Publ. RIMS, Kyoto Univ. 15 (1979), 853-870

Finiteness Theorems on Weakly 1-complete Manifolds

By

Takeo OHSAWA*

Let X be a complex manifold of (complex) dimension n and $\pi: B \to X$ be a holomorphic vector bundle over X. We consider the vector space of $C^{\infty} \overline{\partial}$ closed B-valued (p, q) forms modulo $C^{\infty} \overline{\partial}$ exact B-valued forms, which we denote by $H^{p,q}(X, B)$. It is interesting and sometimes useful to know whether $H^{p,q}(X, B)$ is finite dimensional or not. Specifically, when X is noncompact, the finite dimensionality of $H^{p,q}(X, B)$ is closely related to the function theoretic properties of X. The purpose of this article is to prove the following statement which was conjectured by S. Nakano:

If X is weakly 1-complete and B is positive outside a compact subset of X and of rank 1, $H^{n,q}(X, B)$ is finite dimensional for $q \ge 1$.

The author expresses his hearty thanks to Dr. A. Fujiki and Professor S. Nakano for their kind advices.

§ 1. Notations

Let us fix the notations. We denote by X a connected paracompact complex manifold of dimension *n*. We denote for a subset K of X, the interior of K, the boundary of K and the closure of K by Int K, ∂K and \overline{K} , respectively. For two subsets K_1 and K_2 of X, we mean by $K_1 \subseteq K_2$ that \overline{K}_1 is compact and contained in Int K_2 . Let $\pi: B \to X$ be a holomorphic line bundle on X, and $\{U_i\}$ be an open covering of X consisting of coordinate neighbourhoods U_i with holomorphic coordinates (z_i^1, \dots, z_i^n) , over which $\pi: B \to X$ is trivial, namely $\pi^{-1}(U_i) = U_i \times C$, and $(x, \zeta_i) \in U_i \times C$ and $(x, \zeta_j) \in U_j \times C$ represent the same point of B if and only if

Received March 1, 1978.

^{*} Research Institute for Mathematical Sciences, Kyoto University.

(1)
$$\zeta_i = e_{ij}(x) \zeta_j$$

where $\{e_{ij}\}$ is a system of transition functions for B.

A B-valued differential form f on X is a system $\{f_i\}$ of differential forms defined on U_i , satisfying $f_i = e_{ij}f_j$ in $U_i \cap U_j$.

We denote by $C^{p,q}(X)$ $(C^{p,q}(X, B))$ the space of differential forms (resp. *B*-valued forms) of class C^{∞} and of type (p,q) on *X*, and by $C_0^{p,q}(X)$ $(C_0^{p,q}(X, B))$ the space of the forms in $C^{p,q}(X)$ (resp. $C^{p,q}(X, B)$) with compact supports. For a subset *K* of *X*, we denote by $C^{\infty}(\overline{K})$ the space of functions on \overline{K} which are restrictions of C^{∞} functions defined on a neighbourhood of \overline{K} . $C^{p,q}(\overline{K}, B)$ is defined similarly.

We fix a hermitian metric ds^2 in X, and a hermitian metric $\{a_i\}$ along the fibers of B. Here a_i is a positive function such that

(2)
$$a_i|e_{ij}|^2 = a_j \text{ in } U_i \cap U_j.$$

For $f, g \in C^{p, q}(X, B)$, we set

(3)
$$a_i f_i / \langle *\bar{g}_i = \langle f, g \rangle dv$$

where * is the star operator and dv is the volume element with respect to the metric ds^2 . $\langle f, g \rangle$ does not depend on *i* and is a function defined on *X*. We have $\langle f, f \rangle \ge 0$. If either *f* or $g \in C_{0}^{p,q}(X, B)$, then

(4)
$$(f,g)_{\mathbb{F}} = \int_{\mathcal{X}} \langle f,g \rangle e^{-\mathcal{F}} dz$$

is defined for any real valued function Ψ of class C^{∞} .

We have the operator

(5)
$$\overline{\partial}: C^{p,q}(X,B) \to C^{p,q+1}(X,B)$$

defined by $(\overline{\partial} f)_i = \overline{\partial} f_i$. We form the formal adjoint of $\overline{\partial}$ with respect to the inner product $(f, g)_{\mathfrak{F}}$ in $C_0^{\mathfrak{p}, \mathfrak{q}}(X, B)$, and denote it by $\vartheta_{\mathfrak{F}}$.

We denote by $L^{p,q}(X, B, \Psi)$ the space of measurable *B*-valued forms f of type (p,q), square integrable in the sense that $(f, f)_r < \infty$. It is a Hilbert space with respect to the inner product $(f,g)_{\mathfrak{F}}$. We define

(6)
$$||f||^2 = (f, f)_0$$

(7)
$$(f,g) = (f,g)_0$$

(8)
$$\vartheta = \vartheta_0$$

Finiteness Theorems on Weakly 1-complete Manifolds

(9)
$$L^{p,q}(X, B) = L^{p,q}(X, B, 0).$$

We also denote by $\overline{\partial}$ the smallest closed extension of

(10)
$$\overline{\partial}: L^{p,q}(X, B, \Psi) \to L^{p,q+1}(X, B, \Psi).$$

In general, given two Hilbert space H_1 and H_2 , and a closed linear operator $T: H_1 \rightarrow H_2$ with dense domain, we denote its domain, range and nullity by D_T , R_T and N_T , respectively. We denote the adjoint of T by T^* . In the case when $H_1 = L^{p, q-1}(X, B, \Psi)$, $H_2 = L^{p, q}(X, B, \Psi)$ and T $=\overline{\partial}$, we let $D_{\overline{\partial}} = D_{\overline{\partial}}^{p, q-1}$, $R_{\overline{\partial}} = R_{\overline{\partial}}^{p, q}$ and $N_{\overline{\partial}} = N_{\overline{\partial}}^{p, q-1}$. We define $R_{\overline{\partial}}^{p, 0}$ to be 0. $D_{\overline{\partial}}^{p, q}, R_{\overline{\partial}}^{p, q-1}$ and $N_{\overline{\partial}}^{p, q}$ are defined similarly.

Definition 1.1.

