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Time Decay and Scattering for Some
Nonlinear Wave Equation

By

Takao KAKITA,* Kenji NISHIHARA** and Chiharu TAMAMURA***

§ 1. Iniroduction

Recently J. M. Chadam proved a global existence and uniqueness
theorem to the Cauchy problem for nonlinear Klein-Gordon equations (in
three dimensional space) with nonlinear term G(x, £, #, %, %) [1] and
discussed also scattering theory for them [2].

The scattering theory for those equations have been studied by [4],
[5], [91, [10], [11], [12], etc. On the other hand, M. Reed in his
lecture notes [8] developed an abstract theory of global existence-unique-
ness and scattering theory for nonlinear wave equations having a nonlinear

Klein-Gordon equation as a specific example
Ou+mPu= —u*, zr=R®

in which we are interested.
Our purpose is to prove an abstract existence-uniqueness theorem and
to discuss scattering theory for nonlinear wave equations, by extending

the method in [8] so that equations of the form
Ou+ m'u+ g’ + g =0

are included as examples.

First we introduce some notations. Let J be a Hilbert space with

norm |-|4=|-|| and let the following auxiliary norms on J{ be given:
for each j=1,2 | |, satisfies all the norm conditions except that |¢@[s,=0
implies $=0, and | - |, satisfies all the norm conditions except that it
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may take the value +oo. Let A be a self-adjoint operator on 4 and
J; be nonlinear mappings: H—H which satisfy the following hypothe-
ses: for g H and each j=1,2,

(H1) there is a positive constant C such that
I8la,=Clgll
(H2) there are positive constants C and d; such that
le**@lle, <Clt|~*|@ll, when |¢|=1
and

(H3) there exist positive constants Ay, §, p (with p=1,dp>1) and ¢
(with ¢=>1, dyg>1) so that for all ¢, p= I satisfying ||¢| =0, |¢] <0,
there hold

17:1(8) —J1 (D =P ;(ll¢lla.+ 19la)? 6 —lale—ol ==,
172(8) =2 (@) =2 22 (8], + Iglad ¢ — gl —ol' ",
1:(8) =1 ()]s, =P ; (lle,+ 112 *=I—Gl% N6 — )

and

172(8) —J2(D)]», =2 ng](H¢llag+ I6lla) ¢ 16— pll% 6 —pl"=*

where ¢;, 0; and o; run through some finite sets in [0,1]. Here in case

p=1 or g=1, we assume each A; can be chosen arbitrarily small if § is

chosen small.
Now we define the scattering states J: with norm |- [eat by

Zscat-—' {¢E‘ﬂ[; "¢”scat<°°}

where

I@lscac=lle=“gll, [I-ll  being defined by

Igli=sup (g + 2, A+ 17[) o) Nla)
for ¢ (r), a Jl-valued function on R. We observe that for all z&R

le=*“glla,<C A+ [2)~“ (] + ¢,

if |@f,,<<oo with j=1,2. For simplicity we often use
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pj as py=p and p,=¢q; w; as w,=0; and w,=0;; and
z; as 2; =0, and 2,=0,.

§ 2. Abstract Theorems

The following lemma will be frequently used.

Lemma 2.1 ([10], [8]). (@) If a,b5>0 and max(a, b) >1, then

J‘w A+lz—s]) A+ M)"’dséC(l-{—Itl)‘mi“‘“"”
(b) If a,5>0 and max (a, b) >min(a, b), then
Slilzp(1+ ]rDmiu(u,b) J‘ttz A+|r—s]) 21+ ISI)_bds

tends to O as #,2—>+ 00 (or —o0).
Our first main theorem is

Theorem 2.2 (global existence and uniqueness for small data).
Assume A, J; and the norms | -|, |||, -1l satisfy (H1), (H2) and
H3) in §1, and let J=J,+J,. Then there exists an 7,>0 such that
Jor all ¢_ &g with |G- ||ecat1, the integral equation

@ @) =e g+ [ e () ds

has a solution in C((— o0, ); W) with ||¢ () |27, and the solution
is unique when p,q>1, dip>d, and d,q>d,.

