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Finiteness Theorems on Weakly
1-complete Manifolds

By

Takeo OHSAWA¥*

Let X be a complex manifold of (complex) dimension z and 7: B—
X be a holomorphic vector bundle over X. We consider the vector
space of C* & closed B-valued (p,q) forms modulo C* 8 exact B-valued
forms, which we denote by H??(X, B). It is interesting and sometimes
useful to know whether H”?(X, B) is finite dimensional or not. Speci-
fically, when X is noncompact, the finite dimensionality of H™?(X, B) is
closely related to the function theoretic properties of X. The purpose
of this article is to prove the following statement which was conjectured
by S. Nakano:

If X is weakly 1-complete and B is positive outside a compact
subset of X and of rank 1, H"*(X, B) is finite dimensional for q=>1.

The author expresses his hearty thanks to Dr. A. Fujiki and Profes-

sor S. Nakano for their kind advices.

§ 1. Notations

Let us fix the notations. We denote by X a connected paracompact
complex manifold of dimension n. We denote for a subset K of X, the
interior of K, the boundary of K and the closure of K by Int K, 8K and K,
respectively. For two subsets K, and K, of X, we mean by K,C K, that
K, is compact and contained in Int K,. Let 7: B—X be a holomorphic line
bundle on X, and {U;} be an open covering of X consisting of coordinate
neighbourhoods U,; with holomorphic coordinates (23}, -+, 2¥), over which
w: B—>X is trivial, namely 77 '(U;) =U;XC, and (x,&) € U;XC and
(z,&;) € U; X C represent the same point of B if and only if
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@ Ci=ey (@) &
where {e;} is a system of transition functions for B.

A B-walued differential form f on X is a system {f;} ofdiff erential
forms defined on U,, satisfying fi=e;f; in U;NU,.

We denote by C*?(X) (C*%(X, B)) the space of differential forms
(resp. B-valued forms) of class C® and of type (p,q) on X, and by
Cri(X) (C¥i(X, B)) the space of the forms in C*?(X) (resp. C**(X, B))
with compact supports. For a subset K of X, we denote by C*(XK) the
space of functions on K which are restrictions of C* functions defined on
a neighbourhood of K. C?%(K, B) is defined similarly.

We fix a hermitian metric ds® in X, and a hermitian metric {a;}

along the fibers of B. Here a; is a positive function such that
(2 aileyl’=a; in U;NU;.

For f,9=C?*(X, B), we set

3 aifi/\¥q:=<f, gpdv

where * is the star operator and dv is the volume element with respect
to the metric ds®. <{f, ¢g> does not depend on 7 and is a function defined
on .X. We have {f, f>=0. If either f or g=C*(X, B), then

@ o pe= | <Frperan

is defined for any real valued function ¥ of class C>.

We have the operator
(5) 9:C**(X, B) -»C**" (X, B)

defined by (0f);=0f;. We form the formal adjoint of & with respect
to the inner product (f,¢)s in CP?(X, B), and denote it by ¥y.

We denote by L?%(X, B,¥) the space of measurable B-valued forms
J of type (f,q), square integrable in the sense that (f, f),<co. It isa
Hilbert space with respect to the inner product (f,g),. We define

(6) IAIP= (s £

(7 59 =059
® F=10
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9 (X, B)=L""(X, B,0).
We also denote by @ the smallest closed extiension of
10) 0:L""(X,B,¥)->L """ (X.B,¥).

In general, given two Hilbert space H,; and H,, and a closed linear
operator T': H,—H, with dense domain, we denote its domain, range and
nullity by Dy, Ry and Ny, respectively. We denote the adjoint of 7" by
T*. 1In the case when H,=L*"*""'(X,B,¥), H,=L"*(X,R¥) and T
=0, we let Dy= DE*, Rs;=R2% and Ny= N2 We define R2? to
be 0. D2 R and N2? are defined similarly.

A
Definition 1. 1.
(11) "H"* (X, B,¥) = N2/ R?,
where we denote by R? the closure of R%'q in L*(X, B,?).
Note that "H*4(X, B,¥) is a Hilbert space. We define
(12) ‘H (X, B) ="H"" (X, B,0).
For a differential form & on X, exterior multiplication of & to f
eC??(X, B) is defined by
13) (€@ N\S)i=&/\Sr.

Let @ be the fundamental form of the hermitian metric ds®> on X. We
define

(14) L=c(w)
(15) A= (=1)"%Lx on C*'(X,B).

