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§ 1. Introduction

Let (Xt, S t, PX) be a Brownian motion on a Riemannian manifold

M and a be a differential 1-form on M. In this paper we will be con-

cerned with the integral of a along Xt. This integral is a stochastic

version of the ordinary integral of the form a along a smooth curve on

M and is defined by using the symmetric integral. We denote by

A(t\a), tl>Q, the integrals of a along Xt. The one-parameter family

A= {A(t\ a); £^>0} of random variables then defines a continuous additive

functional of (Xt, 2^, P,) .

In Section 3 we will show that A(t; a), tl>0, can be decomposed

into a sum of a local martingale and a bounded variation process which

is expressed by the divergence of a. The structure of the local martin-

gale part will be analyzed by using the lifted diffusion (rt, 3t, Pr) on

O(M) of (Xt, S t, PX) through the Riemannian connection where O(M)

is the bundle of orthonormal frames. Next in Section 4, using some re-

sults in Section 3 we will give a representation theorem for continuous

square integrable martingale additive functionals of (Xt9 31, PX) which

was obtained, in some special cases, by a number of authors (cf. [11],

[14], [15], [16], [17]). As an application of Theorem 3. 1, we discuss

in Section 5 the Cameron-Martin formula. An approximation theorem

similar to Nakao-Yamato [12] also holds in our case. Using this we will

formulate and prove a stochastic version of Stokes' theorem.

M. Yor [18] recently discussed a closely related subject independent-

ly in the case that M= C.

Communicated by K. Ilo, February 20, 1978.
* Department of Mathematics, Osaka University.
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§ 2» Definition

Throughout this paper we will be using the following notation and

assumptions. Let M be a ^-dimensional complete Riemannian manifold"

and g be its Riemannian metric. Let A be the Laplace-Beltrami operator

on M. Let O(M) be the set of (J-fl)-tuples (x, e^ ez, • • • , ed), where

and el9 e2, -"7ed is an orthonormal basis of TXM. Then a= (atj)

acts on O(M) as

d d d

i=l i=l i=l

Let n: O(M)-^M be given by n(x, el9 ez, ••-, ed) =x. Thus we have a

bundle of orthonormal frames (O(M) , O(d) , M). We will denote the

bundle by its bundle space O (M) alone. We refer the reader to [1] for

the precise definition of the bundle of orthonormal frames. If we take

a local coordinate (x1, x2, • • •, xd} in a coordinate neighborhood U of M,

every orthonormal frame r^n~l(U) may be expressed in the form:

where e= (ef) is such that

(2. 2) £ e\e\<3u (x) = 8t, , i, j = 1, 2, - - -, d ,
k,l=l

or equivalently

d
fff) Q^ ^ ' ^ ^ —. nfcl f N Z, 7 "I O ^7

(cf. Ikeda-S. Watanabe [7]). Here

= v , ? f , J = l ?2 ? . . . ,J a n d

For the sake of brevity, we introduce the following notation:

r~ (x, el9 ez, • • - , ed) = [j:, g],

where x— (xl
9 x2, • • - , Jt:d) and e= (e*) . Let jT^ be the coefficients of the

Riemannian connection associated to the Riemannian metric g, i.e.,

^ We always assume that M is connected.
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Denote by A1 (M) , I (M) the set of all C2 differential 1-forms and C2

vector fields respectively. Let (fl, 2") be a basic measurable space.

Now consider a Brownian motion (Xt, 2"t, Px)
 on Af defined on (Q, 2).

Let (rt, £F t,P r) be the lifted diffusion on O(M) of (Xt, 3 1, Px) , i.e.,

the horizontal Brownian motion on O (M) , (cf . Malliavin [9] ) . Then it

holds that for r(t) = [X,,

(2.4) <fc,'(0 = -X; r
P,«=I

where the symbol o denotes the symmetric multiplication in the sense of

Ito [5].

Let {Kn} be an increasing sequence of compact sets with M= U Kn
n=l

and Cn (^) be the first exit time from Kn. Throughout this paper, we

assume the following:

Assumption 2* I. There exists a certain if -measurable set $0 such

that PX(@Q) =1 for every x^M and

Km Cn(^) — °°? f°r every

We choose locally finite open coverings {Wn}n^N,2} {Un}new and

{Vn}neN of M satisfying the following conditions:

(i) For any n^N, Wn is a coordinate neighborhood.

(ii) For any n&N,

(2.5) t / ncV ncy ncW n .

