A Remark on the Automorphism Pseudo-Group of a Differential Equation of Immersion Type

By

Kazushige UENO*

Introduction

Let Γ be a pseudo-group on a manifold Q such that \mathcal{L}_{Γ} is N-regular (Definition 3.1). It seems to be important to know whether the orbit system $\mathcal{L}_{\Gamma}(k, x, f)$ is Γ -automorphic or not (Definition 4.1).

If dim $N \ge \dim Q \ge 1$, it is known that, for a sufficiently large integer $k, \mathcal{L}_{\Gamma}(k, x, f)$ is Γ -automorphic (Theorem 6.1 in [2]). But in case $1 \le \dim N$ $< \dim Q$, we do not know whether the same assertion holds or not.

In the present paper, we consider the problem for the automorphism pseudo-group $\mathcal{A}(E)$ of some kind of a differential equation E and seek for a necessary and sufficient condition for the orbit system $\mathcal{L}_{\mathcal{A}(E)}(k, x, f)$ to be $\mathcal{A}(E)$ -automorphic for a sufficiently large k (Theorem 6.1).

Through this paper, we assume the differentiability of class C° . For a pseudo-group Γ , we always assume that any element of Γ is close to the identity. For the completeness of a pseudo-group Γ , refer to Definition 5.2 in [2].

§ 1. Admissibility of a Reduced Pair

1. Let $J^{l}(N, Q)$, $l \ge 0$, denote the space of *l*-jets of local maps of N to Q and $\tilde{J}^{l}(N, Q)$ denote the open submanifold of $J^{l}(N, Q)$ which consists of *l*-jets of local submersions or local immersions if dim $N \ge \dim Q$ or dim Q, respectively.

By a differential equation E at $j_x^k(f) \in \tilde{J}^k(N, Q)$, we mean a family of functions locally defined at $j_x^k(f)$. We denote by $\mathscr{S}(E)$ or $\mathcal{A}(E)$ the solution space or the automorphism pseudo-group of E, respectively, and

Communicated by N. Shimada, February 15, 1978.

^{*} Tokyo University of Fisheries.

for a neighbourhood \mathcal{U}^i of $j_x^i(f)$, $\mathscr{S}(E) | \mathcal{U}^i$ or $\mathcal{A}(E) | \mathcal{U}^i$ means the restriction of $\mathscr{S}(E)$ or $\mathcal{A}(E)$ to \mathcal{U}^i , respectively. Let (Q, Q', π) be a fibred manifold and let E or E' denote a differential equation at $j_x^\alpha(f) \in \tilde{J}^\alpha(N, Q)$ or $j_x^{\alpha'}(\pi \circ f) \in \tilde{J}^{\alpha'}(N, Q')$, respectively. Through this paper, we fix this f.

Definition 1.1. The pair (E, E') is said to be k-reduced pair (resp. weakly k-reduced pair) if the following conditions 1) and 2) are satisfied (resp. if the condition 1) is satisfied):

1) There are neighbourhoods \mathcal{U}^k of $j_x^k(f)$ and \mathcal{U}'^k of $j_x^k(\pi \circ f)$ such that i) for any $s \in \mathscr{G}(E) | \mathcal{U}^k, \pi \circ s \in \mathscr{G}(E') | \mathcal{U}'^k$, ii) for any $s' \in \mathscr{G}(E') | \mathcal{U}'^k$, there exists an $s \in \mathscr{G}(E) | \mathcal{U}^k$ with $\pi \circ s = s'$ and iii) for $s: N \supset \mathcal{U} \rightarrow Q$ and $t: N \supset \mathcal{O} \rightarrow Q \in \mathscr{G}(E) | \mathcal{U}^k$, if $\pi \circ s = \pi \circ t$, then s = t on $\mathcal{U} \cap \mathcal{O}$.

2) For any $\phi \in \mathcal{A}(E) | \mathcal{U}^k$, there exists a local diffeomorphism φ of Q' with $\varphi \circ \pi = \pi \circ \phi$.

Let ξ be a map of \mathcal{U}'^k to \mathbb{R}^r where $r = \dim Q - \dim Q'$.

Definition 1.2. A (weakly) k-reduced pair (E, E') is said to be of type ξ if any element $s \in \mathscr{G}(E) | \mathcal{U}^k$ is expressed as $s = (s', \xi(i^k(s')), s' \in \mathscr{G}(E') | \mathcal{U}'^k$.

