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The Cauchy Problem for Hyperbolic Systems
with Variable Multiple Characteristics

By

Hitoshi URYU*

§ 1. Introduction

Recently the Cauchy problem for weakly hyperbolic operators has

been studied by many authors. In case of equations with constant multi-

ple characteristics of multiplicity 2, Mizohata and Ohya [7] gave a neces-

sary and sufficient condition for well-posedness of the problem. For the

case of higher multiplicity the problem was solved by Flashka-Strange

[8] and Chazarain [9] by introducing a generalized Levi's condition. For

the case where variable multiple characteristics are concerned, Oleinik

[3] obtained a sufficient condition for well-posedness to the equations of

the second order. Further, Menikoff [2] extended Oleinik's results to

the equations of higher order. Then Ohya [1] simplified Menikoff's proof

through extending the method in [7] in a natural manner.

For weakly hyperbolic systems with constant multiple characteristics,

either necessary or sufficient conditions for well-posedness are given by

Petkov [4], Yamahara [5] and others (c.f. Demay [6]).

In this paper, we shall give a sufficient condition for the Cauchy

problem to be well-posed to a first order hyperbolic system with variable

multiple characteristics. The proof is done by a method along the ideas

of [6] combined with the method of [1].

I should like to express my sincere thanks to Professor S. Irie and

Professor T. Kakita for their valuable suggestions and kind encouragement.

§ 2« Statement of Results

Consider the Cauchy problem for the first order system of equations,
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(1) M[u] = Dtu - f] A, (x9 t) DXju - B (x, t) u =f (x, £) in Rn X [0, T]

where A5 (j=l, • • • , n) , B are NxN matrices with entries in 3$ (Rn

X [0, T]) , UQ, u and /are vector valued functions with N components.

We denote D^ Dx as usual by —idt, —idx respectively.

The Cauchy problem for (1) is said to be well-posed for the future

0<^<T in the space H~°° (jRn) ( = H'00) if (i) for each given u,(x)

^H~°° and f(x, f) €E 3$ ([0, T] : H~°°) there exists a unique solution u

e 3$ ([0, T] : H~°°} of (1), (ii) linear mapping (UQ, f) -*u is continuous

from H— X Q ( [0, T] : H~°°) to ^ ( [0, T\ : H-) . Here, H— (Rn)

= n Hs(Rn) with the topology: fj converges to 0 in H~°° (Rn) if and
sei?1

only if for any real s {fj} C H8 (Rn) and fj converges to 0 in the space

H3 (Rn) . Since Banach's closed graph theorem (i) implies (ii) , we may

consider only the existence and uniqueness of solution of (1) . Let fa

(x, t, <?) for l<Iz<^ and kj(x, t, £) for l^j<^N — s be the whole charac-

teristic roots of the equation of:

det (rl- ] Aj (x, t) ft) - 0 for all (x, t, £)^RnX [0, T] X Rn.
j=i

Thus we have the equality

det (r/- 2 A, (x, t) ?,) = 'flf (r-A,) IT (r- A) .
y=i /=i <=i

We assume that for all i and j

(i) A/(,r, £, f), /JLi(x,t,$) are real valued smooth functions and

(ii) A^A; if *'=£/, ^=^4, if z=^j and iu=£\} if z=^=j.

Now let

a(x, t, S, r) - ffS (r-^) , /Sfe i, f, r) =11 (r-/£ f),

and Q C^> £» f 5
 r) be the cofactor matrix of P. For convenience we use

the notation XQ = t, ?0~- By Sm( = S™o) we mean the well-known class

of symbols of pseudo-differential operators with respect to x. Sm is a

Frechet space with the semi norms:
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\p\T= max

~ m

Let Sm be the set of symbols p (x, XQ, f , £0) = T] am-f (x, jcQt ?) $$ where
y-o

a3 (x, XQ, f ) €E ,® ( [0, T] : Sm~y) for j = 0, 1, • • •, m. We denote by P a

pseudo-differential operator with symbol

Theorem 1. Assume that there exist symbols X, X^SN~Z of

pseudo-differential operators satisfying the folio-wing equalities for

some matrices KJ9 Kj^®( [0, T] : 5*v"2) (j = 1, • • -, 5) .