§ 2. Weak Finiteness Theorem

Definition 2. 1. X is called weakly l-complete if there exists a C~
plurisubharmonic function ¥ on X such that for any ¢& R,where R de-

notes the real numbers,
Xer=Ax; ¥ (x) <c} DX.
We call such ¥ an exhaustion function of X. Note that if X is

weakly 1l-complete X has a countable base, so by Sard’s theorem there

is a nowhere dense subset ACR such that if cER— A, 0{z; ¥ (x) <c}
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is a smooth manifold of real dimension 27—1.

Proposition 2. 2. If X is weakly 1-complete, then for any com-
pact subset K of X, there exists an exhaustion function ¥ such that
{; ¥ (x) =0} DK and 0{x; ¥ (x) =0} is smooth.

Proof) For any exhaustion function @ there exists a ¢ &€ R such that
{z; 0 (x) <c} DK and 9{x; @ (x) <c} is smooth. We define :: R—>R as
follows
1e6) () =0 if <c,

1 .

— - c> if t=c.
(¢—c)*
Then A(#) is a C* plurisubharmonic function vanishing in a neighbourhood

of K, and 8{z; (@ (zx)) =0} is smooth, so we may take ¥:=A(0).
g.e.d.

a7 () = exp (-

Since X is a paracompact manifold of class C it has a hermitian

metric ds®. Let {a;} be a metric along the fibers of B.

Definition 2.3. A holomorphic line bundle 7: B—X is said to be
positive on a subset YCX, if there exists a coordinate cover {U;} of X
such that 7#7!'(U;) are trivial and the metric {a;} along the fibers of B
can be so chosen that
(18) <M>>O on U;NY for any 7.

0220z¢

From now on, we let X be a weakly l-complete manifold and
7: B—X be a holomorphic line bundle which is positive on the complement
of a compact subset K of X, and an exhaustion function ¥ is so fixed
that K€ {x; ¥ (x) =0} and 0{x;¥ (x) =0} is smooth. For convenience
we denote Int{x;¥ (x) =0} by X,.

Lemma 2.4. For any finite number of B-valued forms f', ---,
f™ which are measurable and locally square integrable there exist a

hermitian metric ds® and a metric {a;} along the fibers of B such that
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1) ds* is a complete hermitian metric
2 —~1
9) dse=y1 01080 (g0 gz on XK,
B 0z20%f
3) (fLSH<co, Sfor 1<I<m,
Sfor some compact set K, with KCK,CX,.

Proof) By the hypothesis on B there exist dsi and {ai} which
satisfy 2) for some K, with KCK,€X,, We define ds* and {a;} by

2 -1
(19) dse=31 0108(@) (goe gzey on X-K,,
&E 0250z
(20) ds"=dsi on K,
(21) a;= aie_r(m,

where ¢ is a real valued function of class C* such that

(22) t(6) =0,
(23) () >0, and
(24) () >0 for any t=R.
We set

- _ 0%og((e)7H
(25) Toas 0250%¢

_ 0"log(ai")

(26) Fias 02208
27 aifi/\*fi=a’(f) dv,
(28) afi\xfi=a(f)dv=A(f)dv,,

where *, ¥, and dv,, dv are the star operators and the volume forms

of ds} and ds®, respectively. We have by a direct calculation

(29) A(f)<e—® et wat) ooy on XK,
det (gi,uﬁ)

det(ri,u) ’ n ’ n—1_.7
(30) mﬁ(l—l—r @INv*"+ A+ @) " (@) u

where v and u# are non-negative continuous functions independent of 7.

We choose a non-decreasing continuous function o (#) such that
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(31) j e PP (Y dv,<loo, for 1<I<m.
X

We use the {ollowing lemma due to S. Nakano.

Sublemma 2.5 ([6], Lemma). Givern a real valued, continu-
ous and strictly increasing function A(t) on 0<t<loco with 1(0) =0,
A(#) »>oo for t—oo, we can find a C function t(t) on —oo<t<oo
such that

32) @) =0 and <" ()>=0, for any ¢,
(33) (&) =) for t=c¢, and
(34 () <Kr()? and

o’ () <Kr(®)® for t=c,

for some constants c, ¢’ and K>O0.

