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The Cauchy Problem for Hyperbolic Systems
with Variable Multiple Characteristics

By

Hitoshi UrRYU*

§ L. Imiroduction

Recently the Cauchy problem for weakly hyperbolic operators has
been studied by many authors. In case of equations with constant multi-
ple characteristics of multiplicity 2, Mizohata and Ohya [7] gave a neces-
sary and sufficient condition for well-posedness of the problem. For the
case of higher multiplicity the problem was solved by Flashka-Strange
[8] and Chazarain [9] by introducing a generalized Levi’s condition. For
the case where variable multiple characteristics are concerned, Oleinik
[3] obtained a sufficient condition for well-posedness to the equations of
the second order. Further, Menikoff [2] extended Oleinik’s results to
the equations of higher order. Then Ohya [1] simplified Menikoff’s proof
through extending the method in [7] in a natural manner.

For weakly hyperbolic systems with constant multiple characteristics,
either necessary or sufficient conditions for well-posedness are given by
Petkov [4], Yamahara [5] and others (c.f. Demay [6]).

In this paper, we shall give a sufficient condition for the Cauchy
problem to be well-posed to a first order hyperbolic system with variable
multiple characteristics. The proof is done by a method along the ideas
of [6] combined with the method of [1].

I should like to express my sincere thanks to Professor S. Irie and

Professor T. Kakita for their valuable suggestions and kind encouragement.

§ 2. Statement of Results

Consider the Cauchy problem for the first order system of equations,
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n

Q) M[u]=Du— 121 Aj(z, t) Dyu—B(x, t)u=f(z,t) in R"X[0,T]

u(x,0) =u,(x)
where A;(j=1,-,n), B are NXN matrices with entries in % (R"
X [0, T1), w. u and f are vector valued functions with N components.
We denote D,, D, as usual by —i9,, —i0, respectively.

The Cauchy problem for (1) is said to be well-posed for the future
0<t<T in the space H *(R") (=H =) if (i) for each given u,(x)
€ H ™ and f(x,t) € B ([0,T]: H ) there exists a unique solution z
eB ([0, T]: H =) of (1), (i) linear mapping (uy, f) —u is continuous
from H*XB(0,T]: H =) to B(O0,T]: H=). Here, H =(R"
=N IEIS (R™ with the topology: f; converges to 0 in H = (R™ if and
onierif for any real s {f;} CH' (R") and f; converges to 0 in the space
FF(R"). Since Banach’s closed graph theorem (i) implies (ii), we may
consider only the existence and uniqueness of solution of (1). Let g;

(z,t,8) for 1<i<s and A (x,t, &) for 1=f< N—s be the whole charac-

teristic roots of the equation of:
det (r]— jZ} Az, 8) =0 for all (z,2, & €R"X [0, T] X R",
Thus we have the equality
det (:T =35 Ay (&, 08 = ] e=2) [T =100.

We assume that for all 7 and j

Q) A(x, 2, 8), u(x, t,§) are real valued smooth functions and
() gy if iR, LFEA AL {557 and Rl if DA
Now let

N—s s
a(x: t5 5’ :-) = ]I;[l (f—/zj) > B(JJ, t7 5- T) zg(f—/l;) ’

P(x.t, 2,0 =cI—1] A4z, D&,
=1

and Q(x, ¢, &, ) be the cofactor matrix of P. For convenience we use
the notation x,=¢, §=7. By S™(=S%k) we mean the well-known class
of symbols of pseudo-differential operators with respect to z. S™ is a

Frechét space with the semi norms:
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plT= maxl sup{| Dgpep|(EY"™H1el}

la+8]<i

Let S™ be the set of symbols 2 (z, zo, & &) = 3 A (x, 2o, §) €] where
=)

a;(x, xp, &) € B ([0, T]: S™ ) for j=0,1,---,m. We denote by P a

pseudo-differential operator with symbol P&S™

Theorem 1. Assume that there exist symbols X, X857 of
pseudo-differential operators satisfving the following equalities for
some matrices K;, K;e B([0,T]: SV (=1, ).

