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Holonomic Quantum Fields. IV

By

Mikio SATO*, Tetsuji MlWA* and Michio JlMBO*

Introduction

This is the fourth part in our series of papers on Holonomic Quantum

Fields, [1], [2] and [3].

In I we prepared the theory of rotation in orthogonal vector spaces,

and in II we exploited it to solve the Riemann-Hilbert problem. In III

we developed the deformation theory of multivalued solutions of the 2-

dimensional Euclidean Klein-Gordon and Dirac equations. The present

chapter deals with the operator thoery in 2-dimensional space-time.

In Section 4. 1 we construct the holonomic quantum field (pB(a) satisfy-

ing the following commutation relations with the neutral free Bose field <j) (x)

(M).

(4.0.1) T _ ~ , r x ~ , , ,, x , .
l-0Cr)<^(a)

Since 0 (.r) obeys the Bose statistics we need the theory of rotations in

symplectic vector spaces, which is given in the Appendix. The computa-

tion is carried out in the case of ^-dimensional space-time by means of a

kind of the Wiener-Hopf method.

In Section 4. 2 we construct the operator (pp(a) satisfying the following

(see [1]).

(4. 0. 2)

Here 0 (x) =l (0+ (x) , 0_ (x) ) is the neutral free Fermi field. This time

we exploit the results in I.

In Section 4.3 we introduce the complex free Bose fields $(x*) and (j)*(x).
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This enables us to formulate more general commutation relations ([7],

[9]), namely for 1<=C-Z

(4.0.3) ' 7S " N .--x-,rX*;0 (^>a\x <«-)

#>*(«; 00

The local operator expansion of the product (f)(x)(pE(a\l) is given. As

the coefficients we obtain a series of operators $?f/(a;Z). The orthogonal

case is similarly treated.

In Section 4. 4 we exploit the local operator expansion to study the

analytic behavior of vacuum expectation values of products of our operators,

and conclude that

and

2 sin TrZ,^*^1

(j; = l, • • - , ? z ) constitute the canonical basis of WJfjtjo/,*'.^"0* introduced in

III of [3] . This provides us with a constructive proof on the existence

of the above basis, independent of the one given in III. As a by-product

the logarithmic derivative of the ?z-point function

d log ((pB (aj_ ; l i ) - ~ < p s (an\ ln) >

is shown to coincide with the closed 1-form — a) denned in III. Thus

the 72-point functions of our field operators are characterized by solutions

of the deformation equations given in [3] and [5]. These results with

minor modifications are all valid in the orthogonal case as well (see [5] 9

[7]). In particular we show the following simple relation of [9]

(4. 0. 4) (cpB(a^ l^~ ) •••cpB(an; /» + -|-^<^(ai; A) -^(0n; ̂ )> = 1 •

The generalization to the case including the parameter A (cf. [1], [7])

is similarly treated. This clarifies the origin of the n(ii — 1)/2 dimen-

sional family of global monodromy introduced in III.
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In Section 4. 5 we exploit the product formula in I or in the Appendix

to give a convergence proof of products of our operators. In particular, we

give convergent infinite series expressions for vacuum expectation values

given in Section 4. 4. Thus the algebraic results in Section 4. 4 acquires a

rigorous basis. We also prove the micro-causality of our field operators.

In the final § 4. 6 we discuss in detail the original case based on

neutral free fields. Along with the operators <pB(a) (§ 4. 1) and <PF(<Z)

(§ 4. 2) we shall also deal with the ones (pB (a) =l ((pB+ (a) , (pB_ (a) ) and

cpF (a), which appear as the leading coefficients of the local expansions for

(f> (x) (pB (a) and </> (x) (pF (a) respectively ( [5] ) . The latter ones constitute

physical models of Fermi and Bose fields, satisfying Lorentz covariance,

microcausallty and asymptotic completeness condition. We note here the

remarkable reciprocity between these Fermi and Bose fields ([9]). Name-

ly the field (pB (a), constructed on the basis of free Boson 0 (x), re-

presents a strongly interacting Fermi field with asymptotic free Fermi

fields 0+ (a), while the field (pF (a), constructed from free Fermion ([j(x)9

is a strongly interacting Bose field with asymptotic free Boson 0J (x).