Let {</>„} ne]¥ be a partition of unity subordinate to {Un} . Define the se-

quences {(Tn,A:} and {rnifc} of stopping times by the following relations:

for rc = l, 2, ••• and £ = 0,1, • • - ,

(2.6)

2) J¥ denotes the set of all positive integers.
8) The infimum of the empty set is understood to be oo.
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where dt is the shift operator of (Xt, 21, PX) •

We will now define the integral I a of QL^Al(tM} where X
J^rco, t]

denotes the curve in M defined by

(2.7) [0, £]BsH-»Xs<E7V/.

We begin with the case in which the support of oc is contained in a

neighborhood Un. If we take a local coordinate (xl, xz, • • • , x*) in (W^

0n), a can be written in the form

(2.8) a = £atdxi.
i=L

Let (/)n(Xt) = (XI, X'l, ••• ,X?) ejRd. Keeping these considerations in mind,

we define the integral

(2.9) f a
Jxco, i]

of ae^CM) by

f ~ d rffn,kf\t
(2.10) « = I]i: a,(X,)o^X;.

Jjr[o,r] &=o i=i Jrn f A .At

We will now consider the general case of C2 differential 1-form a. In

this case, define the integral (2. 9) of oc by

(2.11) f a=S f M.
J^TCO,^ neJV JJTCO.*]

Then we have

Lemma 2. 1. 77?? integral \ a defined by (2. 10) #77^ (2. 11)
Jjrco.t:

Z5 uniquely defined from oc and is independent of a particular choice

of the locally finite coverings {Wn}n&f, {Un}n(=N and {V,n}nGN and the

local coordinate (.r1, xz, • • • , xd}.

Using Ito's formula we can easily check and so the proof is omitted.

Definition 2e 1. \ a defined above is called the integral of
J-YCO,t]

a along the path Xt, 0<^t<^oo. We will often denote \ a as
J^TCO, t:

A(l:a,c*)) or more simply A(t;a).
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Remark 2. 1. It is easy to see that the integral A(t\a, o>) of a is

defined as a stochastic process: In fact, a version of A(t\ a, ft>) can be

chosen so that the mapping

[0, oo) X.GB (t,co)^A(t\ a, to} e (-co, oo]

gives a continuous local quasi-martingale additive functional with respect

to 3t.

The above definition of integral of a along the path XL, O<^-<CQ,

is extended to the case of the horizontal Brownian motion on O(M) by

the following way: Let a be a C2 differential 1-form on Q(M) such

that

(i) The support of a is contained in n~l (Un) .

(ii) Let (x\ x2, • • • , .cd) be a local coordinate in \Vn. Then

Then, set

(" « = £] r'^'E
Jr[0,O A:=0 Jrn,k/\t i=l

where r(/) = [Xt, < ? ( * ) ] > ^ W = W (^) ) an^ r[0, ^] is the curve in O(M)

defined by

[O,/] B5->rseO(M).

Next, using the partition {0n}nejv °^ unity subordinate to {t/n}, we can

define the integral I OL for a general smooth differential form ex. on
Jr[0,«]

O(M).

Remark 2.2. If ae^M), then we have

(2.12) f 7T*a= f a, for every £>0, a.s.,
JrCO.t: JXCO,^

where 7T*a is the pull-back of a by /:.

Remark 2. 3. Let a be an exact C2 differential 1-form, i.e., there

exists a function u on Af such that ex. — (r/w. Then

(2. 13) A (*; el') = u (Xt) -u (X,} , for every ^>0, a.s..
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To prove (2.13), take locally finite coverings {Wn}n<EN, {Un}n(=N and

{Vn}n<=N mentioned above. Let o~n,k and tntk be the sequences of stopping

times defined by (2. 6) . It is enough to show (2. 13) in the case when

the support of a is contained in Un. In this case, by the chain rule,

r<?

JTn

Hence

A (* ; a) = fj (« (X,,,^,) - « (Xt.itA<) )

which completes the proof.

§ 3e Some Formulas on Integral of Differential Forms

In this section, we will show some formulas on the integral A(t\ a)

of a along the path Xt. First we will prepare several lemmas for future

use. The solder 1-forms o)\ z" = l, 2, - " y d , on O(M) are defined as fol-

lows. For r= (x, el9 ez, • • - , ed)

(3. 1) dn? = (Dl (f) et , for every f e TrO (Af ) ,
i=l

where JTT is the differential of the mapping n. We refer the reader to

Bishop-Crittenden [1] , pp. 90-93, for the definition and properties of the

solder 1-form. Take a local coordinate (xl, x*, • • • , xd) in a coordinate

neighborhood U of M. Then we have

Lemma 30 I. The solder \-forms o)\ i = 19 2, • • • , d, on n~lU can be

expressed in the folio-wing form-.

(3. 2) fl>* = S (S g fcy (x) e|) ̂ fc , r = [x, e] e O (M) .
fc=l /=!

