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Completeness of Modified Wave Operators
for Long-Range Potentials
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Teruo IKEBE and Hires hi ISOZAKI*

§ 1. Introduction

Spectral and scattering theory for the Schrodinger operator H= —A

-f-V with V short-range (V (x) =O(\x\~l~c) , £>0) has been developed

fairly satisfactorily tbat one can talk about the existence and completeness

of the (ordinary) wave operators

where H0 is the unperturbed Schrodinger operator —A. As compared to

this, rather few have been known about long-range scattering. The pur-

pose of the present paper is to give a proof of the completeness of the

modified wave operators intertwining HQ and H= — J-j- V, where in this

case the potential V is long-range, i.e. Vis assumed to satisfy the follow-

ing:

(A) V(x) is a real-valued Cx -function over Rn ( — Euclidean n- space

such that for some

DaV(x) =

for any multi-index a = (fti, • • • , #n) . (C* — infinitely differ entiable\

la I =a-1+-+a I I;Z)a =

The formal differential operators H0 and H have unique self-adjoint

realizations in the Hilbert space & = L2(R
n^), square integrable functions

on Rn, which we shall denote again by H0 and H.

In order to define the modified wave operators we consider appro-
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priate (approximate) solutions X± (?, t) of the (Hamilton-Jacobi) equation

By "appropriate" we mean that they should be "well-behaved" asymptoti-

cally. (The precise conditions on X+ (£ , t) are specified in Lemma 2. 2) .

We call X± (£, f) time- dependent modifiers associated with H. With

X+ (£ , t) we define the modified wave operators

W± = W± (V) =s-lim euBe-itH0e-ix±tp.»9
t^±°o

where s-lim means strong limit, and p the differential operator i~lV£. It

is known that (A) guarantees the existence, isometry and intertwining

property of W±9 and the range of W±, Ran(W,-), being contained in the

subspace of absolute continuity relative to H, Mac(H') (Buslaev-Matveev

[3], Alsholm-Kato [2], Alsholm [1], Hormander [4]). A harder ques-

tion is whether Ran(Wr
±) =jKac(H), in which case W± are said to be

complete. Our goal is to show the following

Theorem 1. 1. Under Assumption (A) there exist time-depend-

ent modifiers X± (?, f) , and the modified 'wave operators W+ are

complete.

The idea of proof lies in showing that W+ equal the so-called station-

ary modified wave operators J2+ — G±(V) for which is known the rela-

tion Ran(«0±) =Mac(H). This will not be carried out in a direct manner,

however. First a sequence of potentials Vm with compact support are

selected which approximate V. It is rather easy to show W±(Vm) =

&±(Vn). On the other hand, we can show that W±(Vm)-+W±(V) and

&± (Vm) ~^@± (V) as m-*oo. Thus the desired conclusion follows by pass-

ing to the limit for m-*oo in W±(Vm) =&±(Vm).

The construction of S± is based on a spectral representation or eigen-

f unction expansion: One can find unitary operators 2" ± from M onto

$ = L2 (R+ : L2 (S71-1) ) (see § 5) such that 3 ^H= M3 ±, where M is the

X) The subscript variable as in V^ Fx indicates the variable in question for definiteness'
sake though not logically necessary.
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multiplicative operator by the independent variable on JR+; the stationary

wave operators Q± are defined by lQ±=3t(3Q± (2 r
0± is the 3 ± for V

= 0). Although a spectral representation theory has been developed pre-

viously by Ikebe [5] and Saito [11], we shall propose a new approach

to spectral representation for H utilizing Isozaki's results [7].

In the sequel we shall restrict ourselves to discussing W+, dropping

the subscript -f, for W- can be dealt with in quite a similar way.

Assumption (A) we have imposed on V is not absolutely necessary.

For simplicity, however, we have avoided scrupulous examination of the

regularity to be required of V. The existence of the modified wave

operators has actually been proved under weaker conditions on V by the

authors referred to above.

Recently, Kitada [9], [10] has proved Theorem 1.1 by a different

method. In addition to eigenfunction expansion results his method is

based on his definition of stationary modified wave operators, while ours

leans over an analysis of time-dependent modified wave operators.

The contents of the present paper are as follows. Section 2 discusses

time-dependent modifiers X(£, £: V) and time-dependent modified wave

operators W(V)9 and the continuous dependence on V of these quantities.

In Section 3 we state some known results from Ikebe-Saito [6] concerning

the so-called limiting absorption principle in which the boundary values

R(h±iQ: V) for A real of the resolvent of H=H(V) are our main

theme. The continuous dependence on V of R(A±iQ: V) is also studied.

In Section 4 we transform the time-dependent modifiers into the stationary

ones via a certain inverse function theorem. Using the stationary modi-

fiers we present in Section 5 an eigenfunction expansion theory and a

stationary definition of the modified wave operator S (V). In Section 6

•fi(V) is shown to depend continuously on V. In Section 7 is proved

the relation W(V) =S(V) for compactly supported potentials V. Section

8 completes the proof of Theorem 1. 1.

§ 2o Time-Dependent Modified Wave Operators

In this section we present the results of Buslaev-Matveev [3],

Alsholm [1] and Hormander [4] on the existence of time-dependent modi-
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fied wave operators, and prove their continuous dependence on the poten-

tial V(x).

First we introduce a function space V of potentials.

Definition 2a 1. Let 0<5<1. Let V= Vd be the totality of all
real-valued C°° (Rn) -functions f(x) such that for N=Q, 1, 2, •••

sup

Equipped with norms || • \\ViN V is a real Frechet space. Now we

choose a d such that 0<<J<C1» 8<^d0 and S is irrational (for a technical

reason to be made clear in the Appendix) . This d will be fixed through-

out in the present paper. According to our Assumption (A) clearly V

e V= Vs.

As mentioned in the Introduction, we want to find an (approximate)

solution X($, t: V) of the non-linear equation

(2. 1) Ax(f , t: V) = V(2fr + P*X(f , t; V)).
dt

The properties of X(£, t\ V) needed in the sequel can be summed up in

the following lemma whose proof will be given in the Appendix.

Lemma 2. 2, For Y<E V= V8 there exists a function X(f, t\ V)

having the following properties:

(1) X(£, t\ V) is a real O° -function of f=^=0 and t>Q.

(2) Let B be a bounded set of V and K a compact set of Rn-{Q}0

Then we have

(2. 2) \DfD?X($, t: V} \<C(l + t)1'm~d (\a\>0, m>

(2.3) |

(N=o,i),
'where the constant C is independent of ^^K, V^B and

(3) Let Vn-»Vin F. Then we have for all a and m DfD?X($, t:Nn)

->DfD?X(g,t: V) pointwise for ?^0 and t>0 as n-^oo.
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We shall call X(£9 t: V) a time- dependent modifier associated with

V. Before stating the existence results for modified wave operators, we

introduce the following notations.

Let H(V) denote the unique self-adjoint realization in L2(R
n} of

-J+FCr), where V(x)^V. In particular H(0)=HQ. Let e-
ix(p't:V)

denote the operator (e-^'^u) (x) = ̂ -^e'^'^u (<?)] (x) , where 2" is

the ordinary Fourier transform

(2. 4) ( 5 «) Or ) = u (£) = (2rc) ~n'~ { e~wu (x) ^x .
J.B"

Theorem 2. 3. Let V6E F". Then the -wave operator

(2. 5)

exists, zuhere s-lim means strong limit in L2 (Rn) , is a partial iso-

metry with, initial set L2(R
n) and final set contained in Mac(H (V))

and has the inter i-wining property H(V) W(V) ^ W(V) HQ.

For the proof see e.g. Buslaev-Matveev [3] , Alsholm [1] and Hor-

mander [4] .

Now, we shall study the dependence on V of the operator W(Y) .

Set W(t: V) =e«*"V"'''-a'(2U:y).

Lemma 2e 4e Let s>0, u^ S'1 (C? (iZn-{0») and B a bounded

set of V. Then there exists a constant T=T(e,u,B) such that

\\W(t: V)u-W(V)u\\<B holds for all t>T and

The proof of the above lemma can be obtained b}^ a careful examina-

tion of the above cited authors" proof of Theorem 2. 3, though they do

not state explicit dependence on V various estimates concerned.