We apply it to
(35) () =max{v(®),u(®)}+20) +2

and take 7(¢) as in Lemma 2.5. Since

(36) j VT @ dt=oo
0
ds® is complete ([5], Proposition 1). By (30) it follows that
@ [, ew—r@) 8T oiryan,
X-K, det (¢s,40)
< _ ‘C(W) det (-['i,uﬁ)
=7 exp( 2 >det(gi,aﬁ)

X j exp (—o (@) a'(f)dv,, for 1<Ii<m.
XK,

It is clear that for such ¢ the metrics ds* and {a;} satisfy 1), 2) and
3). g.e.d.

Theorem 2.6. Assume that ds* and {a;} satisfy 1) and 2) of
Lemma 2.4, then if p+qg>n
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(38) R?? is closed
and
(39) dimgy "H?? (X, B) <oo.

Proof) We use the following lemma which is theorem 1.1.3 of

[2].

Lemma 2.7. Let H; (i=1,2,3) be three Hilbert spaces and
T: H—H, and S: H,—H, be closed linear operators with dense do-
mains such that ST =0. Assume that for any sequence {f,} with
L E€H,NDsN\ Dy, || foll4, <1, lim | Sf)|| 4, =0, and lim |Tf,|»,=0, we can
choose a strongly convcrgen’;zuﬁsequence of { fz;w Then Ry is closed

and Ng/Rr is a finite dimensional vector space.

According to Lemma 2.7, in order to prove (38) and (39) it
suffices to show that for any sequence {f,} such that f;ED%’qﬂD.‘al;“,
| /11, lim |@f,] =0, and lim |0*f,|| =0, we can choose a strongly con-
vergent sa-l;:equence of { f,}y.—m

Since ds® is complete, C**(X, B) is a dense subset of D2? DE? with

respect to the graph norm,

(40) {@F,00) + @%F,0%f) + (f, NH}”
([8], Theorem 1.1). Hence we may assume
(41) 5eCi(X, B).

Therefore, we have

(42) @ f 0 1) + @*f,, 0% 1) + (F0r 1)
= (@9 +90) 1., ) + (fn 1) -

Hence by the assumption

(43) (@9+99) £, 1) + (f1 1)

is bounded above, which combined with ellipticity of 0%+ 0 means that
(f,): aud their first order derivatives are bounded. Here the derivatives

are taken with respect to the coordinate of U,. Combining this with
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Rellich’s lemma, it follows that {f,} has a subsequence {f,;} which is
strongly convergent on compact subsets. We use the following estimate

which is proved later (See Lemma 3.3 in Section 3.)

4y [ <hpavsclpsre1oar+ [ K ol

if p+q>n and f€D2?N Dp? where C is a constant and K;CK,CX,.
By this estimate we conclude that {f,} converges strongly on X.
g.e.d.

§ 3. The Basic Estimate

In what follows ds* and {a;} are assumed to satisfy 1) and 2) of
Lemma 2. 4.

For an integer vy, we define
(45) (f, g) y = (f} g) v and
(46) I£lz= (f, f), for f,geLl”*(X, B,y¥).

We let 9, be the formal adjoint of & with respect to the inner product
(f,9), and we define

47) ,=09,+9,0 .

Since ds® is complete 9, is equal to the adjoint of 8. ([8], Theorem 1.1).
We use a well known formula in differential geometry in the following

form.

Lemma 3. 1.
(48) O,—*'"Ox=e(y)d—44e(y), on X—K,
where e(y,) =L+e(»n/—1007).

Proof) We let

(49) bi=e"%a,,
(50) D=d+0logb;, and
(51) D'=0+0logb;.

Then we have
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(52) e(y) =v—1D% and
(53) D*=(@+D") (@+D")=0D'+D'5.
Letting 0" be the formal adjoint of 8: CP*(X) —CpP?**(X) we have

(54) v/ —=104—40) =6" on X—K,.
We have

(55) v/ =1(D'4A—AD") =9, on X-K,.
Hence

(56) e () A—Ae (x,)

=/ —1{@D'+D'd) A—A@D'+D'd)}
=/ —1{(@(D'A—AD") + (D'A—AD")?
— D' @A—A0) — (34— 48) D'}
=09,+9,0 — (D0 +0"D")
=[,—+'O% on X—K, q.e.d.

Lemma 3. 2.
67 IAP=Ia£1*+ [ 0£1?
if feCri(X—K,, B) and p+q>n, and
(58) IAL=10 715+ 9.1
if feCpi(X—K,, B) and q>>1.