(11)
$${}^{\prime}H^{p,q}(X,B,\Psi) = N^{p,q}_{\overline{\partial}}/\overline{R^{p,q}_{\overline{\partial}}},$$

where we denote by $\overline{R^{p,q}_{\overline{\partial}}}$ the closure of $R^{p,q}_{\overline{\partial}}$ in $L^{p,q}(X, B, \Psi)$.

Note that $'H^{p,q}(X, B, T)$ is a Hilbert space. We define

(12)
$${}^{\prime}H^{p,q}(X,B) = {}^{\prime}H^{p,q}(X,B,0).$$

For a differential form ξ on X, exterior multiplication of ξ to $f \in C^{p,q}(X, B)$ is defined by

(13)
$$(e(\xi) / \backslash f)_i = \xi / \backslash f_i.$$

Let ω be the fundamental form of the hermitian metric ds^2 on X. We define

(14)
$$L = e(\omega)$$

(15)
$$A = (-1)^{p_{\tau}q} * L *$$
 on $C^{p,q}(X, B)$.

§ 2. Weak Finiteness Theorem

Definition 2.1. X is called weakly 1-complete if there exists a C^{∞} plurisubharmonic function Ψ on X such that for any $c \in R$, where R denotes the real numbers,

$$X_c := \{x; \Psi(x) < c\} \supset X.$$

We call such Ψ an exhaustion function of X. Note that if X is weakly 1-complete X has a countable base, so by Sard's theorem there is a nowhere dense subset $A \subset R$ such that if $c \in R - A$, $\partial \{x; \Psi(x) \leq c\}$

is a smooth manifold of real dimension 2n-1.

Proposition 2.2. If X is weakly 1-complete, then for any compact subset K of X, there exists an exhaustion function Ψ such that $\{x; \Psi(x) = 0\} \supseteq K$ and $\partial \{x; \Psi(x) = 0\}$ is smooth.

Proof) For any exhaustion function \emptyset there exists a $c \in R$ such that $\{x; \emptyset(x) \leq c\} \supset K$ and $\partial \{x; \emptyset(x) \leq c\}$ is smooth. We define $\lambda: R \to R$ as follows

(16) $\lambda(t) = 0 \quad \text{if} \quad t \leq c,$

(17)
$$\lambda(t) = \exp\left(-\frac{1}{(t-c)^2} + t - c\right) \quad \text{if} \quad t \ge c \; .$$

Then $\lambda(t)$ is a C^{∞} plurisubharmonic function vanishing in a neighbourhood of \overline{K} , and $\partial \{x; \lambda(\emptyset(x)) = 0\}$ is smooth, so we may take $\Psi := \lambda(\emptyset)$. q.e.d.

Since X is a paracompact manifold of class C^{∞} it has a hermitian metric ds^2 . Let $\{a_i\}$ be a metric along the fibers of B.

Definition 2.3. A holomorphic line bundle $\pi: B \to X$ is said to be positive on a subset $Y \subset X$, if there exists a coordinate cover $\{U_i\}$ of X such that $\pi^{-1}(U_i)$ are trivial and the metric $\{a_i\}$ along the fibers of B can be so chosen that

(18)
$$\left(\frac{\partial^2 \log(a_i^{-1})}{\partial z_i^{\alpha} \partial \overline{z}_i^{\beta}}\right) > 0 \quad \text{on} \quad U_i \cap Y \quad \text{for any } i.$$

From now on, we let X be a weakly 1-complete manifold and $\pi: B \to X$ be a holomorphic line bundle which is positive on the complement of a compact subset K of X, and an exhaustion function Ψ is so fixed that $K \subseteq \{x; \Psi(x) = 0\}$ and $\partial \{x; \Psi(x) = 0\}$ is smooth. For convenience we denote Int $\{x; \Psi(x) = 0\}$ by X_0 .

Lemma 2.4. For any finite number of B-valued forms f^1, \dots, f^m which are measurable and locally square integrable there exist a hermitian metric ds^2 and a metric $\{a_i\}$ along the fibers of B such that

1) ds^2 is a complete hermitian metric

2)
$$ds^2 = \sum_{\alpha,\beta} \frac{\partial^2 \log(a_i^{-1})}{\partial z_i^{\alpha} \partial \overline{z}_i^{\beta}} (dz_i^{\alpha}, d\overline{z}_i^{\beta})$$
 on $X - K_1$

3)
$$(f^l, f^l) < \infty$$
, for $1 \le l \le m$,

for some compact set K_1 with $K \subseteq K_1 \subseteq X_0$.

Proof) By the hypothesis on B there exist ds_0^2 and $\{a_i^0\}$ which satisfy 2) for some K_1 with $K \subseteq K_1 \subseteq X_0$. We define ds^2 and $\{a_i\}$ by

(19)
$$ds^{2} = \sum_{\alpha,\beta} \frac{\partial^{2} \log(a_{i}^{-1})}{\partial z_{i}^{\alpha} \partial \overline{z}_{i}^{\beta}} (dz_{i}^{\alpha}, d\overline{z}_{i}^{\beta}) \quad \text{on} \quad X - K_{1},$$

$$(20) ds^2 = ds_0^2 on K_1$$

$$(21) a_i = a_i^0 e^{-\tau(\varPsi)}$$

where au is a real valued function of class C^∞ such that

(22)
$$\tau(t) \ge 0$$
,

(23)
$$\tau'(t) \ge 0$$
, and

(24)
$$\tau''(t) \ge 0$$
 for any $t \in R$.

We set

(25)
$$g_{i,\alpha\beta} = \frac{\partial^2 \log\left(\left(a_i^{0}\right)^{-1}\right)}{\partial z_i^{\alpha} \partial \bar{z}_i^{\beta}}$$

(26)
$$\Gamma_{i,\alpha\beta} = \frac{\partial^2 \log(a_i^{-1})}{\partial z_i^{\alpha} \partial \bar{z}_i^{\beta}}$$

(28)
$$a_i f_i \wedge \ddagger \overline{f}_i = a(f) \, dv = A(f) \, dv_0,$$

where *, \pm , and dv_0 , dv are the star operators and the volume forms of ds_0^2 and ds^2 , respectively. We have by a direct calculation

(29)
$$A(f) \leq e^{-\tau(\mathbb{F})} \frac{\det(\Gamma_{i,\alpha\beta})}{\det(g_{i,\alpha\beta})} a^{\theta}(f) \quad \text{on} \quad X - K_1$$

(30)
$$\frac{\det(\Gamma_{i,\alpha\beta})}{\det(g_{i,\alpha\beta})} \leq (1 + \tau'(\Psi)) v^n + (1 + \tau'(\Psi) v)^{n-1} \tau''(\Psi) u$$

where v and u are non-negative continuous functions independent of τ . We choose a non-decreasing continuous function $\rho(t)$ such that

(31)
$$\int_{\mathfrak{X}} e^{-\rho(\mathfrak{Y})} a^{\mathfrak{g}}(f^{l}) dv_{\mathfrak{g}} < \infty, \quad \text{for} \quad 1 \le l \le m.$$

We use the following lemma due to S. Nakano.