Lemma 20 5. Let Vm— >V in V. Then for an arbitrary fixed t

W(t: Vm)-^W(t: V) strongly in L2(IT) as m-+°°.

Proof. In view of Lemma 2. 2, we have by Lebesgue's dominated
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convergence theorem e^^-ix^v^^^u^-iz^t:^ strongly in L2(R
n).

On the other hand, Vm—»V in V shows that Vm tends to V in the

operator norm in L2 (R
n). By the well-known theorem on the perturba-

tion of semi-groups (see e.g. K. Yosida [14] p. 269), we can thus assert

that eltmVm) converges strongly to eltam. These two facts show that

W(t: Vn)-»W(t: V) strongly in L2(R
n). i

Theorem 2. 6. If Vm-*V in V, -we have W(Vn) ->W(V) strongly

in L2(R
n).

Proof. Since W(VTO), W(V) are isonietries (Theorem 2. 3), we have

only to show that W(Vm)u-^>W(V)u in L2(R
n) for u in a dense set of

L2(JRn). Let weff- 'CCf'CJRMO})). By Lemma 2.4, we see that for

any £>0 there exists a constant T independent of Vm such that ||T-F(^:

Vm)u-W(Vn)u\\4-\\W(t: V)u-W(V)u\\<e holds for all t>T. By

Lemma 2. 5, W(T: Vn)u-»W(T: V)u in L2(R
n) as m->oo. Finally, the

inequality

+ \\W(T:Vn)u-W(T:V)u\\

+ \\W(T: V)u-W(V)u\\

shows that W(Vn)u->W(V)u in L2(R
n). fl

§ 3. Continuous Dependence of the Resolvents on V

To begin with, we introduce the following notations.

*V*5r/, Zj = xj/r, r=\x\,
2r

For a domain G in Rn and a real constant /?, we define L2,0(G) as the

Hilbert space of all measurable functions f such that ||/*|||ff= I (1 +
JG

^ Im = imaginary part.
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N)23|/00 \zdx is finite. If 0 = 0 or G=Kn, we often omit the subscript.

=ix<=H.n: x\<lR}.

R(z: V) = (H(V) --r1

C*~ and C~ denote the upper and lower half plane in <C5 respectively.

Let D be an arbitrary bounded set in C—R such that D, the closure

of D, has no intersection with (—00, 0]. Hi2oc is the space of all measur-

able functions such that their distribution derivatives up to the second

order are locally in L2.

The following result has been established in Ikebe-Saito [6] .

Theorem 3. 1 (Limiting Absorption Method) . Lei Ke V be

fixed and £0 be a constant such that 0<A<i<?/2. Then the folio-wing

assertions hold.

(1) For any /eL2>(1 ,£o)/2 and z^D, a-u(z:f: V) —R(z: V)f satisfies

\\3)(z)u(z:f: F)||_ (1_£o) /2 iS l:

'where the constant C is independent of seD, /eL2iQJ.£o)/2.

(2) u(z:f: V) is continuous in L 2 i _ ( 1 , £ o ) / 2 for z^D and /eL2t( l feo) /2,

a^^5 as a function of z, can be continuously extended in £2>-(i+£o) /2 to

D\}C+ and Dr\C~. The extended function w(A±£0: / :V) , l±H

Bfl (DflC3 '), satisfies the same estimates as (1) wzY/i 2: = A ±7*0.

(3) u(h±iQ:f: V) solves the following problem uniquely.

1 , go)/2

Now, we want to investigate the dependence on V of u (A ± /O : /*:

For this purpose we first prove the following

l) C is the complex plane.
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Lemma 3.2. Let V^M a compact set in V. Then there exists

a constant C independent of V<^M, /eL2i(1+£o)/2 and z^DHC+ or

C~ such that the follozving inequalities hold:

(1) ||«(*:/: Y) |U+£ov2<

(2) \\$(z)u(z:f: V) ||-a-,.)/1.J,1^

(3) !«(*:/: V-)|U+£o)/2.

Proof.l} First we note that there exists a constant C independent of

/eL2i(lfSo)/2, z^D and V^M such that the following inequalities hold:

(3. 1) ||^(«)«||-

(3. 2) lkllla+sa)/2,

(3. 1) and (3. 2) have been shown in Lemmas 1. 7 and 1. 8 of Ikebe-

Saito [6], though the dependence on V of the constant C has not been

taken into account there. If we carefully reexamine the proof, however,

we can find that C in (3. 1) and (3. 2) is independent of V in a bounded

set in V.

If (1) has been shown, (2) and (3) follow from (1) by using

(3. 1) and (3. 2) . We shall prove (1) . Suppose (1) is false. Then

there exists a sequence {zm,fn, Vm}TO==li2i... such that \\u(zm:fm: Vm) | |-a+£0)/2

= 1, |i/m||a+£o)/2<l/^. Let us set um = u(zn:fn: Vm) for brevity. Since

Vm£=M, we can assume without loss of generality that znl-^z in D Pi C+

or D fl C , and Vm->V in V as m-^oo. Let us show that there exists

a function i;eL2i_(1+£o)/2 fl Hi2oc having the following properties:

(3. 3) There exists a subsequence {um-} of {*£m} such that

um,->v in jL2i_ (1+£o) /2 as w'-»oo;

(3.4) II^HU-e^X00-

In fact, by (3. 1) and (3. 2) we have

(3. 5) ||^n||-(l + £0)/2,

(3.6) ||^(O«m||

Cf. the proof of Lemma 1.11 of [6].
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where the constant C is independent of m. By (3. 5) , for any £>0, there

exists a constant R^>1 independent of m such that for all m

(3. 7) | |ttm | |_c1+eo),2itfa<e .

Recall the following well-known elliptic estimate which holds for u

and for

(3.8) XI f D*u\*dx<C(p,K)( f
i«|^2 J|.rj<^ \ J\x

where the constant C(p, R) is independent of z^D and of Vif sup | V(x) I
l*i<fi

is uniformly bounded in V. In view of (3.8) H^z^H^ -f ||&m||Bfl

is uniformly bounded in m. Hence by the usual diagonal process with

(3. 7) and Rellich's selection theorem in mind we see that there exist

v EE .L2>_(1J.£o)/2 and a subsequence {um^} of {um} such that um^~^v in

-L2 .-(i+e0)/2- Moreover, again using (3.8), we see that um,-*v in HIOC.

Let U>1. We have by (3. 6) \3) (zm,) um,\\ -(1-So,/2,SliR<C, where the con-

stant C is independent of m' and R. Letting m' tend to oo we have

||5)(s)v]|_(1_eo)/2,a lfa<C. Letting J? tend to oo we have \\3) (z) v\\,(1^£^/2iEi

<^oo, so that we have proved the existence of z;eL2i_(1 + £o)/2 H /Ji2oc satis-

fying (3.3) and (3.4). As is easily seen v satisfies ( — J+ V— z) v = Q9

77eL2t_a+eo)/2, S) (2:)z;eL2>_(1_eo)/2(E1)- W s = A±z '0 is real then the uni-

queness result stated in Theorem 3. 1 (3) shows v = Q, which contradicts

the fact that | |&m'l i -a+£o)/2 — 1. If z is non-real it is much easier to get to

a contradiction. H

Theorem 3e 3e Let Vm-^V in V. We have for all ^>0 and

±zO: V)/ in L2,_(1+£o)/2.

Proof. Set um = R(& ± z'O: Vm)f. In view of Lemma 3. 2 (3) there exists

for an arbitrary £>0 a constant R independent of m such that || um\\ -(i + eo) /2>^

<^£. Keeping this in mind we can argue as in the proof of Lemma 3. 2

to conclude that there exist a subsequence {um»} of any subsequence

{um,} of {um} and ^eL2t_ (1+£o) /2 such that um.->v in L2(_ (1^£o) /2 and v

satisfies (- J+ F-A) ̂ -/and .0 (A± zO) v^LZi^^^(E^ . But Theorem
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3. 1 (3) shows that v does not depend on the choice of the subsequence

{um»} of {um,}. Since every subsequence {um>} of {um} contains a sub-

sequence {um.} which converges to one and the same limit, we see that

the sequence {uni} itself converges, and the limit is just R(&±iO: V)f

by Theorem 3. 1 (3). i

§ 4. Time- Dependent and Stationary Modifiers

This section has a preliminary character to the following sections.