Their 5-matrices are shown to coincide with ( —) IY(F~1)/2 in the JV-particle

sector ([4], [9]). The off-shell 7Z-point functions themselves have simple

relations to each other, both admitting exact expressions as in the complex

case ([5], [9]). In particular, corresponding to (4. 0. 4), we have the

following ([9]).

(4. 0. 5) (<pB (a^ ••'<?„ (an) ><^(a^) —<pF(an) > = Vdet cosh H

Here H is related to a solution of the deformation equations.

We wish to thank Doctor K. R. Ito for informing us of the paper of

Bariev [14]. We are also indebted to Professor M. Suzuki for showing

us the preprints of the work [11], [12] by Wu et al.

§ 4, 1. Construction of g)B

We denote by ^Mm the ;2-dimensional Minkowski space with the inner

product x2= (x0)
2~ (x.Y On~i)2 for x= (x09 x) = (x0, xl9 • • - , xn-J

eXMm We get Q^ = g/gXfi (^ = 0,1, •••,«-!). We denote by P the

dual vector space of XMm. We choose the coordinate p= (p0, p} = (pQ,
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P\-> '"iPn-i) so that the bilinear form between XMm and P reads x-p

Consider the ^-dimensional Klein-Gordon equation

(4.1.1) (dl-dl ----- dl

If v and v' satisfy (4. 1. 1) , then

(4. 1. 2) JB(v,v') = (v(x) -d,v'(x

is a closed (n — 1) -form. Hence the inner product

(41.3) <

f : spacelike

is independent of 7'.(*)

We define the Fourier transformation by

(4.1.4)

(4.1.5) ^(#)= {dnxv(x)eix'p .

(4.1.1) is transformed into (P2 — m2)v(p)=Q. Hence v (p) is of the

form 4nd(p2 — m2)v(p) where v (p) is defined on the mass shell M= {p

^P\pz — mz = Q}. We shall abbreviate the Lorentz invariant measure and

the delta function on M as follows.

(4. 1. 6) dp = J j l ^ L , S(p, p'} =
I po I

Now (4. 1. 3) reads

(4.1.7) <v

We call v(x) (resp. v(p)) the .r-(resp. p-) representation of v. The

relation between these two representations is given by

(*} A C^hypersurface r is called spacelike if for some £>0, rH {x^Xmn\
is compact.
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(4.1.8) v(x)= f dpv(p)e-ix'p ,
JM -

(4.1.9) v(p}=±- f dn-lx(\p*\
2i Jxo=const.

We denote by Wf the set of real-valued solutions of (4. 1. 1) satisfy-

ing \dp\v(p) 2<oo, and set WB=Wn®C. WB equipped with the anti-
J - R

symmetric inner product (v, v'y is a symplectic vector space.

We set

(4.1.10) VB=iv<=WB\v(p)=Q for

(4.1.11) VB={v^WB\v(f)=Q for

where JM+ = {p£=. M\pQ^0}. WB=VB@VB is a holonomic decomposition.

In the sequel we mean by Nr or <( )> the norm or the vacuum expecta-

tion value with respect to this holonomic decomposition. See Appendix

as for generalities on expectation value? norm, etc. in the symplectic case.