Proof. For every C2 function / on M,

^7T (f )/= ?/ (TT (r) ) , for every f e TrO (M) .

Hence «)*, z' = l, 2, • • • , ̂ , can be expressed in the following form:
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(3.3) tt>* = £3fi>i(r)d;cfc.
k=l

Combining this with (3. 1), we have

Hence (a)} (r)) - (4) ~J.4) Now, using (2.2), we have

4 (0 = I] 0/* 0*0 ** , r = IX *] e O (M) .

This completes the proof.

The following lemma is an easy consequence of Lemma 3. 1.

Lemma 3» 2, Let a^A1 (M). Then -we have

(i) a, can be zvritten as a differential l-form on O(M) in the

folio-wing form:

(ii) Take a local coordi?iate (xl,xz, •-,x<i) in a coordinate neigh-

borhood U. Then cii(r) defined by (3.4) can be expressed in the

following form;

(3.5) S, (;•)=!: «» (K( r ) )c f , r = [_x, e^ e ^ (C7),
fe=l

(3.6) a = I]<
fc = l

Now take the solder 1-forms ^*, z = l, 2, • • • , c ? , on O(M) and define

continuous functionals BJ, f = l, 2, • • • , rf, of (rt, 5«, -Pr) by

(3.7) S{= f ft)4, for t>0 and z = l , 2 , . - - , r f .
Jr[0, t]

Then 5,= (£}, 5?, • • - , Sf ) , 0^^<oo, defines a random curve in Rd which

we call the stochastic development of Xt9 0^^<^oo, into Rd. Take a

4) In general, when we regard (rf) as a matrix c=(ci&), we set Cf*=rf.
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local coordinate (xl, xz, • • • , xd} in a coordinate neighborhood U in M.

Then, since

(3.8) dBl = i}-£gkj(Xt)e{WodXf, i = l,2,-,d,
&=i y=i

by Lemma 3. 1, we obtain the following proposition which was proved

by Ito [6].

Proposition 3. I. (Ito [6] ) . The stochastic development Bt

= (BL
t,B},~-,Bt), 0<^<oo, of Xt into Rd is a d- dimensional 3 1-

Brozvnian motion, that iss

(i) Bt — Bs is independent of 2! s,

(ii) Bt — Bs is Gaussian, i.e.,

TLeaima 3. 3. For every a = J^at (r) a)1 <E A1 (M)

(3.9) f a = f] ('a^r^odBl, for every *>0, a.s..
J^[o,t] i=i Jo

Proof. By Lemma 3. 1 and Lemma 3. 2,

dA(i-a)= f (ak(rt)gii(Xt-)

0 ̂  (0 )
fc=l i,/=l

Combining this with (3. 8) and using the chain rule, we can prove (3. 9) .

The following lemma is an immediate consequence of Lemma 3. 3.

Lemma 3,4, (Ito [6]). Take a local coordinate (xl, x2
3 • • • , xd} in

a coordinate neighborhood U i?i M. Then

(3.10)

where r (f) = [Xt,e (t) ] , Xt = (XI , XI - - - , Xf) and e (f) - (e} (t) ) .

5> (a, by= HaibL and IH|z = <a, «> for any a,
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We are now in a position to state our main theorem in this section.

Theorem 3. 1. Let Bt= (B\, B\, - - - , B f ) , 0<^<co5 he the stochas-

tic development of Xt into Rd and consider a differential \-form a

^A1(M). Then the continuous additive functional A(t\d) can be

expressed in the following form:

(3.11) A (t • a) = £] I"' SLt (r.) dB\ - - f' da (X.) ds ,
f=l JO 2 JO

for every ^^0, a.s. ,

where a = ]T] a^ (7-) col and d is the adjoint operator of the exterior

differential operator d.

Proof. It is enough to show (3. 11) in the case where the support

of a, is contained in a coordinate neighborhood U. Set Y£ (f) — at (rt),

0<=£<oo, z = l,2, • • • , ^ . Then, by Lemma 3.3,

(3. 12) dA(t;a)= a

where A/r. is the martingale part of the quasi-martingale Y t ( f ) , 0<^

and '(My., Biyt is the quadratic variation process corresponding to MYi and

Bi, (cf. Kunita-S. Watanabe [8] and Ito [5]). Let (x\ x\ • • • , xd) be

a coordinate in [7. Letting

we have

«* (r) = II «fc (jc) e\ , for r - [x, e] e TT'1 (C7),

by Lemma 3. 2. Hence,

i; —a/bCxo^fcoi;
i.j.k^ OX3 P.«=l

? CO »"
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d
= V1

Therefore, using (2. 2) we obtain

(3.13)

Since

(3. 13) implies

Combining this with (3. 12) , we can complete the proof.