M) {5 (DyP0.,Q— Dy, 8D + PX—BO} (@, o 6 1) = (5= 1) K5

(I) ’ {Zo(DéanrjP_Dé]aa.tjlgI) +XP_QB} (-’1:, Zo, E: /lj) = (,a]_‘lj) Kf .
5=

Then the Cauchy problem for (1) is well-posed in the space H * for

the future 0<x,<T.

Suppose #;(x,0.8) =1;(x,0,8§) for i=1,---,s. Then

Theorem 2. Assume that there exist svmbols X, X=S¥* of

pseudo-differential operators satisfying the following equalities for
some K;, ;e B([0,T]: 8% (j=1, -, 5).

an {f‘:o(De!Pan — De,aaij’]) + PX— BQ} (x, x, £, /1)
= (- K;/x,
D’ {3(DyQ0.,P—Dyad.,8D +XP—QB} (&, 20,6, 1)

= (45— 4) Kj/xo .

Then the Cauchy problem for (1) is well-posed in the space FH ™ for
the future 0<x,<7T.

Remark. It is easy to see that in the above conditions (I), (I)’ and

dI), I)’ can be replaced u;(x, zy &) by A (x.xy &) respectively.

Example of Theorem 1. Consider the Cauchy problem for the
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system

® e[y e ] mxon

where £ is a neighborhood of 0 in R. When we take X

= [8 —-z'(ao+l )} and X:[_i(é’_d) 8:| then each left hand side of

, 2al —el — (2al+ce) (2b+ey)l
(D), (@) becomes [201 —2i(a+/1¢)/1+ce] and [ 0 0

respectively where A=x". Hence if e(x) ¢ (x, £) =2 K (z, £) with K(z, )
e B (2% [0,T]) the above matrices are divisable by 21. Therefore the
Cauchy problem for (2) is well-posed.

Example of Theorem 2. Consider the Cauchy problem for the

system

au_[t" 1 ](M [cz b] . .
3 2 = == R'x [0,T7.
) ot 0 —¢* 0:c+ c d " [0, 71

When we take X = 0 O. and X= id 0 then each left hand side
0 —zia 00

, 2al 0 —2—2ak—c —2b2
of (I), (AI)” becomes [261 c+2(al——/l,)] and [ : 0 0 ]

respectively where 1=¢*. Hence if c¢(x,t) = 'K (x, ) with K(x,?)
e B (R'X[0,T]) the above matrices are divisable by 21/¢. Therefore
the Cauchy problem for (3) is well-posed.

§ 3. Proof of Theorem 1

We use the following norms.
|| is the L*norm of u;
|«|ls is the Sobolev norm of z ie. [ul,=]| 1+ |2 (&) |
where # () = J\ei’”eu (x)ds;

| D"u(x, xo) | = sup | Diu(x, Zo) [ n-s3
1< jSm

Before we prove Theorem 1 we need following proposition.
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Proposition 3.1. Let us B ([0, T]: H"*) be a solution of the
Cauchy problem for a pseudo differential operator

4) (@l+C) (BI+ D) Iu+ Ry_yu=F B ([0, T]: HY)
(Diw) (z.0) =¢;(x) € H*Y -1 (j=0, -, N—1)
where ¢(C)=Ce8"*Y ¢(B)=Dc8 ' and 0 (Ry_) =Ry,=5"2

Then we have the following energy inequalities.

N-1 -1
® 1D Sconst {2 10yl nest I DLFO) oo

+ [M1on @4

for 1=0,1,---.
The proof is based on the following two lemmas.

Lemma 3.2. Let P=P,I+R,_, be a pseudo-differential oper-
ator such that P, is a strictly hyperbolic operator and R,_, is an
NX N-matriz pseudo-differential operator with symbols in S™ .

Then we have
© | D < const (| D7l + | D (P) )
Ly

for 1=0,1, --- .

Lemma 3.3. If us B ([0, T]: II’) is a solution of (4), then we

have

N-1 l
@ 1Dz (2, 0) [ = const {105l wsiyaat 25 1 (DS (0) fucsssh
for 1=0,1, ...