Let (XMm) * denote the set of ordered pairs of null hyperplanes in

Xmn which are not parallel to each other. (XMin) * is of 2(;z-l) dimen-

sions. We denote by <(f , r)> the null hyperplane {x^XMm\x-£ = r},

where $ eP is positively lightlike(*} vector and r^R. We note that

<sf , cry = <f , r> for c>0. Let a* - «^ , r+>, <?_, r_» <E (XMin) * and set

(4. 1. 12) TFf(a*) - {v^WB\v(x)=0 if x-S+-r^O

and ^ - f _ -

Figure 4.1
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Then we have WB = Wj? (a*) ®WB (#*) • We define a symplectic transfor-

mation ( — a linear transformation which preserves the inner product)

Ta* by

(4.1.13) Ta*(v+ + v~) =v+-v~ for v± <E W| (a*) .

We shall compute the norm of the operator (pB(a*) which induces this

symplectic transformation. (See Figure 4. 1.)

Remark. The intersection <(f+, r+)> f! <(£_, r_)> is a spacelike linear

submanifold of codimensions 2. Conversely, there is a unique pair of null

hyperplanes which pass a given spacelike linear submanifold of codimen-

sions 2. Thus (XMm) * is identified with the set of oriented spacelike

linear submanifolds of codimensions 2. If n = 2 (XMm) * is nothing but

the disjoint union of two copies of XMm.

Before the computation of the norm we prepare generalities on free

fields. We denote by 0(y) (yeXMin) the solution v(x;y) of (4.1.1)

which satisfies

(4.1.14) *(*;30U.-,. = 0, |̂ -(*, y) U.-,.=
axQ

We have

(4.1.15) *(*;y)=

where

(4. 1. 16) J (.r ; m2) =i ( dp
Jj/ —

0

The /> representation of $(y) is

(4.1.17)

satisfies (4. 1. 1) with respect to x.
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(4.1.18) (dl-Ql ----- 91-i+

We set

(4.1.19) * ( * ) = - * (

(4. 1. 14) and (4. 1. 19) imply that

(4. 1. 20) v = -L^ f dn~lx (d0v (x) • 0 (*) - v (*) • * (x) )
y 2 Jj?0=const.

for t;eW. Conversely we have

(4.1.21) » GO =--

The table of inner product of (j) (x) 7s read

(4. 1. 22) <J>(x), tf (*')> = -iA(x-x'\-

At equal times it reduces to

(4.1. 23)

0

-x' 0

Next let <fi(q~) (geE-M) denote the solution v (x; q) of (4.1.1) given

by

(4. 1. 24) v(x;q)

The ^? representation of ^fe) is given by

(4.1.25) V(p.q)

These special elements $(x) ,n (x) and 0 (g) are interrelated through

(4-1-26) 0 (x) =

(4.1.27)
^ Jj;0=const.

The table of inner product of 0 (£) 's reads
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(4. 1. 28) <tf GO , tf GO > = e (A,) 8 (P, -p")

Similarly to (4. 1. 20) and (4. 1. 21) we have

(4.1.29) v =

(4.1.30) t,(^)=
V "

As in Section 2. 1 we consider (j) (x) , TT (X) and 0 (^) to be ideal elements

of WE and construct the operator theory. Then 0 (X) is nothing but the

free Bose field operator and (j) (p) the creation (p°<!0) -annihilation (/>°>0)

operator thereof. In this context (4. 1. 22) and (4. 1. 28) mean the fol-

lowing commutation relations.

(4.1.22)' W(x),4(x')-\ = -M(x-x';m'),

(4. 1. 28) ' W GO , tf GO ] = e (A) 8 (p, -p') .

The tables of vacuum expectation values read

(4. 1. 31) <0 (p) 0 (/>') > = Q (p0~) d (p, -p') ,

(4. 1. 32)

where

(4. 1. 33)

m

Let 6re5O0(l, « — 1) and a^Rn. The action of the Poincare group

SOa(l, n-T) xRn={g= (g, a)\g<=SOa(l,n-l'), a<^Rn} is given by g-x

= g-x + a, and the representation W of the Poincare group in WB is given

by

(4.1.34) (0* (80 »)(*)=*(?-'*)•

Then we have

(4.1.35)
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(4. 1. 36) WB (g) grad 0 (x) = (grad 0) (gx) • g

where grad $= (d0<t>, 0$, • • - , 9n_i0) , and

(4. 1. 37) 5

The vacuum expectation value and the inner product are invariant under

this action of the Poincare group.