It is not difficult to see that the first term in the right hand of

(3. 11)

i=l JO

is uniquely determined from A(t\ot) and is called the martingale part

of A(t\oc). Throughout this paper we will use M(t; a) to denote the

martingale part of A(t;a). It is easy to see that M(t\ a) is a local-

martingale additive functional of (Xt, 31, Px).

§ 4. Representation Theorem for Continuous Additive Functionals

Let Jtt be the space of continuous additive functionals such that

JEr[A(08]<oo and JE,[ A (*)]=(), for every x^M and ^0.

Let p(t,x,y), ^^>0, Xj y£iM, be the minimal fundamental solution with

respect to dm of the heat equation

9x) =f(x),
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where dm is the volume element corresponding to the Riemannian metric

g on M Set

(4.1) K(t,x,y) = F P(s,x,
Jo

Let < , >(.r) be the inner product on (TXM)* where (TXM) * is the

dual space of TXM. Fix any (t, x) e (0, oo) X M and define a norm of

by

(4.2) iia|l^

Then if ||a||et^ and ||j8||t f j r are finite, the integral

(4. 3) (a, /?) £| , = f <a, /?> (y ) * (*, x, y )
Jjif

converges absolutely and define a positive definite symmetric bilinear form

on

(4.4) Mi.*={a\a^Al(M),\\<*\\i.*<™\-

Let SCt,x be the completion of J}£t,x with respect to the norm || \\ttX.

Then, for any fixed (t, x} e (0, oo) XM, the space Mt.r is a Hilbert space

with inner product ( . ) tiT. Set

&= n MI,, and Jr= n J^.
«>o,3?sj«f «>o,Te3/

Now let {£/„} be the locally finite open covering of M given in Section

2 and (xl, x2, ••-,a:d) be a local coordinate in the coordinate neighborhood

(Wn, 0n) . Choose an a^M. Then a: can be expressed in the following:

a
(4. 5) a = XI &i (#) dxi

9 on Un ,t=i

where <2Z- (.r) , z = l, 2, "m
9d, are measurable functions on A/. Let

= 1, 2, • • • , rf, be the functions on O(M) defined b}^

d

(4. 6) a€ (r) = 2 ^fc (TT (r) ) e* for every r e 7T-1 ([/w).

Then, by Lemma 3. 1, it follows that

d

(4.7) n*(% = ]T] cEi(r) ft)1, for every r
i = l
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where o)\ z" = l, 2, --,d, are the solder forms. Now, following Motoo-

S. Watanabe [11], we can define the stochastic integral:

(4.8) S(t;d)=i^[at(r^dBl
i=l Jo

where Bt = (Bl
t, B

2
t, • • • , Bf ) is the stochastic development of Xt into Rd,

since

(4. 9) S a, (r) 2 = <«, a> (n (r) ) , for every r e O (M) ,
i=l

bjr (2. 3) and (4. 6) . Then we have

(410) Ex[S(t;a)2]=\\a\\tiX and £,[£(*; a)] =0.

Further if a^M, then S(t;a) =M(t',a). We then have the following

result.

Proposition 4. 1. If a^M, then S(-\a) <^3tt.

Proof. For any n^N, we define fn by

fn = iof{«;X,*Z7B}.

Then, using (2. 4) and (3. 8) , we can show that, for

where (f>n(Xt) = (XI, Xf, • • • , X f ) . Hence, if the support of a is contained

in Un, then

= S fa, (AT,) er (5) ff „ (X.) el (5) rfX?
i,j,k,m=l JO

+ i S fa- (AT.) e? (5) Ag,, (X.) «/ 0) 0
2 i,i,k,m.p=l Jo 9xP

- i 2 f a-c :̂.)
2 i,j,k,m,p,q = l JO
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Combining this with (2. 3), we have

S(f,a)

1 d Cl

2, j,k,p=l Jo

Since

ft d

-—- log VG = ]T] File , where G — det (#^-),

it is easy to see that if the support of a is contained in C7n, then

~ S2 y,*=i

Now by using a standard localization argument, it is easy to check that,

for any a^.£C, {S(t\ a) , t^>$} is an additive functional of (Xt, 2 ty Px)

(cf. [11]). Combining this fact with (4.10) we have the conclusion of

the proposition.

The result we want to show is the following

Theorem 4, 1. For any Ae<_5K, there exists a unique a^M such

that

(4.11) A(f)=S(t:a), for every ^0, a.s.,

and further

(4. 12) JB,[A(02] = IMIiU f°r

Before proceeding to the proof of Theorem 4. 1 we will prepare three

lemmas. For any A^Jtt, we set

m(t,x\ A) -£,[A002], lor (*, x) e (0, oo) X M.