Proof of Proposition 3.1. Let us denote S=a@l+C and R=8I

4+ D. Then we have another system of pseudo-differential operators
) Ru=v
Sv=F—Ry_,u.
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By Lemma 3.2, we immediately have

® di—ll DV 'y || < const.{| D"**~'u| + | D"v |}
Ty

(10) ZZd;" D=ty || < const. {| Do || + | D' (f — Ry—at) ||}
0
< const.{| D*"*1o|| + | D**¥2u| + | D' f|}.

Summing (9) with /’=[+N—s—1 and (10), we have

.

72 P ul + [ D)
0

=const. {(| D"*"*u| + | D***""1v|) + | D'}
Then Gronwall’s inequality implies

an | D ¥ 2u|| + | Do Zconst. {| D' *u (x, 0) |
HID @ 0 |+ [TID @9 1.
On the other hand by Lemma 3.3 we have

A2) 1D (o, 0) | S const. {5 [0y lsr-s-s+ 2 (DF) @, 0) ios-s

A3 D0, 0) | Sconst. (3 0slrssoscs+ 2 DF) (2, 0) fiid

Now the estimate (5) follows from (11), (12) and (13).

We also need the energy inequalities for the adjoint operator T* of

T= (aI+C) (BI+D) +Ry-_,.

Proposition 3.4. Let T* be the adjoint operator of T= (al+C)
(BI+ D) +Ry_,. Then there exist pseudo-differential operators C, D
and Ry, with symbols ¢(€) €5, ¢(D) €5 and o (Ry_,) e5v
respectively, satisfying T*= (BI+D) (al+ C) +Ry_,.

Proof. Let us calculate a symbol of T

5(T) =afI+aD+HC+Y; Dyads A1
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where = means modulo functions of S¥ % Then

C(T* =aBI+Y D, (af) [+ D+BC+ i, D00, 1
=0 7=
— Bl + jiO@,JaDEJ,BI + B (D:0.,0) 1 +T)
- -~

Ty {ﬁ;ﬂ(peja,je) 1+D}.
=
Thus if we take € and D in such a way that
¢(€) =3 Dy, al+'C and ¢ (D) =3 Dyo, 3I+'D
j=0 Jj=0

then we have T*= (BI+D) (@l+C) + Ry,

We define a sesqui-linear form {u, v> on L*([0, T] X R") by
T T R
14) <, o> = Jf (), 0 ) di= j j w(z, ) (>, £)dzdt .
0 0 Rn
Then we have
15)  {Tu, vd>=<u, T*v> for u,veC=([0, T]: (Cy(R™)") with
Div(x, T) =0, Diu(x,0) =0 (i=0,1, -, N—1).
For the Cauchy problem
(16) Tu=f
Diu(x,0) =0 (j=0,1, -, N—1),

the energy inequality

a7 | D¥*12 () | <const. L | D(s) | ds

holds by Proposition 3.1. For the adjoint Cauchy problem
(18) T*v=g
Div(x, T) =0 (=01, -, N—1)

we also have the energy inequality

a9 |D" (o) | Seonst. |10 (5) s
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which is derived from Proposition 3.4 and the proof of Proposition 3. 1.

Let us consider a weak form of (16)
(20) Su, T*0p={f,v)
Diu(z,0)=0 (j=0,1, -, N—1)
for any weC=([0,T]; (Cz(R™)") with Djv(z,T)=0 (j=0,1,
N—1). Then from (19) we obtain

<pol=( [1r@izas)”( [(e@par)”
<const.( [ 1r@ 1taz)”
(' [1p=ro1cro) oy 1as) as)
<const.( [ 1r@ Itaz)”

<([T1Dre e @)

Hence this inequality combined with (17) admit existence and uniqueness
of the solution to (16) by Nirenberg’s method [10]. Consequently we

proved

Theorem 3.5. The Cauchy problem for (4) is well-posed in the
space H = (R™) for the future 0<x,<T.