We shall transform the time-dependent modifier introduced in Section 2

into a "stationary" modifier, which will enable us to develop in the next

section an eigenfunction expansion theory.

First we note the following inverse function theorem.

Lemma 4. I. Let U be an open set in RN> and R+ = (0, oo) . Let

i®n(P>tt)}n-i.2,:. and 0^ (p* fJL) be C°° (UxR~) -functions with values in

RN. We assume that 0n(p,,u) (ft = l, 2, • • • ;oo) have the folio-wing pro-

perties'.

(1) 0 n ( / > , / 0 = / > + 0«( /> , /0 ,

(2) supsupsup(l+/Om41^D?0».(£»/0 l<oo for all a and m (la'|>0,

(3) for all a and m (|a|>0, ;?i>0) zve have D$D2<f>n (A /O ->

DpD™^^ (p, /JL) point-wise as n-^oo.

Let K be an arbitrary compact set in U. Then there exist C°° (HN

X 1?+) -functions {¥n(p, /JL) }n=1,2...., ^oo (P, /O and a positive constant

R^>I such that the follozving assertions hold:

(4) Q*<W»(P,fi),li)=P for p^K, UL^R, ;i = l, 2, • • • ; oo,

(5) supsupsup(l+/0 I W"|J^Z>?(? r
t t(A/0-/>)l<0 0 for all a and m

(6) for p^K and /.i>R we have D"pD™Wn (p, >t) -^Da
pD™¥^ (p, /i) point-

zuise as n—>oo for all a and m (|#|I>0, m>0) ,

(7) the function Wn (p, /A) is unique in the sense that if W^ (p, ,a} and

^(P,^) are such functions, zve have &$* (P, jut) =¥?>(/>,/*) for

and (a>R.



COMPLETENESS OF MODIFIED WAVE OPERATORS 689

Proof. Since the proof is just the same as for the usual inverse

function theorem, we only outline it. By our assumption (2) , there exists

a constant R such that for p^U, /Ji>R and 77 = 1,2, • • • ; o o ,

(4.1) det(l + Dp0n(£,/0)>l/2,

where Dpfa (/>, /JL) denotes the Jacobian matrix of fa (p, /.i) with respect to

p. Moreover, we can also assume that

(4.2) supsup\fa(p,/i)-fa(q,/i)\<.\p-q\/2 for all p,q(=U.

Now, let us set V$> (P, fi =p, W^ (p, fi =P - fa (W^ (p, ft) , ft) , j = 0, 1, 2,

• • - . Taking /t sufficiently large (,U>R) we have W& (p, /JL) e U when

p^K. Thus, this successive approximation scheme is well-defined. By

(4.2) we have for ps=K, ,u>R \W^ (P, /!} -W™ (P, & \<\W^ (p, /JL)

— W (
n

j ~ r ) ( p , / t ) \ / 2 . Hence we see that W(
n

j} (p, //) converges as J— >oo uni-

formly for p^K, fJL>R and n. Let us define ¥n (p, /JL) = Km ¥ (/) (p, ft) .
J->00

It is easy to see that Wn(p,j>JL) has the following properties:

(4. 3) Wn (P, /J)=P- fa (Vn (P, ti , /O

(4.4) ^(A/O is a continuous function of p^K and f.t>R9

and is uniformly bounded for p^K, fll>R and ;z,

(4. 5) 5TB (p, /O -^^ (p, /JL) as 77 -> oo for p EE ^C, /^>J^ .

By (4. 3) we have

(4. 6) 0n (?B (/>, /«) , / £ )= /» for /. e

By assumption (2) and (4. 3) we have

(4.7)
n fi^R p(=K

We can see by (4. 3) and an elementary argument that Wn(p,{i) is diffe-

rentiable with respect to p and satisfies Dp Wn (p, /j) = 1 — (Dpfa) (¥n (p, JLI) ,

A) Dp ¥n (p, /JL) . By (4. 1) the matrix 1 + (Dpfa) (Vn (p, /JL) , ft is invertible,

hence we have

(4. 8) Df (¥n (p, /i) -p} =-(i+ (ZV;n) (¥n (p, ft) ,

X ( D p f a ) ( ¥ n ( f i , /i),/t).

In view of assumption (2) and (4. 8) , we can conclude
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(4. 9) sup sup sup(l+ju)s\Dp(¥n(p, ft) -p)\<oo,
n fi^R p^K

which proves (5) when |#|=1, m = Q. Also by assumption (3), (45)

and (4.8)

(4 10) Dp (¥n (p, ll) - ¥„ (p, ju) ) -^0 as »->oo ,

which proves (6) when |a|=l, m = 0. Again by (43) and an elemen-

tary argument we can see that Wn(p,jui) is differentiable with respect to

/.I and satisfies

Da¥n (p, A) = - (DM (¥n (p, ft), A) D&« (p, A) - (DM (¥n (p, A), A) -

Hence we have

(4.11) DJFn (p, A) = - (1 + (DM (¥n (p, (i),

X (DM (¥,(p, f t ) ,

In view of (2) and (4. 11) we get

(4.12) SU

which proves (5) when \a\— 0 and in — \. We can further see by (3),

(4. 5) and (4 11)

(4.13) Df(Vn(p,ti-V.(p9ti)-*Q a s»->oo,

which proves (6) when a =0, 77Z = 1. Again in view of (4. 8) and (4. 11)

Wn(p9fJL) is a C°°-function of ̂ e.Kand ]U>R. The assertions (5) and (6)

follow thus by induction. For p^K or /1<^R, we continue ¥n(p, ju) in

a C°°-fashion. The uniqueness assertion (7) can be shown by (4. 2). H

Now let us define

(414) W(£,t: V) =t\£\2 + X(g,t: V),

and consider the equations

dW J) , dW
X = , A = .

d£ dt

Using these equations we want to express $ and t as functions of x and

^, which is made possible by the following lemma.
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Lemma 4. 2. Let X(£, t: V) be a time -dependent modifier.

Then there exist Cx(RnX R+y functions £ (x, A) = £ (x, A: V) , t ( x , X )

=-t(x,X\ V) having the following properties: If A is a compact set

in R+, then there exists a constant R such that

(1) X = 2S (x, K) t (x, V + (P,X) (f (x, A) , t (x, ft : V ) ,

for \x\^R,

(2) A=|£(*, A) I'+ (£(*,*),*(.*, A): V), for\x\>R,^A,

where the constant R is independent of Y if V varies over a bounded

set in V. If zve set

'where r— \x\9 a) = x/r, then -we have for every a and m (|a|>0, m>0)

(3) \n^nT^(x,X)\^C(i + \x\)1-^-',
\D?DW(X, A) |<c(i+ \x\) -'«!-*, (\x >i, Ae/o ,

-where the constant C is independent of Ae/i and V in a bounded set

of V.

Proof. First we rewrite the equations x = - , A = - as fol-
9f dt

lows:

- + -
r r

Let us introduce new variables ^ = 2gt/r, s=\g\2. Then we have

(4.15) » = C +

The function
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^

defines a C°°-map of (C, 5) and r (C^O? s>0, r>>0) . Let ^ be a compact

set in Rn-{Q} containing the unit sphere and A be a compact set in R+ .

By Lemma 2. 2, we see that 0 (C, 5, r) satisfies the conditions (1) , (2)

and (3) of Lemma 4. 1, where p = (C, s) , A = r and 0n (£, ju) = 0 ( (C, s) , r)

for all n = l,2, • • • ; oo, K=KxA and we take for £7an open set contain^

ing KxA bounded away from (0, 0). Therefore, there exist C°° -functions

Cto A, r) and stoA, r) satisfying (4.15) for (a), A) ̂ Kx A and for suffi-

ciently large r. We set

=Js to A, 7-) C to *, r) / 1 C (ft), A, r) |

where 7^= j;|, ti) = x/r. These functions f(o:, A), t(x,X) satisfy (1) and

(2) for U|>^ (jR sufficiently large) and X^A. The estimates (3) follow

from the estimates (5) of Lemma 4. 1.

