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Time Decay and Scattering for Some
Nonlinear Wave Equation

By

Takao KAKITA,* Kenji NlSHIHARA** and Chiharu TAMAMURA***

§ 1. Introduction

Recently J. M. Chadam proved a global existence and uniqueness

theorem to the Cauchy problem for nonlinear Klein-Gordon equations (in

three dimensional space) with nonlinear term G (x, t, u9 uX9 ut) [1] and

discussed also scattering theory for them [2].

The scattering theory for those equations have been studied by [4],

[5], [9], [10], [11], [12], etc. On the other hand, M. Reed in his

lecture notes [8] developed an abstract theory of global existence-unique-

ness and scattering theory for nonlinear wave equations having a nonlinear

Klein-Gordon equation as a specific example

in which we are interested.

Our purpose is to prove an abstract existence-uniqueness theorem and

to discuss scattering theory for nonlinear wave equations, by extending

the method in [8] so that equations of the form

Hu + m*u + glu
e + gzu

r
t = 0

are included as examples.

First we introduce some notations. Let Si be a Hilbert space with

norm || • || .# = || • || and let the following auxiliary norms on M be given:

for each j = l, 2 |j • \\aj satisfies all the norm conditions except that ||0||a,
 = 0

implies 0 = 0, and || • \\bj satisfies all the norm conditions except that it
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may take the value -f- oo. Let A be a self-adjoint operator on M and

Jj be nonlinear mappings: M->M which satisfy the following hypothe-

ses: for <I)^M and each j=l, 2,

(HI) there is a positive constant C such that

(H2) there are positive constants C and ds such that

\\e-tAti\\^C\t\-^\\4>\\t] when

and

(H3) there exist positive constants hj, d, p (with ^2>1, d^p^>V) and q

(with q:>I,d2q>I) so that for all 0, </>e^ satisfying ||0||^ff, ||0||^ff,

there hold

and

PS

where fy, (T/ and py run through some finite sets in [0, 1] . Here in case

p = ~L or <? = !, we assume each hj can be chosen arbitrarily small if 5 is

chosen small.

Now we define the scattering states J7scat with norm IHIscat by

^scat={0e^:;||0||scat<oo}

where

ii^llscat=|lk-^lli, l i h l i l being defined by

for 0(r), a ^-valued function on R. We observe that for all

with j = l, 2. For simplicity we often use
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pj as Pi—p and p2 = Q','^j as lwl = (Jl and iv2 = pi'y and

2y as Zj = (T2 and z2 = p2 -

§ 2* Abstract Theorems

The following lemma will be frequently used.

Lemma 2. I ([10], [8]). (a) If a, £>0 and max (*,*)>!, then

r (i+u-5i)-
J— 00

(b) If a, &>0 and max (a, 6) >min (a, &) , then

sup(l+|r])min<a '5>
jg

tends to 0 as tly tz—> + oo (or — oo) .

Our first main theorem is

Theorem 2. 2 (global existence and uniqueness for small data) .

Assume A, J3 and the norms || • ||, ||'||a^ I I ' I U ^ satisfy (HI), (H2) and

(H3) in § 1, and let J=Ji-
srJz. Then there exists an %>() such that

for all (^Lel'scat with ||0-||scat£S^oj the integral equation

(1) #(0=^-'^.+ f
J —

a solution in C ( ( — oo, oo); ^f) wzYA |||0(-) |||̂ 2^0, a^ ^A^ solution

is unique -when p, g>l, d^p^>dz and

Proof. (I) Existence. As our method is based on the contraction

mapping principle, we introduce a complete metric space X(y, 0_) with

norm ||| • ||| defined by

X(V,0-) = W(*);^«eEC((-oo,oo);JO and \\\<P~ e-{tA^\\\^}

where H0-||Scat^^^5, S being a constant in (H3) . Let § be an operator

on X(?7, 0_) given by
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(/<£) (0 = f e~tA^J (0 (*) ) <fo for 0 ( • ) e X (77, 0_) .
J — 00

It can easily be seen that e~iA(t~s)J "(000) is a continuous function of 5

for each fixed t and that

Under the hypotheses (HI) , (H2) and (H3) we have the following

estimates.