Now consider a subclass of J^ given by
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JllL= {A\ AeJ^K, m(t, x; A) is bounded in x for any fixed /}.

Lemma 4. 1. For any A^JM, there exists a unique non-negative

Radon measure JUL on M such that

(4.13) m(t,x',A)= f K(t,x,y)ft(dy),
JM

for every (t, x) e (0, oo) x M .

Proof. By Lemma 8.3 in Motoo-S. Watanabe [11], if A e 3tt,

m(t,x\A) is a bounded regular characteristic in the sense of [11]. By

setting

= {
Jo

for

and using Theorem 3.4 in [11], it is easy to see that u(l,x\ A) is a

bounded regular ^-excessive function in the sense of [11]. By using

Proposition (2. 10) in [2] , p. 272 and the remark in [2] , p. 266, it is

easy to check that there exists a unique non-negative Radon measure /t

satisfying

(4.14) u(l,x-,A)= \ Vi(x,y}/J.(dy}, for every A>0 ,
JM

where

Qi(*,y)= r e~"p(t,x,y)dt.
Jo

Then (4. 13) follows from (4. 14) .

We want to apply the above lemma to the following situation. For

and /Je^T we set

A) (t,x) =Es[A(£)S(t\ff)~\, for (t,x) <E (0, oo) XM,

and

0± 09, A) (t, x)=E,[ (A (f) + S(t; ft ) 2] ,

for (t,x) e (0, oo) xM.
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If Ae M and <& /?> (x) is bounded on M, then

A(t) ±S(f,ft GE M.

Hence, if A&M, $^M and </?,/?>(» is bounded on M, then there

exists a unique non-negative Radon measure / £ + ( • ; / ? ) such that

0± 08, A) (*, *) = f X (*, *, y) fi± (dy • ft ,
Jar

for every (^, jc) e (0, ex?) x M .

Furthermore there exists a unique signed measure /*(• ; /?) satisfying the

following

) (*,*)= f K(t,x,y)n(dy;ft,
JM

f or everY (^, ^) e (0, oo)

Remark 4.1. Let p^M and AeJyR. We further assume that

<(/S, /?> (x) is bounded on M. It is not hard to show that if {3 vanishes

identically in an open set E, then /*(• ;$) has no mass inside E.

Next we will prove the following:

Lemma 4. 2. Fix (t, x) e (0, oo) xM. Then, for any

there exists a unique a = at,x^Mt,x such that

(4. 16) 0 08, A) (*, x) = (a, ft *.*, for every $^M .

Proof. Since

E,[M(;;/?)2] = |I£IIU for every

by Theorem 3. 1, we have

(4.17)

by Schwarz' inequality. It is easy to see that, for h^R1 and
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(4. 18) <D (J,ft + A2&, .4) (t, x) = A,0 09,, A) (t, x) .

Hence, by Riesz' representation theorem, there exists a unique

such that

0 09, .4.) (*, .r) = (a, /?) t >a r , for every

which completes the proof.

Now using a minor modification of arguments in Tanaka [15] , we

will prove the following.

Lemma 4.3. For any AeJ/K, there exists a unique cc^Si such

that

(4. 19) A(?)=S(t\a), for every t^>0, a.s. ,

and further

(4. 20) £,[A(0'] - || a || U for every (t,x) e (0, oo) XM.

Proof. First fix any positive integer ;/ and take a local coordinate

(V, x2, -",xd) in the coordinate neighborhood (Un, 0n) . Let /, z = l, 2, • • • ,

^, be the differential 1-forms defined by

f = IUn (x) dx\ for i = l,2,—9d»

Let [I be the measure associated with A by the relation in (4. 13) . Take

an open subset E of Un such that p(dE) =Q and let #* (JB) , z = l, 2, • • • , < £ ,

be the differential 1-forms defined by

IE(x)dx\ for / = 1,2, -,rf.

Then, it is easy to see that, for z = l, 2, • • - ,£? ,

f,$(E)^M and 5(^;r'),5(/;/? l(£))eJ{.

Since

0T (/? (£) , A) (*, x) +(»_ (/J4 (£) , A) (t, x)

= 2m(t,x;A)+2( K (t, x, y)</9* (£) , tf (E) > (y) m (dy) ,
Jx

8) IA means the indicator function of a set A.
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we have

Hence

From this and (4.15), f i ( d E ; #*(.£)) =0 follows. Combining this with

Remark 4. 1 we have

0 on M\E,
(4. 21)

A(- ; / - /9 ' (£ ) )=0 on E.