Proof) We prove (58) first. If feCpr?(X—K,, B) and ¢=>1, we

have
(59) 1O+ 9. 13= (Ouf, £
=((e(p) A—A4e () S, 1),
= ((LA=AL)f, 1),
+v(e(y/ —100%) A—Ae(/ —100)) f, f),
=q(f, ) +v(eW =100 Af, £).=q(f, f),.

For more details, see [5]. However we note that what is proved there is
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that if the dual of B is positive and ¢ is a (0,7z—¢) form with support

contained in a coordinate neighbourhood U, we have
(60) ((de(/ —100%) —e(/ —=100%) A) ¢, ¢) =0

so it seems not sufficient to establish (60) for the elements of Cy*~%(X, B).

But his argument also implies
(61) {Ae(/ —=100%) ¢, p»=0
for p=C"*"%(X, B). Hence rewriting (61) we obtain (58).

The proof of (57) is similar as above. g.e.d.

Lemma 3.3. there is a constant C and a compact set K, wilth

K. €K,€EX, such that
@ [ <hperav=cliorl s [ ol
it v=0, feDZ'ND}* and ¢=1, and
©) [ <npavsclionreionr+ [ <
if fe DU Dy and p+g>n.
Proof) Since ds® is complete we may assume feCP!(X, B). We

prove (63). The proof of (62) is similar.
Let y be a C™ function on .X such that for a compact set K, with

K, CK,CX,,

(64) v=1 in X—K, and

(65) %2=0 in a neighbourhood of Kj.

We have yfCy4(X—K;, B), so we can apply Lemma 3. 2, getting
(66) Iz fIE=10 ) 13+ 18, ) 115 -

We estimate the both sides of this inequality. The left hand side:
(67) [, <5 Preravsiafi.
The right hand side:

(GO CICASY FER DACTAT
=04 Af + 1S3+ | = *ai'e"Fxawe™ (1) |
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= 1BAF + 2B |2 |13 =5 O dsf) |

=10%4f13+2Re@xAf, 20).+ 2013+ 20,11
—2Re (8. f, % Oudnf)) o+ |+ Ordef) |}

< [ @nopdo- [ <, dv+ 15241+ 120513
B F I+ B I [0 1 | Qs
+ [, Growav | &, prav

<2( | (@ron+0n o dv- [ < frav)

+2 sup 2 (@) - (10715 + 19 712).
Therefore, if

69)  Cz2max( [ (@1,00+<0n00}dv, sup 1)
we have
@ [ < pemav=c (10s 9.0+ [ prdo)

q.e.d.
§4. The Main Theorem

Definition 4. 1. We denote by H*?(X,, B) the set of elements
heL?'(X,, B) with 0A=0 and 0*h=0, where 0= is the adjoint of
9:L**'(X,, B)—»L**(X,, B).

Proposition 4.2. There exist v, and C, such that for any
VZVG,

("1 IFE=Co(l0f 3+ [9.f13), where
provided

(72) felL» (X, B,y¥) N Dx*N D5} (¢=1),
and

(73) L (F >du=0 for any he 4™ (X, B).
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Proof) If the proposition were false, we may assume that there is

a sequence {f,} such that

(74) IflE=1
(75) LA ENA ==

(76) f.€ L™ (X, B,v¥) (D2 Dj?

and

) La<f», hydv=0 for any A€H™? (X, B).

Let g,=e"f,, then we have

(78) 9g,=e""f,

so that

(79) 19g.]l - =[9.1.1.

hence

(80) lim |[8g, |, =lim |9, £,],=0

by (75). Since ||9g,]<|%9,]l-,, we have lim |d¢,]|=0. By (74), we

—>00

have

(81) ||Q»H—u=ﬂfvllu=1

hence |g,]|<<{1. Therefore choosing a subsequence, we may assume that

{g,} has a weak limit ¢ in L™?(X, B). It is easily verified that
(82) lgll-,<inf sup [[g, |-, =1,
u=y p'zy

for any v=>1. Thus we have supp g€ X, Therefore,
(83) 0*(glx,) =0.

(See Appendix.) By (75) 0g=0, and ¢ satisfies (77). By (74) and
(75), it may be assumed that {g,} is strongly convergent on K,, and the
limit is not zero on K, by Lemma 3.3. Hence we conclude that

glx,50. This contradiction completes the proof. q.e.d.
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Definition 4. 3.

(84) Hy4(X,B) = - Afs fELEE(X, B),0/=0}

Lyy(X,B)N{09; 9 L»* (X, B)}

where we denote by L&%2(X, B) the space of B-valued (p, ¢) forms which
are measurable and square integrable on compact subsets of X.