2. Let E' be a differential equation at $j_x^{\alpha}(f') \in \tilde{J}^{\alpha}(N, Q')$ and ξ be a map of a neighbourhood \mathcal{U}'^k of $j_x^k(f')$ to \mathbb{R}^m . We set $S_{x,z'}^k = \{j_x^k(s) \mid s' \in \mathscr{S}(E'), s'(x) = z'\}$.

Definition 2.1. ξ is said to be E'-admissible at x_0 if there exists a neighbourhood \mathcal{U}' of $(x_0, f'(x_0))$ such that, to any $\phi \in \mathcal{A}(E')$, there correspond an open subset $O^{\phi} \subset \mathbb{R}^m$ and a map $\eta^{\phi} \colon \mathcal{U}' \times O^{\phi} \to \mathbb{R}^m$ with $\eta_{x,z'}^{\phi} \circ \xi = \xi \circ \phi^{(k)}$ on $S_{x,z'}^k \cap \mathcal{U}'^k \cap D(\phi^{(k)})$, where $\eta_{x,z'}^{\phi}(v) = \eta^{\phi}(x, z', v)$ and $D(\phi^{(k)}) =$ the domain of $\phi^{(k)} \cap (\phi^{(k)})^{-1}(\mathcal{U}'^k)$.

§ 2. Reducibility of a Regular Differential Equation

3. Given a sheaf of vector fields \mathcal{L} on a manifold Q, then \mathcal{L} is

prolonged to a sheaf of vector fields $\mathcal{L}^{(k)}$ on $\tilde{J}^k(N, Q)$. Let ${}^{0}\mathcal{L}_{p}^{(k)}$ denote the isotropy of the stalk $\mathcal{L}_{p}^{(k)}$ and set $D_{p}^{(k)} = \mathcal{L}_{p}^{(k)} {}^{0}\mathcal{L}_{p}^{(k)}$.

Definition 3.1. \mathcal{L} is said to be N-regular if, for any integer k, the correspondence $\tilde{J}^k(N, Q) \cong p \to D_p^{(k)} \subset T_p(\tilde{J}^k(N, Q))$ defines an involutive distribution.

Let Γ be a pseudo-group on Q. Then we can give the sheaf of germs of local vector fields X on Q such that the local 1-parameter group of local transformations generated by X is contained in Γ , which we denote by \mathcal{L}_{Γ} . Assume that \mathcal{L}_{Γ} is N-regular. Let $\{\theta_{j}^{k}\}_{j=1}^{m_{k}}$ be a fundamental system of differential invariants of \mathcal{L}_{Γ} at $j_x^k(f) \in \tilde{J}^k(N, Q)$. We set $\mathcal{O}^k = (\theta_1^k, \dots, \theta_{m_k}^k)$. Then \mathcal{O}^k is a submersion of a neighbourhood \mathcal{Q}^k of $j_x^k(f)$ to an open subset $W \subset \mathbb{R}^{m_k}$. We set $p^h \mathcal{O}^K(j_x^{h+k}(s)) = j_x^h(\mathcal{O}^k(j^k(s)))$. Then $p^h \mathscr{O}^k$ is a map of a neighbourhood \mathscr{U}^{h+k} of $j_x^{h+k}(f) \in \widetilde{J}^{h+k}(N, Q)$ to a neighbourhood W^{\hbar} of $j_{x}^{\hbar}(\Theta^{k}(j^{k}(f)) \in J^{\hbar}(N, \mathbb{R}^{m_{k}})$. For any function F defined on an open subset of W^h , we put $F(\mathcal{O}^k) = p^h \mathcal{O}^{k*} F$. Then $F(\mathcal{O}^k)$ is a differential invariant of \mathcal{L}_{Γ} at $j_x^{h+k}(f)$. $F(\mathcal{O}^k)$ is called a Γ -differential invariant of type k at $j_x^{h+k}(f)$. A family $\{F_j(\Theta^k)\}_{j=1}^r$ of linearly independent Γ -differential invariants of type k at $j_x^{h+k}(f)$ is called a Γ -family of type (k, r) at $j_x^{k+k}(f)$ if the differential equation E generated by $\{F_j(\Theta^k)\}_{j=1}^r$ possesses a solution and if $\mathcal{A}(E)$ is equal to Γ on a neighbourhood \mathcal{U} of f(x). In general, for any differential equation E, we set $S^{k}(E) = \bigcup_{s \in \mathscr{S}(E)} \operatorname{Im} j^{k}(s)$.