Now, applying Proposition A. 1 in the Appendix we shall compute

Nr ((^(a*)) — exp(p£(a*)/2) so that (pB(a*) induces the symplectic trans-

formation (4. 1. 13) .

From (4.1.16) $(x) belongs to WJ (a*) (resp. W£(a*)) if

x - f + — ru.>0 and x-$- — r_<0 (resp. x-£+ — r+<0 and ^ : - f _ — r_>0).

Hence (4. 1. 13) implies the following commutation relations between

<pB(a>*) and <j>(x).

'<!>(x}(pB(a*} if x*$+-

and
(4.1.38) ^(a*)^(x)=<^

-0O>2?(^*) if j:-f+

and

Because of the Poincare covariance of our theory^ we may assume

without loss of generality that

(4.1.39) f ± = ( l , =Fl,0, -,0), rx = 0.

First we define auxiliary basis 0 (p) , jf (^) by

(4.1.40) £

(4. 1. 41) TT (^) - f^""^ 7T (0, 5) e-'*:; ,

or equivalently, by

(4.1.42) $(P^

(4.1.43) n(p) =

where we have set

(4.1.44)

In what follows we identify a kernel function
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iW ( ft ^hf\ W ( ^h ~-hr^\\__ / i\P, P ) 2\P, P ) \ ^.j^jj tkg associated linear transformation F given
\F,(p,p") F,(p,p'}>

by

(F$ tf'), 2W)) = f -£2L $ 00, & 00) *" 05,2') •
*J \£iTtj

With respect to 0 (p) ?s and ft (p) ?s the above mentioned kernel re-

presentation of (1 —Ta.)/2 is given by

(4.1. 45) P(p, p'} =- "/ ^(27tr~2S(PL-p/±}I2
Pi — Pi—w

where we have set

(4.1.46) P*=(pt, -,#.-,).

The table of vacuum expectation values with respect to the basis

$(P), ft(P") reads

,* , A^(4-1-40

-f

Hence ^ in (A. 8) and E in (A. 17) have the kernels

(4.1.48) H(p,p'}=

(4.1.49) £(^,^') = f _ i

We set

(4. 1. 50) v ($)

X± of Proposition A. 1 are given by

/v
(4.1.51)

(4. 1. 52) X_ (^ F) - i( , - —--i Pl ~ (27T)
^V^

Hence by (A. 19) we have
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(4.1.53) R($,p')

'-•Jpi-in(p) <Jp( -ij

We set

(4.1. 54)

Then we have ^/P1±iju(p) = J ^-(^u ±i Ju'1) (resp.

for u>0 (resp. a<0). From (4.1.41), (4.1.42) and (4.

1. 53) we have

,-2<Ju-iQ vV-zO
' - --IA i ^ r *N ^ j(4. 1. 55) p5 (a*) = dpdp

Finally, using Poincare covariance, we rewrite (4. 1. 55) in a general

form.

Let Pa* be the subspace of P spanned by f + and ?_, and let P£* be

its orthogonal complement. We denote by pa* (resp. p^) the Pa*- (resp.

Pa*-) component of

(4.1.56) P

Let ^:(a*) be a vector in XMm satisfying

(4.1.57) x(a*) -$± = r±.

Theorem 4e I, 1. Normalizing q>B(a*) so that <<^(<z*)> = l, we

have

(4. 1. 58) Nr (<pB (a*) ) = exp (p, (a*) /2)
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In the sequel, we restrict ourselves to the case n = 2. We identify

XMin with a component of (XMin) * by

(4 1. 59)

*= (aQ, a,) GEXMiV» « (1, -1) , a0 + ̂ >, < (1, 1) , *0-*i» e (XMin) *.