(2) || Jy(00))
ey

^X3M2'7)1''+1~*'(1+M)~-'1'' for .7 = 1,2.e/

and (since d^py-^>T)

(0 11^ f " ITOC^II^'oCA,, A,, T?)< + oo .
J — oo

..^ r ii ̂ -"(z-s) j (0 w ) ii ./*5
J — 00

&1(h1,ht,v)(l + \t\)-'> if

(4) || W) (0 II a!^ f " \e-««-V (0 (5) ) || ̂ ds
Jl — oo

Here we remark that all the constants Cj (hl9 h2, ff) depend on hl9 hz and

H so that c/s tend to 0 when hl9 h2~^0 or 97— »0. In fact, when d

f" B«-M"
J-oo

^c f" (1 + |^-^|)-'!'
J-oo

^c±h, f"(H- 1<-y=i j— oo

x

'"> + E (27?) '
«> «•/

P (i + |*-,|)-«. (i + \s\
J-oo
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For the inequality (4) , a required estimate can be done analogously. It

follows |||/0|||<oo from (2), (3), (4).

Now we define a mapping M: X(y, 0_) —»X(/7, $_) by

We want to show that M is a contraction mapping on X(fj, $_) provided

7) is taken to be sufficiently small. Similar calculations to (2), (3) ? (4)

lead to the inequalities:

(2') || (S® (t) - (/</.) (*) || ^c',, (A,, A,. V |||«6 - 0IH

(3') || (/0) («) - (,£0) (*) ||Kl^ (1+ Ul) -V (A,, A,, T?) 1110-01

and also

(4') II (£<P) (t) - (S$> (t) ||.,̂  (1 + Ul) -"-cj (A,, A,, 7) 111^-0111 .

Hence from (2'), (3') and (4') we obtain for <f>, (/»eXO?, 0_)

|||M^ - M0IK {2 4 (A,, A,, V) } W - 01 •
y=o

2

Then we take fj so small that Jj ^/ (^i> ^2» ^) <[1 and fix an 77, say /70.

Thus Af is a contraction mapping on X(?7, 0_) for all positive ^<^0- This

guarantees existence of a unique fixed point 0 in X(y,(f>-), which gives

a global solution of (1) with |||0|||̂ 2^0 by definition of M.

(II) Global uniqueness. Let X(T,a,<f>o) be the set

= , s u p
CO, IT]

where a: is an arbitrary fixed positive number. First we note that local

uniqueness is true for the equation

in X(T,a,00), since, by virtue of (HI), (H2) and (H3),

(5))

j=l
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X ]|0(5) -0(5) 11 |̂|0(5) -0(5) f-'ds

for

Now we shall prove global uniqueness. Let 0j (£) be another solu-

tion of (1) . Then by using (2') , (3') and (4') we obtain the inequali-

ties:

(5)

r
J-o

(6)

(M\ + infill) **-*> + H ( I I I0II I + 1110:1!) «-0

and

(7)

i! +

Hence follows

(8) 10-0.K/W 1110-0x1

from (5) , (6) , (7) for a continuous function f(t) . This function f(t)

tends to 0 as t— > — ex? when dj>^>dz, d^q^^ and ^?, <?>!, which is a

consequence of Lemma 2. 1 (b) .

Combining (8) with local uniqueness yields the required uniqueness.

Thus our proof is completed.

Our second main theorem is

Theorem 2* 3 (the scattering operator for small data) . Let all

the hypotheses of Theorem 2. 2 be satisfied and let $ (t) be the solu-

tion of (1) "with Cauchy dat 0_eJ?scat satisfying ||0-||ScatiS^o- Then
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(a) for each t, $(t) ^2scai and

|| 0 (f) ~ e~"A0_ I -»0 as t-* — oo ,

(b) there exists $+^£scat -with ||^+||SCat^2??0 such that

\\<f>(f) ~ e~ tM0+||—>0 as t—> + oo

and in case p9 <7>1, d^^dz, dzq^>dl

(d) S: 0_—>0+ z*5 a?7 injective continuous map of the set {</>G J?SCatj

il</>llscat<^o} into the set {||0||Scat^2??0} in the \\-1^-topology.

Proof, (a) and a part of (c) . To show \\\e~irA(/> (t) |||< 4- oo for each

t, we do estimations just as in (2'), (3'), (4').