Now let us prove Theorem 1.
(1) Existence
Let v B ([0, T]: H***) be a solution of the Cauchy problem

21 M@+ X)v=Ff(z,t) €SB ([0, T]: H) in R*"X[0,T]

(D} o) (x,0) =¢;(x) eH" Y1 (=0, .-, N—1).
Then with ¢y, (x) =u,(x) and ¢;(x) =0 (G=0,1, ---, N=2), u=(Q+ X) v
will give a solution to our system (1). Therefore it remains only to
prove the well-posedness for the Cauchy problem (21). Theorem 3.5

combined with the following lemma gives the existence of a solution to
the problem (1).



CAUCHY PROBLEM FOR HYPERBOLIC SYSTEMS 727

Lemma 3.6. Under the condition (I) there exist symbols of
pseudo differential operators CES¥ "1, D=5 and Ry_,=S"* such
that

(22) M@Q+X) = (al+C) (BI+D) +Ry-,.

Proof of Lemma 3.6. We start with calculation of the symbols
of M(Q+X) and (@l+C) (8I+ D). From the formula for symbol of

the product of operators it follows

(23) C(MQ+X))=det(P) I—l—jnzo D,,Po,,Q—BQ+PX,

@9  o(@l+0) (BI+D)) =aBl+ jZn—oDﬁa'@IjBH— aD+4C.

Therefore all we want to do is to determine the symbols C=SY*"! and

D& S so that

F(M@Q+X))=0((al+C) (BI+D)).

Then we obtain
(25) EO{DQPO,,Q — D,,0.,8I} + PX—BQ=aD+fC.
Putting &= (x, 2y, &) into (25) shows

(354D, P9, 0~ Dexd, 81} + PX— BO] (z. 70 &, 1)

i

N-s
IE (ﬂ]"‘lk) D(x' Xy, !&: /uj) .

By the condition (I) of Theorem, the left hand side is equal to K; (x, xo,
& (#;—1) where K;€ B ([0,T]:S"*. Hence we have

N-—s
(26) D(xs Lo, 59 /lj) = [Hl (:u.] —}‘k) ] _le (JC, oy E) .
ixk

Because D (x, x,,&,&,) is a polynomial on &, we have such a repre-

sentation as
(27) D(‘T’ xO} Ev 50) = Sg—lDl <~r7 xO; $)

+$g—2D2 (xa Zo, 5) + +Ds (‘T’ Zo, 5)
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where D;e B ([0,77]:5). Replacing 4 (z, x5, &) (=1, ---,s) for & in
(27) yields

ﬂi—lDl (x, Zo, E) + e+ Ds (.Z', T, ‘E) =D (.’L‘, Zo, 57 /'tl)
(28) : :
ﬂ:—lDl(‘r7 Ly, S) + e +Ds(x7 g, S) =D (xa Zo, 5’ ﬂs) °

Denoting (7, 7)-element of D, (x, xz,, &) by di and (7, ) -element of D(x,
Zo, & M) by dy, we simply have

wdy+ e+ dy=d,
(29) : :
L+ + dy=d, .

We can solve this system for 4, ---, d; since the coefficients make Van
der Monde’s determinant, so that we have d,€ B ([0, T]: S*7") since a,
€ B ([0, T]:S*Y. Therefore we can determine D&S*!, and also C
&8¥*"! from Remark in § 2. The proof of Lemma 3.6 is completed.

(ii)) Uniqueness
Let u be a solution in B ([0, T]: H"¥ %) to the problem:

(30) Mu=0
u(z,0) =0.
Then « satisfies
(31) (Q@+X)Mu=0
(Diw) (x,0) =0 for j=0,1,--, N—1.

The uniqueness proof of (30) is thus reduced to that of (31).

Lemma 3.7. Under the condition (1)’ of T heorem 1 there exist
symbols of pseudo-differential operators CS5¥*Y, DeS " and Ry,
5% 50 that

(32) Q@+X) M= (al+C) (BI+D) +Ry_,.
Lemma 3.7, Theorem 3.5 and (31) imply «(x, £) =0. Hence we proved

the uniqueness of solution (1).