(I) <(DfJPdffQ - Df,adf,0I) + PX- BQ} (x, x0, ?, ^ = (& - & K, ,

(I) '

Then the Cauchy problem for (1) is ewell-posed in the space H~°° for

the future 0<,xQ<,T.

Suppose /JLi (x, 0, ?) =A{ (x, 0, ?) for / = 1, • • -, 5. Then

Theorem 2e Assume that there exist symbols X, X^SN~2 of

pseudo-differential operators satisfying the folio-wing equalities for

some Kj, g, e Q ( [0, T] : S*~*) (j=I,-,s).

(II) {(DtJPdfJQ - DtjadXJ0I) + PX- BQ} (x, x0, $ , /^

(II) ' {(D9lQ99,P- D^ad^I) + XP-QB} (x, XQ, f ,

Then the Cauchy problem for (1) is ^veil-posed in the space H~°° for

the future 0<^x0<;T.

Remark. It is easy to see that in the above conditions (I) , (I) ' and

(II) , (II) ' can be replaced jUj (x, XQ, $ ) by ^ (x, x0, f ) respectively.

Example of Theorem I. Consider the Cauchy problem for the
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system

dt L 0 — xkJdx L c d
L

where J2 is a neighborhood of 0 in J?1. When we take X

= [o -zYJ + A )1 and X=[~l^QX~d^ 01 then each left hand side of

rr\ /I'M, f2^ -*** 1 i l~— (2aA + <:*) (2A + O^1(I), (I) becomes [2a _2i(fl + £);i + MJ and [ Q Q J

respectively where i=xk. Hence if e(x)c(x, f) = xkK(x, t) with K(x9 t)

ej3(J2x[0, T]) the above matrices are divisable by 2/1 Therefore the

Cauchy problem for (2) is well-posed.

Example of Theorem 2» Consider the Cauchy problem for the

system

(3)
y O

When we take X =\ ® ° 1 and X=\^ ®] then each left hand side
[0 — la J L 0 ^ J

, /TTN ,TTN/ , ( 0 1 i r-2A,-2aA-c -2W1of (II), (II) becomes 0 , , 0 / •? ? \ and A nv /J v y — 0 J
respectively where A = tk. Hence if c(x,t)=tk 1K(x,t) with K(x,t)

e 3$ (R1 X [0, T]) the above matrices are divisable by 2i/t. Therefore

the Cauchy problem for (3) is well-posed.

§ 3. Proof of Theorem 1

We use the following norms.

H| is the Z/2-norm of u;

HI, is the Sobolev norm of u i.e. H|.= || (1 +|?|2)I/f0 (f) ||

where fi (f) - eix*u(x) ds\

|| Dm
W (*, o:0) || = sup || Di0^ (x, ^0) |U-y;

o^y^m

Before we prove Theorem 1 we need following proposition.
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Proposition 30 1. Let u^ $ ([0, T] : H1"^2) be a solution of the

Cauchy problem for a pseudo differential operator

(4) (al+ O G8I+ D) Iu + RN-ZU =/<= ̂  ( [0, T\ : Hl)

(i>4«) (x, o) =<p,(x) <=#+»->-> c/ = o, -, N-i)

where ff (Q = C^SN~s-\ ff(D) ^D^S3'1 and ff(RN.2)=RN-2^Slf-li.

Then xve have the following energy inequalities.

(5) IID'^-'wIl^const.Efl^ll.^.y^ + lill^. .-,-i

for / = 0, 1,-.

The proof is based on the following two lemmas.

Lemma 3,2. Le£ P = PmIJ
rRm-1 be a pseudo-differential oper-

ator such that Pm is a strictly hyperbolic operator and Rm-i is an

Ny^N-matrix pseudo-differential operator with symbols in Sm~l.

Then we have

(6) —|| Dl*m~lu || < const. {|| DH m^u || + || Dl (Pu) \\}
dx0

for 1 = 0,1,....

Lemma 3. 3. If u €E ̂  ( [0, T\ : IIs) is a solution of (4) , then we

have

(7) ||Z>*+'« (^, 0) ||. < const. {I |k,|U+,-y+. + ] || (£>'/) (0) ||,_f+.}
y=o i=o

/or / = 0 , l f - .