Sublemma 2.5 ([6], Lemma). Given a real valued, continuous and strictly increasing function $\lambda(t)$ on $0 \le t < \infty$ with $\lambda(0) = 0$, $\lambda(t) \to \infty$ for $t \to \infty$, we can find a C^{∞} function $\tau(t)$ on $-\infty < t < \infty$ such that

- (32) $\tau'(t) \ge 0 \quad and \quad \tau''(t) \ge 0, \quad for \ any \ t,$
- (33) $\tau(t) \ge \lambda(t)$ for $t \ge c$, and
- (34) $\tau'(t) \leq K\tau(t)^2$ and

$$\tau''(t) \leq K\tau(t)^3 \quad for \quad t \geq c',$$

for some constants c, c' and K>0.

We apply it to

(35)
$$\lambda(t) = \max\{v(t), u(t)\} + 2\rho(t) + t^{2}$$

and take $\tau(t)$ as in Lemma 2.5. Since

(36)
$$\int_0^\infty \sqrt{\tau''(t)} dt = \infty$$

 ds^2 is complete ([5], Proposition 1). By (30) it follows that

(37)
$$\int_{X-\kappa_{1}} \exp\left(-\tau(\Psi)\right) \frac{\det\left(\Gamma_{i,\alpha\beta}\right)}{\det\left(g_{i,\alpha\beta}\right)} a^{0}(f) dv_{0}$$
$$\leq \sup_{X-\kappa_{1}} \exp\left(-\frac{\tau(\Psi)}{2}\right) \frac{\det\left(\Gamma_{i,\alpha\beta}\right)}{\det\left(g_{i,\alpha\beta}\right)}$$
$$\times \int_{X-\kappa_{1}} \exp\left(-\rho(\Psi)\right) a^{0}(f) dv_{0}, \text{ for } 1 \leq l \leq m$$

It is clear that for such τ the metrics ds^2 and $\{a_i\}$ satisfy 1), 2) and 3). q.e.d.

•

Theorem 2.6. Assume that ds^2 and $\{a_i\}$ satisfy 1) and 2) of Lemma 2.4, then if p+q>n

and

(39)
$$\dim_{\mathcal{C}} 'H^{p,q}(X,B) < \infty.$$

Proof) We use the following lemma which is theorem 1.1.3 of [2].

Lemma 2.7. Let H_i (i=1,2,3) be three Hilbert spaces and $T: H_1 \rightarrow H_2$ and $S: H_2 \rightarrow H_3$ be closed linear operators with dense domains such that ST=0. Assume that for any sequence $\{f_{\nu}\}$ with $f_{\nu} \in H_2 \cap D_S \cap D_T$, $||f_{\nu}||_{H_2} \leq 1$, $\lim_{\nu \rightarrow \infty} ||Sf_{\nu}||_{H_3} = 0$, and $\lim_{\nu \rightarrow \infty} ||Tf_{\nu}||_{H_1} = 0$, we can choose a strongly convergent subsequence of $\{f_{\nu}\}$. Then R_T is closed and N_S/R_T is a finite dimensional vector space.

According to Lemma 2.7, in order to prove (38) and (39) it suffices to show that for any sequence $\{f_{\nu}\}$ such that $f_{\nu} \in D^{p,q}_{\overline{\partial}} \cap D^{p,q}_{\overline{\partial}^{*}}$, $\|f_{\nu}\| \leq 1$, $\lim_{\nu \to \infty} \|\overline{\partial} f_{\nu}\| = 0$, and $\lim_{\nu \to \infty} \|\overline{\partial}^{*} f_{\nu}\| = 0$, we can choose a strongly convergent subsequence of $\{f_{\nu}\}$.

Since $ds^{\mathfrak{r}}$ is complete, $C^{p,q}_{\mathfrak{q}}(X,B)$ is a dense subset of $D^{p,q}_{\overline{\mathfrak{q}}} \cap D^{p,q}_{\overline{\mathfrak{q}}^{\mathfrak{r}}}$ with respect to the graph norm,

(40)
$$\{(\overline{\partial}f,\overline{\partial}f) + (\overline{\partial}^*f,\overline{\partial}^*f) + (f,f)\}^{1/2}$$

([8], Theorem 1.1). Hence we may assume

(41)
$$f_{\nu} \in C_0^{p,q}(X, B).$$

Therefore, we have

(42)
$$(\bar{\partial}f_{\nu},\bar{\partial}f_{\nu}) + (\bar{\partial}^{*}f_{\nu},\bar{\partial}^{*}f_{\nu}) + (f_{\nu},f_{\nu})$$

$$= ((\partial \vartheta + \vartheta \partial) f_{\nu}, f_{\nu}) + (f_{\nu}, f_{\nu}).$$

Hence by the assumption

(43)
$$((\bar{\partial}\vartheta + \vartheta\bar{\partial})f_{\nu}, f_{\nu}) + (f_{\nu}, f_{\nu})$$

is bounded above, which combined with ellipticity of $\bar{\partial}\vartheta + \vartheta\bar{\partial}$ means that $(f_{\nu})_i$ and their first order derivatives are bounded. Here the derivatives are taken with respect to the coordinate of U_i . Combining this with

Rellich's lemma, it follows that $\{f_{\nu}\}$ has a subsequence $\{f_{\nu_{j}}\}$ which is strongly convergent on compact subsets. We use the following estimate which is proved later (See Lemma 3.3 in Section 3.)