Definition 3.2. A differential equation E at $j_x^{\alpha}(f) \in \tilde{J}^{\alpha}(N, Q)$ is said to be *l*-regular at x if the following conditions are satisfied:

1) $\mathcal{L}_{\mathcal{A}(E)}$ is N-regular.

2) For each integer $\tilde{l} \geq l$, there exists an integer \tilde{k} and an $\mathcal{A}(E)$ -family $\tilde{\mathcal{H}} = \{\tilde{\mathfrak{H}}_{j}\}_{j=1}^{\tilde{r}}$ of type (\tilde{l}, \tilde{r}) at $j_{x}^{\tilde{l}+\tilde{k}}(f)$ such that $p^{\tilde{l}+\tilde{k}-\alpha}(E)$, the standard prolongation of E, is generated by $\tilde{\mathcal{H}}$.

3) For each integer $k \ge l$, there is a neighbourhood \mathcal{U}^k of $j_x^k(f)$ such that $S^k(E) \cap \mathcal{U}^k$ is a regular submanifold of $\tilde{J}^k(N, Q)$.

4. Let \mathcal{L} be a weak Lie algebra sheaf on Q which is N-regular.

For such a sheaf \mathcal{L} , we can consider the orbit system $\mathcal{L}(k, x, f)$ for any positive integer k and a local submersion or immersion of a neighbourhood of $x \in N$ to Q. Namely let $\{\theta_j^k\}_{j=1}^{m_k}$ be a fundamental system of differential invariants of a weak Lie algebra sheaf \mathcal{L} at $j_x^k(f)$. We set $\lambda_j(x) = \theta_j^k(j_x^k(f))$. Then $\mathcal{L}(k, x, f)$ is generated by $\theta_j^k - \lambda_j(1 \leq j \leq m_k)$ as a differential equation.

Definition 4.1. $\mathcal{L}_{\Gamma}(k, x, f)$ is said to be Γ -automorphic if any solution of $\mathcal{L}_{\Gamma}(k, x, f)$ is of the form $\phi \circ f, \phi \in \Gamma$.

Proposition 4.1. If dim $N \ge \dim Q$, and if Γ is complete at (f(x), 1), then for a sufficiently large integer $k, \mathcal{L}_{\Gamma}(k, x, f)$ is Γ -automorphic.

For the proof, refer to [2].

Definition 4.2. Γ is said to be k-automorphic at (x, f) if the orbit system $\mathcal{L}(k, x, f)$ is Γ -automorphic.

Proposition 4.1 means that, if dim $N \ge \dim Q$ and if Γ is complete at (f(x), 1), Γ is k-automorphic at (x, f) for a sufficiently large integer k. (As for the definition of completeness, refer to [2].)

5. Let (Q, Q', π) be a fibred manifold and E or E' be a differential equation at $j_x^{\alpha}(f) \in \tilde{J}^{\alpha}(N, Q)$ or $j_x^{\alpha'}(\pi \circ f) \in \tilde{J}^{\alpha'}(N, Q')$, respectively. Suppose E and E' are l-regular at x. Then, for $k \ge l$, $\mathcal{L}_{\mathcal{J}(E)}$ or $\mathcal{L}_{\mathcal{J}(E')}$ induces an involutive distribution D_E^k or $D_{E'}^k$ on a neighbourhood of $j_x^k(f)$ or of $j_x^k(\pi \circ f)$, respectively. Assume that dim $N \ge \dim Q'$.

Lemma 5.1. Suppose that (E, E') is a k-reduced pair for a sufficiently large k and that $\dim \pi_*^k D_E^k = \dim D_{E'}^k$. We denote by $\mathcal{A}(E)'_k$ the pseudo-group generated by $\{g': \exists g \in \mathcal{A}(E) \mid \mathcal{U}^k, \pi \circ g = g' \circ \pi\}$. If $\mathcal{A}(E')$ and $\mathcal{A}(E)'_k$ are complete at $(\pi \circ f(x), 1)$, then $(\mathcal{L}_{\mathcal{A}(E)}(k, x, f), \mathcal{L}_{\mathcal{A}(E')}(k, x, \pi \circ f))$ is a weakly k-reduced pair.