Proof. (I) Existence. As our method is based on the contraction
mapping principle, we introduce a complete metric space X (7, $.) with

norm ||-|| defined by
X@,¢-) ={p@®); ¢ €C((—00,00); K) and [l¢p—e *3_[|<n}

where |¢-[eca=<7<0, 0 being a constant in (H3). Let 4 be an operator
on X (7,¢.) given by
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G0 @ = [T @@)ds for 9() =X (0,92,

It can easily be seen that e ““"®J({(s)) is a continuous function of s

for each fixed ¢ and that

el =lle" sl +7=27.
Under the hypotheses (H1), (H2) and (H3) we have the following

estimates.
@) 5@ | é%] IO A TIG)
<SR, @A+ |s)) "9 for j=1,2.
2]

and (since d;p;>1)
10 QI [ 17 GO)dsSealhs, hay 1) <00
®) 1G9 Ol [ 17T @) lds
<ci(hy, he, ) A+ 2% i dipe=d,.

C)) 1(FD) @) lle,=

—

e DT (G(5)) ands

<cy(hy, hey ) A+ 2)~% if dipr=ds.

Here we remark that all the constants c; (A, Ay, 77) depend on Ay, h, and
7 so that ¢;’s tend to 0 when A, A,—0 or 7—0. In fact, when d,p,=>d,

e )l ds

=c J: A+ [2=sD =T @GN+ I @)l ds

IA

exh [ avle—sh =@z
x 1 +§|I¢(s)ll“*f+;]lga(s)”l—w:) ds

e 2 ) R e e )

x [T a+ie—sh @+ lshy—omds
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.gcz (hay hoy 1) (14 |t|) 4

For the inequality (4), a required estimate can be done analogously. It

follows [|J¢||<<oo from (2), (3), 4.
Now we define a mapping M: X (3, ¢_) =X, ¢-) by

(M) () =e -+ () @).

We want to show that M is a contraction mapping on X (7, ¢_) provided
7 is taken to be sufficiently small. Similar calculations to (2), (3), (4)

lead to the inequalities:

@) 114G & — I B 1=es (b, ho 1) |6 — |
39 1) (& — (FP) @) lla= L+ [2D) “c] (b, Fro, D) |16 — ]

and also

4" I (P (@) — (G @) o= A+ 12]) ~%c; (hay o, 1) 6 — ¢l -
Hence from (2’), (3") and (4’) we obtain for ¢, y=X (7, ¢-)

1348 — MY A3 Gy )} 4.

Then we take % so small that Zc:: (hyy hyy ) <1 and fix an 7, say 7.
i=o
Thus M is a contraction mapping on X (7, ¢_) for all positive 7<7,. This

guarantees existence of a unique fixed point ¢ in X (%, ¢_), which gives
a global solution of (1) with ||@[|<2%, by definition of A

(II) Global uniqueness. Let X (7, «, ¢,) be the set
{8 C([0, TT; 9); 6 (0) = s sup 6 (2) —e ¢ <},

where « is an arbitrary fixed positive number. First we note that local

uniqueness is true for the equation

B =e i+ [T (p)ds

in X(T, a, ¢). since, by virtue of (H1), (H2) and (H3),

166) = DI [ le= (T B6)) =T (D) s

<3103 [ Uble,+ 10le) >
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X [9() —o %16 (s) —d(s) |'"*ds
<3 b T [[USI+ 10D 166 —p) 1ds for £0.