(44)
$$\int_{X-K_2} \langle f, f \rangle dv \leq C \left\{ \|\overline{\partial}f\|^2 + \|\vartheta f\|^2 + \int_{K_2} \langle f, f \rangle dv \right\},$$

if p+q > n and $f \in D^{p,q}_{\overline{\theta}} \cap D^{p,q}_{\theta}$, where C is a constant and $K_1 \subseteq K_2 \subseteq X_0$. By this estimate we conclude that $\{f_{\nu_j}\}$ converges strongly on X. q.e.d.

§ 3. The Basic Estimate

In what follows ds^2 and $\{a_i\}$ are assumed to satisfy 1) and 2) of Lemma 2.4.

For an integer ν , we define

(45)
$$(f,g)_{\nu} = (f,g)_{\nu \overline{\nu}}, \text{ and }$$

(46)
$$||f||_{\nu}^{2} = (f, f)_{\nu}, \text{ for } f, g \in L^{p, q}(X, B, \nu \Psi).$$

We let ϑ_{*} be the formal adjoint of $\overline{\partial}$ with respect to the inner product $(f,g)_{*}$ and we define

(47)
$$\Box_{\nu} = \overline{\partial} \vartheta_{\nu} + \vartheta_{\nu} \overline{\partial} .$$

Since ds^2 is complete ϑ_{ν} is equal to the adjoint of $\overline{\vartheta}$. ([8], Theorem 1.1).

We use a well known formula in differential geometry in the following form.

Lemma 3.1.

(48)
$$\Box_{\nu} - *^{-1} \Box_{\nu} * = e(\chi_{\nu}) \Lambda - \Lambda e(\chi_{\nu}), \quad on \quad X - K_{\mu}$$

where $e(\chi_{\nu}) = L + e(\nu \sqrt{-1}\partial \overline{\partial} \Psi)$.

Proof) We let

- $(49) b_i = e^{-\nu \overline{\nu}} a_i ,$
- $(50) D = d + \partial \log b_i, and$
- (51) $D' = \partial + \partial \log b_i.$

Then we have

(52)
$$e(\chi_{\nu}) = \sqrt{-1} D^2$$
, and

(53)
$$D^2 = (\overline{\partial} + D') \ (\overline{\partial} + D') = \overline{\partial} D' + D'\overline{\partial} .$$

Letting δ' be the formal adjoint of $\overline{\partial} \colon C^{p,q}_0(X) \mathop{\to} C^{p,q+1}_0(X)$ we have

(54)
$$\sqrt{-1}(\bar{\partial}A - A\bar{\partial}) = \partial'$$
 on $X - K_1$.

We have

(55)
$$\sqrt{-1}(D'A - AD') = \vartheta_{\nu}$$
 on $X - K_1$

Hence

(56)

$$e(\chi_{\nu}) \Lambda - \Lambda e(\chi_{\nu})$$

$$= \sqrt{-1} \{ (\overline{\partial} D' + D'\overline{\partial}) \Lambda - \Lambda (\overline{\partial} D' + D'\overline{\partial}) \}$$

$$= \sqrt{-1} \{ (\overline{\partial} (D' \Lambda - \Lambda D') + (D' \Lambda - \Lambda D') \overline{\partial}$$

$$- D' (\overline{\partial} \Lambda - \Lambda \overline{\partial}) - (\overline{\partial} \Lambda - \Lambda \overline{\partial}) D' \}$$

$$= \overline{\partial} \vartheta_{\nu} + \vartheta_{\nu} \overline{\partial} - (D' \delta' + \delta' D')$$

$$= \Box_{\nu} - *^{-1} \Box_{\nu} * \quad \text{on} \quad X - K_{1}, \qquad \text{q.e.d.}$$

Lemma 3.2.

(57)
$$\|f\|^{2} \le \|\overline{\partial}f\|^{2} + \|\vartheta f\|^{2}$$

if $f \in C_{0}^{p,q}(X-K_{1}, B)$ and $p+q > n$, and
(58) $\|f\|_{\nu}^{2} \le \|\overline{\partial}f\|_{\nu}^{2} + \|\vartheta_{\nu}f\|_{\nu}^{2}$

if $f \in C_0^{n,q}(X - K_1, B)$ and $q \ge 1$.

Proof) We prove (58) first. If $f \in C_0^{n,q}(X-K_1,B)$ and $q \ge 1$, we have

(59)
$$\|\overline{\partial}f\|_{\nu}^{2} + \|\vartheta_{\nu}f\|_{\nu}^{2} = (\Box_{\nu}f, f)_{\nu}$$

$$\geq ((e(\chi_{\nu})\Lambda - \Lambda e(\chi_{\nu}))f, f)_{\nu}$$

$$= ((L\Lambda - \Lambda L)f, f)_{\nu}$$

$$+\nu(e(\sqrt{-1}\partial\overline{\partial}\Psi)\Lambda - \Lambda e(\sqrt{-1}\partial\overline{\partial}\Psi))f, f)_{\nu}$$

$$= q(f, f)_{\nu} + \nu(e(\sqrt{-1}\partial\overline{\partial}\Psi)\Lambda f, f)_{\nu} \geq q(f, f)_{\nu}.$$

For more details, see [5]. However we note that what is proved there is

that if the dual of B is positive and φ is a (0, n-q) form with support contained in a coordinate neighbourhood U, we have

(60)
$$((\Lambda e(\sqrt{-1}\partial\bar{\partial}\Psi) - e(\sqrt{-1}\partial\bar{\partial}\Psi)\Lambda)\varphi,\varphi) \ge 0$$

so it seems not sufficient to establish (60) for the elements of $C_0^{0,n-q}(X, B)$. But his argument also implies

(61)
$$\langle \Lambda e(\sqrt{-1}\partial\bar{\partial}\Psi)\varphi,\varphi\rangle \geq 0$$

for $\varphi \in C^{0,n-q}(X, B)$. Hence rewriting (61) we obtain (58).

The proof of (57) is similar as above. q.e.d.