Next let us choose a sequence of compact sets AjdR^ such that

A1dA2c: ---- >R+. For each Aj we can construct f W) (.r, A) and t ( j } ( x , X )

having the properties (1), (2) and (3) with R = Rj. Without loss of

generality we can assume that R1<^R2<^ ---- >oo. Then the uniqueness

result of Lemma 4.1 shows that if j>k^ (x, A) - f(fc) (*, A) , t<* (x, X)

= t™(x,X), for (a:, A) e{.r: ki>^y} X A. We re-define S™ (x, X) and

^V) (a:, A) by ^ (x, X) = e(fc) (x, A) , ^c/) £r, /I) = ^(fc) (x, A) for (^, A) e {x: Rk

<\x\<Rj} xAk.

Let A= (J {x: x\>Rk} XAk. then the functions £Q(x, A) =f ( f t ) (x, A) ,

tQ(x,X)=t™(x9X) for (j:, A) e {x: U | >^fc> X Jfc are well-defined on A.

Choose numbers Rj and compact sets As so that Rj^>RJf Aj-dAj, Ald A2

C ---- >R+. Define A = U {x: \x\>Rk} X Akd A. Then there exists a
k ^

real C°° (Rn X R+) -function (f>(x,X) such that (f>(x,X)=l for (.r, A) eA

and ^(x, A) =0 for (x, X) $ A. Finally we define $(x,X) and t(x,X) by

? (x, A) = 0 (.r, A) f o (^, ^) for (x, A) <E A, 0 otherwise ; * (or, A) = 0 (x, A)

£0 C#, A) for (.r, A) E! A, 0 otherwise. Then we see that f (j:, A) and t (x, A)

have all the desired properties. f|

The following lemma will be employed in Section 7.
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Lemma 4. 3. If V^ V has a compact support, -we have the fol-

io-wing asymptotic estimate for r— »oo

(4. 16) it (.r. A: V) = r/(2vT) +0(1),

£(x, A: V) = Vlco-fOO"1), r= l a r j , o) = x/r .

Proof. Let .!(£. t: V) =-X(s, *: V) ~ V(2ft + FfX(S9 t: Y)).
(/ v

Then we have

A'(f. /: TO =X(f, 1: V) +

By Lemma 2. 2 we have for <?

!DM(f, «: V) '<C(l + i)-2, \a\ =0, 1 .

Taking into account that T^has a compact support, we have the following

estimates: For />!,

1 + 5)

, 9

We are thus led, in view of (4.15), to asymptotic relations

= o) + O(r~1'), s(a),Lr)=l + O(r~2}, which give rise to

,L V) =r!C(«U,

f Or, L V) = N/sToU; r) C («), A, r) / |C (a), A, r) 1

Lemma 4.4. Le£ T-7,-*^ /?? V. Then for all a and m we have

for >i^oo irtD?(t(x,l: V,,) -t(.r,i: V))--»0, 7^ Df (f (a-,-? : F,) -f (a:,*:

V) ) -0.
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Proof. If we let in Lemma 4 1 ®n (p, /jf) = 0 (C, 5, r : Vn) (p - (C, 5) ,

/£ = r), then the conditions of Lemma 4.1 are fulfilled. Reviewing the

proof of Lemma 4. 2 with condition (3) and assertion (6) of Lemma 4. 1

in regard yields the conclusion of the lemma. H

Now, we are to produce the stationary modifier Y(x,A:V) from

the time- dependent modifier X(f, t: V) . Let -X"(?, £: V) be a time-depen-

dent modifier defined in Section 2, and ?(r, /I: Y ) , t(x,X: V) as above.

Choose a sequence of compact sets A1C.A2
(^ ---- >R+. By Lemma 4. 2 (3),

we find for each j a constant R5 such that ?(r, A: V) =^=0, £(2;, A: V) >0 for

|:r|>jR/, AG4-. Let A= U {x: \x\>Rj} XAj. Let A be a neighbourhood
j

of A contained in RnxR+ in which g(x,L V) =^=0, 2^ (x ? A: F) >0 still

hold. Let 0(o;,A) be a real C30 (JTX ,R+) -function such that $(x,X) =1

on A and =0 outside A.

Lemma 4, 5* L<?£ <^(X/0 ^^ ^^ above. Let for

(4. 17) JC(^, A: F) =#(a:, A) [W(f fe A: F) ,^(^ A: V) : V)

-.r£(X/l: V}-U(x,l: V)],

w/z^r^ W(f, 2^: T/) 7z<z5 &ge» defined by (4. 14). TAew ^fe A: V) is a

real Cx (RnX R+) -function verifying the inequality

(4.18) \FxK(x,l:V)\z-X+V(x)\<C(l+ x'\)~\

where the constant C is independent of A and V if they vary over a

compact set in R+ and a bounded set in V, respectively.

Proof, Since by Lemma 2. 2, W(£, t: V) is a C°°-f unction of

and £>0, K(x,L V) is smooth for x^Rn and A>0. Let A be a com-

pact set in iJ+. Then by Lemma 4. 2 there exists a constant .R>0 such

that for \x\>R,

(4.19) x
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Direct calculation shows that for x\~^>R9

* dgk dxj dt dxj

= -$j (by (4.19)).

That is, for \x\>R and

(4.20) -£(*,

On the other hand, Lemma 2. 2 and (4. 14) show

(4.21)

In view of (4.19) and (420) we have for

This together with (4. 21) and Lemma 4. 2 (3) shows (4. 18) . i

Definition 4B 6* Let fj)(x) be a real C™ -function such that $(x) =0

for \x\<l and $(x) =1 for \x\>2. Define Y(x,L V) by

(4.22) Y(x,l: V) =<fi(x) (<flr + K(x,l: V)), \x\=r.

We shall call Y(x, A: V) a stationary modifier associated with V.

Lemma 4, 7. Y(x, A: V) is a real C~° (Rn X R^ -function of x and

A having the following properties:

(1) \Da
xDT(x^:Vyi<:C(l+\x\y-^-s ( ial>03 m>0),

(2)

where the constant C is independent of A and V if they vary over a

compact set in R+ and a bounded set in V, respectively,

(3) Y(x,l:V)=0, if\x\<l,

(4) if Vn->V in F, then we have for all a and m D*xD?Y(x, A: VJ

fal-.V) asn->°o.
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Proof. Putting (f>(x,LV)=t (x, L V) - r/ (2 VT) , 0 (x, I : V) =

$ (x, /I: V) — VA&) (r — \x\, o) = x/r) , one can rewrite Y(x,&: V) as

Y(x, A: V) =0(x, A) [X(f (*, A: V),/(x, A: V) : F)

+ 2 /Ta)0 O, J : V) 0 O, A : V)

Then (1) follows from Lemmas 2. 2 and 4. 2. By direct calculation we

have for |.r|>2

.
dr

which combined with Lemma 4. 5 proves (2) . (3) is direct from Defini-

tion 4. 6. Finally (4) follows from Lemmas 2. 2 and 4. 4. 5

Remark 4. 8. The function W($, t: V) =t\$ \2 + X(g, t: V) posses-

ses, according to Lemma 2.2, an asymptotic estimate dW/dt— |?|2 —

V(dW/ds) — O(£~2), which means that W'Cf, £: V) is an approximate solu-

tion of the "Hamilton- Jacobi" equation

9W _H(dW f\ ,g|. + F/9W\
9^ " V 8f J V ~ ' ^ + I 9 f / J

where H(x,f) is the classical Hamiltonian JF?(.r, f) = If |2+ F(^). The

variables f and ^ have the meaning of momentum and time. What we

have done in Lemma 4. 2 is to transfer from <?, £ to the variables x, ^,

which are the position and energy conjugate to the momentum and time,

by means of the "Legendre transformation" x = dW/d$, k = dW/dt. The

"Legendre transform" of the function W(f, t: V) is K(x9 L V)- W(£, t: V)

— x$ — fo, and this function K(x,h:V) asymptotically satisfies the

"eikonal equation"

= or dK
dx

The stationary modifier Y(x, /i: V") is to the "eikonal" K(x,&: V) what

the time-dependent modifier X(£, t: V) is to the "Hamilton-Jacobi" solu-

tion W(£, A: V). Kitada [10], too, has observed the essentially same re-
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lation between the time-dependent and stationary modifiers from a slightly

different point of view.