Proof of Lemma 3.7. Since
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33)  c((Q+X) M) =det (P) I+ 120 D00, P—QB+XP,
and

34 o ((al+€) BI+D))=aBl+ jZﬂ_oDe,cwI,BH— aD+aC

we want to determine symbols (Njeg‘v‘s“l, DeS! so that
(35) 7 ((Q+X) M) =0 ((aI+C) (BI+D))

or equivalently
(36) 31(D,/00,,P— D;,0.,81) + XP—QB=aD +6C .
i=

By virtue of the condition (I) this can be carried out in the same way

as the proof of Lemma 3. 6.
Finally we give the proof of Lemma 3.2 and 3. 3.

Proof of Lemma 3.2. Since P, is a strictly hyperbolic operator

we have P, (x, zy, &, &) =11 (50— 4 (x, 20, §)) where {4} <j<n are all real
i=1

and distinct. We shall denote by 0; the operator D, —4;(x, x,, D,) (U

=1, ---,m). Then we can represent P, in such a way that
Pm (.Z', Lo, st D-’L’n) = amam—l"'al—{" Qm—l (—ta Ty, D:c) D:cq)

where Q.- (x, x4, D, D;) is a pseudo-differential operator with the sym-

bol Q... (x, x,, &, &) =51 Hence we have
(37) P:PmI+ Rm-l = amam—] "'all+ﬁm-~l (~T~ Lo, Dm D:z',,)

where R,._,(z, zo, Ds, D,) is a pseudo differential operator with symbols

in S  Further we can represent ﬁm_l (z, xy, D,, D) as follows:
~ m—1
(38) Rm.—l (xy Xy, Dz‘} DJ.‘.,) = 20 rm—j—l (SC, Lo, DJ‘) a_7'6_7'—-1“'01
=

where symbols of entries of r;(x, ), D,) belong to B ([0, T]: S5 (=0,
1, ., m—1). Let us put

(g, +++, tty, Oy2ty, ==+, Osty, 0501241, ++*, Oym10m—z*0sty)

0 [ 0 1 1 -1
= (uls Ugy =y Uy, Uy 0y Uyt lt% )

and
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t 0 0 -1
U: (ul’..-, uN,..-, u% ).

By (37) and (38) the system of N equations Pu=f can be reduced to the

following new system of Nm equations.

(39) D, U=H(z, 2, D;) U+ F
where
11‘ 1 .
b8 " 1 0
40)  H(z, ) = B
O k’"—.l 1 .
o 1
g r 1ot Anl

and F=°(0,0, -, “f). Put V='(A+D™u, -+, (A+1)™ ',
A+ ™%, -+, ™) in (39) where A is a pseudo-differential operator
with symbol |&|. Then we have

(41) D,,V=H,(z, z, D;) AV+ B (z, 2, D;) V+ F
where
L1
/zlzz 1 0
42)  Hiz w9 = ot
0 i1
An

Ly (x, 20, €) =25 (, 20, £) |67

and B(x, x,, D,) is a pseudo-differential matrix operator with symbol in

I, 10
B0, T]: 8. As is well known, /12.:‘1 has a diagonalizer (ay)
0o .

with  ay (x, 24, &) € B ([0, 77]:S5%. This makes it possible to choose

L(x, zo, &) = (as; (x, 20, £) I) as a diagonalizer of H,(x, z,, §) where I is
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an NX N unit matrix. Finally putting W=L (x, z,, D,) V we get the

following system
(43) D, W=H,(x, xy, D;) AW+ B (x, 2, D) W+ L (x, z, D;) F.

LI 0

Here H,(z, z,, & =( > and E(x, xy, D) is a pseudo-differential

0 1.l
operator with symbols in B ([0, 77]:5". Therefore we can obtain
2| DW |< const. {| D'W | + | D'F |}
dxo
for [=0,1, ---.
This estimate and ellipticity of L imply (14), which proves our Lemma.
Proof of Lemma 3.3. Note that (4) implies
N-1 )
(49 Diu=7] a;(x, o, D;) Diu+f
7=0
with a; (x, 2, &) € B ([0, T]: S¥7). We obtain (7) by differentiation of
both sides of (44) with respect to x,.

