Publ. RIMS, Kyoto Univ. 15 (1979), 853-870

Finiteness Theorems on Weakly 1-complete Manifolds

By

Takeo OHSAWA*

Let X be a complex manifold of (complex) dimension *n* and $\pi: B \rightarrow$ *X* be a holomorphic vector bundle over *X.* We consider the vector space of C^{∞} $\overline{\partial}$ closed *B*-valued (p, q) forms modulo C^{∞} $\overline{\partial}$ exact *B*-valued forms, which we denote by $H^{p,q}(X, B)$. It is interesting and sometimes useful to know whether $H^{p,q}(X, B)$ is finite dimensional or not. Specifically, when X is noncompact, the finite dimensionality of $H^{p,q}(X, B)$ is closely related to the function theoretic properties of *X.* The purpose of this article is to prove the following statement which was conjectured by S. Nakano:

If X is uueakly \-complete and B is positive outside a compact subset of X and of rank 1, $H^{n,q}(X, B)$ is finite dimensional for $q \geq 1$.

The author expresses his hearty thanks to Dr. A. Fujiki and Professor S. Nakano for their kind advices.

§ I. Notations

Let us fix the notations. We denote by *X* a connected paracompact complex manifold of dimension *n.* We denote for a subset *K* of *X,* the interior of K, the boundary of K and the closure of K by Int K, ∂K and \overline{K} , respectively. For two subsets K_1 and K_2 of X, we mean by $K_1 \subset K_2$ that \overline{K}_1 is compact and contained in Int K_2 . Let $\pi: B \rightarrow X$ be a holomorphic line bundle on X, and $\{U_i\}$ be an open covering of X consisting of coordinate neighbourhoods U_i with holomorphic coordinates $(z_i^1,\,\cdots\!,z_i^n),$ over which $\pi: B \rightarrow X$ is trivial, namely $\pi^{-1}(U_i) = U_i \times C$, and $(x, \zeta_i) \in U_i \times C$ and $(x, \zeta_j) \in U_j \times C$ represent the same point of *B* if and only if

Received March 1, 1978.

Research Institute for Mathematical Sciences, Kyoto University.

$$
\zeta_i = e_{ij}(x) \, \zeta_j
$$

where ${e_{ij}}$ is a system of transition functions for *B*.

A *B-valued differential form f* on X is a system ${f_i}$ ofdiff erential forms defined on U_i , satisfying $f_i = e_{ij} f_j$ in $U_i \cap U_j$.

We denote by $C^{p,q}(X)$ $(C^{p,q}(X, B))$ the space of differential forms (resp. B-valued forms) of class C^{∞} and of type (p, q) on X, and by $C_0^{p,q}(X)$ ($C_0^{p,q}(X, B)$) the space of the forms in $C^{p,q}(X)$ (resp. $C^{p,q}(X, B)$) with compact supports. For a subset K of X, we denote by $C^{\infty}(\overline{K})$ the space of functions on \overline{K} which are restrictions of C^{∞} functions defined on a neighbourhood of \overline{K} . $C^{p,\,q}\,(\overline{K},B)$ is defined similarly.

We fix a hermitian metric ds^2 in X, and a hermitian metric ${a_i}$ along the fibers of *B.* Here *a^t* is a positive function such that

(2)
$$
a_i|e_{ij}|^2 = a_j \text{ in } U_i \cap U_j
$$
.

For $f, g \in C^{p,q}(X,B)$, we set

$$
(3) \t a_i f_i / \sqrt{\pi_i} = \langle f, g \rangle dv
$$

where $*$ is the star operator and dv is the volume element with respect to the metric ds^2 . $\langle f, g \rangle$ does not depend on *i* and is a function defined on X. We have $\langle f, f \rangle \ge 0$. If either f or $g \in C_0^{p,q}(X, B)$, then

(4)
$$
(f,g)_y = \int_X \langle f,g \rangle e^{-y} dv
$$

is defined for any real valued function ψ of class C^{∞} .

We have the operator

(5)
$$
\overline{\partial}: C^{p,q}(X,B)\to C^{p,q+1}(X,B)
$$

defined by $(\bar{\partial} f)_i$ = $\bar{\partial} f_i$. We form the formal adjoint of $\bar{\partial}$ with respect to the inner product $(f, g)_\psi$ in $C^{p, q}_0(X, B)$, and denote it by ϑ_ψ .

We denote by $L^{p, q}(X, B, \Psi)$ the space of measurable B -valued forms *f* of type (p, q) , square integrable in the sense that $(f, f)_r < \infty$. It is a Hilbert space with respect to the inner product $(f, g)_x$. We define

(6)
$$
||f||^2 = (f, f)_0
$$

$$
(7) \qquad \qquad (f,g) = (f,g)_{\mathfrak{g}}
$$

$$
(8) \t\t \t\t \vartheta = \vartheta_0
$$

FINITENESS THEOREMS ON WEAKLY I-COMPLETE MANIFOLDS 855

(9)
$$
L^{p,q}(X, B) = L^{p,q}(X, B, 0).
$$

We also denote by $\overline{\partial}$ the smallest closed extension of

(10)
$$
\overline{\partial}: L^{p,q}(X, B, \Psi) \to L^{p,q+1}(X, B, \Psi).
$$

In general, given two Hilbert space H_1 and H_2 , and a closed linear operator $T: H_1 \rightarrow H_2$ with dense domain, we denote its domain, range and nullity by D_T , R_T and N_T , respectively. We denote the adjoint of T by T^* . In the case when $H_1 = L^{p,q-1}(X, B, \Psi)$, $H_2 = L^{p,q}(X, B, \Psi)$ and T $=\overline{\partial}$, we let $D_{\overline{\partial}} = D_{\overline{\partial}}^{p,q-1}$, $R_{\overline{\partial}} = R_{\overline{\partial}}^{p,q}$ and $N_{\overline{\partial}} = N_{\overline{\partial}}^{p,q-1}$. We define $R_{\overline{\partial}}^{p,q}$ to be 0. $D^{p,q}_{\overline{\beta}^*}, R^{p,q-1}_{\overline{\beta}^*}$ and $N^{p,q}_{\overline{\beta}^*}$ are defined similarly.