§ 5. Elgenf auction Expansions and Stationary Wave Operators

We start with defining a stationary wave operator investigated in

Isozaki [7], Let R0(z) denote the resolvent of HQ= — A, and let EQ(X) ,

E(A: V) be the resolutions of the identity for HQ and H(V), respectively.

H(Mi\Mi) will denote the totality of bounded operators from a Banach

space S£i to a Banach space J)f2-

Definition 5.1. For A>0 let E0' (A) and E'(A: V) be defined by

where we notice by Theorem 3.1 that jEJ (A) , Ef (A: V) eH(Z/2i(1+£o)/

^2, -(i f e0)/2/ •

Definition 5- 20 L^^ £/(£: V") Z?^ 2^A^ unitary operator of multipli-

cation by the function exp( — iY(x, (ReV^:)2: V)Y\ where Y(x,l: V)

is a stationary modifier (Definition 4. 6) . We define for Im

G(z: V) = (HQ-z)U(z: V)*R(z: V) ,

G(z: V) = (H(V) -z) U(z: V) RQ(z) .

The following lemma gives a basis of our subsequent arguments.

Lemma 5.3. (1) For A>0, there exist strong limits s-li

-He: V)=G(Ji + iQ: V) , s-lim S(A + ze: V)=6(A + zO: F) z

(2) For arc arbitrary /<E L2. (8_£o)/2, G (A + zO : F)/ a^^ G (A + z'O : Vr)/

strongly continuous functions of

*) Re = real part.
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For the proof see the proof of Isozaki [7] Theorem 3. Note that

all we need about Y(x, 1: V) to follow Isozaki's arguments are already

stated in Lemma 4. 7.

By Definition 5. 1 and Lemma 5. 3 it follows that the following defini-

tion makes sense.

Definition 5.4. For f^L2i ( 3_e0>/2 and 0<a<C£<C°° CWQ define

F((a, b) : H(V) : H0)f= f E' (A: V) G (A + zO: V)fdl ,
Ja

r((a,b);Ht:H(V))f= f £„' (X)G(l + iO: V)/^ .
Jtt

is easy to see by virtue of Theorem 3. 1 that F((a,b'): H(V): H0) 9

Theorem 5.5. (1) The operators F((a, V) : H(V) : Jf?0)

a, *) : HO: //(V)) actually map into M = L2(R
n) and for /GEL2i(3_£o)/2,

(2) For /eL2i(3-£o)/2 strong limits

=s-Hm T ( (a, &) :

fl,i) : Ht: H(V))f

exist in & = L2(R
n). F(H(V)\H^ (F(HQ:H(V)^ is uniquely ex-

tended to a partial isometry on M with initial set M (JKac(H.(V)})

and final set Mac(H(V)) (M}, We use the same notation for this

extension.

(3) r(H(V):H,)* = r(H0:H(V)), F (H0: H (V)) * = T(H(V): H,),

where * denotes the adjoint in M.

(4) The following intertwining property holds:

H(V) r (H(V): H,) ̂ >r (H(V):
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For the proof see Theorems 1 and 3 of Isozaki [7] .

Now we turn to the eigenfunction expansion problem.

Lemma 5.6. For f^C?(Rn)y A>0, a)^Sn~l= {x^Rn: \x\ = l} let

(3QW /) (o>) = 2-1/2A(Tl-2)/4 (2;r) -M f e-*St**f(x) dx .
JRn

Then we have for f, g e CjT (JRn) ,

Proo/. Almost obvious. Recall (30(X) /) (o>) ^-^^

Let g =/* in Lemma 5. 6. Then by Theorem 3. 1 we have

(5. 1) I! ffo W /IU.«.-.>^C||/|| „+.,,„ ,

where the constant C is independent of ^ if ^ varies over a compact set

in R+. (5. 1) allows a unique extension ^B(L2i(1+£o^/2: L2(S
n'1)) by con-

tinuity of S'oW* which will be denoted by 2"0(A) also. Clearly EFoW

is strongly continuous in A^>0. Let ^{ = L2(R
n) as above and c^f the

Hilbert space of all L2(S
n~1) -valued square integrable functions over R+

with norm || ||^ and inner product ( , ) £.

Theorem 5. 7e (1) For f, 2, a+£0) /2

(Ei(Z)f,g) = (

(2)

eJB(L2i(1+£o)/2: c^T) . Moreover, 3" 0 ^^^ ^^ uniquely extended to a uni-

tary operator from M onto M, vuhich -will be denoted by 3 0 a/so.

(3) For f^M and any bounded Bor el function a(k) defined on the

real line -we have

(A) =aW (EF0/

(4) T/ie inversion formula holds for

/=s-lim f*
2V-^oo Jl/JT
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Here 30tf)* « defined by (S0(X) *0-g) = (0, 3"oWg) /or
ACS"'1) and gGEL2,(1+go)/2.

Proof. (1) is immediate from Lemma 5. 6 and Theorem 3. 1. The

other assertions can be proved by recalling again that SF0 is essentially

the Fourier transform. H

Now we want to arrive at similar results associated with H(V) 9 and

begin with

Lemma 5.8. 2"(/l: Y)^50(A)G(A + zO: TO<EB(Z,2,(3_£o)/2: L.GS"-1)).

: V) is strongly continuous in

Proof. Direct from Lemma 5. 3 and the remark after Lemma 5. 6.

•
With the aid of 3 (A: V") we can get a spectral representation for

H(V). Our first step is to show the following lemma.

Lemma 5. 9. (1) For /, geL2 i (8_£o) ,2

(£' (A: V)/, g) = (3 (A: V)/, 3 (A: V)ff)La(S.-,, .

(2) For #723; Borel set Bd (0, oo) arcJ /, geL2((3_£o)/2

(E(B: V)/,g)= f (5 (A: V)/,
Js

/TZ particular, for /eL2i(8_£o)/2 a^ J3 = ,

IIP /-"li2 —l l - t a c J ( I ~

Tvhere Pac = E(R+: V) is the projection onto Mac(H(V)).

Proof. It suffices to show (1), since (2) follows from (1) by in-

tegration on B. For proving (1) we replace /, g of Theorem 5. 7 (1)

by G(A-HO: V)f and G(A + fO: V)g. Then we have with Lemma 5. 8 in

mind
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(E£ (A) G (A + /O : V)/, G (A + 1 0 : V) g)

- (30(A)G(A + fO: V)/, 3 0(A)G(A + /0: TOg)^*,-,,

-(5 (L V)/,S(A: TOflOi.c*,-,).

The resolvent equation and Definition 5. 2 yield

27T/

where we have used the fact that C / (A-h /£ : I7)* ls unitary. Letting e

tend to 0 we have by Lemma 5. 3 and Theorem 3. 1

(# (A) G (^ + /O : V)/, G (A + iO : V) g) = (£' (A : I/)/, g) ,

so that

(E'(A: F)/,g) = (5 (A: V)/, 2 (A

For /eL2i(8_So)/2 we set (£F (V) /) (A) - SF (A: V)/ Then by Lemma

5.9 (2), EF (V) eB(L2((s_£o) /2: J?0 , and hence is uniquely extended to a

partial isometry on M with initial set <4Cac(H(V)) and final set contained

in J{, which we denote by 3 (V) also.

Theorem 5. 10 (Spectral Representation (Eigenf unction Expan-

sion) for H(V)}.

(1) 2" (V), defined above, is a partial isometry on J{ with initial

set MM(H(y)} and final sel M.

(2) If a (A) is a bounded Borel function defined on the real line we

have for
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a.e.

(3) For f^Mac(H(V}) the following inversion formula holds:

/ = s-lim P 3(A:V)*(2(V r ) / ) (A)^ .
2V-»oo Jl/JV

(4) 5 (A: F)*eJe(L2(^-1):^2.-(3-£o)/2) « <m eigenoperator of H (V)

with eigenvalue A zVz £/ze s£?zs£ that for any (f)^L2(S
n~1) ( — A+V)

X S (A: V)*^ = >lff W: ̂ 0*0 Ao&k m £/ztf distribution sense.

Proof? (1) has already been shown above, except for the fact that

2" (V) maps onto J^? which will be proved in Corollary 5. 12.