Proof of Proposition 3.1. Let us denote S^a/-fC and R = /3I

+ D. Then we have another system of pseudo-differential operators

(8) Ru = v

Sv =f— RN-&u .
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By Lemma 3. 2, we immediately have

(9) -^- 1| Zy'+'-'M || < const. { |i ZF +!-'« || + || Dl'v \\ }

(10)
xv

< const. {|| Dl**—lv || + || Dl+N-2u \\ + \\ Dlf\\ } .

Summing (9) with I' = 1 + N— 5 — 1 and (10) , we have

— (\\Dl+N-2u\\ + IID'^-'-^l)
dxa

*-2«|| + ||Z>l+Jir— 'wll) + \\Dlf\\}.

Then Gronwall's inequality implies

(11) \\Dl+N-*u\\ + ||I

+ \\Dl + »-s->v(x, 0) || + (X°\\Dlf(x, 5) \\ds}.
Jo

On the other hand by Lemma 3. 3 we have

(12) \\Dl+»-*u (x, 0) || < const. {I?|M^-2_, + Ell (£>'/) (*, 0) B,_U.
y=o t=o

(13) \D»*—*v (x9 0) I^const.igll^lU^^^ + gll (W (^ 0) || ,_,_,}„

Now the estimate (5) follows from (11), (12) and (13).

We also need the energy inequalities for the adjoint operator T* of

T=(a/+QG8/+ »)

Proposition 3, 4, Let T* &£? £&e adjoint operator of T=

(f}I-\- D) + RN-2. Then there exist pseudo-differential operators C,

and RN-2 with symbols (j(C}^SN~s-\ (J(B}^SS-1 and

respectively, satisfying T* = (J3I+&) (a/+C) +Ry-l.

Proof. Let us calculate a symbol of T

d(T) ^a@I+ aD + /5C+ 7] D,.adXJ0I
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where = means modulo functions of SN~2. Then

Thus if we take C and D in such a way that

0 (C) = H DeO al+ 1C and ff C0) = I
J=0 y=u

then we have T* = 037+0) (al+C) -4-JR^_2.

We define a sesqui-linear form <X tA on L2 ([0, T] X J?n) by

JO JO JRn

Then we have

(15) < Tu, vy = <w, T*v"> for it, v^C°°( [0, T] : (Cf (H71)) ^) with

A'v (^, T) - 0, D{u Lr, 0) - 0 (j - 0,1, • -•, N-1).

For the Cauchy problem

(16) Tu=f

D!u(x, 0) -0 (7 = 0,1, -, A'-l),

the energy inequality

(17) |iDN+l~2u (t) 11 ̂ const. f' |1 Dlf(s) \\ds
Jo

holds by Proposition 3. 1. For the adjoint Cauchy problem

(18) T*v = g

Dtv(x, T) -0 (7 = 0,1, -, ^-1)

we also have the energy inequality

(19) \\DN+l~''
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which is derived from Proposition 3. 4 and the proof of Proposition 3. 1.

Let us consider a weak form of (16)

(20) <

c,o)=o c/=o,i, -.N-

for any u €E C°° ( [0, T] ; (C5° (IT) )F) with £>/*> (x,T) =Q (j = 0,l,—,

N~l~). Then from (19) we obtain

/ fr \1/2/ CT

^>|<M 1 ||/(r) ||_,<fr I I h?~ \ J o / VJo

^ const. ( Tll/WIIVr
\ Jo

/ PT ( f*T
\ s I I / I I I Tls-F+2 /X I I ll-U (\ Jo \ Jo

^const.f I |/(f) ||!_s^\ Jo

Jo

2 \ 1/2

Hence this inequality combined with (17) admit existence and uniqueness

of the solution to (16) by Nirenberg's method [10]. Consequently we

proved

Theorem 3. 5. The Cauchy problem for (4) is well-posed in the

space H~°° (IT) for the future 0<^xQ<^T.

Now let us prove Theorem 1.

(i) Existence

Let velB([0, T]:Hl+N~2) be a solution of the Cauchy problem

(21) M(Q + X)v =f(x, t) e $ ( [0, T] : Hl) in Rn X [0, T]

N-^ (7 = 0, -,^-1).