790

Proof. Since (E, E') is a k-reduced pair, we see that $(\pi^k)_* D_E^k = D_{E'}^k$ for a sufficiently large k. On the other hand, since $\mathcal{A}(E')$ and $\mathcal{A}(E)'_k$ are complete at $(\pi \circ f(x_0), 1)$, by Lemma 7.1 in [2], $\mathcal{A}(E)'_k | \mathcal{U}'^k = \mathcal{A}(E')| \mathcal{U}'^k$ for a neighbourhood $\mathcal{U}'^k \circ f j_{x_0}^k(\pi \circ f)$. Since, by Proposition 4.1, $\mathcal{A}(E')$ is k-automorphic, $\mathcal{L}_{\mathcal{A}(E')}(k, x_0, \pi^\circ f)$ is $\mathcal{A}(E)'_k$ -automorphic. Since π maps $\mathcal{S}(\mathcal{L}_{\mathcal{A}(E)}(k, x_0, f)) | \mathcal{U}^k$ into $\mathcal{S}(\mathcal{L}_{\mathcal{A}(E')}(k, x_0, \pi \circ f)) | \mathcal{U}'^k$ and since $\mathcal{L}_{\mathcal{A}(E')}(k, x_0, \pi \circ f)$ is $\mathcal{A}(E)'_k$ -automorphic, $\mathcal{S}(\mathcal{L}_{\mathcal{A}(E)}(k, x_0, f)) | \mathcal{U}^k$ is transfered onto $\mathcal{S}(\mathcal{L}_{\mathcal{A}(E)}(k, x_0, \pi^\circ f)) | \mathcal{U}'^k$. Since (E, E') is a k-reduced pair, the pair $(\mathcal{L}_{\mathcal{A}(E)}(k, x_0, f), \mathcal{L}_{\mathcal{A}(E')}(k, x_0, \pi \circ f))$ is a weakly kreduced pair. The proof is completed.

§ 3. Main Theorem

6. Let *I* be a pseudo-group on *Q* where \mathcal{L}_{Γ} is *N*-regular and let *f* be an immersion or a submersion of a neighbourhood of $x_0 \in N$ to *Q*.

Theorem 6.1. Let (Q, Q', π) be a fibred manifold and let E or E' be a differential equation at $j_{r_0}^{\alpha}(f)$ or $j_{r_0}^{\alpha'}(\pi \circ f)$, respectively. Assume that

1) E and E' are l-regular at x_0 and $\mathcal{A}(E')$ is complete at $(\pi \circ f(x_0), 1)$.

2) For a sufficiently large integer k, (E, E') is a k-reduced pair of type ξ and $\mathcal{A}(E)'_k$ is complete at $(\pi \circ f(x_0), 1)$, where $\xi : \tilde{J}^k(N, Q')$ $\supset \mathcal{U}'^k \rightarrow \mathbb{R}^r$, $r = \dim Q - \dim Q'$.

3) $\bigcup_{s \in \mathscr{S}(\mathbf{E}) \mid \mathcal{U}^{k}}$ Im s contains an open neighbourhood of $f(x_{0})$ for a sufficiently small neighbourhood \mathcal{U}^{k} .

4) There exists a neighbourhood U' of (x₀, π∘f(x₀)) ∈ N×Q' such that ∩ f(S^k_{x,z'} ∩ U'^k) contains an open neighbourhood of f(j^k_{x₀}(π∘f)).
5) dim N≥dim Q'.

Then ξ is E'-admissible at x_0 if and only if $\mathcal{A}(E)$ is k-automorphic at (x_0, f) .

Proof. Suppose ξ is E'-admissible at x_0 . Let $\phi' \in \mathcal{A}(E') | \mathcal{U}'^k$. We may assume that $(\mathcal{U}^k, \mathcal{U}'^k, \pi^k)$ is a fibred manifold and $\mathscr{S}(E) | \mathcal{U}^k$. $\mathscr{S}(E') | \mathcal{U}'^k$ and $\mathcal{A}(E) | \mathcal{U}^k$ satisfy the conditions 1) and 2) of Definition 1.1.