To prove (2) , it suffices to show the assertion for a (A) = IE (70 , where

B is any Borel set in R+ and %5(A) is the characteristic function of B,

since any a can be approximated by a sequence of step functions. First

let us note that for /, g^Mac(H (V)) (E(B: V)f, gf)) = (%B2 (V)/,

.#, which follows from Lemma 5.9 (2). We have, therefore,

f ||
JB

|| (3 (V)E(B: V) f) (X) - (5 (F) /) (X) |

: V) -I)/) (A)

f
JB'

W) ||ii(S..,,^

\\E(B':V)E(B:V)f\\* = 0 (B'=R+-B).

It follows that (5 (V)E(B: V) f) (X) = (1 (V)/) (/I) for a.e. ̂ eS and

: V)/) (7) =0 for a.e. ̂ $S, which was to be proved.

To prove (3) , let B be a bounded Borel set in R+ whose closure

does not contain 0, and consider the operator £FB(V)* defined by

hV)*f($dl for feJC. Obviously

Let (?eL2, (s_£o),2. Then

= {
JB

(V) */, fir) = £ (3 (1: V) */(A), g)

1} Essentially the same as the proof of Theorem 2.8 of Ikebe [5].
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= f (f(V,
JB

= f (/(A),
JB

where in passing to the fourth equality we have used 2 (V)E(B: V) g

= %B<3! (V)g which has been already proved in (2). Since L2, (3-e0)/2 is

dense in &, this shows 5*00*= (2 (V)E(B: V))*, so that 3s(V)*f

Putting EN(V) = E([N-1,N]: V) , we have 3 ,̂ -1. JTJ 00 * =

S(V))* = EN(V)*3(V)* = EW(V)3(V))^ Letting Attend to

oo we have QIN-^N^ (V) *—>S (V)*, which shows the inversion formula (3).

For (4) ? as can be checked easily, it suffices to show 9" (A: V) ( — J

+ V)« = A3(A: V)« for «€EC5°(JRn). Set /= (- J+ V-A)«eCS8 (^n) -

Then by Theorem 3. 1 (3) u = R(l + iQ: V)f, which means G(A + zO: V)f

-=(HQ~$eiYu (see Definition 5.2). But since 5 0 (A) (Ho - A) r; = 0 for

an arbitrary T; e C0°° (H'1) , we have 2" (A : V)/= 9" 0 (A) G (A + zO : V)/=

EF0(A) (Ho-A)e'rtt = 0, i.e. SF (A: V) (- J+ y)w = A5 (A: V") //. 1

The above spectral representation alows us to give the following

representation of the stationary wave operator

Theorem 5. 11. Let Q (V) = 3 (V) *SQ. Then F (H(V) : HQ)

Proof. Let /eL2i(3_£o) /2, g^L2t(1^ £o)/2. Then we have by Theorem

5.7 (1).

(E0'(A)G(A-HO: V)f9g) = (50(A)G(A-HO: V)f,

= ( f f ( A : V)/, £F0 (A) 0) *,(*.-,),

which integrated over fi+ yields (see Theorem 5. 5 (2) , Theorem 5. 7 (2) ,

Theorem 5. 10 (1)) (F (H9: H(Vy>f, g) = (<S (V)f, SF0g),?. Since L2i(1+£o)/2

and L2((3_eo) /2 are dense in M, we have F (HQ\ H(V)) = 3?SF (V). Tak-

ing the adjoint and using Theorem 5.5 (3) we get r(H(V):H0)
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Corollary 5. 12. The final set of 3 (V) is M.

Proof. Since the range of 2" (V) is contained in M and 3 Q is an

isometry with final set J{, we have by Theorem 5. 11 2" (V) = 3 QF (HQ:

H(V)}. Since r(HQ:H(V)) has range M by Theorem 5.5 (2) and

since 50 maps JW onto M by Theorem 5.7 (2), the assertion holds. (

We shall further state some results which relate the eigenoperators

EFoCA)*, 5 (A: V) * to the asymptotic properties of the solutions of the

inhomogeneous Schrodinger equations, which will be utilized in § 7.

Let us define the operator EF0(A, r) by

)/) (ro>) ,

Lemma 5. 13. Let f<=C? (Rn) . Then the following strong limit

exists in L^S^'1):

Proof. It is well-known that the operator jR0(A + /0) has an integral

kernel

where /jTi1} (2:) is the Hankel function of the first kind (see Titchmarsh

[12], p. 79). The asymptotic form of HJ1} (z) as z— >oo is given by

(z) = 21/2 (TCZ) -l/z exp {f (« - (2v + 1) 7T/4) } (1 + O (s;-1) )

(see Watson [13], p. 196-198). Noting that /<E C0" (IT) we have thus

by a straightforward calculation

We have already known that both SQ(X)fand £? 0 (A, r)/have mean-

ing when /eL2>(1+£o)/2. It may thus be inferred by Lemma 5.13 that

even for /<EL2,(i+e0)/2, 3 Q (2, >')/-» 2"0 W)/ as ;--»oo. This will turn out

to be the case in a sense by the following two propositions.
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Proposition 50 14. Let /eL2il.

(1) There exists a sequence {rm} tending to oo such that for ?;z— »oo

rm { | (D (A + iff) R» (A + iff) f\ 2dS->0 .
Ji*i-i»

(2) There exists the follmving strong limit in Lz(S
n~1):

s-lim 5, ft, /•„)/=

-where {rm} is any sequence specified in (1) . The limit

independent of the choice of {rm}.

(3)

In particular £F0(A) Z5 extended by continuity to an operator GE

B (L2, d+e0) /2 : L2(£> ) ) .

Proof. The proof is given in Lemmas 1.3, 2. 2 and 2. 7 of Ikebe

[5] under a more general situation. H

Proposition 5,15. .Fw /^Z/2i(1+eo) /2 £/ie following assertions

hold,

(1) There exists a sequence {rm} tending to oo 5Z£c/z. that for m~—- >&o

i" f
J|x|=r

^ fJ|^l=rTO

(2) For a^ arbitrary

holds, 'where {rm} £5 a^y sequence specified in (1) .

Proof. For the proof see Lemma 3. 2 of Ikebe [5] . 1

Now for /eZ/2i(8_eo)/2 we define 5 (A, r: V)f by

(£Fa,r: V)/) (to) =CW)r(n-1)VJC(r*i:F)(l?^ + zO: V)/)



706 TERUO IKEBE AND HIROSHI ISOZAKI

where C(A) = e^-^^K-^Xl/\

K(x, l:V) = - V7r + Y(x, A: V) , r= \x\>2 .

Lemma 5.16. Let /sL2i(3_£o)/2, and set w(A + zO: V: /) = jR0(A

4-zO)G(A + £0: V)f. Then:

(1) There exists a sequence {rm} tending to oo such that as m-^oo

f \u
J\x\=rm

f <3(
Jl*!=rm

(2) For any

(0, EF (A : F) /) L2(Sn,} - lim (0, 3 (A, rm : T/) /) ^^ ,
771 -»oo

-where {rm} is any sequence specified in (1) .

Proof. Let us replace /of Proposition 5. 15 by G(A + fO: I/)/. Then

(1) follows from Proposition 5.15 (1), since G(A + zO: y)/ejL2i(1+£o)/2 by

Lemma 5. 3. By definition we have RQ (A + zO) G (A + z'O : V)/= ^F^R (A + zO :

V)/, and hence 2"0W, r) G(A + zO: V)/= 2" (^ r: V)/. Thus by Proposi

tion 5. 15 (2)

Therefore, it suffices to show SF0(A) = £F0(^) because of Lemma 5.8.

However the latter is obvious from the fact that S0(X)f= SQ(X)f for

/e C0°° (jRn) by Lemma 5. 13 and Proposition 5. 14 (3) . I

The above lemma shows that 3(l,rm:V)f converges weakly to

^ (A: V)f in Lz(S
n~l) , but we can further prove its strong convergence.

In fact Ikebe [5] and Saito [11] have established the strong convergence

of 2 (A, rm: V)/. Their definition of 5 (A: V)/ is by s-lim 5 (A, rm: F)/,
m-»co

which is apparently different from ours (Lemma 5. 8) . By what we have

stated, however, our eigenoperators EF (A: V) and theirs coincide.
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§ 6. Continuous Dependence of V on the Stationary Wave Operator

In the following arguments D denotes an arbitrary bounded domain

of C—R such that D does not intersect with (— oo,0]. We set

(v(z:f: V)} (x) = e*n*. &*s?>3:v) (R(z: y) f) ^ for brevity.