Definition **1.1.**

(11)
$$
{}^{\prime}H^{p,q}(X,B,\Psi)=N_{\overline{\theta}}^{p,q}/\overline{R_{\overline{\theta}}^{p,q}},
$$

where we denote by $\overline{R^{p,q}_{\overline{s}}}$ the closure of $R^{p,q}_{\overline{s}}$ in $L^{p,q}(X, B, \Psi)$.

Note that $'H^{p,\,q}(X,\,B,\varPsi')$ is a Hilbert space. We define

(12)
$$
{}^{\prime}H^{p,q}(X,B) = {}^{\prime}H^{p,q}(X,B,0).
$$

For a differential form ξ on X, exterior multiplication of ξ to f $\in C^{p,q}(X, B)$ is defined by

(13)
$$
(e(\xi)/\sqrt{f})_i = \xi/\sqrt{f_i}.
$$

Let ω be the fundamental form of the hermitian metric ds^2 on X. We define

$$
(14) \tL = e(\omega)
$$

(15)
$$
\Lambda = (-1)^{p+q} * L \times \text{ on } C^{p,q}(X, B).
$$

§ 2. Weak Finlleness **Theorem**

Definition 2.1. X is called weakly 1-complete if there exists a C^{∞} plurisubharmonic function \mathbf{Y} on X such that for any $c \in R$, where R denotes the real numbers,

$$
X_c:=\{x; \, \text{P}'(x)\text{}<\text{C}\}\text{D}X.
$$

We call such *W* an exhaustion function of *X.* Note that if *X* is weakly 1-complete X has a countable base, so by Sard's theorem there is a nowhere dense subset $A \subset R$ such that if $c \in R - A$, $\partial \{x, \Psi(x) \leq c\}$

is a smooth manifold of real dimension $2n - 1$.

Proposition 2. 2. *If X is weakly \-complete, then for any compact subset K of X, there exists an exhaustion function W such that* $\{x\,}\,\mathscr{V}(x) = 0\} \supseteq K$ and $\partial \{x\,}\,\mathscr{V}(x) = 0\}$ is smooth.

Proof) For any exhaustion function Φ there exists a $c \in R$ such that $\{x;\emptyset(x)\leq c\} \supseteq K$ and $\partial\{x;\emptyset(x)\leq c\}$ is smooth. We define $\lambda:R\to R$ as follows

(16) $\lambda(t) = 0$ if $t \leq c$,

(17)
$$
\lambda(t) = \exp\left(-\frac{1}{(t-c)^2} + t - c\right) \quad \text{if} \quad t \geq c.
$$

Then $\lambda(t)$ is a C^{∞} plurisubharmonic function vanishing in a neighbourhood of \overline{K} , and $\partial \{x;\lambda(\phi(x)) = 0\}$ is smooth, so we may take $\Psi := \lambda(\phi)$. q.e.d.

Since X is a paracompact manifold of class C^{∞} it has a hermitian metric ds^2 . Let $\{a_i\}$ be a metric along the fibers of *B*.

Definition 2.3. A holomorphic line bundle $\pi: B \rightarrow X$ is said to be positive on a subset $Y \subset X$, if there exists a coordinate cover $\{U_i\}$ of X such that $\pi^{-1}(U_i)$ are trivial and the metric $\{a_i\}$ along the fibers of B can be so chosen that

(18)
$$
\left(\frac{\partial^2 \log (a_i^{-1})}{\partial z_i^a \partial \bar{z}_i^{\beta}} \right) > 0
$$
 on $U_i \cap Y$ for any *i*.

From now on, we let *X* be a weakly 1-complete manifold and $\pi: B \rightarrow X$ be a holomorphic line bundle which is positive on the complement of a compact subset *K* of *X,* and an exhaustion function *W* is so fixed that $K \subseteq \{x; \Psi(x) = 0\}$ and $\partial \{x; \Psi(x) = 0\}$ is smooth. For convenience we denote $\text{Int}\{x\,;\,\Psi\left(x\right) = 0\}$ by X_0 .

Lemma 2.4. For any finite number of B-valued forms f^1, \dots , / m *which are measurable and locally square integrable there exist a hermitian metric ds² and a metric {a€} along the fibers of B such that*

1) *ds² is a complete hermitian metric*

2)
$$
ds^2 = \sum_{\alpha,\beta} \frac{\partial^2 \log(a_i^{-1})}{\partial z_i^{\alpha} \partial \bar{z}_i^{\beta}} (dz_i^{\alpha}, d\bar{z}_i^{\beta})
$$
 on $X - K_1$

3)
$$
(f^l, f^l) < \infty
$$
, for $1 \leq l \leq m$,

for some compact set K_1 with $K \subset K_1 \subset X_0$.

Proof) By the hypothesis on *B* there exist ds_0^2 and $\{a_i^0\}$ which satisfy 2) for some K_1 with $K\mathbb{C}K_1\mathbb{C}X_0$. We define ds^2 and $\{a_i\}$ by

(19)
$$
ds^2 = \sum_{\alpha,\beta} \frac{\partial^2 \log(a_i^{-1})}{\partial z_i^{\alpha} \partial \bar{z}_i^{\beta}} (dz_i^{\alpha}, d\bar{z}_i^{\beta}) \text{ on } X - K_1,
$$

$$
(20) \t\t ds2=ds02 \t on K1
$$

$$
(21) \t\t a_i = a_i^0 e^{-\tau(\Psi)},
$$

where τ is a real valued function of class C^{∞} such that

$$
(22) \t\t\t \tau(t) \geq 0,
$$

$$
(23) \t\t \tau'(t) \ge 0, \t and
$$

(24)
$$
\tau''(t) \geq 0 \quad \text{for any} \quad t \in R.
$$

We set

(25)
$$
g_{i,\alpha\beta} = \frac{\partial^2 \log((a_i^0)^{-1})}{\partial z_i^{\alpha} \partial \bar{z}_i^{\beta}}
$$

(26)
$$
\Gamma_{i,\alpha\beta} = \frac{\partial^2 \log (a_i^{-1})}{\partial z_i^{\alpha} \partial \bar{z}_i^{\beta}}
$$

$$
(27) \t a_i^0 f_i / \sqrt{*} \bar{f}_i = a^0(f) dv_0
$$

(28)
$$
a_i f_i / \sqrt{\dot{x}} \overline{f}_i = a(f) dv = A(f) dv_0,
$$

where $*, \nless$, and dv_0 , dv are the star operators and the volume forms of *ds* and *ds² ,* respectively. We have by a direct calculation