For any $s = (s', \xi(j^k(s'))) \in \mathscr{S}(E) | \mathcal{U}^k$, we set $s^{\phi'} = (\phi' \circ s', \xi(j^k(\phi' \circ s')))$. Then since $s' \in \mathscr{S}(E') | \mathcal{U}'^k$, $s^{\phi'} \in \mathscr{S}(E) | \mathcal{U}^k$. Since ξ is E'-admissible at $x_0, s^{\phi'}(x) = (\phi' \circ s'(x), \eta_{x,s'(x)}^{\phi'} \circ \xi(j_x^k(s')))$. Therefore for any two s and $t \in \mathscr{S}(E) | \mathcal{U}^k$, if s(x) = t(x), then we have $s^{\phi'}(x) = t^{\phi'}(x)$. By the condition 3), if we set $\phi \circ s(x) = s^{\phi'}(x)$, ϕ is a local diffeomorphism of Q to Q. It is now clear that $\phi \in \mathcal{A}(E) | \mathcal{U}^k$ and $\pi \circ \phi = \phi' \circ \pi$. Let $\varphi \in \mathcal{A}(E) | \mathcal{U}^k$ such that $\pi \circ \varphi = \phi' \circ \pi$. Then $\varphi \circ s \in \mathscr{S}(E) | \mathcal{U}^k$ and $\pi \circ \varphi \circ s = \phi' \circ \pi \circ s$ $= \phi' \circ s'$. Therefore $\varphi \circ s$ is of the form $(\phi' \circ s', \xi(j^k(\phi' \circ s')))$. By the condition 3), this implies $\varphi = \phi$ on the intersection of their domains.

Now let $\phi \in \mathcal{A}(E) | \mathcal{U}^k$. Then by the k-reducibility of the pair (E, E'), we have a local transformation ϕ' on Q' such that $\phi' \circ \pi = \pi \circ \phi$. For any $s' \in \mathscr{S}(E') | \mathcal{U}'^k$, we have $s \in \mathscr{S}(E) | \mathcal{U}^k$ such that $s' = \pi \circ s$. Then $\phi' \circ s' = \phi' \circ \pi \circ s = \pi \circ \phi \circ s \in \mathscr{S}(E') | \mathcal{U}'^k$. Therefore $\phi' \in \mathcal{A}(E') | \mathcal{U}'^k$.

Thus we see that $\dim \pi_*^k D_E^k = \dim D_{E'}^k$. On the other hand, since dim $N \ge \dim Q'$ and $\pi \circ f$ is a local submersion, by Proposition 4. 1, $\mathcal{A}(E')$ is k-automorphic at $(x_0, \pi \circ f)$ for a sufficiently large k. Therefore by Lemma 5. 1, the pair $(\mathcal{L}_{\mathcal{A}(E)}(k, x_0, f), \mathcal{L}_{\mathcal{A}(E')}(k, x_0, \pi \circ f))$ is a weakly k-reduced pair. Since $\mathcal{L}_{\mathcal{A}(E')}(k, x_0, \pi \circ f)$ is $\mathcal{A}(E')$ -automorphic, it is easy to see that $\mathcal{L}_{\mathcal{A}(E)}(k, x_0, f)$ is $\mathcal{A}(E)$ -automorphic. That is to say, $\mathcal{A}(E)$ is k-automorphic at (x_0, f) .

Conversely, for a sufficiently large k, we assume that $\mathcal{A}(E)$ is kautomorphic at (x_0, f) . Let $\phi \in \mathcal{A}(E) | \mathcal{U}^k$. Then by the k-reducibility of the pair (E, E'), there is a $\phi' \in \mathcal{A}(E') | \mathcal{U}'^k$ such that $\pi \circ \phi = \phi' \circ \pi$. Conversely let $\phi' \in \mathcal{A}(E') | \mathcal{U}'^k$. Then $\phi' \circ \pi \circ f \in \mathscr{S}(E') | \mathcal{U}'^k$. Therefore we have $s \in \mathscr{S}(E) | \mathcal{U}^k$ such that $\pi \circ s = \phi' \circ \pi \circ f$. Since $\mathcal{A}(E)$ is kautomorphic at (x_0, f) , we have $\phi \in \mathcal{A}(E) | \mathcal{U}^k$ such that $s = \phi \circ f$. Then we get $\pi \circ \phi \circ f = \phi' \circ f'$, where $f' = \pi \circ f$. Since the pair (E, E') is of type ξ , for any $s \in \mathscr{S}(E) | \mathcal{U}^k$, we have $s = (s', \xi(j^*(s')))$ where $s' \in \mathscr{S}(E') | \mathcal{U}'^k$. Therefore the equality $\pi \circ \phi \circ f = \phi' \circ f'$ implies $\phi \circ f = (\phi' \circ f',$ $\xi(j^*(\phi' \circ f')))$. On the other hand, there exists $\varphi' \in \mathcal{A}(E') | \mathcal{U}'^k$ such that $\phi \circ s = (\varphi' \circ s', \xi(j^*(\varphi' \circ s')))$ for any $s \in \mathscr{S}(E) | \mathcal{U}^k$. Since f' is a submersion, we get $\phi' = \varphi'$. Therefore, for any $s \in \mathscr{S}(E) | \mathcal{U}^k$, we have $\phi \circ s$ $= (\phi' \circ s', \xi(j^*(\phi' \circ s')))$. By the condition 3), we can easily see that $\pi \circ \phi = \phi' \circ \pi$. It is now clear that, if there are ϕ and $\varphi \in \mathcal{A}(E) | \mathcal{U}^k$ such that $\pi \circ \phi = \pi \circ \varphi = \phi' \circ \pi$, then $\phi = \varphi$ on the intersection of their domains.