It is convenient to use characteristic coordinates

(4.1.60) x* = (xv + x^/2.

(4. 1. 54) reduces to

(4. 1. 61) u±l = (pQ ± A) /m (P^M).

u serves as a coordinate on M, and we write 0 (u) instead of 0 (p) . The

invariant volume dp is equal to

(4.1.62) du= du

2n\u\

The tables of vacuum expectation values and inner products for 0 (u) read

(4. 1. 63) <0 (u) <[) (u') > = 2mi+d (u + u'} ,

(4. 1. 64) <^ («) , ̂  (w7) > = 2icuS (u + u') .

(4. 1. 26) and (4. 1. 58) reduce to

(4. 1. 65) 0 (*) - f

(4. 1. 66) Nr (<pB (a) ) = exp (pB (a) /2) ,

where

fl) =

§ 40 28 Construction of q*F

In this section we restrict ourselves to the case dimXMin = 2 or 3.

First we consider the case dimXMin = 3.
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Consider the 3-dimensional Dirac equation

m-92 90-9A/«,+ (*)\
I 1 — U .

9o--9! m + d2l \w- (x) I

If w=(W+<}Xl} and te/ = (WH^) satisfy (4.2.1), then
\W-.(X)/ \7^_(x)/ J V "

(4. 2. 2) SF (te;, zt> ') — (w^ (x) w'+ (x) + W- (x) -w'_ (x) ) dxlf\dxz

— (w+ (x) iu+ O) — w- (x) w'_ (x) ) dxQ/\dxz

— (w+ (x) w'_ (x) + iv- (x) w'+ (x) ) dx^/\dxl

is a closed 2-form. Hence the inner product

(4. 2. 3) <«>, w'y = -^ f J, (TO, W')
2 Jr

7*: spacelike

is independent of 7*.

We denote by Wf the set of real-valued solutions of (4. 2. 1) satisfy-

ing <?£>, wXoo, and set W^= W]?(X)C. WF equipped with the inner pro-
is

duct <(ze>, TX^'^> is an orthogonal vector space.

By the Fourier transformation (4. 1. 4) and (4. 1.5), (4. 2. 1) is trans-

formed into

( 4 2 4 )

Hence is of the form
-(/0

(4.2.5)
m

where ze;(p) is defined on the mass shell.

(4. 2. 3) reads

(4.2.6) <w,ze/>
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We call f + / \ ) (resp. w (p)) the x- (resp. p-) representation of °w.

The relation between these two representations is given by

/ J~0 + i(pQ-

(4.2.7) (™+(^}= l^^^f /Q_7(7-^)

\y m + ip2 I

m r
(4.2.8) w(p-)=-^\ _ d~ m

A holonomic decomposition is given by WF=VF@VF, where

(42.9) VJ,= {weW>|w;(f)=0 for

(4.2.10) V>={Te;eWi.|ze;(^)^0 for

An orthogonal transformation Tat is given by

(4.2.11) Ta*(w+ + w-) =w^-w~ for w± e WJ (a*),

where

(4. 2. 12) W| (a*) = {we WF\w+ (x) ^W- (x) ^0

if X'£+-r+$Q and ^-?_-r_^0}.

We shall compute the norm of (pF(a*) which induces the orthogonal

transformation (4. 2. 11) .

( erg) \ X°

v
 + +)^'w+-v-^?

°f ^4-2-1> which satisfy

9 l8(x — '(4.2.13) i - ^ x — x , z / ^ .
..... - x 0

w_+(x;y°)\\ 2 / 0

We have

(4. 2.14)
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The ^-representation of </>+ (y) (resp. 0_ (y) ) is

0± (̂ :) satisfy (4. 2. 1) with respect to x.