(29)
$$
A(f) \leq e^{-\tau(\mathbf{F})} \frac{\det(\Gamma_{i,a,\beta})}{\det(g_{i,a,\beta})} a^{\mathfrak{g}}(f) \quad \text{on} \quad X - K_1
$$

(30)
$$
\frac{\det(\Gamma_{i,\alpha\beta})}{\det(g_{i,\alpha\beta})} \leq (1+\tau'(\varPsi)) v^{n} + (1+\tau'(\varPsi)) v^{n-1}\tau''(\varPsi) u
$$

where v and u are non-negative continuous functions independent of τ . We choose a non-decreasing continuous function $\rho(t)$ such that

(31)
$$
\int_{x} e^{-\rho(\Psi)} a^0(f^l) dv_0 \ll \infty, \quad \text{for} \quad 1 \leq l \leq m.
$$

We use the following lemma due to S. Nakano.

Sublemma 2.5 ([6], Lemma). Given a real valued, continu*ous and strictly increasing function* $\lambda(t)$ *on* $0 \le t < \infty$ *with* $\lambda(0) = 0$, $\lambda(t) \to \infty$ for $t \to \infty$, we can find a C^{∞} function $\tau(t)$ on $-\infty \leq t \leq \infty$ *such that*

- (32) $\tau'(t) \geq 0$ and $\tau''(t) \geq 0$, for any *t*,
- (33) $\tau(t) \geq \lambda(t)$ for $t \geq c$, and
- (34) $f'(t) \leq K\tau(t)^2$ and

$$
\tau''(t) \leq K\tau(t)^3 \quad \text{for} \quad t \geq c',
$$

for some constants c, c' and

We apply it to

(35)
$$
\lambda(t) = \max \{v(t), u(t)\} + 2\rho(t) + t^2
$$

and take $\tau(t)$ as in Lemma 2.5. Since

(36)
$$
\int_0^\infty \sqrt{\tau''(t)} dt = \infty
$$

 ds^2 is complete ([5], Proposition 1). By (30) it follows that

(37)
$$
\int_{x-\kappa_1} \exp(-\tau(\Psi)) \frac{\det(\Gamma_{i,\alpha\beta})}{\det(g_{i,\alpha\beta})} a^0(f) dv_0
$$

$$
\leq \sup_{x-\kappa_1} \exp\left(-\frac{\tau(\Psi)}{2}\right) \frac{\det(\Gamma_{i,\alpha\beta})}{\det(g_{i,\alpha\beta})}
$$

$$
\times \int_{x-\kappa_1} \exp(-\rho(\Psi)) a^0(f) dv_0, \text{ for } 1 \leq l \leq m.
$$

It is clear that for such τ the metrics ds^2 and $\{a_i\}$ satisfy 1), 2) and $3)$. $q.e.d.$

Theorem 2.6. Assume that ds^2 and $\{a_i\}$ satisfy 1) and 2) or *Lemma 2.4, then if* $p+q>n$

(38) *R^p ' q is closed*

and

$$
(39) \qquad \qquad \dim_{\mathcal{C}} \, 'H^{p,q}\,(X,B) < \infty \; .
$$

Proof) We use the following lemma which is theorem 1. 1. 3 of [2].

Lemma 2.7. Let H_i $(i=1, 2, 3)$ be three Hilbert spaces and $T: H_1 \rightarrow H_2$ and $S: H_2 \rightarrow H_3$ be closed linear operators with dense do*mains such that ST=Q. Assume that for any sequence {fy} ^rwith* $f_y \in H_2 \cap D_s \cap D_r$, $||f_y||_{H_2} \le 1$, lim $||Sf_y||_{H_3} = 0$, and lim $||Tf_y||_{H_1} = 0$, we can **y->oo y-»oo** *choose a strongly convergent subsequence of {fy} . Then RT is closed and NS/RT is a finite dimensional vector space.*

According to Lemma 2. 7, in order to prove (38) and (39) it suffices to show that for any sequence $\{f_v\}$ such that $f_v \in D^{p,q}_{\overline{\theta}} \cap D^{p,q}_{\overline{\theta}^*}$ $||f_{\nu}|| \leq 1$, $\lim ||\partial f_{\nu}|| = 0$, and $\lim ||\partial^* f_{\nu}|| = 0$, we can choose a strongly convergent subsequence of $\{f_{\nu}\}\right)$.

Since ds^2 is complete, $C_0^{p,q}(X,B)$ is a dense subset of $D_{\overline{\beta}}^{p,q}\cap D_{\overline{\beta}^*}^{p,q}$ with respect to the graph norm,

(40)
$$
\{\langle \overline{\partial}f, \overline{\partial}f\rangle + \langle \overline{\partial}^*f, \overline{\partial}^*f\rangle + \langle f, f\rangle\}^{1/2}
$$

([8], Theorem 1.1). Hence we may assume

$$
(41) \t\t f\nu \in C_0^{p,q}(X, B).
$$

Therefore, we have

(42)
$$
(\overline{\partial} f_{\nu}, \overline{\partial} f_{\nu}) + (\overline{\partial}^* f_{\nu}, \overline{\partial}^* f_{\nu}) + (f_{\nu}, f_{\nu})
$$

$$
= ((\overline{\partial} \partial + \partial \overline{\partial}) f_{\nu}, f_{\nu}) + (f_{\nu}, f_{\nu}).
$$

Hence by the assumption

(43)
$$
((\overline{\partial}\vartheta+\vartheta\overline{\partial})f_{\nu},f_{\nu})+(f_{\nu},f_{\nu})
$$

is bounded above, which combined with ellipticity of $\partial \theta + \partial \overline{\partial}$ means that $(f_v)_i$ and their first order derivatives are bounded. Here the derivatives are taken with respect to the coordinate of *Ui.* Combining this with

Rellich's lemma, it follows that ${f_{\nu}}$ has a subsequence ${f_{\nu_j}}$ which is strongly convergent on compact subsets. We use the following estimate which is proved later (See Lemma 3. 3 in Section 3.)

