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Fixed Points of the Actions on
Compact Kahler Manifolds
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Introduction

Let X be a compact Kahler manifold and V a Killing vector field

on X with respect to a Kahler metric on X. Let Z be the zero set of

V which is a complex submanifold of X (cf. [12]). Suppose that Z is

nonempty and let Zn, a' = l, • • • , m, be the connected components of Z.

Then in [8] Frankel showed the following: one can associate to each
m

a naturally a nonnegative integer Aa such that bt(X) — 2 ^i-^ia (Za) for
a=l

all z^O, 'where bt(Y) denotes the i-th Betti number of Y, In parti-

cular if x denotes the Euler characteristic, then -we have % (X) =

T] % (Za) . The main purpose of this paper is to sharpen this result in
a

the following form.

Theorem. Let X, V and Z= U Za be as above. Then -we have
a

the equalities

where Ha are as above and hp'q(Y) = dim Hq (Y, Qf) .

Corollary (Kosniowski [13]). Let f (Y) = f] (-1) qhp'q (Y) and
q=Q

^y (Y) = 2 XP(^Oy> 'where y is an indeterminate. Then we have
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Note that the result of Kosniowski is more general in that it applies

also to general compact complex manifolds for a certain class of V. For

a precise description of ka in the above theorem and corollary, see (3. 5).

The organization of this paper is as follows. First in Section 1 we

reduce the problem in the usual way to that of fixed points of an action of

an algebraic torus (C'*)fc on X, as well as obtain some lemmas which are

needed in the sequel. Then in Section 2 we consider the case & —1, and fol-

lowing Bialynicki-Birula [1] we study the decomposition, X= U Xa, of X
a

into a finite number of C*-invariant locally closed submanifolds Xa.

(This takes the place of Frankel's Morse theoretic argument.) The point

here is that Xa are locall}^ closed in the Zariski topology of X (Theorem

2. 2), which is due to Bialynicki-Birula when X is projective. In fact,

this enables us to apply the Hodge theory developped by Deligne in [7]

to our problem in Section 3. Combining the result thus obtained with the

inequality of Conner (Corollary 1. 7) we then prove Theorem. Since what

we need from Hodge theory (Lemmas 3. 1, 3. 2) does not seem explicit

in the literature, we give proofs to these in a separate note [10].

In this paper all the complex spaces are assumed to be reduced.

§ 1. Some Lemmas

Let X be complex space and G a connected complex Lie group acting

biholomorphically on X. Thus we have a morphism (j:GxX-*X with

ff(Qi,ff (gt, x) ) = 0" (QiQ2, x) , gt e G, x <E X and ff (e, x) = x,e being the iden-

tity of G. We often write gx for ff(g,jc). The set of fixed points, or

the fixed point set, of G on X is the set F = {xEEX; gx = x for all g

eG}. This is an analytic subset of X. Let x^F be a fixed point and

Tr the Zariski tangent space of X at x. Let px:G-+GL(Tx) be the

isotropy representation of G on Tx, where GL(TX) is the group of all

invertible linear transformations of Tf. The following lemma and the

ensuing corollary are wellknown.

Lemma I. 1. Suppose that G is reductive. Then there exists a

neighborhood U of x in X (resp. V of the origin in Tx) and a G-

equivariant embedding <//: U-*V (i.e. for every pair (g, x) ^GxU -with
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, zve get that (p(gx) =px(g)<J>(x)).

Proof. Let K be any maximal compact subgroup of G. Then there

is a X-equivariant embedding 0: U— >V with U and V as in the lemma

(cf. Kaup [11, Satz 4. 4]). Since G is the complexification of K, ([) must

also be G-equivariant in the sense mentioned above. Q.E.D.

Corollary 1. 2. If X is non singular, then F is a complex sub-
manifold of X.

Proof. Take an arbitrary point x^F. It is enough to show that

for the neighborhood U of x in the above lemma U(~}F is nonsingular.

Then the problem is reduced to the case where U is a neighborhood of

the origin of a vector space V on which G acts linearly. Let V0 be the

maximal subspace of V on which G acts trivially. Then since G is

reductive, we can find a G-invariant subspace V\ of V with a G-isomor-

phism V^V^VQ. Then it is clear that UnF=UHVQ and hence is

nonsingular. Q.E.D.

We consider the case G=C* in Lemma 1.1. Then px is a direct

sum of 1-dimensional representations i.e. the characters %1? • • - , %„, of C*,

where ^^dimT^. Let ^(t)=tm\ m^Z, with C* = £*(*)• Then with

respect to suitable linear coordinates zl9 • • • , z n of Tx the action ffx = px of

G on Tx looks as follows;

(1) a, (t, (Zl, • • • , zn) ) = (/"*„ - , <»•«„) .

We shall identify U with a subspace of V by (f) so that the action on U

is induced from (1) by the inclusion. Then F 0 U is the intersection of

U with the linear subspace defined by the equations

where /€E {z'j, • • • , is} if and only if w^O. Note that the set Mx= {ml9

•••,mn} is independent of the particular choice of the coordinates, being

an invariant of px.

Now in (1) let 1= {1, ••• ,»} and J+ (resp. I_, J0) = {l^z^w; ^>0

(resp. <0, =0)}. We call the action positive (resp. negative) at x if
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1=1+ (resp. /_) and semipositive (resp. seminegative) if /_ (resp. /+)

= 0. We define T^ = T^(x) (resp. T_ = T_ (x), T0 = T0 (x)) by

*i = 0, f$7+ (resp. I_,I0)}.

Lemma 1. 3» 1) Tjf the action is not semipositive (resp. semine-

gative) at x, then dim* X fl T_ (resp. dim^ Xr\ T+) >0.

2) If the action is semipositive (resp. seminegative) and not positive

(resp. negative) at x, then dim*

Proof. 1) Suppose that the action is not semipositive at x i.e. T_

If dim* X fl T_ — 0, then the natural C* equivariant projection

TT: TX-^T+@T0 with kernel T"_ is finite at ;r when restricted to X. From

this we infer readily that the action is semipositive at x, which is a con-

tradiction. Hence dim^ XT! T_>0. The non-seminegative case can be

treated in the same way. 2) Suppose that the action is semipositive and

not positive at x i.e. T_ = {0} and T0=£{0}. Then for any y^T0)Xy

= (y-f-T.,) OX is invariant under the action, where y-f 7\ is the transla-

tion of T+ by y. Further if it is not empty, then {y} X {0} ̂ Xy and in

fact, as follows from (1) , it coincides with the fixed point set on Xy.

Hence if dimr.F=0, then Xy = <f> for all y=£0 sufficiently near to 0 so

that we have X^T+ at x and hence T*0= {0}, which is a contradiction.

Thus dinLp -F^>0. The other case can be treated in the same way.

Q.E.D.

Let -X" be a compact complex manifold. Then the group Aut X of

biholomorphic automorphisms of X has the natural structure of a complex

Lie group acting biholomorphically on X. (cf. [12, III. 1.1]). Put G

= Aut X and let © be the Lie algebra of G, naturally identified with the

space of holomorphic vector fields on X. Suppose now that X is a Kahler

manifold with the associated positive real (1,1) -form to on X. Let 8

- {Fe©;zero(V)^0}. Then 8 forms a Lie subalgebra of G (cf. [9,

Prop. 6.8]). Let L be the connected Lie subgroup of G corresponding

to 8, K' the group of all isometrics of X (considering X as a Riemannian

manifold with metric g corresponding to to) , and K the identity component

of Kf . Then K' has the natural structure of a real compact Lie group,
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and its Lie algebra, $, is identified with the set of Killing vector fields on

X with respect to g. Let J be the tensor field of type (1, 1) on X giving

the complex structure of X. Then by a theorem of Yano [12, III. 4. 3]

for any V^$ the complex vector field a(V) of type (1,0) defined by

a'(V) = V — v — 1 J V is holomorphic. Hence a, defines an injective map

a: $£—>©. Considering this as identification we may regard R (resp. K)

as a real Lie subalgebra (resp. subgroup) of ® (resp. G). Let ^0

= $HS, which is the Lie algebra of KQ = KC\L. Let Kj_ be any compact

Lie subgroup of KQ. Then its complexification K+ can naturally be con-

sidered as a reductive Lie subgroup of Z/, and the fixed point sets of

K! and Kf coincide. In particular if K^ is a real torus of real dimension

k, then K± is an algebraic torus isomorphic to (C*}k. Since every V

^^o generates a real torus TR such that zero (V) = Fix T'jj, Fix TR being

the fixed point set of TR, we obtain the following:

Lemma I. 40 Let V be a Killing vector field on X -with nonemp-

ty zero set. Then there is a subgroup TCI Aut X, isomorphic to (C*)k

for some k, such that zero (V) =Fix(T).

