOAr: V) f=CA)r* "2 T (RQA+i0: V) f) (r-),
C (l) — g "i/477_ V214

Since G +i0: V)fE L, geepr by Lemma 5.3 and G® (2 +70: V)f
€L, grepr by Lemma 7.3, we have w,u® €L, _q.cpndD A+i0)u, D Q
+i0)u® =L, _q-¢pn(E) by Theorem 3.1. In consequence,

£ |>1[(1+7‘) —(1+&y) {]u|z+ lu(s)iz}

+ A +7) " Dul+ | Du® B | de<oo,

from which we see that there exists a diverging sequence {r,} such that

as m—>oo

Tt J 1|’ dS—0, rz% j | ®|2dS—0,
2|=7m 2l =rm

r?,‘:j | Du!*dS—0, r;gj‘ | Du®|2dS—0.
lzl=rp |z =Tm

Now Lemma 5.16 (2) furnishes

(¢, =] (l: V) 5 Ly(8n-1) =1113;<¢’ = (/1, Tmt V) I Ly(Sn-1) 5
¢, ¢ @ @AV Ly(Sn-1) = };_IEG(QS, g © @At V) ) Ly(Sn-1)

for all g€ L,(S*Y). Since lim Y(@w,: V) =Y, (0w, A: V) by Lemma 7.7,

T

we see that

lim (QS’ g (Z’ Yt V) f) Ly(8Sn-1)

Mm—>co

=lim (g, ¢ EDG D (L, s V) )

m-—>o0

= (¢, eiy‘”(‘,l: » g @ (ll x’) f) Ly(S7n-1) »
which shows G (A: V) f=e"=“*P GO0 V). B

Theorem 7. 9. Let VEV be compactly supporied. Then we
have W (V) =82(V).

Proof. Since both W (V) and £ (V) are isometric by Theorems 2. 3,
5.5 and 5.11, we have only to prove (W(V)f,9) = @R(V)f,g) for f,¢g
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in a dense set of H. Let f€ % (C(R"—{0})), gE Ly, q+epnr  We have
by Theorem 7.1 and Lemma 7.6

(W(V>.f: g) =1th; (e“H(V)g_“Ho—iX(P,t: V)_f, g>

= (W) G [e™=4"F(§)], 9).
By Theorem 7.5 we have
(W) fg) =@ (V) F ' [e™=PF(&)],9)
= (G F[e7 =), FON) N2

= f<9—’ o(A) F e =ENF(E)], FOA: V) )10 -

Recalling the definition of & ,(1), we see that
(Fo) F [ PFOD)

=T, f) @,
Therefore,

WWf o= -{)w (e—ixm(\/T.;V)go(D £, FOL:V)G) 1, smdd
= J;m (EFo(l) f, ei_Yw(\/T-:V)g:(s) (l: V) g) LE(Sn_l)d&

= [[ @ s, 7= m GOV 0) sisrndi
(by Lemma 7.7)
= [ (@@, 2 @) nndd

(by Lemma 7.8)

=@M f,9. B

$8. Proof of Theorem 1.1

Let X(&,2:V) be as in Lemma 2.2. Let {V,} be a sequence in
V=7V, such that V, has compact support and V,—V in V. The ex-

istence of such a sequence {V,} is guaranteed by the fact that ¢ has been
chosen less than §,. Let W(V), W(V,), (V) and 2(V,,) be the wave
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operators defined by using the above modifiers X (&, ¢: V) and X (§,¢: V).
By Theorem 7.9 W(V,)=82(V,). On the other hand, since W (V,)
—>W (V) strongly by Theorem 2.6, and since £(V,,) —>2 (V) strongly by
Theorem 6.6, we can see that W(V)=82(V). The completeness of
W (V) {follows from that of (V) (Theorems 5.5 and 5.11).

Appendix, Construction of X (& i: V)

The purpose of this appendix is to give a proof of Lemma 2.2,

Hérmander [4] has obtained an exact solution of the equation

9-1) %X(S,t:V) —V (28t +T.X (¢, 2:V))

with a certain asymptotic condition at co. His solution X (£, #: V) can be
used as a time-dependent modifier, i.e. the properties enumerated in Lemma
2.2 are seen to be satisfied. We shall, however, state here another
method of constructing a time-dependent modifier.