-ir^-t^<?L|| +SUp
r^R " reU

+1-^ f'
J-

sup(l+ |r|)-«||«-'^(0 ||.,̂  sup(l+ |r|)*
reu reis

+ sup(l+ r|)*' f |k-^<-s

rei2 J-oo

[1 + (2%) '-* + (2%)

Xsup( l+ | r | ) d » f
rSJg J-o

|)d2 f
J-o

Thus, using Lemma 2. 1, we conclude

H0(OllBcat^i||0-||scat + £z<00 for each b

where cl does not depend on t but cz does. Similarly, when d^p^>d^



756 TAKAO KAKITA, KENJI NISHIHARA AND CHIHARU TAMAMURA

> f
J — o

as t— » — oo ;

P || *-"<-'
J — oo

ll] f (l +
y=i J-co

Just as above,

|)*'||«-"r(0(*)-e-*^-)ll.,-»<) as

Hence we proved

when pi,pt>l,

(b) Since |H0|||^2^0 by Theorem 2. 2 and since for

as

there exists lim eU40_ = ^+ in c^f, and

as t—» + oo., To show ||0+||Scat^2^0, letting £—» + oo (in the || • ||-topology)

in the equation

itAj /j.\ Ae 0 (t) = 0_ -

we observe that
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Then the same techniques as in (a) can be applied to (*) to obtain

Il0+llscat^2^0 for sufficiently small ??0.
f«2

Also replacing each (eitzA(f> (tz) — eitiA<f> (*,) ) and for (0 (t)
1

— e~itA(f>-) and I respectively gives
<j — c°

Thus (b) and the remaining part of (c) are proved.

Finally we turn to prove (d) . That S is injective on

can be derived in a similar way to the uniqueness proof in Theorem 2. 2

as follows. Note that the solution (j)(t) of (1) satisfies

(9) <f> (t) - e-w-*^ (r) + P e-^-^J (0 (5) ) ds .

Let 0_ and </>_ correspond to 0+ and let $(2) and <p(t) be the correspond-

ing solutions of (1) to Cauchy data 0_ and </>_ respectively. Then by

(9) we have

Estimations similar to (5) , (6) , (7) give

10(0-0(0 11^110(0

(l+|r|)*10(r) -0(0 11.̂

+ C(0, 0) IH0-0I

from which follows

(10) 10-0ICr..)^|k

where H|0Blcr..3= sup (||^(r) || + S(1+ |r|)'*||0(r) ||B,).
r^r<co j=l

Then by Lemma 2. 1 (b) , for any s>0 there exists r0>0 such that

when r^r0. Letting ^->oo? by (b) we have
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-*r.-o) for r>r0

which is false unless || 0 — (/jJH^^^O (r^r0) . Thus 0(£) =</>(£) for r2>r,j

Now given £>0, choose <J>0 so that

sup
r0-ff<s^r0

Then

0 = 0(r0) -0(r0) = «-""•-" (0(r) -0(0)

+ j* V"<""> (J (0 (s) ) - J (0 0) ) ) ds .

Hence if r0 — <?<[r<[ro,

II * (0 - 0 (0 II < P II </ (0 0) ) - J (0 (*) ) II «fc^Ctf sup || 0 (r) - 0 (r) ||
Jr r0-a^r^r0

where C depends only on 77. Thus 5 chosen so small as C5<[1, the

inequalities are false unless sup ||0(r) — 0(r) || — 0 which proves 0^0
r0-5^r<r0

when r2>r0 — <y. Therefore 0=0 in R and so 0_ = 0_.

To show the continuity of 5 on {H^HscatS^oK we need estimate

|| ̂ -^ || scat where ^=8^ for j = l,2. As is easily seen from esti-

mates (2), (3), (4), it follows that

II A (0 - 02 (0 II ̂  II 0? - 0^ I + C (^o) 10! - 02|||,

+ C0?0)|||0i-02|[| for j = l,2

if A #>1, dj)^>d2 and dzq^>dly where C(^0)— >0 as 1%1-^CX Therefore

we have

1110! - 0*K II ̂  - 0^ II scat + 3C (1?«) 110, - 02|||

Or 110, - 0J< , .11 0L" - 0«>
1 —

Similarly

(1 + |r|) d>\\ e-tAr (eiM^ (f) - eiAt<j>2 (f) ) ||.,

when p, g>l, d&^di and d,p^>d2. Consequently
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11 —

if |^0| is taken so small as 3C(?70) <^l/2. Taking t-*oo we have

for (f>^ EE {il^Hscat^S^o}» which proves continuity of S.