Then with (pw-^x) =UQ(X) and <pj(x) =0 (J-=0, 1, • • • , N-2), u =

will give a solution to our system (1). Therefore it remains only to

prove the well-posedness for the Cauchy problem (21) . Theorem 3. 5

combined with the following lemma gives the existence of a solution to

the problem (1) .
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Lemma 3, 6. Under the condition (I) there exist symbols of

pseudo differential operators C^SN~S~\ D^S"'1 and RN^<=SN~Z such

that

(22) M(Q + A) = (al+ C) (01+ D) + RN-Z.

Proof of Lemma 3. 6. We start with calculation of the symbols

of M(Q + X) and (aI+Q(0I+D). From the formula for symbol of

the product of operators it follows

(23) 6 (M(Q + X) ) -det (P) 1+ ± D?jPdXjQ -BQ + PX ,
j = Q

(24)
y=o

Therefore all we want to do is to determine the symbols C<E:SN~s~l and

so that

Then we obtain

(25) J2iDltPdrjQ - Dtjadxj0

Putting f 0 — //y (x, xQ, ?) into (25) shows

[E <DtjPdr,Q - Dejad.r.t3I\ + PX- BQ] (x, .r0< ?, ,«,)

By the condition (I) of Theorem, the left hand side is equal to K5 (x, XQ,

?) fa-lj) where Ks e ^ ( [0, T] : 5^2) . Hence we have

(26) D (*, ^05 ?, /^) - fn (ft - 4) ] -% (^, x0, o .fc=i
y=v*

Because D(x,x0,f,£o) is a polynomial on <?0, we have such a repre-

sentation as

(27) D (x, *„ £ , f „) = fl-lD, (.r, x0, f )

A (x, xt, $ ) + • • • + D. (a:, x0, f )



728 HITOSHI URYU

where 7), e & ( [0, T] : #) - Replacing ^ (*, ;r0, ?) (j = 1, — , 5) for f 0 in

(27) yields

/<{- x A (.r, .TO, £ ) + • • • + A (*, *0, f ) = D (x, x0, £ , A)
(28) : :

/4"1 A (x, xQ9 f ) + • • • + A O, ^o, ? ) = -D O, ^o, ?, A,) .

Denoting (i,j) -element of Dk(x,xQ,£) by ^ffc and (z,j) -element of D(x,

XQ, ? , #*) by Jfe, we simply have

(29) ; i
A.1"1 !̂ +•••-!- <*. = £.

We can solve this system for dl9 --, ds since the coefficients make Van

der Monde's determinant, so that we have dk^ 13 ([0, T] : S*"1) since dk

[0, T]:^-1). Therefore we can determine D^SS~\ and also C

,,v-s-i £rom Remark in §2. The proof of Lemma 3.6 is completed.

(ii) Uniqueness

Let u be a solution in .3 ([0, T\ : Hl^N~2) to the problem:

(30) Mu = Q

u (x, 0) = 0 .

Then u satisfies

(31) ((? + !) Ma = 0

(££.«)(*, 0)=0 /orj = 0,l,- f2ST-l.

The uniqueness proof of (30) is thus reduced to that of (31) .

Lemma 3. 70 Under the condition (I) ' of Theorem 1 there exist

symbols of pseudo-differential operators C^SN~S~1
9 D^S8'1 and RN-2

*-2 so that

(32) (Q + 1) M= (al + C) 087 + D) + RN-Z .

Lemma 3. 7, Theorem 3. 5 and (31) imply u (x, t) = 0. Hence we proved

the uniqueness of solution (1).

Proof of Lemma 3. 7. Since
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(33) ff ( (Q + X) M) =det (P) I+± DtlQdItP -QB+XP ,

and

(34) ff ( (al+ C) 087+ 5) ) =a07+ 2 DtiadXi$I+ aD + /SC

we want to determine symbols CEr-S*7"*"1, DEzSs~i so that

(35) <r ( «? + X) M) ̂  ff ( («7+ C) 08 1+ B) )

or equivalently

(36)

By virtue of the condition (I) this can be carried out in the same way

as the proof of Lemma 3. 6.

Finally we give the proof of Lemma 3. 2 and 3. 3.