A successive approximation scheme for (9.1) is:
9.2) XO(@ V) =0,
X €, 1 V) = j’ V(2854 F:XI0 (8, 5: V) ds+, (&: V),
ji=1,2, -
0 if jo<1,

V) = o
#:&:V) ¢j—1(5:V)'—j; A; 1 (§,s:V)ds if jo>1,

A&, V)=Vt +V XP (&, t:V))
— V(& +F. XY, £ V).

here we have used the fact that 1/0 is not an integer, which follows

from our having chosen § irrational.

Proposition A. 1. X% (§,¢: V) is a real C*-function of €0 and
t>0 having the following properties: For an arbitrary compact set
Kc R"— {0}, we have for all £ K and >0
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L [DeDPX? (£, ¢6: V) |I<CA+5)'7°, |la]=0, m=0,

) |DE(XP(&,2: V) —X977(6,: V) IKCA+)*7, |al=0,
3 |DEA; (€, £: V) [SCA+8) 9, |a|=0,

4) |Dgg; (§: V) [<C,

where the constanl C does not depend on V in a bounded set of V,

but may depend on j, o, m.
B6) If V,»V in V, we have for all o and m DgD7TX? (€,¢:V,)
—-»DgDrX9 (&, ¢: V) pointwise for €£0 and t>0 as n—>oo.

Proof (by induction on j). First let us prove (1). (1) is true for
7=0, since X® (¢, ¢: V) =0 by definition. Assume (1) when j=4 We
have by definition

9.3)  DEX® (& 1 V) = f " DE[V (2857, X® (8, 5: V))]ds

+ Dfdusa (§: V).
VeV and (1) when j=Fk give
|DE[V (26s+7,X*® (&,5: V))]I<CA+5) ",
On the other hand, by (38) and (4) when j=£k we get [Dfd.,,(&: V)|
< C, which proves (4). Hence we have

|DEXE0 (2, £ V) |<C j (1+5) “ds+C
0

gc(l ‘?_ t) 1‘3’

which proves (1) when m=0 with j=%4+1. (The dependence of C on
V and & can be checked easily.) The case m=>1 can be treated in a
similar way by differentiating (9. 3) with respect to £

Next we show that (1) and (2) imply (3). In fact, putting
By (5,¢:0: V) = (F,V) (28t +0V.X? (5, ¢: V)
+ A= X" (1 V),
Ci(&,t: V)=V X" 1: V) =P XV (5 ¢£: V),

we have
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A 7 (6, l: V)

= [ %V (28t + 07X (&, £: V) + (1—0) P XU~ (&, £:V)) dO

— "B, t:0:v)C, (8, 2: V) a0,
0

J

DEA;(§,¢6:V)

r1

{5 (g) DEB,(&,¢:0:VYDEFC, (&, ¢: V)do

JO f=a

(Leibniz’ formula).
since (1) and (2) yield for £€K, >0
|DEB; (§,¢:0: V) |<CA+1£) 7',
|DEAC (8, 1 V) [SC A+ 07,

we have |DFA; (&, : V)|<<CA-+¢) Y™™ which proves (3). Thus, in
order to prove (2) and (3), we have only to prove (2) with j=4+1.
Let N be the integer such that Nd<1 and (IN+1)§>1. We have

DX (6, 6: V) —X® (&, +:V))
Dt (M An s Vyds G,
) =0t [T A s as ().
Using (3) with j=£% we see that
[DEXRD (6,1 V) = X® (8, 02 V) <IC(L4 o),

which proves (2) for j=k+1.
The proof of (5) is easy and straightforward.

Proof of Lemma 2.2. We choose the smallest positive integer J
such that (j-+1)0>2 and set X (&, £: V) =X (& +: V). By definition

%X(E,t:V) V(@& ATX(E, V) = — A, 1: V).

Thus all the assertions follow from Proposition A.1. [
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