Thus the proof has been completed.

§ 3, Applications

We consider a nonlinear Klein-Gordon equation

where n = I or 3, and gl9 gz are the coupling constants. Let

-'( ° 2 \
~\-B2 0 I

where B2 is the self-adjoint realization of nfl—A in L2 = L2(Rn)y and let

Jr=J1 + J2 where

0 \ ,,., / 0 \
o , «^*(0)= J ^g^'3/ \-Qiu\i

Then the equation (12) is written as

in its standard vector valued form. Further, this equation can be refor-

mulated as an integral equation

(13) 0 (0 = e-*ut-

provided that 0 (£) has the Cauchy data 0_ at t = — oo. Now we define,

for n = 3, the solution space M by the completion of D(B3) @D(B2) with

respect to the inner product

where ( , ) denotes the usual inner product in Lz and
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), 0=1
fuMoreover we define the auxiliary norms II0IL,, II0L, in M for 6=(

3 3 \V

.7 = 1,2 by

11*11.. = Hal

The following three lemmas are useful in our applications.

Lemma 3. I (Sobolev's inequality). Let m and n be positive

numbers and let p be defined by

Then for all &eC0(Hn)5 there is a constant C such that

'where -we take p=oo in case

Lemma 3.2 (Nelson's theorem). Let Wt,a(x) , x<=Rn, be the

functions 'whose Fourier transforms are

Wt,a(y) = (

where Et,a= (m2- £) ~a cos t(m2- J)1/2 and

Ft,a= (m2-J)-asin£(w2-J)1/2.

Fix a^>(n — I)/4 and 2^^<oo. Then for every t^Q, Wt>a is in

Lp (Rn) if and only if 2a— (w + l)/2> — \fp9 and in this case

\\Wt.a\\f~t»'*-™ if s(p,a)>-2

~ (log 0 *"p>-«* if s (p, a)=-2,p>2

~f<'-*V>-»'* if s(p,a)<-2

•where s(p, a) =p(2a- (n + 2)/2) and f(t)c=:g(t~) means that f(t) /g(t)

= 0(1) and g(t)/f(t) =0(1) as £->oo. When p = oo, for
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— tl~za if (7z + l)/4<a<;(» + 2)/4

and

W«,o(W) is unbounded along the cone \x\ = t^>Q if

Lemma 3. 3 (Nirenberg's inequality}. Let Daf be the a-th weak

derivative of f and let | £>*/!» = max \\Daf\\p. Suppose f$=D(Ba) with
\a\=i

a^2. The?i

when 2<p<oo, 2<>k<^ay 0<j<k, -where p~1=j/?i + r (1/2.- k/?i) for all

with J/&<^"<1.

Now in Rs we shall prove

Theorem 3e 4e L^/ /K>3 a;zJ r>7/2. if ^Ae Cauchy data $_ at

t— — oo z"$ sufficiently small in the \ • \^\.-norm, then (12) 7ias a unique

global solution 0 ( £ ) = ( ^ ) «2?z^ ^/i^w there exists 0+ wzV/i ]|0+||scat\«t ^t; /
small such that

moreover, except for (3 = 3,

(25 £— > ± CXD, 'where [0]^ denotes the jth component of $ and dz is

arbitrary but 3/2(r — 2)<<f2<l.

Moreover the scattering operator S: 0_f~>^+ z*5 injective and con-

tinuous in the \\-\\-topology. Except for 0 = 3, S is continuous in the

II • \\^f topology.

When 3<^Y<^7/2, also the same results are true for ^ = 30' — 1)

/(3r + 2) and dz = I/r, where l<r<2.

Proof. From Lemma 3. 1 (HI) follows immediately. To show that
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(H3) holds we estimate || B2 (ua - O || r for 1<><:2 and a^3. We de-

note df/dxi simply by fit Since

Bz(ua-va) = (mz-A) (2ia-va)

= m2 (ua - v a) - Y\ (ua - va) „
j=i

and since

(ua - va) „ = a (a - 1) [V*-2 (u} - rfj) + v} (u«-2 - va~z) ]

Noting that 1<><^2 and /£>3 we obtain

^ v ^ -

where £ runs through Fr= {0, 1/2, 2-2/r} and g = g (\\B2u\\2, ||^
2^||2) with

lim g (a, b) = 0. In the hypothesis (H3) if we choose F1 as the finite set
a,6->0

through which both S1 = e2( = B) run, then we have

(13) ||Jy(0) -

From (HI) and (13) it follows immediately that

where h< = chj. Also we have

(14) II^(0)-

and

(15)

where (7 runs through F2, p through Fr and a equals /? or 7 according

as j = l or 2.