Proof of Lemma 3. 2. Since Pm is a strictly hyperbolic operator
771

we have Pm (x, xQ9 f , ?„) = ]T (f o — ̂  (X -^o. ?) ) where {A/} ! /̂Sm are all real

and distinct. We shall denote by dj the operator DXo — Aj(x,x0tDx) (j

= 1, • • - , w) . Then we can represent P^ in such a way that

Fm(^, xt, Dx, DXo) =dndm-1-~di + Qlll-1(x9x{n Dx, DXQ)

where Qm-i (x, x09 Dx, DXo} is a pseudo-differential operator with the sym-

bol Qm-i(x, x0, f, S0) eS1*"1. Hence we have

(37) P = Pim7+fiIIl_1 = 9m9JII_1...917+«JII_1(j:,j:o,Z),,D,0)

where -Km-i (^, ^o> ̂ )^? -QO ^s a pseudo differential operator with symbols

in 5771"1. Further we can represent Rm^1(x9 xQ9 DX9 DXo) as follows:

(38) &„_! (x9 xQ9 DX9 DXo) = 2 r*-,-! (x, x0, DJ 9/9^ -9,
J=0

where symbols of entries of r£ (.r, .r0, !>,.) belong to ^ ( [0, T] : $*) (f = 0,

1, • • • , wz — 1). Let us put

and
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TT t/.-Q ,.0 -.m-lN
U— (Ml, •", UN, • • - , UN ).

By (37) and (38) the system of N equations Pa =f can be reduced to the

following new system of Nm equations.

(39) DXaU=H(x, x» D,) U+ F

where

0

(40)

and F = t(Q, 0, • • - , '/). Put V=* ((A + 1) m~lul • • • , (4 + l)™'1^,

(yi + 1) m~2^J, • • - , ^Jf"1) in (39) where yi is a pseudo-differential operator

with symbol |f |. Then we have

(41) Dx.y= ffo (^, x* Dr) AV+ B(x, XQ, Dx) V+ F

where

0
(42)

0

and H ( ;̂, j:0, Z)r) is a pseudo-differential matrix operator with symbol in
0

. As is well known, 2./i has a diagonalizer

0 '
with aif (x, x0, ?) e ^ ( [0, T] : 5°) „ This makes it possible to choose

L (x, xQ, f ) = (ay (x, XQ, f ) /) as a diagonalizer of HQ (x, XQ, f ) where / is
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an NX N unit matrix. Finally putting W= L (x9 XQ, Dx) V we get the

following system

(43) DXoW= H0 (x, x0, Dx} AW+B (x, x,, Dx) W+ L (x, xa, £>,) F.

f i j 0 \
Here H0 (x, xa, f) = '• and B(x, xa, Dx) is a pseudo-differential

\0 Li/
operator with symbols in 33 ([0, T]: S°}. Therefore we can obtain

for 7 = 0,1, ••• .

This estimate and ellipticity of L imply (14), which proves our Lemma.

Proof of Lemma 3. 3. Note that (4) implies

(44) DN
Xou = f>, (x, x0, A) Diou +/

y=o

with aj (x, x0, f) e ^ ( [0, T] : SN~J) . We obtain (7) by differentiation of

both sides of (44) with respect to XQ.

§ 40 Proof of Theorem 2

Consider the Cauchy problem

(45) M(Q + X)u=f

Di.u(x,a)=n o'=o,i,-,^-1).

Then we have

Proposition 40 1. Under the conditio?i (II) of Theorem 2, the

energy inequalities

(46)

holds for I = 0, 1, • • •, -where m = 2(1—1) + Af— s + w' ^72^ wz' depends

only on operator M(Q + X).
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In order to prove Proposition 4. 1 we need the following three lemmas.

Lemma 4. 2. Under the condition (II) of Theorem 2 there exist
symbols of pseudo- differential operators C^SN~s~l and D^S8'1 such
that

(47) M(Q + X) - (al+ x^C) (01+ x*l

where <r(Sv.f) = *lf^(^ *o, £, ?o)^u

Lemma 4.3. Let P = PmI+XQLPm_1 + Pm_2+ ••• +F0 Z?e a pseudo-
differential operator such that Pm is a strictly hyperbolic operator

and each P3 (j=Q, 1, • • • , m — V) is an NxN matrix pseudo- differential
operator -whose symbols belong to Sj . Then -we have the inequali-

ties :

(48) — (IIZy+^KllO^consM^

for 1 = 0,1,-..