Let g be a Kahler metric on X as above. Then for any real C^

vector field W on X the real C^l-form associated with W is the 1-form

C defined by the following condition; C(Wi) =gx(Wx, Wx) for all x^X

and for all C"° vector fields W on X. For later use we recall the

following (cf. [12, III. 4. 6]) :

Lemma I. 5. Let V be as in Lemma 1. 45 and f the real 1-form

associated -with JV in the sense defined above. Then there is a real

C°° function f on X such that £ = df.

Remark 1. 1. Suppose that V generates a 1-dimensional torus S1 and

its complexification <C* acts on X. Identify €J* with S1 X M+ by the map

t—> (arg£, U|) , where arg£ is the argument of t. Then JV is a vector

field generating the action of R+. In a neighborhood of a fixed point

as in (1) JV is up to constants given by J] mt (Zid/dzL + zfl/dzf), or

in real coordinates xi = l/2(zi-\-zi) and Vi = l/2\/ — 1 (zt — zt), JV
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= XI wt (Xid/dxt + yid/dyt) . ̂  Note that with respect to the standard

Euclidian metric / would be given by /"=£] mt t
z.

Let V = a(V) = V— V — IJV be the holomorphic vector field asso-

ciated with a Killing vector field V on a compact Kahler manifold X as

above. Following Carrell and Lieberman [6] we consider the Koszul

complex

0 ->$!-»

associated with V, where the differential is given by the contraction iy

by V. Set KL
X = QX

1 in order to make the differential of degree +1.

Then the hypercohomology of the complex K'x gives rise to the following

two spectral sequences

Ej'« = IP (X, Hq (K'x) ) =}Hp+q (X, K'x)

El* = Hq (X, ®xp) =$HP+<1 (X, Kx) .

As was shown in the proof of Theorem 1 in [6] the second spectral

sequence degenerates. Hence for every integer m we have the inequality

E dim Hq (X, &*x) = dim TT (X, Kx) <: £ dim Hp (X, H« (K'x) ) .
q-p=m p+q=m

Let Z— zero V ( = zero V) be the zero set of V. We shall show that

Hq(Kx) =Qzq to obtain the following:

Lemma I. 6« Suppose that V generates S1 as in Remark 1. 1.

Then for every integer m ive have the following inequality

2 dim£F(X£J)<; 2 dim Hq (Z, Of)
q-p=m q-p=m

Corollary 1. 7« For a — 0, 1 we have the following inequality

2 dim Hl (X,C)<^ 2 dim H*(Z,C).
i = a(2") «==a(2)

Remark 1. 2. The above corollary is a special case of the inequality

of Conner (cf . [2, IV. 5. 4] ) which was also used by Frankel in [8] .

Proof of Lemma 1. 6. As was mentioned above it suffices to show

that Hq(K'x)=@zq. Outside Z this is wellknown. Hence we consider

at points of Z. Since the problem is local, we may work in the local
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coordinates as in (1). So we assume that X=Cfl(z1, • • - , zn) , Z is denned
^ r

by the equation z1=---=zr = 0, and V = ̂ mizid/dzL for some integers
i=l

mf^=0 (cf. Remark 1. 1 above). Let Y= {(zt) ; zr+1= ••• =zn = Q}. Then
/\

we have the natural isomorphism ^x,Q — ®^'z^s®c^y,^ anc^ 7V =

/\ X\ ' s=0
0zWz(X)czV, where ® is the analytic tensor product and on the right
S=0 _

hand side V is also considered as a holomorphic vector field on Y

naturally. Hence we have only to show that the following complex

0 -» $r,0 T-> ••• T» #r,o -» € -> 0
^ V s

is exact, where S is the evaluation at 0. In fact this is a special case of

de Rham lemma cf. [14]. Q.E.D.

§ 2. B.-B. Decomposition Associated with a C1* Action

Fix once and for all the inclusion C* (t) £€(£) CZP1- C(*) U {oo},

where P1 is the complex projective line. Let X be a connected complex

space on which C1* acts biholomorphically. We call this action 6:

C* X X—>X meromorphic if ff extends to a meromorphic map (T* : P1 X X->X

(cf. [9, Def . 2. 1] ) . Suppose that 6 is meromorphic and X is compact.

Then for every x^X the orbit map 6(x) : C*-^>X, G (x) (g) =ff (gx) ,

geC*, extends to a unique morphism d"(x) *: P1— *X. Then we define

the point 0(,r) (resp. oo(x))^X by

0 (x) = ff (x) * (0) (resp. oo (x) = (5 (x) * (oo) ) .

For instance in Lemma 1.3 1) for every z^T+C\X (resp. T_HX) we

have that 0 (z) =x (resp. oo (z) = x) .

In order to state the following lemma we introduce the following

terminology. By a decomposition of X we mean a finite collection, {Xa} ,

of mutually disjoint locally closed irreducible analytic subsets Xa of X,

such that X= U Xa. A decomposition {Xa} is called <C* invariant if C*
a

leaves all the Xa invariant.

Lemma 2. 1. Let X be a compact connected complex manifold

on -which C* acts biholomorphically and meromorphic ally. Let F be

the set of fixed points of tins C* action, and Fa, l<Io:<^?2, the con-
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nected components of F. Then there exists a unique decomposition,

{Xa}9 l<^a<^m, of X -which is C* invariant and 'with the folio-wing

properties: For each a, Xa contains Fa and there exists a C*-equiva-

riant retraction na: Xa-*Fa, such that -with respect to nay Xa is a

fiber boundle over Fa -with typical fiber C*-equivariantly isomorphic

to CS -where ^a = dim 7\ (x) for all x^Fa and C* acts on Cla linearly

and positively.

Proof. We define Xa by Xa= {xE^X; 0(x) ^Fa}. Clearly X is

then written as a disjoint union X= U Xa and Xa are C* invariant. First
a

we show that each Xa is a locally closed submanifold of X. Take an

arbitrary point x EE Fa. Set n — dim X, na = dim Fa and ra = n — ?ia. Then

by (1) in Section 1, with respect to a suitable local coordinates (zl9 °",znaj

Wj, • • • , wr«) defined in a neighborhood V of x, the action ff takes the form

<T(t. (Z19 • • - ,*„„ ,«; ! , •", WO) = (Z19 ~',Zna, tm*Wl9 •~,tm'*Wra),

where Fa is defined by lwl = • • • = uura = 0 in V and ra^O. Then if we

arrange the coordinates in such a way that wZj^-'-^TTZ^^O^w^^"-^

mfa9 then it is clear that Xa is given in V by the equation Wja+1 = ••• = rwTa

= 0. It follows then that Xa is a submanifold of X of dimension ^ + wa

in a neighborhood W of F,,. Since every point x'^Xis equivalent to a

point of W under the action of C*, this implies that Xa is a locally

closed analytic submanifold of X.

Next we define 7Ta by TCa(x) =0(x)9x^Xa. Then it is obvious that

na is holomorphic and 7ta\Fa = idFa. We show that 7ta is a fiber bundle

with fiber C*a as stated in the lemma. Let x^Fa be as above. We

have to show that for a small neighborhood U of x in Fa there is a

C* equivariant isomorphism 7tal (U) = UX CA£% where C* acts on C*a =

(?*(wl9 • • • , WjJ by (wj, • • - , wAJ -^ (^miwl5 ••• ,^T O* awO- ^n fact from tne

above local expression we have such an isomorphism locally, that is, if

we replace CXa by Dia= { (wj) e CAa; |wj^l} and TT'^CT) by a suitable

neighborhood V0 of C7in 7tal(U}. Then since every x'^n^CU) is equiva-

lent by the C* action to a point in VQ as above, by an elementary argu-

ment we get easily the desired isomorphism. Finally by construction it

is clear that ia = dim TT (x) for all x^Fa. Q.E.D.
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The above construction is due to Bialynicki-Birula [1]. So we call

the decomposition obtained in the above lemma the B.-B. (Bialynicki-

Birula) decomposition of X with respect to the given C* action. Note

that using oo (x) instead of 0(:r) we may obtain another decomposition

which is 'dual' to the one obtained above (cf. [1]).