792

Now we shall show that ξ is E'-admissible at x_0 . Let $\phi' \in \mathcal{A}(E') | \mathcal{U}'^k$. Then as is stated above, we have an element $\phi \in \mathcal{A}(E) | \mathcal{U}^k$ such that $\pi \circ \phi = \phi' \circ \pi$. Since the pair (E, E') is of type ξ , any $s \in \mathcal{S}(E) | \mathcal{U}^k$ possesses the form $s = (s', \xi(j^k(s')))$, $s' \in \mathcal{S}(E') | \mathcal{U}^k$. Therefore we have $\phi \circ s = (\phi' \circ s', \xi(j^k(\phi' \circ s')))$. Assume that $\xi(j_x^k(s')) = \xi(j_x^k(t'))$, where $s', t' \in \mathcal{S}(E') | \mathcal{U}'^k$ and s'(x) = t'(x) = z'. Then we get s(x) = t(x), where $s = (s', \xi(j^k(s')))$ and $t = (t', \xi(j^k(t')))$. Consequently we have $\phi \circ s(x) = \phi \circ t(x)$ and thus we get $\xi(j_x^k(\phi' \circ s')) = \xi(j_x^k(\phi' \circ t'))$. That is to say, if $\xi(j_x^k(s')) = \xi(j_x^k(t'))$ for $j_x^k(s'), j_x^k(t') \in S_{x,z'}^k$, then we have $\xi(j_x^k(\phi' \circ s')) = \xi(j_x^k(\phi' \circ t'))$ for $\phi' \in \mathcal{A}(E') | \mathcal{U}'^k$. If we set $\eta^{\phi'}(x, z', v) = \xi(j_x^k(\phi \circ s'))$, by the condition 4), $\eta^{\phi'}_{x,z'}$ is a local map of a neighbourhood \mathcal{O} of $\xi(j_x^k(\pi \circ f)) \mathbb{R}^r$ to \mathbb{R}^r for any $(x, z') \in \mathcal{U}'$. If we set $\eta^{\phi'}(x, z', v) = \eta^{\phi'}_{x,z'}(v)$, it is easy to see that $\eta^{\phi'}$ is an analytic map of $\mathcal{U}' \times \mathcal{O}$ to \mathbb{R}^r . This proves that ξ is E'-admissible at x_0 .

Corollary 6.1. Let (Q, Q', π) be a fibred manifold and E or E' be a differential equation at $j_{x_0}^{\alpha}(f)$ or $j_{x_0}^{\alpha'}(\pi \circ f)$, respectively. Assume that

1) E and E' are l-regular at x_0 and $\mathcal{A}(E)$ (resp. $\mathcal{A}(E')$) is complete at $(f(x_0), 1)$ (resp. $(\pi \circ f(x_0), 1))$.

2) For a sufficiently large integer k, (E, E') is a k-reduced pair of type ξ and $\mathcal{A}(E)'_{k}$ is complete at $(\pi \circ f(x_{0}), 1)$.

3) There exist neighbourhoods \mathcal{U}' of $(x_0, \pi \circ f(x_0))$ and \mathcal{U}'^k of $j_{x_0}^k(\pi \circ f)$ such that $\bigcap_{(x,z')\in\mathcal{U}'} \xi(S_{x,z'}^k \cap \mathcal{U}'^k)$ contains an open neighbourhood of $\xi(j_{x_0}^k(\pi \circ f))$.

4) dim $N \ge \dim Q$.

Then the pair $(\mathcal{L}_{\mathcal{A}(E)}(k, x_0, f), \mathcal{L}_{\mathcal{A}(E')}(k, x_0, \pi \circ f))$ is a weakly k-reduced pair.

Proof. In this case, the conditions 3) and 5) in Theorem 6.1 are clearly satisfied. Furthermore by Proposition 4.1, $\mathcal{A}(E)$ is k-automorphic at (x_0, f) . Therefore by Theorem 6.1, ξ is E'-admissible at x_0 . Then as was stated in the proof of Theorem 6.1, we have dim $\pi_*^k D_E^k = \dim D_{E'}^k$. By Lemma 5.1, we see that the pair $(\mathcal{L}_{\mathcal{A}(E)}(k, x_0, f), \mathcal{L}_{\mathcal{A}(E')}(k, x_0, \pi \circ f))$

is a weakly k-reduced pair. The proof is completed.