(4.2.16)

(4. 2. 13) implies that

(4. 2. 17) w = ^L- f^2x (te;+ (a:) 0+ (*) + w_ (a) 0_ (x) ) .
^ aJ

Conversely we have

(4. 2. 18) U>± (x) = <(/r± (X) , W> .

We denote by </i(g) (geM) the solution TO ± (j;; g) of (4.2.1) given

by

(4.2.19)

The p representation is given

(4.2.20) w(P;q)

Similarly to (4. 2. 17) and (4. 2. 18) we have

(4.2.21) zu =

(4.2.22) w(p]

The relation between the basis (p+ (x) and </> (p) reads

<s-
(4.2.23)

/0-f(/»t-/'i)
\V OT + Z>2 /
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(4. 2. 24) m

X

The tables of vacuum expectation values and inner products are as

follows.

(4. 2. 25) <c/; (p) 0 O') > = d Oo) S (p, —p'),

(4.2.26) <4W,<l>(P')>=WW,<l>(pfW + =9(P,-p'),

(4. 2. 27)

2
<

The representation of the Poincare group in WF is given by

/ (WF (fif) ^) + (-3
/"/I O OON I(4<2-29)

Here /S is the spinor representation of 500(1, 2) whose infinitesimal form

is given by

(4.2.30) dS(M*)=S*

where

/O 0 0

0 1

0 -1 0

, AT =
0 0 1

0 0 0

1 0 0

0 1 0

1 0 0

0 0 0

I 1

2 \1 /' 2V -1
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Now applying (A. 18) F and (A. 19)^ in the Appendix we shall com-

pute Nr (cpF (a*) ). Similarly to (4.1.37) (pF(a*) is to satisfy the follow-

ing commutation with 0± (x) .

(4.2.31)

<I>(x)<pF(a*} if .£•?+ — r+>0 and x-%_— r_<0

-0(.r)0X^*) if ^-f^-r+<0 and .r-f_-r_>0.

First we assume that a* is given by (4. 1. 32) , and denote it by a*.

We set

(4. 2. 32) 0± (£) = J J2Jc0± (0, £) e-1*'* .

In what follows we identify a kernel function F (j5, ^x)

'^^) with the linear transformation F such that

Then we have

(4. 2. 33)

1
_ i (m - ip£ co

,

m

(4. 2. 35) E^, ^ =-1- (
^(P)\

In this case X± in (A. 18) ' are given by

(4.2.36) X+(p,p'}
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(4.2.37) X_(psp')

Nothing that

(4. 4. 38)
v *

we have from (4 1. 45) , (4. 2. 23) , (4. 2, 34) — (4. 2. 36) and (A. 19) F

(4. 2. 39) Nr (VF (of) ) = exp (p, (,**) /2)

a0*) - f (W d>' -*(*o-J>o)
J J /^ + ̂  — ZQ

where

Let (f+, f_) be an ordered pair of positively lightlike vectors in P.

Ll\We choose an element g in *SO0(1, 2) which satisfies m H- 1 }=c£± for
\ o/

/o\
some positive constant c. We set $JL = g 0 . We denote by <// (^>)

w
the solution of C4-2-1)

^_ V l/Z

(4.2.40)

$' (p) is independent of the choice of g. It is uniquely determined by the

pair of lightlike directions ({c$+\c>Q}, {cf_

Theorem 4* 28 1. Normalizing <pF(a*) so that

^

(4. 2. 41) Nr (^ (a*) ) - exp (pF (a*) /2)

= ({dp dp'
J J --

x
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Let us now proceed to the case of 2-dimensional space-time.

The 2-dimensional Dirac equation reads

/ m do — di\fw+(x)\
(4-2-42) * * / r°>\-9o-9i m l\w_(x)l

a n d f o r solutions ™ = + , w / = ) ° f (4-2*42)'

(4. 2. 43) JF (w, w') = (w+ (x) w+ (x) + w_ (x) wL (x) ) dxl

— (w+ (x) w'+ (x) — w- (x) iv'_ (x) ) dx0

is a closed 1-form. Starting from (4. 2. 42) and (4. 2. 43) , we may con-

struct an analogous theory as in the 3-dimensional case. The results are

exactly the same as the 3-dimensional case if we set the ^-coordinate

to be zero.