Let X be a complex space. Then a subset A of X is called Zariski

locally closed in X if it is a Zariski open subset of an analytic subset

of X. We call a decomposition {-X"a} of X meromorphic if each Xa is

Zariski locally closed, or equivalently, the closure X* of Xa is analytic

in X and Xa is Zariski open in X*. Then the rest of this section is

devoted to proving the following:

Theorem 2. 2. Let X be a compact Kahler manifold on 'which

C1* acts biholomorphically and meromorphic ally. Then the B.-B. de-

composition, {Xa}, of X associated ^vith this C* action is meromorphic

in the sense defined above.

That X* is analytic will be shown in Proposition 2. S using the Doua-

dy space of X. In order to show that Xa is Zariski open in X* we need

some preliminary considerations on the structure of the fibers of proper

morphisms of relative dimension 1 of complex spaces with C* actions

compatible with the morphisms (Lemmas 2. 3-2. 7), to which the pro-

blem is reduced by way of Proposition 2. 8. Kahler condition becomes

crucial in the proof of Proposition 2. 10 and hence of Lemma 2. 11.

Proof of Theorem 2. 2 will then be given at the end of this section.

In the case of projective varieties the results are known and due to

Bialynicki-Birula [1] (cf. Remarks 2. 1 and 2. 2 below).

Notation etc. In the following, for any morphism/: Z->Tof complex

spaces and for any analytic subset A^T we denote by f~l(A] the in-

verse image with reduced structure; f~1(A) = (ZxTA.)red. Moreover for

any point £EiT we mean by a fiber over t the reduced subspace f~~l(t)

of Z. On the other hand, the general fiber of f is always considered

with respect to the Zariski topology of T. For example "the general

liber of / is irreducible' means that f~l(ii) is irreducible for every u^U
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for some dense Zariski open subset U of T.

Now let f: Z—>T be a proper morphism of irreducible complex spaces.

Suppose that each fiber of f has (pure) dimension 1 and that there is a

biholomorphic and meromorphic C* action on Z which is nontrivial and

compatible with / i.e. f(gz)=f(z), geC* and zeZ. We denote by

B the fixed point set of this action. Note that since /is proper and the

action is compatible with /, the points 0 (z) and oo (z) can be defined

analogously for every

Lemma 2. 3. Let f: Z~ >T and B be as above. Then the follow-

ing hold. 1) B contains no irreducible components of the fibers of f.

2) There is a unique irreducible component, BQ = B0 (/) (resp. B^ = B^

(/)), of B -which is characterized by the folio-wing property, let

Z0 = {z GE Z; 0 (z) e BQ} (resp. Z00={zE^Z',oo (z) <E BJ ) . Then Z0 (resp.

Zoo) contains a nonempty Zariski open subset of Z. Moreover B0 and

B^ are the only components of B -which are mapped surjectively onto

T.

Proof. 1) Suppose the contrary and let C be an irreducible curve

contained in B such that f(C) is a point t of T. Let z^C be a point

not contained in any other component of f ~ l ( f ) . Then as follows from

Lemma 1. 3 1) there is an orbit O in Z such that z$i£) but its closure

O* contains z. Since the action is compatible with f, O* must be con-

tained in a fiber of f. Hence /(€)*) = t and D* is an irreducible com-

ponents of f~l (t) . This contradicts our choice of z.

2) First assume that Z is normal and the general fiber of /is connected.

Then there is a nonempty Zariski open subset U of T such that /(/-i^:

f~1(U)-*Uis smooth (by Bertini and the fact that the singular locus

of Z is of codimension 2 in Z) . Over U each fiber of / is isomorphic

to F1, as a compactification of C*. Hence f~l(u) C\B= {0} U {00} . We

show that there is no irreducible component B' of B such that B' ft f'1 (u)

= {0} U {00} for all u^U. In fact supposing that such a Bf exists

let -B'H (resp. B'_) = {&£E J3' '; the action is semipositive (resp. seminegative)

at b} . Then it is clear that #. 0 f~l (u) = {0} and BL ft f'1 (u) = {00} for

all u^U. In particular ff+(U) and &_(U) are open in B, where &±(U)



FIXED POINTS OF ACTIONS ON COMPACT KAHLER MANIFOLDS 807

= B± n f~l (U) . Thus the connected set Er 0 f'1 (U) is the disjoint union

of two open subsets J3+ (£7) and B f _ ( U ) . This contradiction shows the

above assertion. We shall denote by a) either 0 or oo in the following.

Then from the above assertion we conclude easily that there is a unique

irreducible component Ba of B such that for every u^ U, B^ 0 f~l (u)

coincides with o) of f'l(u)=P\ Clearly BH f~l (U) = (BQ(J BJ 0

f~l(U) Moreover we get that ZQ(Z^ 0 f~l (U) - f~l (U) - f'1 (U) 05^

(jB0) and hence Za contains a nonempty Zariski open subset of Z.

Next we consider the case where Z is normal and f is general.

Let f=ftfi, with /j.-Z-^T! and /2: T^T, be the Stein factorization

of f, where every fiber of /i is connected and f2 is a finite morphism.

Then since C* is connected, the action is compatible also with fL. Hence

we can apply what we have proved above to /i to obtain Ba with the

desired properties. Finally in the general case let n: Z-^Z be the nor-

malization of Z and put f—fn. Then the given C* action extends natu-

rally to a biholomorphic and meromorphic C* action on Z which is com-

patible with f. Then apply to / the above consideration to obtain B^

in Z with Zia= {zeZ; o)(X) ^B^} containing a nonempty Zariski open

subset of Z. Set Bli) — n(B(^. Then Za) = ;z(Za)) and hence it also contains

a nonempty Zariski open subset of Z and f(B^) =tif(Bco) =T. Hence

these B^d) = 0, oo, are the desired ones. Q.E.D.

For our later purpose it will be useful to consider the following

additional condition (A) on f: Z— >T as in Lemma 2. 3:

(A) Al) Each connected component of the general fiber off is

irreducible. A2) Each connected component of every fiber of f is

simply connected. A3) BG (resp. B^) intersects ivith each connected

component of all the fibers of f at just one point, -where BQ (resp.

B^) is as in Lemma 2. 3.

Then we want to study the structure of fibers of f subject to the

condition (A) . To describe these we introduce some terminology. Let

C0 be a compact irreducible and simply connected rational curve. Suppose

that C* acts on C0 biholomorphically and meromorphieally and that the

action is nonlrivial. Then C(J, as a simply connected compactification of

C*, has exactly two fixed points which may naturally be called 0 and
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oo;0 — Q(x) and oo = oo (x) for any x=^Q, oo. Next let C be a compact

connected curve whose irreducible components are simply connected ratio-

nal curves. Suppose that C* acts on C biholomorphically and meromor-

phically and that the action is nontrivial on each irreducible component.

Suppose further that there is a numbering, Cl9 "-9Cm, of irreducible com-

ponents of C such that if 0£ and ooc are the corresponding fixed points

on C,, then CtnCi+1 = oot = 0{+l9 f = l, •••,&-!, and C<nQ = 0for i-j\

>1. We shall call such a curve C with C* action linear, and this

numbering, which is obviously unique, the canonical numbering of the

irreducible components of C.

Lemma 28 4a Le£ /: Z-*T £# as m Lemma 2. 3. J/*

nected component of the general fiber of f -with the induced C* action

is linear, then each connected component of general fiber of f is irreduci-

ble.