Lemma 3.3. there is a constant C and a compact set K_2 with $K_1 \subseteq K_2 \subseteq X_0$ such that

(62)
$$\int_{X-K_2} \langle f, f \rangle e^{-\nu T} dv \leq C \left\{ \|\overline{\partial}f\|_{\nu}^2 + \|\vartheta_{\nu}f\|_{\nu}^2 + \int_{K_2} \langle f, f \rangle dv \right\}$$

if
$$\nu \geq 0$$
, $f \in D^{n,q}_{\overline{\partial}} \cap D^{n,q}_{\vartheta_{\nu}}$ and $q \geq 1$, and

(63)
$$\int_{\boldsymbol{X}-\boldsymbol{K}_2} \langle f, f \rangle dv \leq C \left\{ \| \overline{\partial} f \|^2 + \| \vartheta f \|^2 + \int_{\boldsymbol{K}_2} \langle f, f \rangle dv \right\}$$

 $\text{if } f \! \in \! D^{\underline{p},q}_{\overline{\vartheta}} \cap D^{p,q}_{\vartheta} \text{ and } p \! + \! q \! > \! n \; .$

Proof) Since ds^2 is complete we may assume $f \in C_0^{p,q}(X, B)$. We prove (63). The proof of (62) is similar.

Let χ be a C^{∞} function on X such that for a compact set K_2 with $K_1 \subseteq K_2 \subseteq X_0$,

(64)
$$\chi = 1$$
 in $X - K_2$, and

(65) $\chi = 0$ in a neighbourhood of K_1 .

We have $\chi f \in C_0^{n,q}(X-K_1,B)$, so we can apply Lemma 3.2, getting

(66)
$$\|\chi f\|_{\nu}^{2} \leq \|\overline{\partial}(\chi f)\|_{\nu}^{2} + \|\vartheta_{\nu}(\chi f)\|_{\nu}^{2}.$$

We estimate the both sides of this inequality. The left hand side:

(67)
$$\int_{X-K_2} \langle f, f \rangle e^{-\nu \Psi} dv \leq \|\chi f\|_{\nu}^2.$$

The right hand side:

(68)
$$\|\overline{\partial}(\chi f)\|_{\nu}^{2} + \|\vartheta_{\nu}(\chi f)\|_{\nu}^{2}$$
$$= \|\overline{\partial}\chi A f + \chi \overline{\partial}f\|_{\nu}^{2} + \|-*a_{i}^{-1}e^{\nu \overline{\nu}}\overline{\partial}*a_{i}e^{-\nu \overline{\nu}}(\chi f)\|_{\nu}^{2}$$

$$\begin{split} &= \|\overline{\partial}\chi Af + \chi\overline{\partial}f\|_{\nu}^{2} + \|\chi\vartheta_{\nu}f - *(\partial\chi A*f)\|_{\nu}^{2} \\ &\leq \|\overline{\partial}\chi Af\|_{\nu}^{2} + 2\operatorname{Re}\left(\overline{\partial}\chi Af,\chi\overline{\partial}f\right)_{\nu} + \|\chi\overline{\partial}f\|_{\nu}^{2} + \|\chi\vartheta_{\nu}f\|_{\nu}^{2} \\ &- 2\operatorname{Re}\left(\chi\vartheta_{\nu}f,*(\partial\chi A*f)\right)_{\nu} + \|*(\partial\chi A*f)\|_{\nu}^{2} \\ &\leq \int_{K_{2}}\langle\overline{\partial}\chi,\overline{\partial}\chi\rangle dv \cdot \int_{K_{2}}\langle f,f\rangle dv + \|\overline{\partial}\chi Af\|_{\nu}^{2} + \|\chi\overline{\partial}f\|_{\nu}^{2} \\ &+ \|\chi\overline{\partial}f\|_{\nu}^{2} + \|\chi\vartheta_{\nu}f\|_{\nu}^{2} + \|\chi\vartheta_{\nu}f\|_{\nu}^{2} + \|*(\partial\chi A*f)\|_{\nu}^{2} \\ &+ \int_{K_{2}}\langle\overline{\partial}\chi,\overline{\partial}\chi\rangle dv \cdot \int_{K_{2}}\langle f,f\rangle dv \\ &\leq 2\Big(\int_{K_{2}}\{\langle\overline{\partial}\chi,\overline{\partial}\chi\rangle + \langle\partial\chi,\partial\chi\rangle\} dv \cdot \int_{K_{2}}\langle f,f\rangle dv\Big) \\ &+ 2\sup_{x\in X}\chi(x) \cdot (\|\overline{\partial}f\|_{\nu}^{2} + \|\vartheta_{\nu}f\|_{\nu}^{2}). \end{split}$$

Therefore, if

(69)
$$C \ge 2 \max \left(\int_{K_2} \left\{ \langle \overline{\partial} \chi, \overline{\partial} \chi \rangle + \langle \partial \chi, \partial \chi \rangle \right\} dv, \sup_{x \in \mathcal{X}} \chi(x) \right)$$

we have

(70)
$$\int_{X-K_2} \langle f, f \rangle e^{-\nu \overline{v}} dv \leq C \left(\|\overline{\partial}f\|_{\nu}^2 + \|\vartheta_{\nu}f\|_{\nu}^2 + \int_{K_2} \langle f, f \rangle dv \right)$$
q.e.d.

§4. The Main Theorem

Definition 4.1. We denote by $\mathcal{H}^{p,q}(X_0, B)$ the set of elements $h \in L^{p,q}(X_0, B)$ with $\overline{\partial}h = 0$ and $\overline{\partial}^*h = 0$, where $\overline{\partial}^*$ is the adjoint of $\overline{\partial}: L^{p,q-1}(X_0, B) \to L^{p,q}(X_0, B)$.

Proposition 4.2. There exist ν_0 and C_0 such that for any $\nu \ge \nu_0$,

(71)
$$||f||_{\nu}^{2} \leq C_{0}(||\bar{\partial}f||_{\nu}^{2} + ||\vartheta_{\nu}f||_{\nu}^{2}), \text{ where}$$

provided

(72)
$$f \in L^{n,q}(X, B, \nu \Psi) \cap D^{n,q}_{\overline{\delta}} \cap D^{n,q}_{\delta_{\nu}} \quad (q \ge 1),$$

and

(73)
$$\int_{X_0} \langle f, h \rangle dv = 0 \quad \text{for any } h \in \mathcal{H}^{n,q}(X_0, B).$$

Proof) If the proposition were false, we may assume that there is a sequence $\{f_{\nu}\}$ such that

(74)
$$||f_{\nu}||_{\nu}^{2} = 1$$

(75)
$$\|\overline{\partial}f_{\nu}\|_{\nu}^{2} + \|\vartheta_{\nu}f_{\nu}\|_{\nu}^{2} \leq \frac{1}{\nu}$$