Lemma 6. I. Let /<EZ,2i (S_eo) /2, and let V vary on a compact set

K in V. Then there exists a constant C independent of z&D and

such that

\\g)(z)v(z:f: V) ||a-£o)/2,^

Furthermore, the following strong limit exists in -I/2f(1_3eo)/2(.£i) :

s-lim 5) («)»(*:/: V) =3) (l + iO)v(l + iO:f: V) , *>0 .
Z-^+zO

Proof. We have only to show that C is independent of V&K, since

the remaining assertions of the lemma are given in Lemma 2. 7 of Isozaki

[7]. In Proposition 6 of [7] it has been proved that

<C(\\R(z:V) || _ ( 1 , e § ) / a

where the constant C is independent of z^D. Although Isozaki [7] has

not explicitly stated the fact that C can be taken independently of V in

a bounded set of F", this can be seen by carefully examining the argument

given in [7] . On the other hand we have seen in Lemma 3. 2

where the constant C is independent of z^D and V if V is in a compact

set in V. The above two facts prove the independence on V of C. f|

Lemma 60 2* Let f<E;L2, (3-£o)/2. Then for p>I

-where the constant C is independent of V if it varies over a compact

set in V.

Proof. This fact is proved from Lemma 6. 1 as follows:
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|| 3) (I + £0) v(l + iO : f: V)

= f (l + \x\y-9'-
J\x\>fl

<p-2e' f (l+\x\y
JI*I>P

<rpn~Ze°ll /*||2
-±^0 II / II (3-£0)/2 •

Lemma 6.3. Let /eL2i(3_eo)/2. Let Vm— >V in V. Then -we have

;0) v (A + zO : f: Vm) -*3) (I + zO) v (J + zO : /: F) m L2> a_3£o)/2

oo.

Proof. By Lemma 6. 2, for an arbitrary £^>0, there exists a con-

stant p>l such that for all w = l,2, ••• \\3)(l + iff)v(l + iO:f: VJ \\ a-3eo)/2^p

<£- We also have b}^ Theorem 3. 3 and the elliptic estimate (3. 8)

R(l + iQ:Vn)f-+R(l + M:V)f in Hf^, so that it follows for m-*oo

3) (I + xO) v (A 4- z'O : /: ym) ->5) (A -f zO) v (A -f zO : /: F) in L2 (S1|P) . These

facts prove the lemma, g

Lemma 60 4* Let /eL2F(8_£o)/2, Vm^V in V. Then for A<E

*0: Vm)/||af£o)/2<C||/||(3_£o)/2? -where the constant C is

independent of A&DHR+ and m, and also uue have G(A + z'O: VTO)

w L2,(1+£o)/2.

Proof. By a direct calculation it follows that

(6-1) G (A + *0 : VJf=etrf-i + f (A + »0 : /:
\9r r

or

where Y= Y(x9 L Vm) (see (3.3) of [7]). We have by Lemma 4.7

1} yi is the Laplace-Beltrami operator on Sn l.
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y=o if k!<i,
where the constant C is independent of m. We have thus by Lemmas

3. 2 (1) and 6. 1 proved the arst half of the lemma. Lemma 4. 7 also

shows Da
xY(x,l: Vm) ->Da

xY(x, L V) as m~>oo. In view of these facts

and taking note of Theorem 3. 3 and Lemma 6. 3 we see that each term

of the right hand side of (fi. 1) converges to the corresponding term of

/O: F)/ in L2.(1J.Cl0/2. This proves the last half. 1

Lemma 6* 5. Lelf^LPi(^c^/z. Let Vm-*V in V. Then there ex-

ists a constant C independent of m and ^^DnR+ such that

Moreover, ive have for /l>0 3 (L T^)/->fF (A: V)f in Lz(S
n~1}.

Proof. The lemma follows from Lemmas 5. 8 and 6. 4. g|

Theorem 6. 60 Lei Vm->V in V. Then G(Vm)-*G(\r) strongly

in J{-=L»(Kn).

Proof. Since G (Vm} , G (V) are isometries, it is sufficient to show

(^(^)/,g)->(^(^)/,g) for/ , g in a dense set of L2(fT) . Let /e
EF -1 (Cj° (i?u-{0})) , g 6E L2, (3_£o) /2. Then by the definition of G (V) in Theo-

rem 5. 11 and the definition of 2" (I/) before Theorem 5. 10 we have

, S? (A: VB)(7)/.(s.-.)^ .

Since /e ff"1 (Cj° (Rn~ {0}) ), the integration is actually performed on a

compact set of R,. With this in mind we see by Lemma 6.5 and Le-

besgue's dominated convergence theorem that (G (Vm )/,£/)--> (G (V) f , g ) .
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§7. W(V)=U(V) for Compactly Supported V

When I^EE V has a compact support, the scattering problems for

H(V) have been thoroughly investigated so far. We shall briefly look

at known results and prepare the final stage for proving the completeness

of W(V).

Theorem 7. 1, Let V^ V be compactly supported. Then the fol-

io-wing strong limit exists in M\

W<S)(V) is an isometry on M -with final set &

For the proof see e.g., Kato-Kuroda [8] .

Definition 7. 2. Let G(s) (z: V) , Gw (z: V) be defined by

(S)O: V) = (H(V)-z)RQ(z), z^C-R

Lemma 7» 3B Let V^ V have a compact support. Then the fol-

lowing strong limits exist in B(LZt(1+£o}/2: Z/2f(1+eo)/2) for /l>0:

£0: V),
e|0

s-lim Gm (A + ie: V) =GM (A + fO: V) .

zO: V) and G(s)(2-f fO: V) ^r^ strongly continuous in Jt>0.

Proof. By the resolvent equation we have G(s) (s: T7) =1— VR(z:

I7), GCs)(2:: V) =1 + VJR0(2:). Hence the assertion of the lemma readily

follows from Theorem 3. 1 if it is noted that VR(z: V) and VRQ(z) lie

in B (Lz, ( i+e 0 >/2 - L2, (i+e0)/2) • B

We define for /eL2i(1+£o)/2,

T(s) ( (a, *) : H(V) : H0)/= f & E' (L V) G(s) W + fO: V)fdl .
Ja
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Then s-lim r(sy ( ( a , V) : H(V) : Ht)f=rw (H(V) : H0)/is seen to exist (see
a-»0

we.g. Theorem 6 of [7]), and rw(H(V):H0] is uniquely extended to an

isometry on Si with final set Mm(H(V)~).

Let us define 3M (7: V) ejS(L2,(1+£o)/2: L^S"'1)) by

tO: V)

and ffw(V) by

(2" '" (10 /) (A) = 2 (s> (A: F)/ (/e L,. „_..,„) .

The arguments given in Section 5 also hold for 3" (s)( Y) . We can thus prove

the following theorem in the same way as Theorem 5. 11.

Theorem 7, 4* Let Ve V be compactly supported. Define

£(s) (F) by £(s) O/) - EF(S) (I7) *£Fo.

Theorem 7, 5* If Fe F ^5 a compact support, -we have W(s} (V)

This is well-known (see e.g. Kato-Kuroda [8]).

Next we shall consider the relation between modified and non-modi-

fied wave operators.

Lemma 7. 68 Let Y<E F be compactly supported. Let X(§, t\ V)

be the time -dependent modifier constructed in Section 2. Then the limit

lim^(f, t: V) ̂ X^ (? : V) exists if $ ̂ 03 a;zJ /^A^ convergence is uni-

form for <? when $ lies in a compact sei in W — {0} .