Proof. Taking Stein factorization we may assume that every fiber

of fis connected. Let n: Z-^Z be the normalization of Z and f=fn. Z

has the natural C* action compatible with /. Let V be a nonempty

Zariski open subset of T such that f \f-nv)' f~l (V) — >V is smooth and

f~l(t) is linear for every t^V. Let Sa = JB.(/) for co = 0, oo. For

any t^V let Cl (f) , • • • , Cq (t) be the connected components of f ~ l ( f )

and 0^ (t) , o6i (t) the corresponding fixed points on C4 (t) , where g is

independent of t^V. Then we have that BQ H f~l(V) = {5, (t) , • • - , 6g (0 }

and Boon/-1(y) = {SS1W, »-,oog(0}. Let QW =^(6^(0) . Then

Oi(^) =w(0{(£)) and ooi(t) =n(o6i(t)) are the corresponding fixed points

on Q (^) . On the other hand, restricting V if necessary, we may assume

that Q (£) =7^Q (0 for i=^=j. (More precisely take V in such a way that

either A^f'1(\^=0 or /|in/~-1(r): A 0 f"1 (V) -> ̂  is smooth, where

A = n~1(A) with A the set of non-normal points of Z.) Then after re-

numbering if necessary we may assume that {Q (t) } is the canonical
9

numbering of the irreducible components of the linear curve C(f)= U C$(£).
t=i

(Note that C(f) is connected.) Suppose that <7^>1. Then since

0 2 (0=oo iW and B» = n(Bj, a) = 0, oo, we get that 50 H £«, 0 f'\f)

^=0 for all ^^y where Ba) = Bc/>(f). This implies that B^B^. Thus
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Oj (t) EE BO, and hence Q1 (t) — ooj (t) for some j, which contradicts the

linearity of f~l(t). Thus q = 1 and the general fiber is irreducible.

Q.E.D.

Lemma 20 5* Let f: Z—>T and B, B0, B^ be as in Lemma 2. 3.

Suppose that f satisfies the condition (A) defined above. Then the

folio-wing are true. 1) The connected components of all the fibers of

f zvith the induced C* actions are linear. 2) Let C\(t), •-,Cq.t(t) be

the canonically numbered irreducible components of a connected com-

ponent O(t) (which is linear by 1)) of f ~ l ( f ) , t(=T, and Oj, (£) and

oo {, (t) the corresponding fixed points on C\ ( t ) . Then BQ 0 O (f) = 0{ (t)

and BOO H C* (f) = ooj.£ ( t ) . In particular B0 H B^ = 0.

From 2) follows immediately the following:

Corollary 20 6. Let f: Z—>T and B0, B^ be as in the above lem-

ma. Denote by A either B0 or B^. If there is at least one point

b^A 'with 0(z}=b (resp. oo(z}=b) for some z=r=b, then A = BQ

(resp. BJ.

Proof of Lemma 2. 5. Using Stein factorization we reduce the pro-

blem without difficulty to the case where every fiber is connected, and

hence in particular the general fiber is irreducible by Al). So we assume

this in the following. First we consider 1) and 2) in the special case

where T is a 1-dimensional disc S= {5; !s|<^£}? and show that /"^(X)) is

linear and 2) is true for £ = 0. Let CA, 1<^<^<?, be the irreducible

components of /^(O). Then by the simply connectedness of/ -1 (0) and

Lemma 2. 3 1) each CA is a simply connected rational curve and we have

on it the two canonical fixed points 0^ and OOA. We first note that for

any fixed point b^B the C* action at b is neither positive nor negative.

In fact, if it is positive (resp. negative), then as follows from (1) in Section 1

for all #eZ near b we must have b = 0(z) (resp. 00(2)). This is impos-

sible because /(&) =/(0(*)) =f(~) so that z^f-l(b}. Next let O^C,

be such that O^Cy for any V=f=fJL. We show that the given C* action

is semipositive at such a 0^. In fact if it is not the case, then by Lemma
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1.3 1) there is a curve C with a point zeC, z=^Q# such that 00(2)

= 0^. Since f(C) =0, we must have C^Cg by our choice of 0^, while

on C^ clearly there is no point with the above property, which is a con-

tradiction. Hence the action is semipositive at 0^. Since the action is

nonpositive as we have already seen above, by Lemma 1. 3 2) there is

a 1-dimensional irreducible component Br of B passing through 0^. Clear-

ly B'<£f-l(Q) and sof(B')=S. Hence by Lemma 2.3 2) either B'

= BQ or B^ while the latter is easily seen to be impossible. Thus if

such a point 0^ exists, by A3) BQ f! f ~ l ( Q ) = {0^}. Similarly we prove

that if oo^eC^ is such that OOA, $ Cv for any P^=/J/, then Boor\f~1(Qi)

= {oo^,}. In particular we see that there is at most one 0^ (resp. oo^,)

with the above property.

From this, combined with the simply connectedness of /"*(()) and the

fact that Cft 0 Cy£ {0 ,̂ oo^}? it follows by an elementary consideration that

there is exactly one such 0^ (resp. o<v) , and indeed, more precisely that

there is a unique numbering, still denoted by {CA|, of the irreducible

components of f~l(0) such that Oj (resp. oog) is such a fixed point,

C*nC0+1 consists of one point, say bfl, !<^<g, and C/(nCi, = 0 for

\fji- v|>l. We then show that the C* action is not semipositive (resp.

seminegative) at any bM. In fact, otherwise, using Lemma 1. 3, we get

as above that SoH/"1^) = {bfl} or £^0/^(0) = {bf}9 which implies that

bft = Q1 or oog by A3), a contradiction. Hence by Lemma 1. 3 1) there is

a curve D^ (resp. D^) with a point z^D# (resp. z'^D^) z=^=bfl (resp.

z'=£bf) such that 0 («) (resp. 00(2;))=^. It is clear that {€„, Cft+1}

= {Dp, D'f} as sets. Then by induction on jU we infer readily that CM

= Dp and Cft+l = Dfi. This shows our final point; bft = oofi = Qfl+l. Hence

/-1(0) is linear and 2) is established for t = Q.

Using this result we now prove 1) and 2) in the general case. Let

t^T be an arbitrary point and take a morphism h: S—>T of a disc S into

T such that /i(0) = t, and that the induced morphism fs>ZSired-*S has

irreducible fibers over S' = S— {0}, where Zs= Zx TS and red denotes tak-

ing the underlying reduced subspace. Suppose first that T is locally ir-

reducible at t. Then ZSiTed is irreducible and clearly we get that BQ

XTS=BQ(fs) (resp. B00XTS=B00(fs)). Thus we can apply the above

consideration to fs to obtain 1) and 2) for f. Next in the general case
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let Ti = Ti(f), z = l, "m,d, be the local irreducible components of Tt at

t defined in a neighborhood W of t in T. Corresponding to these we have

the irreducible components Zi = Zi(f) of f~l(W) characterized by the

property that f(Z^) — TV Let fi = f\Zi ' 2^— »7V Then one sees immediate-

ly that all the ft satisfy the condition (A) . Hence by what we have

proved above ft1 (t) are linear and 2) is true for f^1 (t) for all i. Let

CJ, m~,Cqt be the caiionically numbered irreducible components of fT*(f)

and Oy and 00} the corresponding fixed points on C}. Then by 2) for

fi and A3) for /, we have that 0} = 0? = • • • = Of and oo^ = • • • = oo*,. (Note

that B 9 f \ f ~ l ( W ) = U B10 (f^ , a) = 0, oo.) Then from the simply eonnect-
<

edness of f ~ l ( t ) , we get that f'l(t) = f^l(t) = ••• =/j1(^) as subsets

of f ~ l ( £ ) . Hence the above ZStred is also irreducible in the general case

and we then obtain 1) and 2) for f as above. Q.E.D.

Let /: Z-»T and B be as in Lemma 2. 3. Let {S4} be the set of

irreducible components of B. We then consider the following condition

(A) on f, more restrictive than (A) defined above:

(A) Al) For any C* invariant irreducible analytic subset Et of

Z such that Bio) = Bi9 the induced morphism fi = f\Ei° -E/— »T€ uoith the

induced C* action satisfies the condition (A), -where Bia = Ba(ft)y a)

= 0 or oo, andTi=f(Ei). In particular f satisfies the condition (A).

A2) For Q> = 0,00,5,0^ = 0 if

Lemma 2. 7. Let f: Z->T and B be as in 'Lemma 2. 3. Suppose

that Z and T are compact, and that f satisfies the condition (A)

above. Then the set Z0 defined in Lemma 2. 3 is Zariski open in Z.

Proof. Let {50, Bl9 • • • , J3d, B^} be the set of the irreducible compo-

nents of B, where BQ-=BQ(f) and B00 = B 0 0 ( f ) . For each Bi9i = l9—9

d,oo, let Ti=f(Bi) and Z,-/-1^). We show that there are C* in-

variant irreducible analytic subsets Et of Zi9i = 19 • • • ,^ ? oo, such that 1)

B* = B0 (/*,), z=^=oo, 2) if OC^eB, for some z^Z, then ^eE, and 3)

E{nB0 = 0, where fEi = f\Et:Ei-+Tt. We first show that 2), 3) imply

that ZQ = Z— (J Et. In fact by 3) and the definition of Z0 it follows im-
i

mediately that Z0CZ- U Et. Conversely if z&\jEt, then by 2) 0(^)
* t
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EiB0 so that z£=:ZQ. This shows the above equality. In particular Z0

is Zariski open in Z.