(44)
$$
\int_{X-K_1} \langle f, f \rangle dv \leq C \left\{ \|\overline{\partial} f\|^2 + \|\vartheta f\|^2 + \int_{K_2} \langle f, f \rangle dv \right\},
$$

if $p+q>n$ and $f \in D_{\overline{\theta}}^{p,q} \cap D_{\theta}^{p,q}$, where *C* is a constant and *K* By this estimate we conclude that ${f_{\nu_j}}$ converges strongly on X. q.e.d.

§ 3. The Basic Estimate

In what follows ds^2 and $\{a_i\}$ are assumed to satisfy 1) and 2) of Lemma 2. 4.

For an integer *v,* we define

(45)
$$
(f, g)_y = (f, g)_{y}
$$
, and

(46)
$$
|| f ||_{\mathfrak{z}}^{\mathfrak{z}} = (f, f)_{\nu}, \text{ for } f, g \in L^{p,q}(X, B, \nu \Psi).
$$

We let ϑ , be the formal adjoint of $\overline{\partial}$ with respect to the inner product (f, g) , and we define

(47)
$$
\Box_{\nu} = \overline{\partial} \vartheta_{\nu} + \vartheta_{\nu} \overline{\partial}.
$$

Since ds^2 is complete ϑ , is equal to the adjoint of $\bar{\partial}$. ([8], Theorem 1.1).

We use a well known formula in differential geometry in the following form.

Lemma 3.1.

(48)
$$
\Box_{\nu} - *^{-1} \Box_{\nu} * = e(\chi_{\nu}) A - Ae(\chi_{\nu}), \quad on \quad X - K_1
$$

where $e(\chi_v) = L + e(\nu\sqrt{-1}\partial\overline{\partial}\Psi)$.

Proof) We let

- (49) *b(* $= e^{-\nu \Psi} a_i$,
- (50) $D = d + \partial \log b_i$ *,* and
- (51) $D' = \partial + \partial \log b_i$.

Then we have

(52)
$$
e(\chi_{\nu}) = \sqrt{-1} D^2, \text{ and}
$$

(53)
$$
D^2 = (\overline{\partial} + D') (\overline{\partial} + D') = \overline{\partial} D' + D' \overline{\partial}.
$$

Letting δ' be the formal adjoint of $\overline{\partial}: C_0^{p,q}(X) \to C_0^{p,q+1}(X)$ we have

(54)
$$
\sqrt{-1} \left(\overline{\partial} A - A \overline{\partial} \right) = \partial' \quad \text{on} \quad X - K_1.
$$

We have

(55)
$$
\sqrt{-1} (D'A - AD') = \vartheta, \text{ on } X - K_1.
$$

Hence

(56)
$$
e(\chi_{\nu}) A - Ae(\chi_{\nu})
$$

$$
= \sqrt{-1} \{ (\overline{\partial} D' + D' \overline{\partial}) A - A(\overline{\partial} D' + D' \overline{\partial}) \}
$$

$$
= \sqrt{-1} \{ (\overline{\partial} (D' A - AD') + (D' A - AD') \overline{\partial} - D' (\overline{\partial} A - A \overline{\partial}) - (\overline{\partial} A - A \overline{\partial}) D' \}
$$

$$
= \overline{\partial} \partial_{\nu} + \partial_{\nu} \overline{\partial} - (D' \delta' + \delta' D')
$$

$$
= \square_{\nu} - *^{-1} \square_{\nu} * \text{ on } X - K_{1}, \text{ q.e.d.}
$$

Lemma 3. 2.

(57)
\n
$$
||f||^2 \le ||\overline{\partial} f||^2 + ||\vartheta f||^2
$$
\n
$$
if \ f \in C_0^{p,q}(X - K_1, B) \ and \ p + q > n, \ and
$$
\n(58)
\n
$$
||f||_2^2 \le ||\overline{\partial} f||_2^2 + ||\vartheta_{\nu} f||_2^2
$$

if $f \in C_0^{n,q}(X - K_1, B)$ *and* $q \ge 1$ *.*

Proof) We prove (58) first. If $f \in C_0^{n,q}(X-K_1, B)$ and $q\geq 1$, we have

(59)
$$
\|\overline{\partial}f\|_{\nu}^{2} + \|\vartheta_{\nu}f\|_{\nu}^{2} = (\square_{\nu}f, f)_{\nu}
$$

$$
\geq ((e(\chi_{\nu})\Lambda - Ae(\chi_{\nu}))(f, f)_{\nu})
$$

$$
= ((LA - AL)f, f)_{\nu}
$$

$$
+ \nu (e(\sqrt{-1}\partial\overline{\partial}\Psi)\Lambda - Ae(\sqrt{-1}\partial\overline{\partial}\Psi'))f, f)_{\nu}
$$

$$
= q(f, f)_{\nu} + \nu (e(\sqrt{-1}\partial\overline{\partial}\Psi)\Lambda f, f)_{\nu} \geq q(f, f)_{\nu}.
$$

For more details, see [5]. However we note that what is proved there is

that if the dual of *B* is positive and φ is a $(0, n-q)$ form with support contained in a coordinate neighbourhood *U,* we have

(60)
$$
((\Lambda e(\sqrt{-1}\partial\overline{\partial}\Psi)-e(\sqrt{-1}\partial\overline{\partial}\Psi)\Lambda)\varphi,\varphi)\geq0
$$

so it seems not sufficient to establish (60) for the elements of $C_0^{0,\,n-q}(X,B)$. But his argument also implies

(61)
$$
\langle Ae(\sqrt{-1}\partial\overline{\partial}\Psi)\varphi,\varphi\rangle\geq 0
$$

for $\varphi \in C^{0,n-q}(X, B)$. Hence rewriting (61) we obtain (58).