(76)
$$f_{\nu} \in L^{n,q}(X, B, \nu \Psi) \cap D^{n,q}_{\overline{\partial}} \cap D^{n,q}_{\vartheta_{\nu}}$$

and

(77)
$$\int_{X_0} \langle f_{\nu}, h \rangle dv = 0 \quad \text{for any} \quad h \in \mathcal{H}^{n, q}(X_0, B).$$

Let $g_{\nu} = e^{-\nu \mathcal{F}} f_{\nu}$, then we have

(78)
$$\vartheta g_{\nu} = e^{-\nu \mathscr{V}} f_{\nu}$$

so that

(79)
$$\|\vartheta g_{\nu}\|_{-\nu} = \|\vartheta_{\nu} f_{\nu}\|_{,\nu}$$

hence

(80)
$$\lim_{\nu \to \infty} \| \vartheta g_{\nu} \|_{-\nu} = \lim_{\nu \to \infty} \| \vartheta_{\nu} f_{\nu} \|_{\nu} = 0$$

by (75). Since $\|\vartheta g_{\nu}\| \leq \|\vartheta g_{\nu}\|_{-\nu}$, we have $\lim_{\nu \to \infty} \|\vartheta g_{\nu}\| = 0$. By (74), we

have

(81)
$$||g_{\nu}||_{-\nu} = ||f_{\nu}||_{\nu} = 1$$

hence $\|g_{\nu}\| \leq 1$. Therefore choosing a subsequence, we may assume that $\{g_{\nu}\}$ has a weak limit g in $L^{n,q}(X,B)$. It is easily verified that

(82)
$$\|g\|_{-\nu} \leq \inf_{\mu \geq \nu} \sup_{\mu' \geq \nu} \|g_{\mu'}\|_{-\mu'} = 1$$
,

for any $\nu \geq 1$. Thus we have supp $g \Subset X_0$. Therefore,

(83)
$$\overline{\partial}^*(g|_{X_0}) = 0.$$

(See Appendix.) By (75) $\overline{\partial}g = 0$, and g satisfies (77). By (74) and (75), it may be assumed that $\{g_{\nu}\}$ is strongly convergent on K_2 , and the limit is not zero on K_2 by Lemma 3.3. Hence we conclude that $g|_{x_0} \neq 0$. This contradiction completes the proof. q.e.d.

Definition 4.3.

(84)
$$H_{loc}^{p,q}(X,B) = \frac{\{f; f \in L_{loc}^{p,q}(X,B), \bar{\partial}f = 0\}}{L_{loc}^{p,q}(X,B) \cap \{\bar{\partial}g; g \in L^{p,q-1}(X,B)\}}$$

where we denote by $L_{loc}^{p,q}(X, B)$ the space of *B*-valued (p,q) forms which are measurable and square integrable on compact subsets of *X*.

By the Dolbeault's theorem (see [2], Theorem 2.2.4 and Theorem 2.2.5), there is a natural isomorphism between the spaces $H^{p,q}_{loc}(X, B)$ and $H^{p,q}(X, B)$.

We define $'H^{p,q}(X_0, B)$ with respect to ds^2 and $\{a_i\}$.

Proposition 4.4. The natural map

(85)
$$\rho: H^{n,q}_{loc}(X,B) \to H^{n,q}(X_0,B)$$

is injective for $q \ge 1$.

Proof) We show that if $f \in L^{n,q}_{loc}(X, B)$, $\overline{\partial} f = 0$, and there exists a sequence $\{g_{\nu}\}$ with $g_{\nu} \in L^{n,q-1}(X_0, B)$, $\overline{\partial} g_{\nu} \in L^{n,q}(X_0, B)$ and

(86)
$$\int_{x_0} \langle f - \overline{\partial} g_{\nu}, f - \overline{\partial} g_{\nu} \rangle dv < \frac{1}{\nu}$$

then there exists $g \in L^{n,q-1}_{loc}(X,B)$ such that $\overline{\partial}g = f$.

We replace the exhaustion function Ψ by $\widetilde{\Psi} = \lambda(\Psi)$ where λ is a convex increasing C^{∞} function with $\lambda(0) = 0$ and $\lambda(t) > 0$ if t > 0 which increases so rapidly that

(87)
$$\int_{\mathcal{X}} \langle f, f \rangle e^{-\widetilde{\mathfrak{Y}}} dv < \infty$$

For $\nu \ge 1$, we have $f \in L^{n,q}(X, B, \nu \widetilde{\mathcal{Y}})$.

By (86) it follows that

(88)
$$\int_{X_0} \langle f, h \rangle dv = 0 \quad \text{for any } h \in \mathcal{H}^{n,q}(X_0, B).$$

Therefore, combining Proposition 4.2 with Hörmander's theorem ([2], Theorem 1.1.4) we conclude that for some $\nu \ge 1$ there exists $g \in L^{n,q-1}(X, B, \nu \widetilde{\Psi})$ such that $\overline{\partial}g = f$. q.e.d.

We fix c > 0. X_c is a weakly 1-complete manifold with an exhaustion

function

(89)
$$\Psi_c = \frac{1}{c - \Psi}$$

We choose a hermitian metric $d\sigma^{\rm 2}$ and a metric $\{b_i\}$ along the fibers of B such that

i) $d\sigma^2$ is complete

ii)
$$d\sigma^2 = \sum_{\alpha,\beta} \frac{\partial^2 \log(b_i^{-1})}{\partial z_i^{\alpha} \partial \bar{z}_i^{\beta}} (dz_i^{\alpha}, d\bar{z}_i^{\beta}) \quad \text{on} \quad X - K_1.$$

Moreover we may assume that

iii)
$$\int_{X_0} b_i f_i \wedge \Diamond \overline{f}_i < \infty, \quad \text{for} \quad f \in C^{p,q}(X,B)$$

where \Leftrightarrow is the star operator for $d\sigma^2$. This follows from Lemma 2.4 and that $C^{p,q}(\overline{X}_c, B)$ is a finitely generated $C^{\infty}(\overline{X}_c)$ module. We define $'H^{p,q}(X_c, B)$ with respect to $d\sigma^2$ and $\{b_i\}$.

Theorem 4.5.