Thus for the lemma it suffices to show the existence of Et as above.

We put E^ — B^. Then noting that f satisfies the condition of Lemma

2. 5, by Corollary 2. 6 and Lemma 2. 5 2) we see that this satisfies the

conditions 2) and 3) above respectively. So assume that z^oo. For

every t^.T let d (f) , • • • , Cqt (t) and 0,09, °°* W be as in Lemma 2. 5 2)

(omitting the suffix i since the fibers are connected) . Let Z^ be the

irreducible components of Zi9fu = f \ Z t ] L : Zu-*Ti and Baa} = B(0(fu\ (j) = 0, oo.

Suppose that BtC^Zu for some L Then since f(B^) =Tt, by Lemma 2. 3

2) 5j = Bm or AAOO- Let b^Bt be an arbitrary point. Then b = ®# (t)
= 00tL-i(t) for a unique l<C# = /*(£)^£t> t=f(b), for by Lemma 2. 5 2)

and A2) 50 0 /-1 (*) = Oj (0 , Bo, 0 /-1 (0 - oogf and 50 D Bt = BoonBi = 0.

So Zw contains at least one of Cfl^l(f) and CM(t). If Zu'^CfJL(f (b))

for some b^B, then by Corollary 2. 6 applied to the morphism fu we

get that Bi = BUQ. Then again by Corollary 2. 6 this implies that Zn

nC,_! (/(£)) =00^ (/(£)) so that Z^C^ (/(£)) and hence Zu

^=Cfl(f(b)) for all b<=Bi9 where & = #(&). From this we infer readily

that there is a unique irreducible component Zu containing Bt such that

Bi = BUQ. We put Et = Zu for this L

We shall check the conditions 2) and 3) above. 2) If 0(z) =b^Bi9

then z^.Cfi(f(b)) ^Et by the definition of Z^. 3) Suppose that ^b

e 50 0 Et. Then 6 = Ol (t) , ^ =/(*) , by Lemma 2. 5 2) . Let C° (*) be the

connected component of f^(fy containing b. Let CJ, z" = l, "sV, be the

canonically numbered irreducible components of C° (^) . Then since Oj (^)

eC°(£), it is clear that CJ(0 =C2(0. Hence applying Lemma 2.5 2)

to /^., we get that Q^t) (=BQ(fEi) = Bt. Hence S, P. JB0¥=0, which con-

tradicts A2). Thus B0nEt = 0. Q.E.D.

Let X be a compact complex space. Then we write X EE ̂  if there

is a compact Kahler manifold Y and a surjective meromorphic map g:

Y-*X (cf. [9,Def. 1. 1]).

Proposition 2. 80 Z/^2^ X be a compact complex manifold 'with

&, Suppose that C* acts biholomorphically and meromorphic ally
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on X. Let {Xa} be the B.-B. decomposition of X'with respect to this

C* action. Then for each a there is a diagram

fa

"with the folio-wing properties: 1) fa is aflat morphism of irreducible

compact complex spaces Za and Ta, 2) cpa is a bimeromorphic mor-

phism of Za onto the closure X* of Xa (in particular X* is analytic

by a theorem of Remmert) such that the restriction, (pa\zat
: Zat~>Xy

of 9 a to each fiber Zat = fa1(t)y t^.Ta, is an embedding, 3) there is

a natural biholomorphic and meromorphic action of C* on Za, com-

patible with fa and making (pa C*-equivariant, and finally 4) there is

a dense Zariski open subset UofTa such that for every t^U, (pa(Zat)

is a closure of a regular, i.e. ~L- dimensional, orbit in X.

Proof. The main line of the proof is almost analogous to [9, Lemma

4. 2] and we give only the necessary modifications in detail. We consider

the induced C* action on the Douady space Dx of compact subspaces of

X, and then its fixed point set T on Dx. We then consider those ir-

reducible components Tj, of T such that for some t^Tv the corresponding

subspace Zt of X is reduced and is a closure of regular orbit contained

in Xa. Then using [9, Theorems 1. 2 and 1. 4] as in the proof of [9,

Lemma 4. 2] we can show that there is some index (call it of) such that

the restriction, fa: Za—>Ta, of the universal family ZX-^DX to Ta has the

properties 1), 3), 4) and also 2) with "(pa
 = 9\za being a bimeromorphic

morphism onto X%" replaced by "<pa(Za) containing an open subset of

Xa\ where (p\ ZX-^>X is the natural projection.

Thus it remains to show that <^a(Za) =X% and cpa is bimeromorphic

onto its image. Note first that by virtue of 1) , 2) and 4) the above fa

satisfies the conditions of Lemma 2. 3. Let BQ = BQ (fa) . Then since

<pa\zat9 t^Ta, is a C* equivariant embedding, we must have that (pa(BQ

^ ZatJ ^Fa, provided that ta is a point of Ta such that <pa(ZatJ is a

closure of a regular orbit contained in Xa. Since <pa (-B0) ^F and it is

connected, we must then have that (pa(B^)^Fa. Now let Z0 be defined
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as in Lemma 2. 3. Then since (pa is C* equivariant, by the definition of

Xa we get that cpa (Z0) ^Xa. This in turn implies that cpa (Za) £XJ since

Z0 contains a nonempty Zariski open subset of Za. On the other hand,

the analytic set <pa(Za) contains an open subset of Xa and Xa is a con-

nected locally closed submanifold of X, from which we deduce easily

that (pa(Za) contains the whole Xa. Hence <pa(Za) =X%. That (pa is

bimeromorphic then follows quite as in the proof of [9, Lemma 4. 2] and

we omit it. Q.E.D.

Our next aim is to show that fa in the above proposition satisfy the

condition (A) so that Lemma 2. 7 is applicable to fa. First we introduce

some terminology. Let f\ Z—>T and B be as in Lemma 2. 3. Then a

sequence of points (zly • • • ,£ a ) of Z is said to generate a quasi-linear

curve if Zi^B for any z", 0 (2:$) =^=0 (zy) for z^J and 00(2;,.) =0(^+1) for

all l<^z"<^#— 1. (We allow the case q = Y). In fact in this case if C$
Q.

is the closure of the orbit of z{, C= U Q is a linear curve on Z if
!=1 5

0 CO ^°° (^g) • Conversely, given any linear curve C= U Ci we can ob-
i=l

viously find a sequence (zl9 • • • , 2g) generating the linear curve C with

Zi^Ci. Now we call (2^) as above generating a cycle (resp. a linear

curve) if further 0 (2^) = oo (z^) (resp. 0 (z^ =^= oo (zq)) . Note that the

above definitions also make sense on any compact complex space X on

which C* acts biholomorphically and meromorphically.

Lemma 2» 90 Let f: Z—>T and B be as in Lemma 2. 3. Suppose

that f is flat and the general fiber of f is irreducible. Let t^T be

any point. 1) If a connected component of f ~ l ( t ) is not simply con-

nected, there is a sequence of points (zl7"',z^) of f~~l(t) -which gene-

rates a cycle. 2) Suppose that f~l(f) is simply connected. Then for

any couple of points bly bz^B contained in one and the same connected

components of f~l(t), there is a sequence (zl9"-9zq) of points of

f~~l(t) generating a linear curve such that {bl9 b2} = {0(z^, oo (zq)}.

Proof. Taking a base change as in the proof of Lemma 2. 5 and

using the flatness of f we reduce the problem to the case where T is a

1-dimensional disc S and t is the origin 0 of S. Let ?i: Z—»Z be the
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normalization of Z and f=fn: Z-^S the induced morphism. There is

a natural lifting of the C* action to Z compatible with f. Since the

singular locus of Z is isolated, restricting S if necessary, we may assume

that /is smooth over S' = S—{0}9 and hence that f~l(s)^Pl for all

s^S'. We show that /"^(p) i§ simply connected. In fact, let A: Z'— >Z

be a resolution of Z. Then as is well-known in the theory of analytic

surfaces Z7 is obtained from SxP1 by a finite number of tf-processes

( — blowing up points). Hence (A/)""1^) is simply connected. Since by

the normality of Z, I is a contraction to the points of a union of some

of the irreducible components of (I/) "*(()), /"^(O) also is simply con-

nected. Thus f ~ 1 ( s ) are simply connected for all sEE*?. Then by Lem-

ma 2.5 1) C = f~1(fy is linear. (It is clear that / satisfies Al) and

A3).) Let Cl9~'9Ct be the canonical numbering of irreducible compo-

nents of C and Oi? 56 £ the corresponding fixed points on Cf.