By the Dolbeault’s theorem (see [2], Theorem 2. 2. 4 and Theorem
2.2.5), there is a natural isomorphism between the spaces H%Z(X, B) and
H*'(X, B).

We define 'H”?(X,, B) with respect to ds* and {a;}.

Proposition 4.4.  The natural map
(85) o0: Hig* (X, B) >"H"*(X,, B)
is injective for q=>1.

Proof) We show that if f&L%(X, B), 6 =0, and there exists a
sequence {g,} with g, L™ (X,, B), 09, L™?(X,, B) and

(86) j (f =B, f—Bgydv< %

then there exists g L43(X, B) such that dg=f.
We replace the exhaustion function ¥ by #F=21(¥) where 1 is a
convex increasing C® function with 1(0) =0 and A(¢) >0 if £>0 which

increases so rapidly that

@7 [ <A fyefav<o.

For y>1, we have fe L™ (X, B, ¥).
By (86) it follows that

(88) L CF B>Sdv=0  for any hed (X, B).

Therefore, combining Proposition 4.2 with Hérmander’s theorem ([2],
Theorem 1.1.4) we conclude that for some y=>1 there exists g&
L™*'(X, B,y¥) such that dg=f. q.e.d.

We fix ¢>0. X,is a weakly 1l-complete manifold with an exhaustion
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function

(89) v.=

We choose a hermitian metric d¢* and a metric {6;} along the fibers of
B such that

i) dg® is complete

i) dor=31 0108 B) (e gopy on X—K,.

x5 0270z
Moreover we may assume that
i) [ arinnsi<e, for recmx,B),
Xy

where £ is the star operator for d¢®. This follows from Lemma 2.4
and that C*?(X,, B) is a finitely generated C*(X,) module. We define
‘H*?(X,, B) with respect to d¢® and {b;}.

Theorem 4. 5.

(90) dimg H**(X, B) <o for g¢=>1.

Proof) Since "H"*(X,, B) is finite dimensional it suffices to show

that the natural map (induced by the restriction of forms)
r: H** (X, B) —>'H"*(X,, B)

is injective. ~(Note that 7 is well defined by the choice of dg* and {b;}.

We consider the following diagram.

& To
/ 0

H" (X, B 'H™9(X,, B)
N g
‘H™*(X., B)

where o', 7' and & are natural homomorphisms. Since g is injective and

& is an isomorphism, o’ is injective, hence 7 is injective. g.e.d.
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Theorem 4. 6. If g L™ (X,, B) (¢=0) and 0g=0, then for any
e>0 there exists fe L2 (X, B) such that

(91) [ <r=0. r—pav<e

and 0 f=0.

Proof) By the Hahn-Banach’s theorem it suffices to show that if
ue L™ (X, B) and

(92) L CF,uddv=0

for any fe Ly2(X, B) with 0. =0, then we have

93) L g, uddv=0

if ge L™ (X,, B) and 8g=0.

We define &2 by 2=u on X, and 2=0 on X—X,. Since # is orthogonal
to N? for any v, we have [LERZ’}. R3%=R%? is equivalent to R%"’“
=R_%T"Tl (See [2], Theorem 1.1.1). R%’q“:@;l is proved for y=0
similarly as Theorem 2. 6. Hence, by Proposition 4. 2 there exists ¥, such
that
(94) a=19,0,  for some v, L™ (X, B,y¥),

with |o,||}<<C,

all’, for y=y,.

We set

(95) w,=e v,

then as in the proof of Proposition 4.2, {w,} has a subsequence which
is weakly convergent in L™"'(X, B). Let the weak limit be w, then

as in the proof of Proposition 4.2, dw=4a and supp wE€EX,, hence
0* (w|y) =u. Therefore, if g L™*(X,, B) and 8g=0, we have

(96) Lo<g, uSdv = Lo@g, wSdv=0.

q.e.d.

Theorem 4.6. The natural map

(97 oa: H* (X, B) > H"*(X,, B)
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is an isomorphism if ¢=>1 and d>0.
Proof) We consider the following diagram

Hme (X, B) 0 '™ (Xo’ B)

& H"*(X,, B) {

Since @’ is injective g, is injective. To show the subjectivity of o4, we

have only to show that Im o’ =Im p”, where Im o’ denotes the image of
o

By Theorem 4.6 (and by the Dolbeault’s theorem), Im p’ is dense
in Im p”. Since Im p” is a finite dimensional subspace of the Hilbert

space '"H™*(X,, B), we have
(98) Imo' =Imp”.