Since the identity

follows from (4. 18) , (4. 21) implies

(4.22) f j L ( - ; ^ ( E ) ) = I E f i ( - - f ) .

Combining this with (4. 15) we have

(4. 23) 0 0? (E) , A) (t, x~)= \ K (t, x, y) fi (dy • f} ,
JE

for every (t, x) e (0, oo) x M .

By using (4. 17) it is easy to see that (4. 23) must hold for any Borel

set E in Un. Now consider a differential 1-form:

/? = & (*) Ar* and ft (x) = £ IEl! (x)
k = l

where Ekj k = l,2, •-, m, are Borel sets in Un. Then, from the fact men-

tioned above, we have

(4. 24) 0 09, A) (t, x} = f K (t, x, y ) ft (y ) ̂  (rfy ; f} .
JM

Now fix any (t, x) e (0, CXD) X M. Let a f > r be the differential 1-form

associated with A by the relation in (4. 16). Then the restriction cct>x\un

of atiX to Un can be written in the following:

a
* (y) ̂ :vfc> for ^ e Un .

k=l



I
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Comparing (4. 16) with (4. 24) we have,

) * Cv) Qki GO m (dy) lUn = v(dy, f)

for y^.Un and z = 1 , 2, •••, d .

Hence the functions (a f>a?) fc (y) , & = 1, 2, • • • , d, on £7n are independent of

(*, *) •
Now using a standard localization argument we come to the important

conclusion that the differential 1-form (XtiX is independent of (t, x) . From

now on we denote the differential 1-form mentioned above by a. Further,

from (4. 16) it follows that for every $^M

(4.25) £ x [<A-5(- ;a) ,Af( - ; /? )>J = 0> for every (*, *) e= (0, oo) x M .

By Theorem 12.2 in Motoo-S. Watanabe [11], it follows that JM^the

minimal subspace of JVi which contains {M(- ; /?) ; $£EjK}. Hence from

(4. 25) , we have

A(t) =

which completes the proof of the first assertion in the lemma. (4. 20)

is an immediate consequence of (4. 19) . This completes the proof.

Now we turn to the proof of theorem 4. 1.

Proof of Theorem 4. 1. By Theorem 5. 5 in Motoo-S. Watanabe [11]

there exists an increasing sequence {mn (t, x) } of bounded regular charac-

teristic such as

©
(ii)

where (v //7l-A) i is the stochastic integral of \/fn with respect to A.

Hence, by Lemma 4. 3, there exists a sequence {an} of differential 1-fornis

satisfying the following:

(a) an<Ei^{, for every ?i^N.

(b) mn (t, x) = (an, an) t,x, for every (*, x) <= (0, oo) X M.

(c) Set gn(x) = <an, any (x) , x<E.M. Then the sequence {gn} is in-

creasing.

By (c) , there is a function g such as
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g(x) = limgn(x).
n-»oo

Also it is easy to see that for any (t, x) e (0, oo) X M

= f
JM

by using the monotone convergence theorem. Hence, for any

and /?EEc^f, there exists a function g (x\ 0) such that

= f
Jjf

Now let E be an open set in M. It is easy to see that if /? vanishes

identically in E, then the measure g ( x \ f S ) m ( d x ) has no mass inside E.

Then using an argument similar to the proof of Lemma 4. 3, we come to

the conclusion that for any AEEc_5K, there exists an <2€=J?f satisfying

; A) = (a, 0)tiX, for every $^M and (*, x) GE (0, oo)

By using an argument similar to the final step of the proof of Lemma

4. 3, we have

A(t)=S(t;a).

It is easy to see that (4. 12) follows from (4. 11) . This completes the

proof of Theorem 4. 1.

§ 5. Brownian Motion with Drift

Throughout this section we assume the following:

Assumption 50 1. M is a compact Riemannian manifold.

Then, by using Theorem 3. 1, it is easy to see that for any

M(t\ a) is a martingale with respect to 2" t. Setting

(5. 1) N(t; a) =exp^ ( f ; a) +

we can easily conclude that for any a^Al(M), N(t;a) is a martingale

7) IMP GZ) = <<z> cu> W for
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with respect to 3V Define a family of measures Px,x^M, by

(5. 2) Px (B) = Ex[N(t; a);B], for any B<E <31.

Then, it is well known that X= (Xt, 3\, Px) is the diffusion process with

the infinitesimal generator

(5.3) L =

where ba is a unique vector field such that at each point

(5. 4) ax (v) = gx (ba
x, vx) , for every v GE X (M) .

Now we have

Theorem 5. I. Let a^A1(M). Then the following three state-

ments are equivalent.