Now we show 1). Since C is linear, it is easily seen that /"*(&)

is simply connected if and only if H\Q is a bijection of C and C=f~1(0).

So take a point #E:C such that n~l (b) contains more than one point.

We may assume that b^B. Then n~l (b) is a subset of {01? -",63, Og+1}

where 0^= cx:>g. Take 6 f l, O^EErc"1^), z"i<O*2 in such a way that Qi&72~1(b)

for any ii<ii<^i^. Take points z^Ci— {0^ oo^ one for each z'j^f <^z"2 and

put w(^i) = 2;i. Then it is obvious that the sequence (sr^, • • • , ̂ £2-i) generates

a cycle. 2) In the above notation take any O^e?*"1 (&w) , u = 192. We

may assume that i\<^i^ Then the sequence (zil9 ••• ,2; i g_1) defined as above

generates a linear curve with 0(2;^)=^ and oo (^-j) — ̂ 2 since f ~ l ( t )

is simply connected. Q.E.D.

Proposition 2a 10. L^^ X be a compact Kdhler manifold on

-which C* acts biholomorphically and meromorphically. Let F be the

set of fixed points of this action. Then there is no finite sequence

(xly "-.Xq) of points of X generating a quasi-linear curve -with 0^)

and oo (xq) belonging to one and the same connected component Fa

of F. In particular there is no sequence (x^ generating a cycle on X.

Proof. Identify C* naturally with S1 X R+ as in Remark 1. 1. Let

V be a real vector field which is uniquely determined up to constants
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and generates the action of R+, and £ the real 1-form associated with V

with respect to the given Kahler metric. Then by Lemma 1. 5 and Re-

mark 1. 1 there is a real valued C°° function f such that £ = df. This

implies that for every x^X—F the level set f ~ l f ( x ) is orthogonal at

x to the orbit R+x with respect to the given Kahler metric. Hence if

a variable point y on X moves from 0 (x) to oo (x) along the orbit H+x,

then f either strictly increases or decreases from /(O (x) ) to /(oo (x) ).

(In fact one checks easily that f strictly increases, cf. Remark 1. 1.)

Now suppose that there is a sequence xl9 --,xq as stated in the lemma.

Then we must have that /(O fo) )<•••</ (0 (xq) )</ (oo (*«)) (resp.

/(OC^)) </(oo(.r1)) if £ = 1). But this is a contradiction since both

0(^0 and oo (.rq) belong to Fa and /is constant on Fa by the definition.

(Note that V vanishes on Ftt) Q.E.D.

Lemma 2.11. Let X be as in the above proposition. Let {Xa}

be the B.-B. decomposition associated 'with the given C* action and

fa\ Za-^Ta as in Proposition 2. 8. Then for each a, fa satisfies the

condition (A) (defined just before Lemma 2. 7).

Proof. First we check the condition (A) for fa itself. Al) By 4)

of Proposition 2.8 the general fibers of fa are irreducible. A2) Suppose

that fal(fy is n°t simply connected for some t^Ta. Then by Lemma

2.9 there is a sequence (zl9 '",Zq) of points of fal(t) which generates

a cycle. Let xk = (pa (zk). Then (pa being C* equivariant, the sequence

(xl9 "-,x^) generates a cycle on X, which is impossible by Proposition

2. 10. A3) Suppose that 50fi/«*(*) = {*i, *a, • • •} , b^b^ for some t^Ta.

Then by Lemma 2.9 there is a sequence (zl9 ••• ,^ ?) of points of f~^(f)

which generates a linear curve and with, say, 0 (z^ = bl and oo (zg) = bz.

Then as above the sequence (xl9 • • • , Xq) with Xi = (pa(z^) generates a quasi-

linear curve on X with Q(x^)9 oo (x^) ^(pa(B^) =Fa, which is impossible

by Proposition 2. 10. Similarly using the fact that cpa (B^) is contained

in one and the same connected component of F, we prove that B^ fl f^1 (t)

consists of a single point for all t^Ta. Hence fa satisfies the condition

(A). In particular every fiber of fa is linear by Lemma 2. 5.
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Now let {Bt} be the set of irreducible components of B. Let Et

be any C* invariant irreducible analytic subset of Z with Bi(a = Bt, o) = 0

or oo, for some z, where Bi(a = B0)(fi) with ft = f\Ei: Ei-*Ti=f(Ei) .

Then we show that fi also satisfies the condition (A). A2) Since every

fiber /7"1 (/) , £ EE T's, is a union of irreducible components of f a l ( £ ) , it

follows that the connected components of f^1 (t) are also linear and hence

in particular simply connected. Al) then follows from Lemma 2. 4.

Finally using the linearity of the connected components of ft and Proposi-

tion 2. 10 the proof of A3) is obtained in the same way as the proof of

A3) for fa above, since <pa(Bt) is contained in one and the same F$ for

some /?. Thus fa satisfies Al).

We shall show A2). Suppose that Bj H Ba=£0, Bj=£Ba, for some j

and o) = 0 or oo. We assume that dO^O, since the other case can be

treated similarly. Fix a point t e/a (Bj) —fa (Bj fl BQ} . Let d (t),

z" = l, • • • , #f, be the canonically numbered irreducible components of

f~l(t) and Qi(t) and oof(£) the corresponding fixed points on Ct(t).

Then by Lemma 2.5 2) BQ D f'1 (t) =0, (t) . Let b^B^f~l(t} beany

point. Then b = 0k(t) for some 1<^<^<2£ + 1, where 09£+1 = oo5f. Take

any points 2*EiQ—{O f} U {ooj} for each l<^i<^k and put Xi = cpa(z^)m

Then it is clear that the sequence (xly ••• ?^:&_1) generates a linear curve

on X and xl^(pa(B^) and xk-l^(pa(Bj). On the other hand, since B0

U Bj is connected, (pa (BQ) and (pa (Bj) must be contained in the same

connected component ( = Fa} of F9 which contradicts Proposition 2.10.

Hence BjC}BQ = 0 for all j. Q.E.D.

Proof of Theorem 2. 2. By Proposition 2. 8 we know already that

the closure X% of Xa is analytic for every a.. Thus it remains to show

that Xa is zariski open in X*. Take the diagram obtained in Proposition

2. 8 for each a. By Lemma 2. 11 fa satisfies the condition (A). Then

by Lemma 2. 7 Z0 for Z=Za and f=fa is Zariski open in Za. Let A

= Za — ZQ. Recall that (pa(Z^) =Xa (cf. the proof of Proposition 2. 8) and

9a(Za) =X*. Hence the theorem is proved if we show that (pa(A) HXa

= 0. Assume the contrary and suppose that x'= (pa(z
r) ^Xa for some

z'^A. Then Fa^®(xr) =pa(Q(z')). Let B' be an irreducible compo-

nent of the fixed point set B on Za which contains 0 ( z r ) . Since (pa (B'}



818 AKIRA FUJIKI

and 0>«(B')£F, (pa(B
f)^Fa. Further by the definition of Z0,

Q, where BQ = B0(fa). Then by Lemma 2. II BTlB0 = 0 (the con-

dition A2)), and from Corollary 2.6 it follows that Bf^=Bo:> = B00(fa).

Take a point t^fa(B'). Let C1? ••• ,Cg be the canonically numbered ir-

reducible components of C=f#l(t) and Ot-, oo,- the corresponding fixed

points on Q, C being linear by Lemma 2.5. Recall further that

= 0i and COS00 = oog. Since B'=£BQ, ^B00,Q(zf) = 0fc for some

Take for each i a point £t-eQ — {0 ,̂ oo^} and put a:* = 0>a (#*) • Then we

get that the sequence (xj) , I^i<^k9 generates a linear curve on X and

since (pa (JB0) and (pa (B
f) are contained in Fa, 0 (x^) , oo (xk) GE ^a. This

contradicts Proposition 2. 10. Thus ^a(A)HXa = 0 and the proof of Theo-

rem 2. 2 is complete.