Lemma 4a 4. If u is a solution of (45) , then we have

(49) \\D»:lu(x, 0) l l ^cons t .U^i^^ .^ . + ]!! (Z>*/) (0) !!,_,,,}
j=0 i=l

for 1 = 0,1, • • - .

Proof of Proposition 4. 1. To the proof we apply the same argu-

ment as in the proof of Proposition 3. 1. Putting S = dI-{-XQlC and R
1D in (47) leads to

(50) Rii - v

Sv=f-SN.2u.

Let tv(x9x^ be defined by u (x, XQ) = x^w (x, XQ) . Then we have

(51)
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where 6(E) ^Ss~l. Thus, the following inequalities hold by Lemma 4. 3.

(52)

(53)

tf-.f-4-H-A,

Since <T(S#_2) = XI bjXQ
u+^ where bj^SN * J\ Lemma 4.2 gives

/ = 0

(54) ||D&-^_2(x0w) 12^ const, {"''s"8"1 \\D*-J+V-*-I

Combining (53) with (54) implies

(55)

J'-O

k-J+N-*-

Hence we obtain, by summing (52) and (55),

(56) — (||I)*+*-f-^e;||f+||^

Now we define a function 0 of XQ by
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I k+N-s-l

(57) 0 (*,)=!] S (||D*+ff-2->W|l2+||Z>
fc = 0 y=0

Then from (56) it follows that

+ const.

+ const,

where 7* and c are positive constants depending only on equation (45) .

Hence we have

(58) A- (x^ 1 exp ( - r-r0) (5 (*„) )
fl.ro

^const. a:.- exp (-7^0) x,-'̂ -'-1'̂ 1 2 || £>*/!! V^* .

*=° .7=0

To make the value \_XQC+I exp( — ̂ 0) ^(^0)]x0=o finite when integrating

both sides of (58) , we redefine a formula 0 (x0) by replacing

(59) z (x, xo) - u (x, x,} - i (1*0) 'D& (x, 0) /j !
.7=0

for U = XQW in (57). Here m is a suitable integer specified later. Then

z (x, .r0) satisfies

(60) Tz = g

Dloz (x, 0) = 0 for k<,N+ m

where T = M(Q + X) and g =/ - T( if (ixJ'Di.u (x, 0)/j!). Since
y=o

D*g(x, 0) = 0 for £<>z, we have g(^, j:0) = — f ̂ (^-^(iD^^x, s)ds
m I Jo

and then

(61) HDz(7(^o) ||'<; const. x2
0

(m-Z)+1 f *° ||DzDr+1^(-r, 0 \\*ds .
Jo

Now from the estimate (58) for z(x,x0) =XQW(X,XQ) and (60) we im-

mediately have

(62) Dlow (x, 0) = 0 for &<;iV4- ;n - 1 ,

DlQv (x, 0) - 0 for k<^N+ m-s-l.

Thus for our purpose we must choose m so that
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(2J + I) + (c-l),

- (c-l)

for .7 = 0,1, —,k + N—s — l,k = Q,I, • • - , / .

Therefore we may take m^>I + -c, which implies

[>0-
c+1 exp ( - fxa} 0 (a:0) ] ,..o = 0 .

Carrying out the integration over [0, x^\ in (58) we obtain

\\Dl+N~ 2w(^o)f^ const, xl exp ft-*,) ("',-•<»— ')
JO

^ const. .rc
0 exp (r-ro) f*'5-fcy— 1)

Jo

and further, taking (61) into consideration we have

(63) \\Dl+N-zw(xQ} |[2< const f"^^— i)-«+
Jo

X
Jo

Here we choose m so that —2(N—s — l) —c + I -2l + 2(m-T) -fl> -1
c — 1i.e. m^>2(l— 1) + AT— 5 + - - . Then we have

(64) l|Dl+^-2w(^0) ||2^ const. f*° ||DlDr+VW fds .
Jo

If w>2(Z — 1) +N-S + — + 1 then 77? satisfies both m>l + — and
2 2

m>2(l-T) +N-s + . Consequently we put in (59) m = 2(/-l)

—s -\-iri where m' = \ — +2. Thus we have easily from (64) for

(65) (| &+*-*z (x9 x,} || '^const. f *° || DlD."+1ff (s) || Vs .
Jo

N+m
Since z/ (j:, -r0) = 2; (a:, j:0) + TK^o)JDJ

xu(x9G) /jl we finally obtain
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which, combined with Lemma 4. 4, yields the estimate (46) . Therefore

we have completed the proof of Proposition 4. 1.