§ 4. Proof of Theorem 2

Consider the Cauchy problem
(45) MQ+X)u=f
Diu(x,0)=¢; (=0,1,:-, N—1).
Then we have

Proposition 4. 1. Under the condition (II) of Theorem 2, the

energy inequalities

(@6 1Dt Zconst [T 10 ln-simat S DLF O ly-sim

+ [0z ) 1

holds for 1=0,1, -+, where m=2({(—1) +N—s+m’ and m' depends
only on operator M(Q+X).
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In order to prove Proposition 4.1 we need the following three lemmas.

Lemma 4. 2. Under the condition (II) of Theorem 2 there exist
symbols of pseudo-differential operators C=8Y ' and DS such
that

(47) M(Q+X) = (al+z7'C) (BI+z:'D) + Sy,

Nos—1 _
where 0(Sy-2) = 2 b;(x, 20, §, §0) 2 V™2 with bjESN_j—?‘.
j=v

Lemma 4.3. Let P=P, I+ x7'P,_+P,,_,+ -+ P, be a pseudo-
differential operator such that P, is a strictly hyperbolic operator
and each P; (j=0,1,-,m—1) is an NXN matrizx pseudo-differential
operator whose symbols belong to S?. Then we have the inequali-

ties:

48) 4 (D
dxo

[
9 < const, {[| DVt |2 3| DIy |/
k=0

+ x| D' (Pu) ||}
for [=0,1, .-,

Lemma 4.4. If u is a solution of (45), then we have

N-—-1 l
(49) [ DZu(x,0) “séconSt-{jz=‘;0”¢1”1v+l—i+s+i2=1” (D) () li-er st
for [=0,1,---.
Proof of Proposition 4.1. To the proof we apply the same argu-

ment as in the proof of Proposition 3.1. Putting S=a@l+2;'C and R
=RI+x7'D in (47) leads to

(50) Ru=v

Sv=f—Sy_u.
Let w(x, x,) be defined by u(x, x,) =x,w (x, x,). Then we have
(51) Rw=x;"(v+ Ew)

Sv=Ff—8y_, (x,w)
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where ¢ (E) €8'. Thus, the following inequalities hold by Lemma 4. 3.
(52) (1D ) Seonst. (| DY
0

N—-j—s—1+k , ,
+ Z |IDE+N—2—_1—1 "(U”Z/.Z‘%l +1
g

N~—j~s—1+4

+ Z ”Dkq’-ﬂ'——j—-l——s——l’v "2/x(2]l’—il},

1’=0

(53) g—(" DE-I+¥-s-1, ”2) gconst. {”Dk_j.,.N_x_l'v ”2
Lo

k—j
DE+N—s-1-j-1
*zl v

IZ/x%l’rl

+ 20| D £ + 2| D*7 Sy o (o) |-
N—-s—

L N .
Since 6(Sy_z) = >, b;2z79Y"® where ;€577 Lemma 4,2 gives
=0

N-s—-1

k—j+
(54) |D*Sys(avw) 'Sconst.{ 33 [ DIV (zgw) /23 )
1’=0

FEN—s—

k- 1
<const.{ Y |DFIr¥-tVey| /30 40}
=0
Combining (53) with (54) implies

65) LD 0 ) Seonst (| DY
Xy

k—j
+ D DYy [ | DR

k=gl k—j+N—2-1__|[2 /.20 +]1y
+ 2 ID wl|*/xi" ).

Hence we obtain, by summing (52) and (55),

(56) di(||pk+ﬂ—2—fw||2+ | D¥=5+5=1-15 ) < const. {| D**¥ iz ?
Xy

—j+N-—

k—j+ -1
+ n DN—s+k~j~1v]]2+ VZU (IIDI:——N—j—l_s_l'vnz

+ | DI ) [ ol DA £

Now we define a function @ of x, by
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k+N-s—1
67 O()=% X (D Iw| | D)) /2

Then from (56) it follows that

N—s5—
d(xf (x0)) <y () + cO () + const. i HZ 1x%”ch—jf" 2/ 3i 1
Xy k=0 j=0

:
<7z (x0) + O (x0) + const, xz* =D 3 DE |2/ 23¥
k=0
where 7 and ¢ are positive constants depending only on equation (45).