Remark 2. 1. As was mentioned above, when X is projective. the

theorem is due to Bialynicki-Birula [1] . More generally he showed that

the theorem is also true when X is a complete nonsingular algebraic

variety. In fact, by Sumihiro [16, Cor. 2] for every point x^Xwo, can

then take a C* invariant affine open neighborhood of x in X, and hence

his assumption that X can be covered by C* invariant quasi-affine open

subsets is now superfluous. As will be clear from the proof this remark

applies also to Theorem 3. 3 below so that it holds true also for complete

nonsingular algebraic varieties.

Remark 2. 2. When X is projective, Proposition 2. 10 and Theorem

2. 2 can also be seen as follows: First by a theorem of Blanchard (cf.

[12,111.9.2]) there is an embedding j: X-*Pn such that the given C*

action is induced by a linear C* action on Pn. This reduces the problem

to the case where X=Pn. Hence with respect to suitable homogeneous

coordinates (f0: ••• :?„) of JPn we may assume that the action takes the

form

We define the partition {0, 1, • • • , n} =Il U ••• U Is, by the following condi-

tion; for any i^Ia and j^l&^ki = kj if and only if a = @. We may ar-

range Ia in such a way that k^^-"^^^ where klct = ki for any
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Let Fa be the linear subspace of Pn defined by Fa=

Then Fa are the connected components of the fixed point set F. Let L!

be the linear subspace of Pn defined by Ll = {?£ = 0 ; i <= 1^} . Then in the

B.-B. decomposition {Xa} , a = l, • • • , 5, of Pn for our C* action, X, = Pn

— LI. This implies that for every point x GE Pn, 0 (.r) e .Fx if and only if

x$=.Li. From these observations one can deduce easily the proof of our

proposition and theorem by induction on n.

§ 3. Mixed Hodge Structure and Proof of Theorem

Let X be a compact Kahler manifold and Y an analytic subset of X.

Let U be any Zariski open subset of Y. Then by Deligne [7] (cf. [10,

1.4]) for every z'S^O, z-th cohomology group with compact supports of

U, Hc(U, Q) , has the natural mixed Q-Hodge structure. (For the defini-

tion of mixed ^-Hodge structures see [7, 2. 3] .) Now suppose further

that C7is connected and nonsingular and that F is a connected submanifold

of U with f:F-*U the inclusion. Let DF: Hl (F,Q) ^H*™'1 (F,QY

(resp. Da: Hj (U, Q) = HZn~J' (U, Q} ') be the Poincare isomorphism, where

m — dim F (n = dim U) and ' denotes the dual vector space. Let A = n

- m. Define the Gysin homomorphism /* : H1^ (F, Q) ->HJ (U, Q) by /*

= Du(f*)'DF. Since F is compact Kahler, the left hand side has the

natural (pure) (?-Hodge structure of weight i — 2/1, that is, we have the

natural direct sum decomposition H*"" (F, Q) ®C=Hl~zl (F, Q = ©

If.*9 !!'•* = I?-', where Hs't = Hs't(F) is the subspace of If-^ (F9 €)+' con-

sisting of elements represented by closed C°° forms of t}^pe (s, t) with

respect to the de Rham isomorphism (and is naturally isomorphic to

Hl (F, Qp) ) , and ~ denotes the complex conjugation (cf . [7, 2. 2] ) . Pure

Hodge structures are regarded as special cases of mixed Hodge structures.

We denote by Hl (F, Q [ - 21} ) the vector space If'^(F9Q) with pure

Hodge structure of weight i defined as follows; H l (F, Q [ — 2A] ) (X) C

= © H*-*[-2Z] withHp'q[-2^=Hp^'^(F). Then as a special case
p4-Q = i

of [10, Corollary 1. 7. 2] we have the following:

Lemma 3. 1. Suppose that F is a deformation retract of U so

that f* is isomorphic. Then f# induces an isomorphism of mixed
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Hodge structures ; /* [ — 2A] : Hl (F,Q\_- 2X] }=Hl(U,Q}. In particu-

lar the mixed Hodge structure on Hi(U,Q) reduces to a pure Hodge

structure of -weight i and -we have

where h*'q(U) and hp^'q^ (F) = dimHp~L^(F) are the Hodge numbers

of HI (U, Q) and H*'2* (F, Q) (cf . [7, 2. 3. 7] ) .

Next, let X be as above, and Y^Y1^-~'^>:Ym+1 with YQ = X and

Ym+1 = 0, a descending sequence of analytic subsets of X. Let Xt = Yt

— YtJ-i. Then as mentioned above each Hi (Xi9 Q) has the natural mixed

^-Hodge structure. We then consider the spectral sequence of Fary as-

sociated with this sequence {Yt} (cf. [10, Section 4] or [2, XI]);

(*) EJ- ' = HI+* (Xs, Q) =>H*+t (X, Q) .

In [10, Proposition 4. 6] we have proved in particular the following:

Lemma 3- 20 The spectral sequence (*) is one in (MH) (cf.

[10, 4. 4] for the definition) . Hence if (*) degenerates and so -we

have isomorphisms Hs
c
+t (X,, Q) =GrsH^ (X, Q) for all (s,t), -where

Gr denotes taking the associated graded modules. Then these isomor-

phisms are those of mixed Q-Hodge structures. In particular we get

that for all p, q^>0

where h^'q(Xs) are as in the previous lemma.

Now let T= (C*)fc be an algebraic torus acting on a complex space

X biholomorphically. We say that this action, say, ff:TxX->X, mero-

morphic, if <7 extends to a meromorphic map d"* : (P1) k X X-^X with re-

spect to the natural inclusion

Theorem 3. 3e Let X be a compact Kdhler manifold. Suppose

that an algebraic torus T= (C*)fc acts biholomorphically and mero-
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morphically on X with nonempty fixed point set F. Let Fa, l<^a<^m,

be the connected components of F. Then for each a there is an

integer Xa such that

In particular hp'q(X) = 0 for \p — g|>dim F9 which is a special case

of a theorem of Carrell and Lieberman [6] . Note that by Remark 1. 2

we can dispense with the arguments of [6] for the proof of Corollary

1. 7 which will be used in the proof of the theorem. On the various

choices of Aa in the above theorem see (3. 5) below.

The following lemma reduces the problem to the case of a C* action

(See also (3. 5) ) .

Lemma 3. 4, There is an algebraic subgroup H^=T, H= C*,

ivJiose fixed point set coincides uuith F.

Proof. Let F^TxXxX be the graph of the given action ff:TxX

— »X". Let f: F-^XxX be the natural projection and /i: FA-^A the re-

striction of f to the diagonal A^XxX. Then the fiber of/i over (x,x)

eJ is the stabilizer Tx of x (regarding it naturally as a subgroup of T) .

In fact by fl9 FA is a group variety over A with fibers Tx. Note that

since the action is meromorphic, Tx are all algebraic subgroups of T

(cf. [9, Lemma 2. 4]). Then take a finite descending sequence A = A02'"

2-^s of analytic subsets of A such that for each z", A^ — Ai^l is connected

and the fibers of /i over At — Ai+1 have the same dimension so that the

restriction of f^ to the identity component of T A over A.^ — A^x is smooth.

Then since any smooth deformation of algebraic subgroups of an algebraic

torus is trivial, the identity component TxQ of Tx is one and the same

subgroup of T for all x^.Ai — Ai+l. This implies that there are only a

finite number of subgroups, say, Hl9 -"9Hm9 of T such that Hi = TxQfoT

some x^X. We may suppose that Hj = T. Then we can find a one dimen-

sional connected algebraic group H of G which is not contained in any

of Hiyi^2. Then clearly Fix(H) -F, and £T=C*. Q.E.D.

Before proving the theorem we give the following remark. Let
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{Xa} be any meromorphic decomposition of a compact complex space -X".

Then since Xa are irreducible by definition, we can always find a descend-

ing sequence X= Y"o2 Yi2'"2 ̂ r'" °^ analytic subsets of X such that

Yt—Yt+1 = Xa for a unique a = a(t). We call any such sequence {Yt}

associated -with {Xa} though such a sequence is not unique.