(i) Qa = 0, i.e., a can be expressed in the following form'.

(5.5) a

-where 0 is a differential 2-form and 0,1 is a harmonic I-form.

(ii) A(t\a) is a -martingale -with respect to 2^.

(iii) The Riemannian volume m(dx) on M is invariant under

each Tt 'where Tt is the semi-group of X.

Proof. The implication (i) =^> (ii) is clear by Theorem 3. 1. If (ii)

is holds, then, by Theorem 3. 1,

Ex\ (' 8a(Xdds\=0, for every x^M and C>0.

Since da is a continuous function on M, we have

da(x) =0, for every

that is, da = 0. It is well known, (de Rham [3]), that Sa = 0 implies

(5. 5) . Hence (ii) implies (i) .

The statement (iii) holds if and only if

(5. 6) f Lu (x) m (dx) = 0, for every u e C°° (M) ,
Jir

where C°° (M) is the space of all C°° functions on M, (cf. Nelson [13]).

By (5.4),
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f (b"u) O) m (dx) - f <a? duy (x) m (dx) , u e C°° (M) .
J3/ J;Y

Hence, since

JH (x) m (dx) = 0, for every u e C°° (M) ,
Jw

(5. 6) is equivalent to

I <<z, <*/> (a;) wz (Ac) = 0, for every u e C°° (M ) .
J.¥

Therefore (5.6) holds if and only if da = Q, (cf. de Rham [3]). This

completes the proof.

§ 6. AppFoximatlon Tlieorem

Let {Wn}ney, {C/n}ne2v
 an^ {V"n}ne2v be the locally finite open coverings

of M given in Section 2. We further assume that {Wn}nGN satisfies the

following condition: For any n&N and .r, yGE Wn, there exists a unique

minimal geodesic ^x.y such that

(6.1) r*,,(0)=*, r,.y(l)=3' and {r,l2/GO : 0^5^!} C W, ,

(cf. Helgason [4]). Let ff(wz) = {0 = ^m)<^m)<»-} be a subdivision of

[0,oo) and S(m) = {Q = s^<s^<-"} be the refinement of S(m) ob-

tained by adding {ffn,k} and {rn>fc} where {(7rt>fc} and {rn,fc} are the se-

quences of stopping times defined by (2. 6) . Let Xm (f) be the broken

geodesic such that the restriction XJ [5?"°, s^] of XTO to |>£m), 5^] is the

minimal geodesic joining Xs(^ and X^gj. Consider the curve Xm[Q, t] in

M defined by

Then, since Xm [0, ^] is piecewise smooth, the integral I a of a along
J^mCO.i]

the curve XTO[0, t\ is well defined. Setting, for every positive integer

N,

U Un},

we have
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Theorem 6. 1. Leta^Al(M). If

lim
m-*oo fc

then, for any positive integer N9

(6. 2) lim Ex\ sup I f a- f a *] =0 ,
m-*oo US^AV' J^mCO.r] J^CO,0 J

/or every

Before the proceeding to the proof, we give a remark. As we men-

tioned in Section 2, if a is exact, i.e., there exists a function u on M

such that a = du9

f « = «.mo, a
Also

f a =
J-XmCO, «]

Hence, in this case, we can easily prove (6. 2) .

Proof of Theorem 6. 1. Let {(/vKeiv be a partition of unity subordi-

nate to {Un} and (x1, x2, -•, xd) be a local coordinate in the coordinate

neighborhood (Wn, 0n). Setting

rffn,k/\t ( a
= I^

Jrn,iA! l«=i

and

where [s] = max {4m); 4m) < 5}, (0na) = £] (0»oO < ̂ * and

), we have
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Hence

f a- f a l ^ lEE/
J^mDU] J-XIO.rj »=1 fc=0

E,\ sup |f a- f a|2l
LogisrAvj, JjTmCD.q J-TOU] J

sup IS

Therefore there exists a positive constant C depending only on N such

that the left hand side of (6. 3) is smaller than

Hence to complete the proof it is sufficient to show (6. 2) in the case

where the support of a is contained in Un for some n^N. Now using

a modification of the technique used in Nakao-Yamato [12] , we can com-

plete the proof and so the details of the proof is omitted.

Remark 6. 1. Let a be a C2 differential 1-form on Mand ba be the

vector field defined by (5. 4) . By Theorem 6. 1, the integral of a along

the path may be considered as the measurement of the amount of work

done in travelling the path in the force field determined by the vector

field ba.

§ 7. An Application of Approximation Theorem

In this section, we will give a stochastic version of Stokes' theorem.

Y. Takahashi8) did this for the special case that M= Rd. In the rest of

this paper, we will assume the following:

Assumption 7. 1. M is a simply connected, complete Riemannian

Private communication.
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manifold with non-positive sectional curvature.