The proof of (57) is similar as above. $q.e.d.$

Lemma 3.3. there is a constant C and a compact set K_z with $K_1 \subset K_2 \subset X_0$ such that

(62)
$$
\int_{X-K_2} \langle f, f \rangle e^{-\nu F} dv \leq C \left\{ \|\overline{\partial} f\|_{\nu}^2 + \|\vartheta_{\nu} f\|_{\nu}^2 + \int_{K_2} \langle f, f \rangle dv \right\}
$$

if
$$
\nu \geq 0
$$
, $f \in D_{\overline{\theta}}^{n,q} \cap D_{\theta_{\nu}}^{n,q}$ and $q \geq 1$, and

(63)
$$
\int_{X-K_2} \langle f, f \rangle dv \leq C \left\{ \|\overline{\partial} f\|^2 + \|\vartheta f\|^2 + \int_{K_2} \langle f, f \rangle dv \right\}
$$

if $f \in D^{p,q}_{\overline{\theta}} \cap D^{p,q}_{\theta}$ and

Proof) Since ds^2 is complete we may assume $f \in C_0^{p,q}(X, B)$. We prove (63). The proof of (62) is similar.

Let χ be a C^{∞} function on X such that for a compact set $K_{\text{\bf z}}$ with $K_1 \subset K_2 \subset X_0$

(64)
$$
\chi = 1 \quad \text{in} \quad X - K_2, \quad \text{and}
$$

(65) $\chi = 0$ in a neighbourhood of K_1 .

We have $\chi f \in C_0^{n,q}(X-K_1, B)$, so we can apply Lemma 3.2, getting

(66)
$$
\|\chi f\|_{\nu}^2 \leq \|\overline{\partial}(\chi f)\|_{\nu}^2 + \|\vartheta_{\nu}(\chi f)\|_{\nu}^2.
$$

We estimate the both sides of this inequality. The left hand side:

(67)
$$
\int_{X-K_2} \langle f, f \rangle e^{-\nu T} dv \leq ||\chi f||_{\nu}^2.
$$

The right hand side:

(68)
$$
\|\overline{\partial}(\chi f)\|_{\nu}^{2} + \|\vartheta_{\nu}(\chi f)\|_{\nu}^{2}
$$

$$
= \|\overline{\partial}\chi\Lambda f + \chi\overline{\partial}f\|_{\nu}^{2} + \|\psi\Lambda g^{-1}e^{\nu\overline{\Psi}}\overline{\partial}f\|_{\nu}^{2} + \|\psi\Lambda g^{-1}e^{\nu\overline{\Psi}}\overline{\partial}f\|_{\nu}^{2} + \|\psi\Lambda g\|_{\nu}^{2}
$$

$$
= \|\overline{\partial}\chi\Lambda f + \chi\overline{\partial}f\|_{\nu}^{2} + \|\chi\vartheta_{\nu}f - \ast(\partial\chi\Lambda * f)\|_{\nu}^{2}
$$

\n
$$
\leq \|\overline{\partial}\chi\Lambda f\|_{\nu}^{2} + 2 \operatorname{Re}(\overline{\partial}\chi\Lambda f, \chi\overline{\partial}f)_{\nu} + \|\chi\overline{\partial}f\|_{\nu}^{2} + \|\chi\vartheta_{\nu}f\|_{\nu}^{2}
$$

\n
$$
- 2 \operatorname{Re}(\chi\vartheta_{\nu}f, \ast(\partial\chi\Lambda * f))_{\nu} + \|\ast(\partial\chi\Lambda * f)\|_{\nu}^{2}
$$

\n
$$
\leq \int_{K_{2}} \langle\overline{\partial}\chi, \overline{\partial}\chi\rangle dv \cdot \int_{K_{2}} \langle f, f \rangle dv + \|\overline{\partial}\chi\Lambda f\|_{\nu}^{2} + \|\chi\overline{\partial}f\|_{\nu}^{2}
$$

\n
$$
+ \|\chi\overline{\partial}f\|_{\nu}^{2} + \|\chi\vartheta_{\nu}f\|_{\nu}^{2} + \|\chi\vartheta_{\nu}f\|_{\nu}^{2} + \|\ast(\partial\chi\Lambda * f)\|_{\nu}^{2}
$$

\n
$$
+ \int_{K_{2}} \langle\overline{\partial}\chi, \overline{\partial}\chi\rangle dv \cdot \int_{K_{2}} \langle f, f \rangle dv
$$

\n
$$
\leq 2 \Big(\int_{K_{2}} \{\langle\overline{\partial}\chi, \overline{\partial}\chi\rangle + \langle\partial\chi, \partial\chi\rangle\} dv \cdot \int_{K_{2}} \langle f, f \rangle dv\Big)
$$

\n
$$
+ 2 \sup_{\tau \in \Upsilon} \chi(x) \cdot (\|\overline{\partial}f\|_{\nu}^{2} + \|\vartheta_{\nu}f\|_{\nu}^{2}).
$$

Therefore, if

(69)
$$
C \geq 2 \max \left(\int_{K_2} \langle \overline{\partial} \chi, \overline{\partial} \chi \rangle + \langle \partial \chi, \partial \chi \rangle \right) dv, \sup_{x \in X} \chi(x) \right)
$$

we have

(70)
$$
\int_{X-K_2} \langle f, f \rangle e^{-\nu F} dv \leq C \left(\|\overline{\partial} f\|_{\nu}^2 + \|\vartheta_{\nu} f\|_{\nu}^2 + \int_{K_2} \langle f, f \rangle dv \right)
$$
q.e.d.

§ 4. The Main Theorem

Definition 4.1. We denote by $\mathcal{A}^{p,q}(X_0, B)$ the set of elements $h \in L^{p,q}(X_0, B)$ with $\overline{\partial} h = 0$ and $\overline{\partial}^* h = 0$, where $\overline{\partial}^*$ is the adjoint of $\overline{\partial}: L^{p,q-1}(X_0, B) \rightarrow L^{p,q}(X_0, B)$.