Now we shall return to prove Lemmas 4. 2? 4. 3, 4. 4.

Proof of Lemma 4. 2. We shall calculate the symbols of M(Q+X)

and

(67) fi(M(Q + X»= det (P) 7+ A,^Q - 5Q + PX ,
y=o

(68) <7 ( («7+ arir'C) 097+ VUO ) -

where

We take Ce^"1"1 and D^S*'1 so that

dfJQ - D^ad^I) + PX- BQ = x^ (aD + 0C) ,

which can be obtained by the similar way to the proof of Lemma 3. 6.

Let SlV-2 = tf(M(<? + X)) -ff((aI+*olC) (@I+x»lB}}. Then

r
x 097+ ̂ o'1 )̂ .

The last term of the right hand side is

-i m JL v1 -*- o--1 nrnw

= 7 + 77.

Since the order of a is N—s, all the elements of 7 vanish when 7*0

^>N—s. Also since the order of C is jV—s —I, all the elements of 77

vanish when f0>iV— s — 1. Thus we have
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^V-2 — Z] b j ( x > x 0 , $ , ? 0 ) j c ^ ( ' J ~ r * ) with b^SN~~2~3.

Proof of Lemma 4. 3. We remark the same method as the proof

of Lemma 3. 2 reduces the system of N equations Pu=fto the system of

Nm equations as follows.

(69) Df. W= fl» (x, -r0, D,) A W+ x^B (x, xa, DJW + L (x, x,, £>,) F

where H0, L are the same pseudo-differential operators in Lemma 3. 2 and

B is a pseudo-differential operators with symbols in 3$ ([0, T]: 5°). Then

(43) and the identity

> ( * ) ' ( .}D%-'D%(BW)

yield

(70) 4

+ \(D1W,D1(LF»\}.

Since Schwarz' inequality gives

| (D1W, Dl (LF) ) | = | (x^DlW, x$Dl (LF)

^const. {.ro-1 1| Dl W\\ * + xa\\ D
1F\\ 2}

we have

(71) (||Dnm^const.{Eo:o^^^
dxQ J=«

Finally combining this estimate (71) with ellipticity of L implies (48) .

Proof of Lemma 4. 4. The proof is done by the same method as

in the case of Lemma 3. 3.

Proposition 4e 5. Let T* be an adjoint operator of T. Then

there exist pseudo- differential operators C, D with symbols (J(C)

Ss-1 such that

(72) T* = 087+ x^
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N-s-l

where

The proof of Proposition 4. 5 can be done along the same way as the

proofs of Proposition 3. 4 and Lemma 4. 2.

Proposition 48 6, Let v^S ([0, T] : Hl+N~z) be a solution of the

Cauchy problem:

(73) T*v = h (x, t)^$([Q,T]: H*n+l) in Rn X [0, T]

Then -we have the energy inequalities:

(74) || D'+»-*v || *dt^ const. { II <P, II ̂ -,+ 1-.+. + II D2l~3h \\ *m_
y=o

for 1 = 0,1,

-where m— (l+s) mr + 1 a;^J m' /5 a non-negative integer depending

only the operator T*.

Proof. We can show the inequalities (74) hold using Proposition

4. 5 by the same method of Ohya [1] „

From Propositoon 4. 1 and Proposition 4. 6 we can obtain the follow-

ing theorem by the method of Nirenberg [10].

Theorem 4. 7. Under the condition (II) of Theorem 2 the Cau-

chy problem (45) is zvell-posed in the space H~°° for the future 0<J.r0

To the Cauchy problem

(75) (Q + X)Mu=f

(Di 0f / ) (^0)=^ t/ = 0,l, -,#-1)

quite the same method of proof as Theorem 4. 7 can be applied, as is
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easily seen. Therefore we have

Theorem 48 8» Under the condition (II) ' of Theorem 2 the

Cauchy problem for (75) is ruell-posed in the space H~°° for the

future 0<zX0<^T.

Now we can complete the proof of Theorem 2, by using Theorem

4. 7 for the existence theorem for (1) and Theorem 4. 8 for the uniqueness

theorem for (1) .
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