Under this condition, there exists a coordinate system (xl
9 x2, • • - , xd)

valid on the whole M9 (cf. [10]). Consider a piecewise smooth curve

0: [0, t\-*M, such that X(0)=<4(0). Let r(u\x9y), 0<^<:i, be the

minimal geodesic joining x and y and £ be the mapping defined by

[0, t] X [0, 1] 3 (5, u)^c(s, u) =r(«; X(s) , 0(s)) eM.

Denote by S(t\X9 0) the chain on M" determined by the mapping c. For

any C2 differential 2-form /?, we define the integral I /? of 0 on
JS(£;X,$5)

S(t;X,#) by

(7. 1) f (9
Js(«;jr,c5)

= 2]

^ 5

where 0 (5) = (01 (5) ,<F(s) ,-,<(>' (5) ) and

By using Ito's formula it is easy to see that the integral I /? defined
Js(£;jr,?5)

by (7. 1) is independent of a particular choice of the coordinate system

(x\x\ -,**) in M.

Let ff(m) = {0 = £0
(m)<^m)<'--} be a subdivision of [0, oo) and Xm

be the polygonal geodesic approximation of X given in Section 5. Denote

by S m ( t ; X , ( j [ ) ) the chain determined by the mapping cm: [0, t] X [0, 1]

3 (s, tt)H>7-(a;Xm(s),0(s)) eM. Then we have the following

Lemma 7. I. Tjf

then, for every positive T,
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lim£,[sup f 0- f /3|2]=0.
m-»co o^s<r Js(t;x,^ Jsm(t;z,^

Using the same method as In Section 6, we can show this and so

the proof is omitted.

Now we can state the following

Theorem?. 1. Leta^Al(M}. Then

(7.2) f da= ( a,
jS(t;x,<l>) JdS(t;x,<ft

Proof. By Stokes' theorem,

(7.3) f da= f a.
JSm(t',X,<ft JdSm(i\X,^

a.s. .

Combining Theorem 6. 1, Lemma 7. 1 and (7. 3), we can show (7. 2).

References

[ 1 ] Bishop, R. L. and Crittenden, R. J., Geometry of manifolds, Academic Press, 1964.
[ 2 ] Blumenthal, R. M. and Getoor, R. K., Markov processes and potential theory, Academic

Press, 1968.
[3] de Rham, G., Varietes differentiates, Hermann, 1960.
[4] Helgason, S., Differential geometry and symmetric spaces, Academic Press, 1962.
[5] Ito, K., Stochastic differentials, Appl. Math. & Optimization, 1 (1975), 374-381.
[6] , Brownian motion on Riemannian manifold and harmonic tensor fields (in

Japanese), Sugaku 28 (1976), 137-146.
[7] Ikeda, N. and Watanabe, S., Heat equation and diffusion on Riemannian manifold

with boundary, Proc. of Symp. on SDE, Kyoto, (1976), 75-94.
[8] Kunita, H. and Watanabe, S., On square integrable martingales, Nagoya Math. Jour.,

30 (1967), 209-245.
[ 9 ] Malliavin, P., Formules de la moyenne calcul de perturbations el theoremes

d'annulation pour les formes harmomques, Jour. Funct. Anal., 17 (1974), 274-291.
[10] Milnor, J., Morse theory, Annals of Math. Studies, 51, Princeton Univ. Press, 1963.
[11] Motoo, M. and Watanabe, S., On a class of additive functionals of Markov processes,

Jour. Math. Kyoto Univ. 4 (1965), 429-469.

[12] Nakao, S. and Yamato, Y., Approximation theorem on stochastic differential equations,
Proc. of Symp. on SDE, Kyoto, (1976), 283-296.

[13] Nelson, E., The adjoint Markoff process, Duke Math. Jour. 25 (1958), 671-690.
[14] Skorobod, A. V., Additive functionals of a process of Brownian motion, Theory

Prob. & Appl. 6 (1961), 396-404.
[15] Tanaka, H., Note on continuous additive functionals of a 1-dimensional Brownian

path, Z. Wahr. 1 (1963), 251-257.



852 NOBUYUKI IKEDA AND SHOJIRO MANABE

[16] Wentzell, A. D., Nonnegative additive functionals of Markov processes, Soviet Math.
Dokl., 2 (1961), 218-221.

[17] , On continuous additive functionals of a multidimensional Wiener
process, Soviet Math. Dokl., 3 (1962), 246-267.

[18] Yor, M., Formule de Cauchy relative a certains lacets browniens, Bull. Soc. Math.
France, 105 (1977), 3-31.