Proof. Set A(f, ^: V) =j~X(?, t: V) - V(2ft + 7fX(S9 t: Y)).
G> t

Then we have

, ^: Y) =X(f, 1: Y) + r[Y(2^ + FfX(f, 5: Y))

Since F has a compact support, taking note of Lemma 2. 2, we see the
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integrand of the right hand side integrable if £=^=0, Hence the limit

limX(f,t: V) exists if £^0. The uniformity of convergence is
i-^co

teed by Lemma 2. 2 (2) . 1

Lemma 7. 7. Let V^ V be compactly supported, and let Y(x, &:

V) be the stationary modifier constructed in § 4. Then for /l>0 the

limit lim YCraU: V) =¥„(<*, 1: V) (oXES"'1) exists, and Y^oU: V)

Proof. Let $ (x,X: V) and t(x,X\ V) be the functions specified in

Lemma 42. We set tffo A: Y) = *(*, A: V) -r/ (2vT) , 0(^/1:^)-

?(.r, /I: y)— VAo), r=\x\, o) = x/r. By Lemma 4.3 we have for r-^oo

0(x,^: y) =O(1), 00U: ^7) ̂ OCr'1). By Definition 4. 6 Y(.r, A: V)

takes the form

0: V)

for sufficiently large r. Letting r tend to infinity, and taking note of

Lemma 7. 6 and the above asymptotic estimate, we have lim Y(ro), /I: V)

): V). I

Lemma 7» 8. L^z^ V^ V be compactly supported. Then we have

for X>0 %(LV)=eiY~^%^(LV) in B(L2i(1+£o)/2:

Proof. Since both sides are in H(L2((1+£o)/2: ^zC*!?1"1)) (see Lemma

5. 91} and the statements preceeding theorem 7. 4) , we have only to prove

(3 (A: V)/) (ft>) =*'r-(--""(5tt)(J: V)/) (co)

when /eL2i(3_£o)/2 which is dense in I/2,(i+eo)/1. Let /eL2>(3_£o)/2. Put

f 0) G(s) (A + f 0 : V)/,

W,r: ^^CWr^-^g-'^^'^^^CJR^ + fO: V)/) (r-),

1} Plus some arguments involving the limiting absorption method (Theorem 3.1).
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iO: V) f) ( / • • ) ,

Since G(A + zX): Y)/eL2i(1,£o)/2 by Lemma 5.3 and G(s) (Z 4- /O: F)/

eL2>(1+£o)/2 by Lemma 7.3, we have M, w(s) eZ,2i_(lTeo),2.2) (A + fO) w, 5) (A
(s) eZ/2 ,_(i_eo)/2(-Ei) by Theorem 3.1. In consequence,

fji*i

from which we see that there exists a diverging sequence {rm} such that

as OT-^OO

r-E° f |«|y5->0, r-£» f |a«|fJ5-»0,
J|o?|=rm J|a:j=rm

r^ f ]^«!2J5->0, rj f |^««|'rf5-*0.
J|x!=rm J\x\=rm

Now Lemma 5. 16 (2) furnishes

(0, 5 (A: V) /)*,«.-„ =lim(0, EF a,rro: V)/)£l(S.-,, ,
m-»oo

(0, 5 (s) (A: V) /) i.u.-t, = Urn (0, SF (s> (2, rm: V) /) ^s..,,
771 ->CX)

for all (j)^Lz(S
n~l) . Since lim Y(ro>, A: V) = Y^ (oJ, A: V) by Lemma 7. 7,

we see that

lim (0,2 (A, rm:
77Z— »oo

- lim (0, e<™-k" 3 w (A, ;•„: V) /; i,,^.,,
m-»oo

— (<i> pW»(.,KV)q'(*'> /;. T7V n— ^9), ̂  j: (/. v ) j ) LZ(SK-V ?

which shows 5 (A: Y)/= ?"'-(-1: 7) E? <s) (A: V)/. @]

Theorem 7. 9. Z/e^ V^ V be compactly supported. Tlien we

have W(V)=S(V).

Proof. Since both W(V) and £(V) are isometric by Theorems 2. 3,

5. 5 and 5. 11, we have only to prove (W(V)f,g) = (Q(V)f,g) for /, g
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in a dense set of M. Let /GE ff'1 (C0°° (R
n- {0})), geL2.(1+£o)/2. We have

by Theorem 7. 1 and Lemma 7. 6

(W(V)f, g) = lim(eu*™e-t'"'-a<»Knf, g)

= (W(a(V) ff-'Ee-^'

By Theorem 7. 5 we have

, g) = ce!!) (V) 2 -'[e-4-^ ">/(?)], g)

Recalling the definition of EFo(A), we see that

Therefore,

(W (V) f, g) = f "
Jo

= f"
Jo

= f™
Jo

(by Lemma 7. 7)

(by Lemma 7. 8)

§ 80 Proof of Theorem I. I

Let X(f, £: V) be as in Lemma 2. 2. Let {Vm} be a sequence in

V= V§ such that Vm has compact support and Vm-^>V in Fl The ex-

istence of such a sequence {Vm} is guaranteed by the fact that <? has been

chosen less than SQ. Let W(V), W(Vn), S (V) and S (Vm) be the wave
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operators defined by using the above modifiers X(g, t: V) and X(£, t\ Vm).

By Theorem 7.9 W(Vm)=S(Vm). On the other hand, since W(Vn)

-»W(V) strongly by Theorem 2.6, and since S (Vm) —»J2(V) strongly by

Theorem 6.6, we can see that W(V) =fi(V). The completeness of

W(V) follows from that of Q (V) (Theorems 5.5 and 5.11). 1

Appendix, Construction of X(g,t: V)

The purpose of this appendix is to give a proof of Lemma 2. 2,

Hormander [4] has obtained an exact solution of the equation

(9-1) —X(S9t:V)=V(2St + 7eX(S9t:V)')
dt

with a certain asymptotic condition at oo. His solution X(£, t: V) can be

used as a time-dependent modifier, i.e. the properties enumerated in Lemma

2. 2 are seen to be satisfied. We shall, however, state here another

method of constructing a time-dependent modifier.

A successive approximation scheme for (9. 1) is:

(9.2) Xco)(f, t: V) =0,

XW(S,t: V} = T V(2$s + reX«-»(e,s: V))ds + h ( f : V)9
Jo

.7 = 1,2, -

if jd>I,

i: V) = y(2^ + FfX
V) (f, ^: V))

here we have used the fact that 1/8 is not an integer, which follows

from our having chosen 8 irrational.

Proposition A8 1. XV) (£, t: V) is a real C~ -function of f^O and

having the following properties'. For an arbitrary compact set

KdRn- {0}, we have for all $^K and
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(1) iDfDTX^ (£, *: V) |<C(1 + *) '-"-5

(2) IflfCXO'tf ,*: V)-X«-"(f,*: Y))

(3)

(4)

ivhere the constant C does not depend on V in a bounded set of V,

but may depend on jy a, m.

(5) If Vn-^V in V, ^ve have for all a and m D^DfX(^(^t:Vn}

.t: V) poi?itzvise for f^O and t>0 as n-*oo.

Proof (by induction on f) . First let us prove (1) . (1) is true for

.7 = 0, since X™ (f , t : V) = 0 by definition. Assume (1) when j = k. We

have by definition

(9. 3)

F and (1) when j = k give

On the other hand, by (3) and (4) when j = k we get \Df$k+1(g: V) \

, which proves (4) . Hence we have

which proves (1) when n? = Q with j = k + I. (The dependence of C on

V and f can be checked easily.) The case m>~\. can be treated in a

similar way by differentiating (9. 3) with respect to t.

Next we show that (1) and (2) imply (3) . In fact, putting

(*. t: 6: V) = (7fV) (2^ + 0FfX
y> (*, t: V)

C, (?, t:V)=

we have
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f * Ay (2£i + 0FfX»> (f , i : y) + (1 - 9) FjX"-1' (£, * : F) ) ^
Jo 9(9

= f ' S (fl ) W, (£, * : fl : V) £>?
JO P^a\P/

(Leibniz' formula) .

since (1) and (2) yield for $<=K,

we have IDfAy (f, t: V) |<C(H-/) - t f r l ) t f , which proves (3). Thus, in

order to prove (2) and (3), we have only to prove (2) with j = k + l.

Let N be the integer such that Nd<l and (N+l)S>l. We have

Df (X(&+1) (?, f : V) -X™ (f , /: F) )

Using (3) with j = k we see that

which proves (2) for j = k-\-l.

The proof of (5) is easy and straightforward. Q

Proof of Lemma 2. 2. We choose the smallest positive integer j

such that C/-fl)<y>2 and set X(£, t: V) =X(j}(?, t: V) . By definition

Thus all the assertions follow from Proposition A. 1.
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