Proposition 4.2. There exist ν_0 and C_0 such that for any $\nu \geq \nu_0$

(71)
$$
|| f ||_{\nu}^{2} \leq C_{0} (||\overline{\partial} f||_{\nu}^{2} + ||\partial_{\nu} f||_{\nu}^{2}), \text{ where}
$$

provided

(72)
$$
f \in L^{n,q}(X, B, \nu \Psi) \cap D_{\overline{\theta}}^{n,q} \cap D_{\theta}^{n,q} \quad (q \geq 1),
$$

and

(73)
$$
\int_{x_0} \langle f, h \rangle dv = 0 \text{ for any } h \in \mathcal{H}^{n,q}(X_0, B).
$$

Proof) If the proposition were false, we may assume that there is a sequence $\{f_{\nu}\}\$ such that

(74)
$$
||f_{\nu}||_{\nu}^{2} = 1
$$

(75) ||9/,||,*+||0JX'<y

(76)
$$
f_{\nu} \in L^{n,q}(X, B, \nu \Psi) \cap D_{\overline{\partial}}^{n,q} \cap D_{\vartheta_{\nu}}^{n,q}
$$

and

(77)
$$
\int_{X_0} \langle f, h \rangle dv = 0 \quad \text{for any} \quad h \in \mathcal{H}^{n,q}(X_0, B).
$$

Let $g_{\nu} = e^{-\nu \varphi} f_{\nu}$, then we have

$$
(78) \t\t\t \vartheta g_{\nu} = e^{-\nu t} f_{\nu}
$$

so that

(79)

hence

(80)
$$
\lim_{\nu \to \infty} \|\vartheta g_{\nu}\|_{-\nu} = \lim_{\nu \to \infty} \|\vartheta_{\nu} f_{\nu}\|_{\nu} = 0
$$

by (75). Since $\|\vartheta g_{\nu}\| \le \|\vartheta g_{\nu}\|_{-\nu}$, we have $\lim_{\nu \to \infty} \|\vartheta g_{\nu}\| = 0$. By (74), we

have

(81)
$$
\|g_{\nu}\|_{-\nu} = \|f_{\nu}\|_{\nu} = 1
$$

hence $||g_{\nu}|| \leq 1$. Therefore choosing a subsequence, we may assume that ${g_s}$ has a weak limit g in $L^{n,q}(X, B)$. It is easily verified that

(82)
$$
\|g\|_{-\nu} \leq \inf_{\mu \geq \nu} \sup_{\mu' \geq \nu} \|g_{\mu'}\|_{-\mu'} = 1,
$$

for any $\nu \geq 1$. Thus we have supp $g \subset X_0$. Therefore,

$$
\overline{\partial}^*(g|_{x_0})=0.
$$

(See Appendix.) By (75) $\partial g = 0$, and g satisfies (77). By (74) and (75), it may be assumed that ${g_s}$ is strongly convergent on $K₂$, and the limit is not zero on *K2* by Lemma 3. 3. Hence we conclude that $g|_{x_0} \neq 0$. This contradiction completes the proof. $q.e.d.$

Definition 4. 3.

(84)
$$
H_{loc}^{p,q}(X, B) = \frac{\{f : f \in L_{loc}^{p,q}(X, B), \bar{\partial} f = 0\}}{L_{loc}^{p,q}(X, B) \cap \{\bar{\partial} g : g \in L^{p,q-1}(X, B)\}}
$$

where we denote by $L^{p,q}_{loc}(X, B)$ the space of B-valued (p, q) forms which are measurable and square integrable on compact subsets of *X.*

By the Dolbeault's theorem (see [2], Theorem 2.2.4 and Theorem 2. 2. 5), there is a natural isomorphism between the spaces $H^{p,q}_{\text{loc}}(X, B)$ and $H^{p, q}(X, B)$

We define $'H^{p,q}(X_0, B)$ with respect to ds^2 and $\{a_i\}.$

Proposition 4.4. The natural map

(85)
$$
\rho \colon H^{n,q}_{loc}(X,B) \to' H^{n,q}(X_0,B)
$$

is injective for $q \geq 1$.

Proof) We show that if $f \in L^{n,q}_{loc}(X, B)$, $\overline{\partial} f = 0$, and there exists a sequence $\{g_\nu\}$ with $g_\nu{\in}L^{n,\,q-1}(X_{\scriptscriptstyle 0},B)$, $\overline\partial g_\nu{\in}L^{n,\,q}(X_{\scriptscriptstyle 0},B)$ and

(86)
$$
\int_{x_0} \langle f - \overline{\partial} g_{\nu}, f - \overline{\partial} g_{\nu} \rangle dv < \frac{1}{\nu}
$$

then there exists $g\!\in\! L^{n,q-1}_{loc}(X,B)$ such that $\overline{\partial} g\!=\!f$.

We replace the exhaustion function Ψ by $\widetilde{\Psi} = \lambda(\Psi)$ where λ is a convex increasing C^{∞} function with $\lambda(0)=0$ and $\lambda(t)>0$ if $t>0$ which increases so rapidly that

(87)
$$
\int_{X} \langle f, f \rangle e^{-\widetilde{\mathscr{U}}} dv \langle \infty.
$$

For $\nu \geq 1$, we have $f \in L^{n,q}(X)$

By (86) it follows that

(88)
$$
\int_{X_0} \langle f, h \rangle dv = 0 \quad \text{for any } h \in \mathcal{H}^{n,q}(X_0, B).
$$

Therefore, combining Proposition 4.2 with Hörmander's theorem ([2], Theorem 1.1.4) we conclude that for some $\nu \geq 1$ there exists $g \in$ $L^{n,q-1}(X, B, \nu \widetilde{Y})$ such that $\overline{\partial}g = f$. q.e.d.

We fix $c>0$. X_c is a weakly 1-complete manifold with an exhaustion

function

(89) ? *c-V*

We choose a hermitian metric $d\sigma^2$ and a metric ${b_i}$ along the fibers of *B* such that

i) $d\sigma^2$ is complete

ii)
$$
d\sigma^2 = \sum_{\alpha,\beta} \frac{\partial^2 \log(b_i^{-1})}{\partial z_i^{\alpha} \partial \bar{z}_i^{\beta}} (dz_i^{\alpha}, d\bar{z}_i^{\beta}) \text{ on } X - K_1.
$$

Moreover we may assume that

iii)
$$
\int_{X_0} b_i f_i \wedge \overline{\mathfrak{D}} \overline{f_i} \langle \infty, \quad \text{for} \quad f \in C^{p,q}(X, B),
$$

where $\hat{\infty}$ is the star operator for $d\sigma^2$. This follows from Lemma 2.4 and that $C^{p,\,q}\,(\overline X_c,\,B)$ is a finitely generated $C^\infty(\overline X_c)$ module. We define $H^{p,q}(X_c, B)$ with respect to $d\sigma^2$ and $\{b_i\}.$