(90)
$$\dim_{\mathcal{C}} H^{n,q}(X,B) < \infty \quad \text{for} \quad q \ge 1.$$

Proof) Since $'H^{n,q}(X_c, B)$ is finite dimensional it suffices to show that the natural map (induced by the restriction of forms)

$$r: H^{n, q}(X, B) \to H^{n, q}(X_c, B)$$

is injective. (Note that r is well defined by the choice of $d\sigma^2$ and $\{b_i\}$. We consider the following diagram.

$$H^{n,q}(X, B) \xrightarrow{\rho'} H^{n,q}(X, B) \xrightarrow{\rho} H^{n,q}(X_0, B)$$

$$\downarrow^{r} H^{n,q}(X_0, B)$$

where ρ' , r' and ξ are natural homomorphisms. Since ρ is injective and ξ is an isomorphism, ρ' is injective, hence r is injective. q.e.d.

Theorem 4.6. If $g \in L^{n,q}(X_0, B)$ $(q \ge 0)$ and $\overline{\partial}g = 0$, then for any $\varepsilon > 0$ there exists $f \in L^{n,q}_{loc}(X, B)$ such that

(91)
$$\int_{X_0} \langle f-g, f-g \rangle dv \langle \varepsilon \rangle$$

and $\overline{\partial} f = 0$.

Proof) By the Hahn-Banach's theorem it suffices to show that if $u \in L^{n,q}(X_0, B)$ and

(92)
$$\int_{X_0} \langle f, u \rangle dv = 0$$

for any $f \in L^{n,q}_{loc}(X, B)$ with $\overline{\partial} f = 0$, then we have

(93)
$$\int_{\mathcal{X}_0} \langle g, u \rangle dv = 0$$

 $\text{ if } g \! \in \! L^{n,q}(X_{\scriptscriptstyle 0},B) \ \text{ and } \ \overline{\partial} g \! = \! 0.$

We define \hat{u} by $\hat{u} = u$ on X_0 and $\hat{u} = 0$ on $X - X_0$. Since \hat{u} is orthogonal to $N_{\overline{\partial}}^{n,q}$ for any ν , we have $\hat{u} \in R_{\vartheta_{\nu}}^{n,\overline{q}}$. $R_{\vartheta_{\nu}}^{n,q} = \overline{R}_{\vartheta_{\nu}}^{n,q}$ is equivalent to $R_{\overline{\partial}}^{n,q+1} = \overline{R_{\overline{\partial}}^{n,q+1}}$ (See [2], Theorem 1.1.1). $R_{\overline{\partial}}^{n,q+1} = \overline{R_{\overline{\partial}}^{n,\overline{q+1}}}$ is proved for $\nu \ge 0$ similarly as Theorem 2.6. Hence, by Proposition 4.2 there exists ν_0 such that

(94)
$$\hat{u} = \vartheta_{\nu} v_{\nu}, \quad \text{for some } v_{\nu} \in L^{n, q+1}(X, B, \nu \mathcal{V}),$$

with $\|v_{\nu}\|_{\nu}^{2} \leq C_{0} \|\hat{u}\|^{2}, \quad \text{for } \nu \geq \nu_{0}.$

We set

(95)
$$w_{\nu} = e^{-\nu t} v ,$$

then as in the proof of Proposition 4.2, $\{w_{\nu}\}$ has a subsequence which is weakly convergent in $L^{n,q+1}(X,B)$. Let the weak limit be w, then as in the proof of Proposition 4.2, $\vartheta w = \hat{u}$ and $\operatorname{supp} w \mathbb{C} \overline{X}_0$, hence $\overline{\partial}^*(w|_{x_0}) = u$. Therefore, if $g \in L^{n,q}(X_0, B)$ and $\overline{\partial}g = 0$, we have

(96)
$$\int_{x_0} \langle g, u \rangle dv = \int_{x_0} \langle \overline{\partial} g, w \rangle dv = 0.$$
 q.e.d.

Theorem 4.6. The natural map

(97) $\rho_d \colon H^{n, q}(X, B) \to H^{n, q}(X_d, B)$

is an isomorphism if $q \ge 1$ and d > 0.

Proof) We consider the following diagram

$$H^{n,q}(X,B) \xrightarrow{\rho'} H^{n,q}(X_{d},B)$$

$$\rho_{d} \xrightarrow{} H^{n,q}(X_{d},B) \xrightarrow{\rho''}$$

Since ρ' is injective ρ_a is injective. To show the subjectivity of ρ_a , we have only to show that $\operatorname{Im} \rho' = \operatorname{Im} \rho''$, where $\operatorname{Im} \rho'$ denotes the image of ρ' .

By Theorem 4.6 (and by the Dolbeault's theorem), $\text{Im }\rho'$ is dense in $\text{Im }\rho''$. Since $\text{Im }\rho''$ is a finite dimensional subspace of the Hilbert space ' $H^{n,q}(X_0, B)$, we have

(98)
$$\operatorname{Im} \rho' = \operatorname{Im} \rho'' .$$

Thus ρ_d is an isomorphism.

§ 5. Application to Analytic Geometry

Let M be a complex manifold and S be a nonsingular divisor on M with a proper and smooth holomorphic map $p: S \rightarrow D$ onto a Stein manifold D.

Proposition 5.1.

Assumption:

1) $[S]|_{p^{-1}(x)}$ is a negative line bundle for any $x \in D$.

2) There is a compact subset $K \subseteq D$ such that Ω_s^n is negative on $p^{-1}(D-K)$. Here $n = \dim S$ and Ω_s^n is the sheaf of holomorphic n-forms on S.

Conclusion: S is contractible to D in M, namely, there is a neighbourhood V of S, an analytic space U containing D as a closed analytic subset, and a proper surjective holomorphic map $\varpi: V \rightarrow U$ such that $\varpi|_{s=p}$ and $\varpi|_{v-s}: V - S \rightarrow U - D$ is biholomorphic.