Now we shall prove global uniqueness. Let ¢, (#) be another solu-
tion of (1). Then by using (2), (3") and (4’) we obtain the inequali-

ties:

®) I8 () — .2 %22:1 Ry (gl + Nl 7=

x |1 @ty -smasls— i,

6 A+ 1Dl @) — 812 |,
=c g R ZJI (Nl -+ lligsll) > + ?,,:,} (gl +lalld #=%)

x[ [ a+inaariz—sh-aa+ish-smds|ls-al

and
) A+ D% @) —é1(®) [,
écgf hs( 32 Bl + leall) 2=+ ZZ, I+ all) 22~

<[ [F @ iensaie—sh =@+ lsh-2mds | 1g- .
Hence follows

® llg—d:ll=S @) i — il

from (5), (6), (7) for a continuous function f£(z). This function f(z)
tends to 0 as ¢—>—oo when dp>d, d,g>d, and p,q>1, which is a
consequence of Lemma 2.1 (b).

Combining (8) with local uniqueness yields the required uniqueness.

Thus our proof is completed.
Our second main theorem is
Theorem 2.3 (the scattering operator for small data). Let all

the hypotheses of Theorem 2.2 be satisfied and let ¢ (t) be the solu-
tion of (1) with Cauchy dat ¢_EZ.a; satisfying |b-||scaa. Then
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(@) for each t, ¢(t) E Xear and

l# @) —e*p_]| >0

as t—>—oo,
(b) there exists ¢, E Zgar with |Pillecar27, such that
¢ —e ™p. | >0 as t—>+o0

and in case p,q>1, dip>d,, d,q>d,

© g (#) —slscar—0 as t—>= 00
(@) S:¢_—d. is an injective continuous map of the set {P& Zour;
N ollscat=70} into the set {|||scar=27} in the | -|scat-topology.

Proof. (a) and a part of (c).

To show [le™“¢ (#) [| <+ oo for each
t, we do estimations just as in (2'), (3), 4').

13
sup|le""¢ (2) | < sup| e~ “e~"*¢_]|| + sup f (A CION 5
TER TER TER J—

2 t
< suplle™ g || + XAy (270) P f (L+|s]) ~%ids
TER j=1 —o0

sup (1+[7)“[le ¢ (£) |2, sup (1 + |7]) 4] e 77~ g_],
TER TER

tsup (L [ [ e () L ds
TER —o

< sup(A+I7)" @A+ |2+7]) "] ¢ [lscar
TER
+e 31k, @M1+ @10+ 21)]
xsup(L+|r))* j_ At |t —s]) =4 L+ |s]) ~47ds
sup(1+|7) *[le~ "¢ (&) | o,< sup X+ |71) L + 24+ 7]) ~* ] $_ || scat
TER TER
) i By @0 M1+ @m)'=51+ (270) =]

¢
xsup(1+ )% [ (b letr—s) = (1 lsl)-omds.
TER —o0

Thus, using Lemma 2.1, we conclude

” ¢ (t) ” scatgclu ¢— ” scat + 02<°° for each ¢

where ¢, does not depend on ¢ but ¢, does. Similarly, when dp,>d,,
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dz?z>d1, Ply P2>1

[[e—im (¢ (t) — e—iM¢_) ” — I[¢(t) _ e—itA¢_ "
<[ o I 5 m e [ vl om0

as t—>—o0;

A+ 1rD)“le=™ (@) —e™™¢.) |,

<A+ [ e 40T $6)) lads

2 t
Sc@+|rD™ 2 | A+lr—sD™"A+|[s))""*ds—>0 as t—>—oo;
j=1 ~c0

Just as above,

(1+]r1)dg|]e—i.4r<¢(t) _e—im¢_) “a,’_)o as f—> —oo .

Hence we proved

I8 @) —e ™¢_[|—0
” ¢ (t) - e_“Aé— || scat_)o

when py, p,>1, dip,>d,, dp:>d;.