§ 4. Medolaghi-Vessiot's Example

7. We denote by E the differential equation at $j_{x_0}^1(f) \in \tilde{J}^1(\mathbb{R}^2, \mathbb{R}^3)$ generated by $\frac{1}{z_2} \cdot \frac{\partial z_1}{\partial x_1} - \alpha^1(x_1, x_2) (=F_1), \frac{1}{z_2} \cdot \frac{\partial z_1}{\partial x_2} - \alpha^2(x_1, x_2) (=F_2), \frac{1}{z_2} \cdot \left(\frac{\partial z_2}{\partial x_1} - z_3 \cdot \frac{\partial z_1}{\partial x_1}\right) - \beta^1(x_1, x_2) (=F_3)$ and $\frac{1}{z_2} \cdot \left(\frac{\partial z_2}{\partial x_2} - z_3 \cdot \frac{\partial z_1}{\partial x_2}\right) - \beta^2(x_1, x_2)$ $(=F_4)$ where $\{x_1, x_2\}$ (resp. $\{z_1, z_2, z_3\}$) is the canonical coordinate system on \mathbb{R}^2 (resp. \mathbb{R}^3) and $z_2 \circ f(x_0) \neq 0, \frac{\partial (z_1 \circ f)}{\partial x_1}(x_0) \neq 0, \alpha^1(x_0) \neq 0$. On the other hand, we denote by E' the differential equation at $j_{x_0}^1(\pi \circ f)$ $\tilde{J}^1(\mathbb{R}^2, \mathbb{R})$ generated by $\frac{\partial z}{\partial x_2} - \frac{\alpha^2}{\alpha^1} \cdot \frac{\partial z}{\partial x_1}$ where $\{z\}$ is the canonical coordinate coordinate or \mathbb{R} and the projection π of \mathbb{R}^3 onto \mathbb{R} is defined by $\pi(z_1, z_2, z_3) = z_1$. Then it is easy to see that the pair (E, E') is a weakly 1-reduced pair.

We define a map $\hat{\varsigma} = (\hat{\varsigma}_1, \hat{\varsigma}_2)$ of a neighbourhood of $j_{x_0}^2(\pi \circ f)$ to \mathbb{R}^2 by $\hat{\varsigma}_1(j_x^2(s)) = p_1(j_x^1(s))/\alpha^1(x)$ and $\hat{\varsigma}_2(j_x^2(s)) = p_{11}(j_x^2(s))/\alpha^1(x) \cdot p_1(j_x^1(s))$ $-\frac{\partial \alpha^1}{\partial x_1}(x)/(\alpha^1(x))^2 - \beta(x)/\alpha^1(x)$, where $\{x_1, x_2, z, p_1, p_2, p_{11}, p_{12}, p_{22}\}$ is the canonical system on $J^2(\mathbb{R}^2, \mathbb{R})$. Then it is easily proved that the pair (E, E') is of type $\hat{\varsigma}$, considering (E, E') as a weakly 2-reduced pair.

We denote by \mathcal{L} the sheaf on \mathbb{R}^3 of local vector fields of the following form:

$$\eta\left(z_{1}\right)\frac{\partial}{\partial z_{1}}+\eta'\left(z_{1}\right)\cdot z_{2}\cdot\frac{\partial}{\partial z_{2}}+\eta''\left(z_{1}\right)\cdot z_{2}\cdot\frac{\partial}{\partial z_{3}}$$

where η is any local function with one variable. If we set $\mathbb{R}^3_* = \{(z_1, z_2, z_3) \in \mathbb{R}^3; z_2 \neq 0\}$, \mathcal{L} is a Lie algebra sheaf on \mathbb{R}^3_* which is \mathbb{R}^2 -regular. Let Γ be the pseudo-group on \mathbb{R}^3_* such that $\mathcal{L}_{\Gamma} = \mathcal{L}$ and Γ is complete at (p, 1) where p is any point of \mathbb{R}^3_* . Then since F_1, F_2, F_3 and F_4 are differential invariants of \mathcal{L}_{Γ} , we have $\mathcal{A}(E) \supset \Gamma$ on a neighbourhood of $j^1_{x_0}(f)$.