Proof of Theorem 3. 3. By the above lemma we have only to con-

sider the case where k = I. Namely we take a surjective rational homo-

morphism h: C*-*H with H as in the lemma and then take the induced

C* action. Let {Xa} be the B.-B. decomposition of X with respect to

this C1* action. Take and fix a descending sequence {Yt} of X associated

with {Xa}, which makes sense because {Xa} are meromorphic by Theorem

2.2. Thus Yt—Yt+1 = Xa for a unique a = a ( f ) . For convenience we

shall write Xt instead of Xau),Q^t<^m — 'L. Consider now the spectral

sequence (*) of Fary associated with {Y"{}. Then we have the inequality

(2) £] dim ErM = £] dim Hi (Xt. Q) :>dim H1 (X, Q) , i^O .
t t

On the other hand, since Ft is a deformation retract of Xt by Lemma

2.1, we have the isomorphisms ft*: H*~**(Ft9Q) =H*(Xt,Q) , where /{:

Ft—>X are the inclusions and A£ are as in Lemma 2. 1. Hence we get

that for a = 0, 1

U dimH*(J1,0)= II I]dim^(^,^)> I] dimH'CX,^).
i = a(2) t = a(2) t i = a(2)

Combining this with the inequality of Conner (Corollary 1. 7 for the

vector field generating the C* action) we see at once that this must be

an equality, and hence so must be (2) . Thus the spectral sequence (*)

degenerates. Then by Lemmas 3. 1 and 3. 2 we get that

p'q (X) =
£

for all (p,q). Q.E.D.

In Theorem 3. 3 the integers Aa are determined each time we take an

algebraic 1 -parameter subgroup of T i.e. a rational homomorphism h: C*

— »T'. We shall state this dependence of Aa on h more explicitly. We

need some notation.
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Let T be in general an algebraic torus (over C) of dimension

Let £ (resp. *p) be the set of rational characters (resp. algebraic 1-

parameter subgroups) of T. The}^ have the natural structure of free Z-

modules of rank k and there is a natural bilinear pairing <( , ^ > : 3 £ X ^ p

— >Z; if we fix an isomorphism T= C* (^) X ••• X C* (t^) , then %G x (resp.

h e $P) corresponds to (m1? • • • , ;?zfc) €E Zfc if and only if ^ (£1? • • • , 4) = tf 1 - • •

t?* (resp. h(t) = (tm>, --,r*), C* = C*(*)), and for any %eE?E and A€E$p,

(%,hy = m iff -£-h(t) — tm. ( , y extends naturally to a JK-bilinear paring

< , >*:£«X^-^R, where Jfj, = X<8>*K, ^ = ̂ (g) .̂
Let p:T-^GL(V) be any rational representation of T on a finite

dimensional vector space V. Let A^ — {^13 • • • , %n} be the set of rational

characters of T obtained by diagonalizing p (possibly ^ = -%,-, i=£=f) , where

11 — dim V. We assume that %y7^0 for any j. Let 7?x< be the hyperplane
1<n ^5j? defined by HKi= {/z-e^P^; <(^, /z^u^O}. Further we define a func-

tion A-A P on ^SK by A (A) =#{*' ;%< (&) >0}. Clearly O^A^;z and A is

constant on each connected component of ?$R— \J H*r

Now let X, T, JP and ^ be as in Theorem 3. 3. Take any point

xa from each Fa, and let pa:T—>GL(Va) be the associated rational re-

presentation (cf . [9, Proposition 2. 7] ) , where Va is the fiber over xa of the

normal bundle NFa/x of Fa in X. Then as above we have for each Fa

the set of characters {^f, • • • , x £ J > ra = codim (Fa, X) , hyperplanes HX« in

^3^ corresponding to them and the functions ha = lPa on ^R. (These are

independent of the choices of xa.) One then sees readily the following:

(3. 5) 1) The induced C* action on X by an element 7zG^5 has

the same fixed point set F as T if and only if h&Hx* for any •$.

(Call such an h regular.) 2) For regular h, la in Theorem 3. 3 are

given by la = A" (Ji) . In particular for each connected component of

the set ^R— U Hx* there is one choice (and hence in all a finite num-
i,a l

her of choices) of the set of integers {Aa} as in Theorem 3. 3.

More generally we see that for all h in one and the same connected

component of ?$R— \J HXf, the B.-B. decompositions induced by the cor-

responding <C* actions are the same, as analytic decompositions. There-

fore we get the following:
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(3. 6) Associated 'with each connected component of^>R— U
i,a

-we have naturally a meromorphic decomposition {Xa} of X.

On the other hand, note that ^>c = <^®z^ can naturally be considered

as the vector space of analytic 1-parameter subgroups of T i.e. complex

analytic homomorphism h: C—>T, and hence as the Lie algebra of T.

Take the maximal real subtorus TR of T so that T is the complexifica-

tion of Tjg and that we have the natural isomorphism q>'.tR®RC=?$c,tR

corresponding to ^R, where tjj is the (real) Lie algebra of TR. If the

action of T on X is effective, then tjz can further be considered as a

subspace of Killing vector fields on X with respect to a suitable Kahler

metric on X. Thus to any such Killing vector field V on X we can

associate integers Aa(V) by Aa (V) = A a(^(V)) . Note that if V generates

IR, then <p(V) is regular in the sense that (p(V) &H-z« for any ^f as

above.

Now we come to the proof of Theorem stated in the introduction.

Proof of Theorem. By Lemma 1. 4 and Theorem 3. 3, up to the

choices of Aa it is enough to show that every biholomorphic action of

(C*)k on X is meromorphic if F=^=0. Indeed, this is a special case of a

theorem of Sommese [15] (cf. also [9, Proposition 6. 10]). As for /la,

assuming that the action is effective as we may, by the above remark we

may take Aa = ^a(V) by taking h^^> in the above proof from the con-

nected component to which <p(V) belongs. One sees readily that these

Aa coincide with those used by Frankel in [8] (see also [12,111.10]).

Q.E.D.

We end this paper with the following more or less wellknown:

Example. Let G be a connected semisimple algebraic group (over

C), B a Borel subgroup of G and T a maximal torus of G contained in

B. Let T act on the homogeneous space X=G/B on the left and F be

the set of fixed points of this action. Let N (T) be the normalizer of

T in G and W=N(T)/T the Weyl group of G with respect to T. Fix

a representative {wa}a=i,...,TO, cwl = e, in N(T) of elements of W, where
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m = #W. Then we get that F= {xa = waB<=X', l<,a<^m} (cf. [4, p.

278]). In particular F consists of isolated points and #F=m. Hence

by Theorem 3. 3 hp'q(X) = 0, p^q, as is wellknown. Moreover fixing a

regular 1-parameter subgroup h^^> as in (3. 5) we have an integer Xa

= la(h)^Q for each a with hp'p(X) =#{a\la=p} (cf. [6, Remark 4) ] ) .

We shall now interprete the right hand side in terms of the Weyl group.

Let pa: T-^>GL(Va) be the rational representation as in (3. 5), where Va

is now the tangent space of X at xa. Then we see readily that via the

natural isomorphism wa* : Vi = Va, pa is equivalent to pWa = p-wa:T—>

GL(V^ where wa is the automorphism of T induced by wa. Let {^f, • • • ,

%%} be the set of characters of pa, or of pWa, where ;z = dimX We shall

write %i for ^J. Since the Weyl group induces permutations of the set

{%!» * " » X n » ~~%i» *"' — %»} with respect to the natural induced action on X,

we get that the characters of pWa are of the form {ef^i, • • - , e£%n; 5?

= ± 1} . In particular ^M — U H*« = ̂ H — U Hx .. Let U be the connected
i,a * i

component of §p— U H%i such that %$(A)>0 for all i and h^U (positive

Weyl chamber) . Then by the definition of the function A" (h) if we take

h from U, we have that ^(h)=s(swc^)^ where s(Wa) =# {i; £?= — 1}.

Thus we have the following formula:

The result is classical and due to Chevalley, Bott, and Borel and

Hirzebruch (cf. [5, 24. 4]. See also [8, p. 7]).

On the other hand, by (3. 6) for each connected component of ^R

— U Hx. (Weyl chamber) there corresponds a unique meromorphic (or

algebraic) decomposition {Xa} of X, and they are transformed to each

other by the elements of W. Since F is isolated, by [1] (cf. Lemma

2.1) Xa = Cla for each a and hence {Xa} defines an analytic cellular

decomposition of X in the sense of [3] . In fact one can show that this

decomposition {Xa} (corresponding to — U) coincides with the one origi-

nally constructed by Borel in [3] (see also [4, p. 347]) using the jB-orbits

(Schubert cycles) . Note that the above formula (*) also follows directly

from this decomposition because we have then that hp' p (X) = # {a : Xa
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