)

Since ||¢]|<27, by Theorem 2.2 and since for z,>>%,
, tz
le4p(e) =g (e | < 14T B(5)) s

2 tg
< 3@ [T s mds0 as g, timroo,
Ji=1 ty

there exists lim e*4¢_=¢, in I, and

t—oo

le“4d (2) =gl =6 (&) —e 4.0

as t—>+4 o0, To show | @] scat=27,, letting £—+ oo (in the | -|-topology)

in the equation

@) =g+ [T @) s,

we observe that

()

b=t [ IGE)ds.
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Then the same techniques as in (a) can be applied to (*) to obtain

|+ llscat==027%, for sufficiently small 7,.
te
Also replacing each (e%44(t) — &4 (t)) and j for (4(2)
ty

7
—e g ) and J‘ respectively gives
}lm “ eiM¢ (t) - ¢+ ”scat =0.

Thus (b) and the remaining part of (c) are proved.
Finally we turn to prove (d). That S is injective on {||¢|lscat=Z7}
can be derived in a similar way to the uniqueness proof in Theorem 2. 2

as follows. Note that the solution ¢ (z) of (1) satisfies
© B() =ee-4g(D) + | e T () ds

Let ¢_ and - correspond to ¢, and let ¢ (£) and ¢ (£) be the correspond-
ing solutions of (1) to Cauchy data ¢_ and ¢_ respectively. Then by
(9) we have

B =) =GO —9(@) = [T GE) —T GG ds.
Estimations similar to (5), (6), (7) give
18~ @ I=IO=9@) |+ C G, Dlb= s 3 || A+ Isy =0,
A+ D YIS =9 (D) Lo S A [N “le 3 (1) — 90|
+ O, DUB= Pl L+ (2D [ At ==L |s]) 7

from which follows

(10) ¢ —dllee, =l ™6 () — ") (2) [l scat

+CB, D=l TA+ (2D [ Wz —s)s @+ |5y s

whete s sup (16G) 1+ A+1PD 16 Lu).
Then by Lemma 2.1(b), for any &>0 there exists 7,>>0 such that
16— Gllce, sy <[l €**46 (2) — €4 (&) [l scat + €[l — DI, 0

when t=>7,. Letting £—>00, by (b) we have
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llg—dlce, v =ellp— dllcc, sy for T=70

which is false unless ||¢—¢|lce,cn=0 (v==7;). Thus ¢ (&) =¢ () for t=1,
Now given ¢>0, choose >0 so that

sup [4() —9 ()| <e.

Tg=0;

Then
0=¢(7e) —¢(7e) =7 (¢(v) — ¢ (7))

T e CIO RN TONES
Hence if 7,— 0<t<t,,
18 = @I [T G ~T@OII=CO_sup 1)~

where C depends only on 7. Thus § chosen so small as Cd<1, the

inequalities are false unless sup [|@(r) —¢(¢) || =0 which proves ¢=¢
T —0<t<rg

when t=7,—0. Therefore ¢=¢ in R and so ¢_=¢_.
To show the continuity of S on {|¢]scat==%}, we need estimate
|68 — P ]|scar where @P© =SpY for j=1,2. As is easily seen from esti-

mates (2), (3), (4), it follows that
I6:@) —6: (D | =192 — L] + C (1) ll1 — 8l
A+ 12D %[ (2) — (B o, = A+ [2]) [ e (@2 = L) |lo,
+C)lg—oll  for j=1,2

if p,q>1, dip>d, and d,g>d, where C(7,) —0 as |7,/]—0. Therefore

we have

llgs— el <1162 — 62 [l scat + 3C (1) [l — sl

1
17— $2 S‘— (—1)_ (—2) scat -
or llgr— el = 1-3C T 62— 2|

Similarly
A+ 17D @] e ™7 (e (2) — ¢y (1)) o,
SA+IrDY]e™ (L —3D) [lo;+ C (o) |61 — &l

when p, ¢>1, d,g>d, and dp>d,. Consequently
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=461 () — €463.2) ot <62 — 62 sus +3C (10 I, — 1]

1
< O_g@| <260 — ¢P .,
S a0y 190 9 e S2160 — 62

if |7] is taken so small as 3C(7,) <1/2. Taking z—>c0 we have
” ¢9) - ¢(-E) “ scatéz ” ¢(—1) - QSSZ) ” scat

for ¢ < {||d)lscat=70}, which proves continuity of S.
Thus the proof has been completed.