Hence we have

(58) fc— (27°*" exp (—T20) 0 (25))

i
<const. z;7° exp (— 7o) 2 2F VI | DE £/ 2iE
k=0
To make the value [zy°*'exp(—7xy) @ (x,)]s,-0 finite when integrating
both sides of (58), we redefine a formula @ (x,) by replacing
N+4m
(59) z(x, 20) =u(x, 2) — 3 (ixe)' Diu(z,0) /5!
i=0
for u=x,w in (57). Here m is a suitable integer specified later. Then
2z (x, x,) satisfies
(60) s=g
Diz(x,0) =0 for k=XN+m
N+m
where T=M(Q+ X) and g=F—T(>] (Gxo)? Diu(x, 0)/j!). Since
i=0

Dk g(x, 0)=0 for k<<, we have g(z, xy) =;];-' j;% (2o — )" (D))" 'g(x, s)ds
and then
(61) | D'g (o) |*< const. z5™~0*! j;xa | D*DF g (x, ) ||*ds .

Now from the estimate (58) for = (x.x,) =x,@ (r, x,) and (60) we im-

mediately have
(62) Di @ (x,0) =0 for k<N+m—1,
Diw(x,0) =0 for kEXN+m—s—1.

Thus for our purpose we must choose m so that
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2(N+m—1) =2k +N—-2—75 + (2j+1) + (c—1),
2(N+m—s—1)=22(N—s+k—j—1) + (Zj+1) + (c—1)
for j=0,1, -, k+N—s—1,k=0,1, -, L.
Therefore we may take m>1—|——]2“— ¢, which implies
[ exp (—720) @ (%) 12,-0=0.

Carrying out the integration over [0, x,] in (58) we obtain

z 4
| D=2 (x,) |*< const., x§ exp (7x0) j sTEE=s=h=ett 30 DEg |12/ s* ds
0 k=0

Z,
< const. z§ exp (7o) j SsTHSahoe i Dig|igs
0

and further, taking (61) into consideration we have
x
0

(63) | D=2 (z00) |2< const. j "S—Z(N-s_x)-c+1—zz+2(m—1)+1ds

x L | DD (s) | 2dis .

Here we choose m so that —2(N—s—1) —c+1—-2[4+2(m—1) +1> -1

ie. m>2({—-1) +N—s+c_2_1. Then we have

60 D () PSconst. [ 1D Dr g (9.
0

If m>2(—-1) —}—N—s—{-—g——f—l then sm satisfies both m>l+% and

m>2(l—1) +N—s+c_2—1. Consequently we put in (69) m=2(I—1)

+ N—s+m’ where m’=[%]—|—2. Thus we have easily from (64) for

z (x, x) =x2,W (x, 20)

(65) 1DH775 (2, ) [ eonst. 1 DD (5) s
0
N+m
Since u(x, xy) =2 (x, x5) + Y ((x))’ Diu(x,0)/j! we finally obtain
=b

N+m
(66) 1D***u (x, zo) [*< const.{ 3] | Di,u(x, 0) 115
JF=0

+ [1DDrea 9 s
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which, combined with Lemma 4. 4, yields the estimate (46). Therefore

we have completed the proof of Proposition 4. 1.

Now we shall return to prove Lemmas 4. 2, 4. 3, 4. 4.

Proof of Lemma 4. 2. We shall calculate the symbols of M(Q+ X)
and (@l+z;'C) (BI+ xi'D)

(67) G (M@Q+X)) =det (P) I+ 2 D, Pd,,Q—BQ+PX |

(68) 7 ((@l+x7'C) (BI+zi' D)) = afl+ z] Dy,ad, 81

+xi" (@D +BC) +Ry-s

where

Ry_y=x7°CD + 2 {De,ad., (27 D) + 2" Dy,C0s, (B + 2" D)}
S DT (@l + z7'C) 0% (BI + 27 D).
Irlz2 v

We take Ce 87! and DeS5*! so that
33(D,,P0.,0~ Dyyad. 1) + PX—~ BO =i (aD+O),

which can be obtained by the similar way to the proof of Lemma 3.6.
Let Sy_,=0c(M(Q+X)) —0((@l+x7'C) (BI+x;'D)). Then

—Sy..=z7*CD+ _ﬁo{De,aaI, (D) + 25 Dy Co,, (B + zi* D) }
i=

+ 2 Di@l+2i'0) 0% (BT +5D).

g

The last term of the right hand side is

51 L Dradn (81 + D) + b} —xu ' DICo% (B + z* D)

171227’
=I+1I.