Thus g is an isomorphism. q.e.d.

§ 5. Application to Analytic Geometry

Let M be a complex manifold and S be a nonsingular divisor on
M with a proper and smooth holomorphic map #:S—D onto a Stein
manifold D.

Proposition 5. 1.

Assumption:

1) [Sllew is a negative line bundle for any x< D.

2) There is a compact subset K€D such that 2% is negative on
p ' (D—K). Heren=dim Sand Q% is the sheaf of holomorphic n-forms
on S.

Conclusion: S is contractible to D in M, namely, there is a neigh-
bourhood V of S, an analytic space U containing D as a closed analytic
subset, and a proper surjective holomorphic map w:V—U such that
Wls=p and wly_g: V—S—U—D is biholomorphic.

Proof) By assumption 1), there is a neighbourhood V® and a C”
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plurisubharmonic function Z® such that
(99) T2 (x)=0 if xS,

and T®|,@_g is strictly plurisubharmonic with positive values, (see [1],
4). By 1) and 2) p7*(D—K) is contractible to D—K in a neighbour-
hood of p7'(D—K), (see [1], Theorem 1). Let the contraction be

(100) @ V¢ —s U*
J J
p*(D—L)—>D—-K.

Since D is a Stein manifold D is properly embedded into some C*. Let
¢ be the restriction of ﬁl |z;1* to D. Applying Richberg’s theorem ([7],
Satz 3.3) to D—K anl(i U*, we obtain a neighbourhood U** of D—K
and a C* strongly pseudoconvex function ¢ on U** such that ¢|,_ g
={.

Let c=sup ¢ (x), di>d,>c, €0 VP ={z; 2€V?, ¥T® (z) <e}, and
V be the uxrfiI({)n of connected components of V®— {x;zxcw’ ' (U**),
pow’ () =d,} that meet {zx;x<S, pop(x) <d,}, then V is weakly 1-
complete for sufficiently small e.

By 1) and 2), £5"'Q[S]l7* is positive outside a compact subset.
Thus, by Theorem 4.5, H'(V, [S]|7") is finite dimensional. Therefore,
for any compact subset Q in {x;xES, pop (x) <d,} we can choose an
analytic polyhedron P such that QC PC{x; x &S, pop (x) <d,} and the
functions defining P are holomorphic functions on {x; x €S, pop (x) <d,}
which are restrictions of holomorphic functions on V. Since 8V, is strong-
ly pseudoconvex outside S for almost all ¢>0, this proves that V is
holomorphically convex, ([3], Satz 3.4). It is clear that V—.S does
not contain a compact analytic subset whose dimension is greater than 1.

Consequently, S is contractible to D in M. g.e.d.

Theorem 5.2. Let X be a weakly l-complete manifold. If
there is a holomorphic line bundle w: B—X which is positive outside
a compact subset of X, then there is a meromorphic map ¢: X,—>P",
where ¢ >0 and N is a natural number depending on c, such that
there exists a compact analytic set ACX such that t|x,—4: X.— A—P"
is a holomorphic imbedding of X,—A as a locally closed analytic
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subset of PT.

Proof) Similar as Kodaira’s embedding theorem ([4]).

Appendix

We let the notations be as before.

Lemma If gL' (X, B), 9gcL?'(X,B) and supp ¢gC X, then
glx, € D5+ where 0% is the adjoint of 8*: L*%(X,, B) -»L*%*'(X,, B)

Proof) Since X, is compact and 80X, is smooth, there is a sequence
{9.} such that ¢,eCP** (X, B), suppg,CX, lim]g,—¢g|=0, and
lim|9g,— 9| =0 (cf. [2], Proposition 1.2.3).
" Thus, if u€L?(X,, B) and duc [P (X,, B),

(101) L Cu, 99>dv =lim [ <u, 99.5d0
0 Xo

y->00

y—c0

—lim <5u,g,>dv-_—f Gu, g>dv .
X, X,

Hence ¢ly, € D5« and 0% (glx,) =99x,. g.e.d.
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Added in Proof: The author proved in a forthcoming paper ‘On Hra(X,B) of weakly
1-complete maniforlds’ the finte dimensionality of H?'4(X,B) and bijectivity of H»9(X,B)
—>Hra(Xy,B) in the case of p+q>dimX,