§ 3. Applications

We consider a nonlinear Klein-Gordon equation
12) Cut+miu+g9u’+9.24,=0, r=R"

where n=1 or 3, and ¢;, g, are the coupling constants. Let

0 I
ey 1)
—B* 0

where B? is the self-adjoint realization of m*I—4 in L*=L?(R"), and let
J=J,+J, where

5= ° J —< 0 f £ = ”("t)>
' ¢>_<—‘g1uﬂ>, 1) = —02 f) o ¢()_<ut("t) '
Then the equation (12) is written as

¢ (D) =—1A¢ () +J (6 ()

in its standard vector valued form. Further, this equation can be refor-

mulated as an integral equation

(13) s@) =+ [ e 9 (9)ds

provided that ¢(¢#) has the Cauchy data ¢_ at £= —oco. Now we define,
for n=3, the solution space 4 by the completion of D (B*) @D (B with

respect to the inner product
(8, ) = (B'w, B'uy) + (B*v,, B'v,)

where (, ) denotes the usual inner product in L? and
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Uy Uz
o= o=
V1 (2]
Moreover we define the auxiliary norms |@|ls, [dls, in H for = (Z)
7=1,2 by
Iéla,=lule, l¢la=lvle;l¢ls,=1B"%]:+]B];,
I¢ls, =B, +|B*|, (1<r<2).

The following three lemmas are useful in our applications.

Lemma 3.1 (Sobolev’s inequality). Let m and n be positive
numbers and let p be defined by

1/p=1/2—m/n.
Then for all ucC,(R"), there is a constant C such that
leel ,<<Cl| B™%] .. ,

where we take p=co in case m>n/2.

Lemma 3.2 (Nelsow’s theorem). Let W,,(x), x=R", be the

functions whose Fourier transforms are
Wi () = (m*+y") ~ exp[ —it (m* +5") ¥*]
=E,,—iF.,
where E, .= (m*—4) ®cos t(m*—4)"* and
F, .= (m*—4) *sin t (m*— 4) 2

Fix a>(n—1)/4 and 2<p<oo. Then for every t+0, W,, is in
L*(R™ if and only if 2a—~ (n+1)/2>—1/p, and in this case

“ Wz.allp:tn/p_mz if s(p, a)>—2
= (log &) *t"*™* if s(p,a) = —2,p>2
:t(l—za)t(n—z)/p lf S(P: CZ) <_2

where s(p,a) =p(2a— (n+2)/2) and f(t) =g (t) means that f(¢) /g (£)
=0Q) and g@&)/Ff() =0Q) as t—oco. When p=oo, for t>0

[Wiale==t""* if a=(n+2)/4
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=7 if (n+1)/4<a< (n+2)/4
and

Wio(lzl) is unbounded along the cone |x|=t>0 if

(n+1)/d=a>n—-1) /4.

Lemma 3.3 (Nirenberg’s inequality). Let D*f be the a-th weak
derivative of f and let |D'fl,=max | D*f|, Suppose f€D(B*) with
la|=1%

a=2. Then

| D fl,<const.| D FIi]| |5

when 2 p<oo, 2<k<Za, 0 j<k, where p~'=j/n+711/2—k/n) for all
with j/E<y<l.