Theorem 4. *5**

(90)
$$
\dim_{\mathbf{C}} H^{n,q}(X,B) \leq \infty \quad \text{for} \quad q \geq 1.
$$

Proof) Since $'H^{n,q}(X_c, B)$ is finite dimensional it suffices to show that the natural map (induced by the restriction of forms)

$$
r: H^{n,q}(X, B) \to 'H^{n,q}(X_c, B)
$$

is injective. (Note that r is well defined by the choice of $d\sigma^2$ and $\{b_i\}$. We consider the following diagram.

$$
H^{n,q}(X, B) \xrightarrow{r} H^{n,q}_{loc}(X, B) \xrightarrow{\rho} H^{n,q}(X_0, B)
$$
\n
$$
H^{n,q}(X, B) \xrightarrow{r'} H^{n,q}(X_0, B)
$$

where ρ' , r' and ξ are natural homomorphisms. Since ρ is injective and ξ is an isomorphism, ρ' is injective, hence r is injective. $q.e.d.$

Theorem 4.6. If $g \in L^{n,q}(X_0, B)$ ($q \ge 0$) and $\overline{\partial}g = 0$, then for any ϵ > 0 there exists $f \in L^{n,q}_{loc}(X,B)$ such that

(91)
$$
\int_{x_0} \langle f - g, f - g \rangle dv \langle \varepsilon
$$

and $\overline{\partial} f = 0$.

Proof) By the Hahn-Banach's theorem it suffices to show that if $u \in L^{n, q}(X_0, B)$ and

$$
\int_{X_0} \langle f, u \rangle dv = 0
$$

for any $f \in L_{loc}^{n,q}(X, B)$ with $\overline{\partial} f = 0$, then we have

(93)
$$
\int_{x_0} \langle g, u \rangle dv = 0
$$

if $g \in L^{n,q}(X_0, B)$ and $\overline{\partial} g = 0$.

We define \hat{u} by $\hat{u} = u$ on X_0 and $\hat{u} = 0$ on $X - X_0$ *.* Since \hat{u} is orthogonal to $N_{\overline{\theta}}^{n,q}$ for any ν , we have $\hat{u} \in R^{n,\overline{q}}_{\theta \nu}$. $R^{n,q}_{\theta \nu} = \overline{R}^{n,q}_{\theta \nu}$ is equivalent to $R^{n,q+1}_{\overline{\theta}}$ $=\overline{R_{\overline{\beta}}^{\overline{n},\overline{q+1}}}$ (See [2], Theorem 1.1.1). $R_{\overline{\beta}}^{n,q+1}=\overline{R_{\overline{\beta}}^{n,\overline{q+1}}}$ is proved for $\nu\geq 0$ similarly as Theorem 2.6. Hence, by Proposition 4.2 there exists ν_0 such that

(94)
$$
\dot{u} = \vartheta_{\nu} v_{\nu}, \quad \text{for some } v_{\nu} \in L^{n, q+1}(X, B, \nu \Psi),
$$

$$
\text{with } \|v_{\nu}\|_{\nu}^2 \leq C_0 \|u\|^2, \quad \text{for } \nu \geq \nu_0.
$$

We set

$$
(95) \t\t\t\t w_y = e^{-\nu F}v,
$$

then as in the proof of Proposition 4. 2, $\{w_{\nu}\}\$ has a subsequence which is weakly convergent in $L^{n,q+1}(X, B)$. Let the weak limit be w, then as in the proof of Proposition 4.2, $\vartheta w = \tilde{u}$ and supp $w \subset \overline{X}_0$, hence $\overline{\partial}$ *(*w*|_{*x*₀}) = *u*. Therefore, if $g \in L^{n,q}(X_0, B)$ and $\overline{\partial}g = 0$, we have

(96)
$$
\int_{x_0} \langle g, u \rangle dv = \int_{x_0} \langle \overline{\partial} g, w \rangle dv = 0.
$$

q.e.d.

Theorem 4.6. The natural map (97) $\rho_d: H^{n, q}(X, B) \to H^{n, q}(X_a, B)$ *is an isomorphism if* $q \ge 1$ *and* $d > 0$.

Proof) We consider the following diagram

$$
H^{n,q}(X, B) \xrightarrow{\rho'} H^{n,q}(X_0, B)
$$
\n
$$
\rho_d \to H^{n,q}(X_d, B) \xrightarrow{\rho''}
$$

Since ρ' is injective ρ_d is injective. To show the subjectivity of ρ_d , we have only to show that $\text{Im } \rho' = \text{Im } \rho''$, where $\text{Im } \rho'$ denotes the image of ρ' .

By Theorem 4. 6 (and by the Dolbeault's theorem), Im *p'* is dense in Im ρ'' . Since Im ρ'' is a finite dimensional subspace of the Hilbert space $'H^{n,\,q}\left(X_{0},\,B\right)$, we have

(98)
$$
\operatorname{Im} \rho' = \operatorname{Im} \rho''.
$$

Thus ρ_d is an isomorphism. $q.e.d.$

§ 5. Application to Analytic Geometry

Let *M* be a complex manifold and *S* be a nonsingular divisor on *M* with a proper and smooth holomorphic map $p: S \rightarrow D$ onto a Stein manifold *D.*

Proposition 5. 1.

Assumption:

1) $[S] |_{p^{-1}(x)}$ *is a negative line bundle for any* $x \in D$ *.*

2) There is a compact subset $K\mathbb{C}D$ such that \mathcal{Q}_s^n is negative on $p^{-1}(D-K)$. Here $n = \dim S$ and Ω_S^n is the sheaf of holomorphic n-forms *on S.*

Conclusion: S is contractible to D in M, namely, there is a neighbourhood V of S., an analytic space U containing D as a closed analytic subset, and a proper surjective holomorphic map W: V->U such that $W|_{S} = p$ and $W|_{V-S}: V-S \rightarrow U-D$ is biholomorphic.