Now, although (H2) cannot be verified to our example, we proceed

the theorem directly as in Theorems 2. 2, 2. 3, with the help of (HI) ,
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(H3) just obtained above. Thus we define as in the proof of Theorem

2.2

and

(M0) (0 = «r«V_ + P *-«'->J (J, (0 (s) ) + J2 (0 0) ) ) <fo .
J — oo

By (13) , (14) , (15) and Lemma 3. 2, the following estimates are im-

mediate: for 0, </»

^U [Ai f (||0WIUl+||0WI|.1)
/'-1-||^W-^(5)||'.I||^(5)-i6(5)||1-^

e J — oo

+ A, f ' ( || 0 (5) 1 ., + || 0 (5) || .,) --1- 1 0 (5) - 0 (5) || '02 || 0 (5) - 0 (i) || '-<fc]
J — 00

-1- f"
J — o

The integrals in the third member are convergent provided that

(16) (/?-!) ̂ >1, (r-l)4>l-

Since

/ cos tB JB^sin ^
e~lAt=[

\~BsintB costB

and so since

N f
= ~

J-

it follows from the definitions of auxiliary norms that

||M(»-M(0) 1^10,1 f
J-

+ |ff,| f
J-

^|g,| f su
J — oo j;
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r
J-

r,| f
J-

i| f \\Ft-s,
J — co

+ I fir,

Now applying Lemma 3. 2 to the last members of above inequalities, we

obtain

(1+ *-

Taking Lemma 2. 1 into consideration, we impose the following conditions

to the exponents appearing in the above integrals:

(17) max (3/p - 3/2, (0- 2/» dj >1

min (3/P-3/2, (&-2/p}d,}

(18) max (3/Q—3/2, (r-2/g) dz)

min (3/q - 3/2, (?— 2/q) d,)

where 1<£, q<^.2.

Similarly we have

and

f
J-o

-' f
J-
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with the conditions

(19) max(l/r, (/9-2/r)^)

min (1/r, (0-2/r)

(20) max (1/r, (r- 2/r) ^) >1

min (1/r, (7- 2/r) rfz) I> J2

where 1<V<2.

For /£>3 and ~f^>7/2 we may choose .#> = !, g = l and 7" arbitrary but

l<r<2 so that (16) (20) hold, whence ^ = 3/2 and d2 arbitrary but

1/2<J2<1. For /9;>3 and 7/2^ r^3 we may choose p = l, d2 = l/r with

l<r<4/3 so that (16), (17), (19) and (20) hold, provided ^>1. Ac-

tually (20) follows from r^3>r + 2/r when l<r<4/3. Concerning

(18) we choose q with

3/g-3/2-(r-2Az).l/r

which implies 3/(?-3/2 = 3(r-l)/(3r + 2). Since 3/g-3/2>l when

, we thus obtain

Consequently we have proved by Theorems 2. 2 and 2. 3 the existence

of a global unique solution and of scattering operator for small data.

We finally note that continuity of S in || • || -topology is derived from (13')

just as in [8]. Q.E.D.

In case ;z — 1 we define M by completion of D(B2^)@D(B1) with

respect to the inner product

Then the corresponding conditions to (16) ̂  (20) ,

(16') (0-i) <*,>!, (r-i)4>i

(17') max (l/p-l/2, (0-2/p) 4) >1

min (1/p - 1/2, (0-2/p) dj ^
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(18') max (I/a -1/2, (T-2/q)dJ >1

mn <z-

(190 max(l/r-l/2,

and

(200 max(l/r-l/2, (r-2/r)

min (1/7—1/2, (r-2/r) 4) I>^2 .

should be imposed where !</>, ̂ ^2 and 4/3<Y<^2.

Then we have analogously to the proof of Theorem 3. 4.

Theorem 3, 5* The same claims as Theorem 3. 4 /zo/d' with dl

-1/2, d,<l/4/e>r /?>4, r>6.

For ll/2<r<;6, /? should be chosen as /3>r~4 + 2/(r-5) wz*/&

, J2<l/4.
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