Now in R® we shall prove

Theorem 3.4. Let =3 and v>7/2. If the Cauchy data ¢_ at

t=—oo is sufficiently small in the | -|sa-norm, then (12) has a unique
global solution ¢ (¢) =<Z(8)> and then there exists ¢, with |@i]sca
13

small such that

6 (@) —e™ 4.0,

and moreover, except for f=3,

A+ (2D **u(t) — [e7**¢:]i].—0

and
A+ 12D) % |u (£) — [e7"*B=]s 0

as t— + oo, where [§]; denotes the jth component of ¢ and d, is
arbitrary but 3/2(r—2) <d,<1.

Moreover the scattering operator S:¢p_—¢,. is injective and con-
tinuous in the | -||-topology. Ezxcept for =3, S is continuous in the
|+ llscat-2opology.

When 3<y<7/2, also the same resulls are true for dy=3(r—1)
/Br+2) and dy=1/r, where 1<r<2.

Proof. From Lemma 3.1 (H1) follows immediately. To show that
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(H3) holds we estimate | B?(u*—v%) |, for 1<r<<2 and a=3. We de-
note 0jf/0x; simply by f;. Since

B (u*—v®) = (m*—4) (u®—v%)

3
=m? (u*—v%) — 12_1 w*—v%)

and since
(=) y=a(@—1) [ @ — o) + 7} e =27
+a w7 (u;— o) +oy @ —v* ) ]
Noting that 1<<r<{2 and /=3 we obtain

1B (= v) |- Ll t[vl) ™ u—v]L] B (w —2) |7

where ¢ runs through F,={0,1/2,2—2/r} and g =9 (| B'«|s | B*v|.) with
lim g (@, ) =0. In the hypothesis (H3) if we choose F; as the finite set

a,b—0

through which both ¢ =¢,(=¢) run, then we have

13) I75(8) =I5 |
<hy D(18lle,+19la) N6 =15l ¢—91" .

From (H1) and (13) it follows immediately that

13" 17, =7, @ |=h; Zglle, + 141a) 6~ 4l
where hj=ch;. Also we have

(14) 1758 =T 5@ o,
=h; 2 dla,+ 191a) 76— ¢lI%, 16— o1

and

15) 158 =T 5@ 2,
=h; 2 (18]la,+ 101a)* " 6= ol2 |6~ 41"

where ¢ runs through F,, ¢ through F, and « equals # or 7 according
as j=1 or 2.

Now, although (H2) cannot be verified to our example, we proceed
the theorem directly as in Theorems 2.2, 2.3, with the help of (H1),
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(H3) just obtained above. Thus we define as in the proof of Theorem
2.2

X (1, 62) = p=C (R; 90%; 190 — e~ BT, 4 ]earS7}
and
M) @ =e= g+ | DTG0 + T () ds

By (13), (14), (15) and Lemma 3.2, the following estimates are im-
mediate: for ¢, p=X (7, ¢-)

1M (8) =M (§) |

=9 MV (IO T IO I e PO RO N FIORT O s
e [ USO e+ 196) 1) 1$() —9(3) 15 18() ~ 9 (5) [ ds]
<2 IhUn = [ A pshennds

by [T @ sy ronds il

The integrals in the third member are convergent provided that

(16) B-1d>1, G—-1d>1.

Since

o—t4t

< cos tB B~%sin tB >
— B sin ¢B cos tB

and so since

¢ (B7'sin (¢ —s) B(g.u* 2l
M(¢)(t)—M(¢)(t)=_f_< sin (¢ —s) B (g, +gu)>ds

cos (¢ —5) B(g,u® + gsub)

it follows from the definitions of auxiliary norms that

1M @~ M@ o, Sloil | supl Bsin (¢ =) B —v%) |ds
+ 19, Jw sup| B 'sin (¢ —s) B (ut—vh) |ds

<Ston [ sup| FIF e B (w0 ) s
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i