Since the order of & is N—s, all the elements of I vanish when 7,
>N—s. Also since the order of C is N—s—1, all the elements of IJ

vanish when 7,>N—s—1. Thus we have
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N—-s—1

SJ\'— 2= bj (-’r9 Loy 5’ SO) o ShR \Vith bj = SN_Z—j.

s—
=0

Proof of Lemma 4.3. We remark the same method as the proof
of Lemma 3.2 reduces the system of N equations Px=f to the system of

Nm equations as follows.
69) D, W=H,(x, xs, D;) AW+ x'B (, 20, D) W + L (, 20, Do) F

where H,, L are the same pseudo-differential operators in Lemma 3. 2 and
B is a pseudo-differential operators with symbols in B ([0, 7]:.5°. Then
(43) and the identity

DxDs (@ BW) = 3 9% ()*(%) Dz D (BW)
yield
(70) %(MDLWH?)gconst.{jizoxa<”+l>||0‘-fW1|2—»-nDanz
+ | (D'W, D'(LF))|}.
Since Schwarz’ inequality gives
|(D'W, D(LF)) | = | @t D'W, 2} D' (LF)) |

<const. {x; | D'W|* + x| D'F|| %}

we have
L
Y ;L(HD‘WUZ) <const. {3} x5 @[ DWW P+ [ D'W || + 2| D'F |} .
Zo =0
Finally combining this estimate (71) with ellipticity of L implies (48).

Proof of Lemma 4.4. The proof is done by the same method as

in the case of Lemma 3. 3.

Proposition 4.5. Let T* be an adjoint operator of T. Then
there exist pseudo-differential operators C, D with symbols o (¥]
el8" 1 (D) e8! such that

(72) T* = (BI+z7'D) (@l+x7'C) + 8y,
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N-—s—-1

where 0 (Sy-2) = 3 by(x, 70, § &) 27 U+ with b, SV,
i=0

The proof of Proposition 4.5 can be done along the same way as the

proofs of Proposition 3.4 and Lemma 4. 2.

Proposition 4.6. Let ve B ([0, T]: H'*"?) be a solution of the
Cauchy problem:

(73)  T*o=h(z, t) € B ([0, T]: '™ in R"X [0, T]
Div(z, T) =¢,(z) € H'-i*1=1¢m  (5=0,1, .-, N—1).

Then we have the energy inequalities:

T N-1
(74 J; | D0 Pde< const. {33 10y 5—ss1-10m+ | D* 2l s
=

+ [C1D @ sy

for [=0,1, -

where m= ({+s)ym’+1 and m’' is a non-negative integer depending

only the operator T*.

Proof. We can show the inequalities (74) hold using Proposition
4.5 by the same method of Ohya [1].

From Propositoon 4.1 and Proposition 4. 6 we can obtain the follow-

ing theorem by the method of Nirenberg [10].

Theorem 4. 7. Under the condition (11) of Theorem 2 the Cau-
chy problem (45) is well-posed in the space H = for the future 0<x,
<T.

To the Cauchy problem
(75) @Q+X) Mu=f

(Dig) (x,0)=¢; (j=0,1,--, N—1)

quite the same method of proof as Theorem 4.7 can be applied, as is
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easily seen. Therefore we have

Theorem 4.8. Under the condition (II)' of Theorem 2 the

Cauchy problem for (75) is well-posed in the space H = for the
Suture 0= x,<T.

Now we can complete the proof of Theorem 2, by using Theorem

4, 7 for the existence theorem for (1) and Theorem 4. 8 for the uniqueness
theorem for (1).
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