Proof) By assumption 1), there is a neighbourhood $V^{(2)}$ and a C^{∞}

868

q.e.d.

plurisubharmonic function $\Psi^{(2)}$ such that

(99) $\Psi^{(2)}(x) = 0 \quad \text{if} \quad x \in S,$

and $\Psi^{(2)}|_{V^{(2)}-S}$ is strictly plurisubharmonic with positive values, (see [1], 4). By 1) and 2) $p^{-1}(D-K)$ is contractible to D-K in a neighbourhood of $p^{-1}(D-K)$, (see [1], Theorem 1). Let the contraction be

(100)
$$\begin{split} \varpi' \colon V^* & \longrightarrow & U^* \\ & \uparrow & \uparrow \\ p^{-1}(D-L) & \longrightarrow D-K \end{split}$$

Since D is a Stein manifold D is properly embedded into some \mathbb{C}^N . Let ψ be the restriction of $\sum_{i=1}^{N} |z_i|^2$ to D. Applying Richberg's theorem ([7], Satz 3.3) to D-K and U^* , we obtain a neighbourhood U^{**} of D-K and a \mathbb{C}^{∞} strongly pseudoconvex function φ on U^{**} such that $\varphi|_{D-K} = \psi$.

Let $c = \sup_{x \in K} \psi(x)$, $d_1 > d_2 > c$, $\varepsilon > 0$ $V^{(1)} = \{x; x \in V^{(2)}, \Psi^{(2)}(x) < \varepsilon\}$, and V be the union of connected components of $V^{(1)} - \{x; x \in \overline{\omega}'^{-1}(U^{**}), \psi \circ \overline{\omega}'(x) \ge d_1\}$ that meet $\{x; x \in S, \varphi \circ p(x) < d_2\}$, then V is weakly 1-complete for sufficiently small ε .

By 1) and 2), $\mathscr{Q}_{r}^{n+1}\otimes[S]|_{r}^{-1}$ is positive outside a compact subset. Thus, by Theorem 4.5, $H^{1}(V, [S]|_{r}^{-1})$ is finite dimensional. Therefore, for any compact subset Q in $\{x; x \in S, \varphi \circ p(x) < d_{2}\}$ we can choose an analytic polyhedron P such that $Q \subset P \subset \{x; x \in S, \varphi \circ p(x) < d_{2}\}$ and the functions defining P are holomorphic functions on $\{x; x \in S, \varphi \circ p(x) < d_{2}\}$ which are restrictions of holomorphic functions on V. Since ∂V_{c} is strongly pseudoconvex outside S for almost all c > 0, this proves that V is holomorphically convex, ([3], Satz 3.4). It is clear that V-S does not contain a compact analytic subset whose dimension is greater than 1. Consequently, S is contractible to D in M.

Theorem 5.2. Let X be a weakly 1-complete manifold. If there is a holomorphic line bundle $\pi: B \to X$ which is positive outside a compact subset of X, then there is a meromorphic map $\iota: X_c \to \mathbb{P}^N$, where c > 0 and N is a natural number depending on c, such that there exists a compact analytic set $A \subset X$ such that $\iota|_{X_0-A}: X_c - A \to \mathbb{P}^N$ is a holomorphic imbedding of $X_c - A$ as a locally closed analytic

subset of $\mathbb{P}^{\mathbb{N}}$.

Proof) Similar as Kodaira's embedding theorem ([4]).

Appendix

We let the notations be as before.

Lemma If $g \in L^{p,q+1}(X, B)$, $\vartheta g \in L^{p,q}(X, B)$ and $\operatorname{supp} g \subset \overline{X}_0$ then $g|_{X_0} \in D_{\overline{\vartheta}^*}$ where $\overline{\vartheta}^*$ is the adjoint of $\overline{\vartheta}^* \colon L^{p,q}(X_0, B) \to L^{p,q+1}(X_0, B)$

Proof) Since \overline{X}_0 is compact and ∂X_0 is smooth, there is a sequence $\{g_{\nu}\}$ such that $g_{\nu} \in C_0^{p,q+1}(X,B)$, supp $g_{\nu} \subset X_0$, $\lim_{\nu \to \infty} ||g_{\nu} - g|| = 0$, and $\lim_{\nu \to \infty} ||\vartheta g_{\nu} - \vartheta g|| = 0$ (cf. [2], Proposition 1.2.3).

Thus, if $u \in L^{p,q}(X_0, B)$ and $\overline{\partial} u \in L^{p,q+1}(X_0, B)$,

(101)
$$\int_{X_0} \langle u, \vartheta g \rangle dv = \lim_{\nu \to \infty} \int_{X_0} \langle u, \vartheta g_{\nu} \rangle dv$$
$$= \lim_{\nu \to \infty} \int_{X_0} \langle \overline{\partial} u, g_{\nu} \rangle dv = \int_{X_0} \langle \overline{\partial} u, g \rangle dv .$$

Hence $g|_{x_0} \in D_{\overline{\partial}^*}$ and $\overline{\partial}^*(g|_{x_0}) = \vartheta g|_{x_0}$.

References

- Cornalba, M., Two theorems on modifications of analytic spaces, *Inventiones Math.*, 20, (1973) 227-247.
- [2] Hörmander, L., L² estimates and existence theorems for the θ
 δ operator, Acta Math., 113, (1965) 89-152.
- [3] Knorr, K. and Schneider, M., Relativexzeptionelle analytische Mengen, Math. Ann., 193, (1971) 238-254.
- [4] Kodaira, K., On kähler varieties of restricted type, Ann. Math., 60, (1954) 28-48.
- [5] Nakano, S., On the inverse of monoidal transformation, Publ. RIMS, Kyoto Univ.,
 6, (1970/71) 483-592.
- [6] ——, Vanishing theorems for weakly 1-complete manifolds, II. Publ. RIMS, Kyoto Univ., 10, (1974) 101-110.
- [7] Richberg, R., Stetige streng pseudokonvexe Funktionen, Math. Annalen, 175, (1968) 257-286.
- [8] Vesentini, E., Lectures on Levi convexity of complex manifolds and cohomology vanishing theorems, Tata Institute of Fundamental Research, Bombay, 1967.
- [9] Weil, A., Introduciton à l'étude des variétés kähleriennes, Act. Sci. Ind. 1267, Hermann, 1958.

Added in Proof: The author proved in a forthcoming paper 'On $H^{p,q}(X,B)$ of weakly 1-complete manifords' the finte dimensionality of $H^{p,q}(X,B)$ and bijectivity of $H^{p,q}(X,B) \rightarrow H^{p,q}(X_q,B)$ in the case of $p+q > \dim X$.

870

q.e.d.