Next let \mathcal{L}' be the sheaf of all local vector fields on \mathbb{R} and let Γ' be the pseudo-group of all local transformations on \mathbb{R} . Then it is easy to see that $\mathcal{A}(E') = \Gamma'$ on a neighbourhood of $j_{x_0}^1(\pi \circ f)$. Moreover since $\{p_2/p_1\}$ is a fundamental system of differential invariants of \mathcal{L}' at

 $j_{x_0}^1(\pi \circ f)$, E' is $\mathcal{A}(E')$ -automorphic.

Now we can easily see that ξ is E'-admissible at x_0 .

On the other hand, since Γ is transitive on \mathbb{R}^3_* , the condition 3) of Theorem 6.1 is clearly satisfied. Now ξ is defined by

$$\begin{split} \hat{\xi}_{1}(j_{x}^{2}(s)) &= p_{1}(j_{x}^{1}(s)) / \alpha^{1}(x), \\ \hat{\xi}_{2}(j_{x}^{2}(s)) &= p_{11}(j_{x}^{2}(s)) / \alpha^{1}(x) \cdot p_{1}(j_{x}^{1}(s)) \\ &- \frac{\partial \alpha^{1}}{\partial x_{1}}(x) / (\alpha^{1}(x))^{2} - \beta^{1}(x) / \alpha^{1}(x). \end{split}$$

We prove that, for any constants a and b, there is a solution s of E' such that $p_1(j_x^1(s)) = a$ and $p_{11}(j_x^2(s)) = b$. Since E' is generated by the local vector field $\frac{\partial}{\partial x_2} - \frac{\alpha^2}{\alpha^1} \cdot \frac{\partial}{\partial x_1}$, if s is a particular solution of E' with s(x) = z', then $\mathscr{S}(E') \supseteq \{\varphi \circ s: \varphi \text{ is any function locally defined at <math>z'\}$. Then it is easy to see that, for some φ , we have $p_1(j_x^1(\varphi \circ s)) = a$ and $p_{11}(j_x^2(\varphi \circ s)) = b$. Therefore $\xi(S_{x,z'}^2 \cap \mathcal{U}'^2)$ is open in \mathbb{R}^2 for a neighbourhood \mathcal{U}'^2 of $j_{x_0}^2(\pi \circ f)$. Furthermore if $\frac{\partial \alpha^1}{\partial x_1}/(\alpha^1)^2 + \beta^1/\alpha^1$ is constant, we can easily see that, for a neighbourhood \mathcal{U}' of $(x_0, \pi \circ f(x))$, $\bigcap_{\substack{(x,x') \in \mathcal{U}'}} \xi(S_{x,z'}^2 \cap \mathcal{U}'^2)$ is open. In this case by Theorem 6.1, $\mathcal{A}(E)$ is k-automorphic at (x_0, f) for some k. We have seen that $\mathcal{A}(E) | \mathcal{U}^2$ is mapped by π bijectively to $\mathcal{A}(E') | \mathcal{U}'^2$. On the other hand, $\Gamma | \mathcal{U}^2$ is mapped by π bijectively to $\mathcal{A}(E') | \mathcal{U}'^2$, because Γ consists of all local transformation ϕ on \mathbb{R}^3_* defined by

$$\begin{cases} z_1 \circ \phi(z_1, z_2, z_3) = X(z_1), \\ z_2 \circ \phi(z_1, z_2, z_3) = z_2 \cdot X'(z_1), \\ z_3 \circ \phi(z_1, z_2, z_3) = z_3 + z_2 \cdot \frac{X''(z_1)}{X'(z_1)} \end{cases}$$

where X is any local transformation on \mathbb{R} . Since we have $\mathcal{A}(E) \supset \Gamma$ on a neighbourhood of $j_x^2(f)$, we see that $\mathcal{A}(E) = \Gamma$ on a neighbourhood of $j_x^2(f)$.

References

 Singer, I. M. and Sternberg, S., The infinite groups of Lie and Cartan, J. Analyse Math., 15 (1965), 1-114.

- [2] Ueno, K., Existence and Equivalence Theorems of Automorphic Systems, Publ. RIMS, Kyoto Univ. 11 (1976), 461-482.
- [3] Ueno, K., Reducibility of Differential Equations and Pseudo-isomorphism of Automorphism Pseudo-groups, (to appear).
- [4] Vessiot, E., Sur l'intégration des systèmès différentiels qui admettent des groups continus de transformations, Acta Math., 28 (1904), 307-350.

796