Proof) By assumption 1), there is a neighbourhood $V^{(2)}$ and a C^{∞}

plurisubharmonic function $\varPsi^{\text{\tiny (2)}}$ such that

(99) $\Psi^{(2)}(x)=0$ if $x \in S$,

and $\mathcal{F}^{(2)}|_{V^{(2)}-S}$ is strictly plurisubharmonic with positive values, (see [1], 4). By 1) and 2) $p^{-1}(D - K)$ is contractible to $D - K$ in a neighbourhood of $p^{-1}(D-K)$, (see [1], Theorem 1). Let the contraction be

(100)
$$
\begin{array}{ccc}\n\varpi': V^* & \longrightarrow & U^* \\
\updownarrow & & \updownarrow \\
p^{-1}(D-L) & \longrightarrow & D-K\n\end{array}
$$

Since *D is a* Stein manifold *D* is properly embedded into some *C^N .* Let ψ be the restriction of $\sum_{i=1}^{N} |z_i|^2$ to D. Applying Richberg's theorem ([7], Satz 3.3) to $D-K$ and U^* , we obtain a neighbourhood U^{**} of $D-K$ and a C^{∞} strongly pseudoconvex function φ on U^{**} such that $\varphi|_{D-K}$ $=\psi$.

Let $c = \sup_{x \in K} \psi(x)$, $d_1 > d_2 > c$, $\varepsilon > 0$ $V^{(1)} = \{x; x \in V^{(2)}, \Psi^{(2)}(x) < \varepsilon\}$, and *V* be the union of connected components of $V^{(1)} - \{x; x \in \overline{\omega}^{r-1}(U^{**}),\}$ $\psi \circ \overline{\omega}'(x) \ge d_1$ that meet $\{x; x \in S, \varphi \circ p(x) \le d_2\}$, then V is weakly 1complete for sufficiently small e.

By 1) and 2), $\mathcal{Q}_V^{n+1}\otimes[S] \mid_{V}^{-1}$ is positive outside a compact subset. Thus, by Theorem 4.5, $H^1(V, [S] \vert_{r}^{-1})$ is finite dimensional. Therefore, for any compact subset Q in $\{x; x \in S, \varphi \circ p(x) \leq d_{2}\}$ we can choose an analytic polyhedron P such that $Q \subset P \subset \{x; x \in S, \varphi \circ p(x) \leq d_2\}$ and the functions defining *P* are holomorphic functions on $\{x; x \in S, \varphi \circ p(x) \leq d_{2}\}$ which are restrictions of holomorphic functions on *V*. Since ∂V_c is strongly pseudoconvex outside S for almost all $c > 0$, this proves that V is holomorphically convex, ([3], Satz 3.4). It is clear that *V— S* does not contain a compact analytic subset whose dimension is greater than *I,* Consequently, *S* is contractible to *D* in *M*. $q.e.d.$

Theorem 5. 2a *Let X be a weakly 1-complete manifold. If there is a holomorphic line bundle* $\pi: B \rightarrow X$ which is positive outside *a* compact subset of X, then there is a meromorphic map $c: X_c {\rightarrow} P^{\scriptscriptstyle N}$, *-where* c>0 *and N is a natural number depending on c, such that there exists a compact analytic set* $A\subset X$ such that $\iota|_{X_0-A}:X_c-A\to P^N$ *is a holomorphic imbedding of* $X_c - A$ *as a locally closed analytic*

subset of P^N .

Proof} Similar as Kodaira's embedding theorem ([4]).

Appendix

We let the notations be as before.

Lemma If $g \in L^{p,q+1}(X, B)$, $\vartheta g \in L^{p,q}(X, B)$ and supp $g \subset \overline{X}_0$ then $g|_{X_0} \in D_{\overline{\theta^*}}$ where $\overline{\partial}^*$ is the adjoint of $\overline{\partial}^*$: $L^{p,q}(X_0,B) \rightarrow L^{p,q+1}(X_0,B)$

Proof) Since \overline{X}_0 is compact and ∂X_0 is smooth, there is a sequence $\{g_{\nu}\}\$ such that $g_{\nu}\in C_0^{p,q+1}(X, B)$, supp $g_{\nu}\subset X_0$, $\lim_{\nu\to\infty}||g_{\nu}-g||=0$, and $\lim || \partial g_{\nu} - \partial g || = 0$ (cf. [2], Proposition 1.2.3).

Thus, if $u \in L^{p,q}(X_0, B)$ and

(101)
$$
\int_{x_0} \langle u, \vartheta g \rangle dv = \lim_{y \to \infty} \int_{x_0} \langle u, \vartheta g_{\nu} \rangle dv
$$

$$
= \lim_{y \to \infty} \int_{x_0} \langle \overline{\partial} u, g_{\nu} \rangle dv = \int_{x_0} \langle \overline{\partial} u, g \rangle dv.
$$

Hence $g|_{X_0} \in D_{\overline{\theta}^*}$ and $\overline{\partial}^*(g|_{X_0}) = \partial g|_{X_0}.$ q.e.d.

References

- [1] Cornalba, M., Two theorems on modifications of analytic spaces, *Inventiones Math.,* 20, (1973) 227-247.
- [2] Hörmander, L., L² estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math., 113, (1965) 89-152.
- [3] Knorr, K. and Schneider, M., Relativexzeptionelle analytische Mengen, *Math. Ann.,* 193, (1971) 238-254.
- [4] Kodaira, K., On kahler varieties of restricted type, *Ann. Math.,* 60, (1954) 28-48.
- [5] Nakano, S., On the inverse of monoidal transformation, *Publ. RIMS, Kyoto Univ.,* 6, (1970/71) 483-592.
- [6] -----, Vanishing theorems for weakly 1-complete manifolds, II. Publ. RIMS, *Kyoto Univ.,* 10, (1974) 101-110.
- [7] Richberg, R., Stetige streng pseudokonvexe Funktionen, *Math. Annalen,* 175, (1968) 257-286.
- [8] Vesentini, E., *Lectures on Levi convexity of complex manifolds and cohomology vanishing theorems,* Tata Institute of Fundamental Research, Bombay, 1967.
- [9] Weil, A., *Introduciton a V etude des varietes kahler iennes,* Act. Sci. Ind. 1267, Hermann, 1958.

Added in Proof: The author proved in a forthcoming paper 'On H^{p,q}(X,B) of weakly 1-complete maniforlds' the finte dimensionality of $H^{p,q}(X, B)$ and bijectivity of $H^{p,q}(X, B)$ \rightarrow H^p'^q(X_d, B) in the case of p+q>dimX.