+ |G| sup| F [F,_ s B (ui—v1)]|ds

J—

e
=lgi sup|Fy_s,s* B* (u® — v®) |ds

J-oo =z

(~t

+ 02| | sup|F,_*B*(ul—vh)|ds

J=—oo T

r

t
=10l | 1Fessllana-nl B* (= vF) [ ,ds

J

rt
+ 02| _ [ F:—s,sll area—n | B (s — ©h) || o ds

J

Now applying Lemma 3.2 to the last members of above inequalities, we

obtain

1M (8) — M (@) [lo, <6 — 4l

t
X e 33 1061 ()=~ [ (Ut |e—sl)0m=3m (L |s]) ~6-mgs
6EF —o0

¢
+c EZF lgzl (4-)7)‘r—2/11_¢;'jv (1+ lt_s[)—(s/q—S/Z)(1+ [sl)—(r—z/q)dgds}.
[ q —o0

Taking Lemma 2.1 into consideration, we impose the following conditions

to the exponents appearing in the above integrals:

a7 max (3/p—3/2, (B—2/p)dy) >1
min (3/p—3/2, (8—2/p) d)) =d,
18 max (3/q—3/2, (r—2/q) d>) >1,

min (3/9—3/2, (r—2/q) dy) =d,

where 1=p, ¢<2.
Similarly we have

IM@) =M@ o< [ [ Becaalooonl B @P= 0% |ods

# Bl | B D) | s,

and so

1M ($) — M () [|.< 6 — ¢l

xe 33 (lonl () #=re [ Qo lemsl) @ [sf) s
oEF, e
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+1gz| (4y)77* j A+ [z =s)) 7" A+ [s[) =" %ds}

with the conditions

(19) max (1/7, (8—2/r)dy) >1
min (1/r, (8—2/7)dy) =,
(20) max (1/r, (r—2/r) dy) >1

min (1/7, (r—2/7) d) =d,

where 1<lr<2.

For =3 and 7>7/2 we may choose p=1, ¢=1 and r arbitrary but
1<r<2 so that (16) (20) hold, whence d;=3/2 and d, arbitrary but
1/2<d,<<1. For =3 and 7/2=7=3 we may choose p=1, d,=1/r with
1<r<(4/3 so that (16), (17), (19) and (20) hold, provided &;>1. Ac-
tually (20) follows from y=3>r+2/r when 1<r<(4/3. Concerning
(18) we choose ¢ with

3/q—3/2=(r—2/q)-1/r
which implies 3/¢—3/2=3(r—1)/(3r+2). Since 3/¢—3/2>1 when
1<r<<4/3, we thus obtain
d;=3(—1/@r+2)<3(r—1)/5.

Consequently we have proved by Theorems 2. 2 and 2. 3 the existence
of a global unique solution and of scattering operator for small data.
We finally note that continuity of Sin | -|-topology is derived from (13")
just as in [8]. Q.E.D.

In case n=1 we define 4 by completion of D (B @D (B") with

respect to the inner product
(@, ) = (B’uy, B'u,) + (Bv,, Bv,).
Then the corresponding conditions to (16) ~ (20),
(16" B-Dd>1, (—1DHd,>1
a7 max (1/p—1/2, (8—2/p)d,) >1
min(1/p—1/2, (8—2/p) d\) =d,
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18 max(1/¢—1/2, (r—2/q) d) >1
min (1/q—1/2, (r—2/q) d») =d,

19" max (1/r—1/2, (8—2/r)dy) >1
min (1/r—1/2, (8—2/r) dy) =d,

and

(20) max (1/r—1/2, (r—2/r) dy) >1

min (1/r—1/2, (r—2/7) dy) =d, .

should be imposed where 1<p, ¢<<2 and 4/3<r<2.
Then we have analogously to the proof of Theorem 3. 4.

Theorem 3.5. The same claims as Theorem 3.4 hold with d,

:1/2, d2<1/4' f07” 18>4, T>6-
For 11/2<y<6, B should be chosen as 3>7—4+2/(y—5) with

d1< (T—5) /2: d2<1/4'
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