Using the coordinates (4.1.60) and (4.1.61), we write 0(#) in

place of </» (p) , Then we have

(4. 2. 44)

(4.2.45)

(4. 2. 23) and (4. 2. 41) reduce to

(4. 2. 46) 0± (x) - fjw Vo+TzT V («) g-^^-H-^--^^

(4. 2. 47) Nr (^ (a) ) - exp (pF (a) /2)

where p,(a) = f (du du' " ^ (« " O g-i»c«-(u+i>o+«*c«-^^-^0 (M) 0 (^/) ,
J J -- u + u' — iQ

§ 40 3e Local Operator Expansions

In this and subsequent sections we restrict ourselves to the case

We have constructed operators <pB(a) or <PF(O) which satisfies the

commutation relation (4. 1. 18) or (4. 2. 16) respectively. In this section

we shall construct similar operators which satisfy more general commuta-

tion relations, and then we shall derive local operator expansions.

First we treat the symplectic case. We consider C2=Ce@Ce* to be

an orthogonal vector space with the inner product < , yct given by
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1\

We shall construct the operator theory starting from the symplectic vector

space WB(X)CZ, where the inner product is given by

( 4 3 2 )

In what follows 0 (M) (X)g and 0 (M) (X)^* are denoted simply by 0 (&)

and <^* («) respectively. They satisfy the following.

3 3)-

*(«),** CO]

/ 0

\2nud (u + u') 0

3 4^( ' ' } ««

0

We set for l(=C

(4. 3. 5) & (x) = ^ (0 + ft*)

(4. 3. 6) (j)f (x) = ^ (0 + iu) '*-«»(»-«+«-'ty* («)

where (0 + zw)J-^ l /2(^-zO) l-^±7r" /2|^| l if

From the formulas

(4. 3. 7) f °°du w^±*»(*-«+«-1)
Jo —

(*) For the definitions of vi9 vf and ^z see Section 3.1.
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+ *

= -:- - (v_l(-
2 sin itl

(for

we have

(4. 3. 8) <0, (x) 0,*, GO > = <0f (*) &, GO >

2 s

-v?+l,(-(x-x')- + iQ, (x-x'y-iQ}} (for

From (4.1.26) we see that 00(.r) (resp. 0*(o;)) is nothing but 0(o;)

(X)^ (resp. 0 (jc) (X)^*) , which we denote simply by <f> (x) (resp. 0* (x) ) .

We define the norm AsG^O by

(4.3.9)

where

,A o IMN 73 / / /N o • j/u-iQ(4. 3. 10) RB(u9 u';l}-^ -2 smnl (u7_i

and define operators ^(<2;Z), ^?f/(a;/) and (pf>(a\l) ky

(4. 3. 11) Nr (^ (a ; 0 ) = exp (fo (a ; Z) /2) ,

(4. 3. 12) Nr (^ (« ; / ) )= ̂ . (a) exp (pfl (a ; I) /2) ,

(4. 3. 13) Nr (<p? (a ; 1) ) = 0?, (a) exp GO, (a ; I) /2) .

Note that

(4. 3. 14) RB («, «' ; Z) = 2?s («' ,u;l-l),

and that for /= — (4.3.10) reduces to the kernel in (4.1.65).
Zi

Now we assume that l(£Z. Applying the formula (A. 10) ~ (A. 11)

we have the following.

(4. 3. 15) Nr (0 (x~) VB (a • I) ) = 0«'Nr fa («;/)) ,
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+ f° du/_RB(u,u';l-)elm^u'+*
J — oo

(4. 3. 16) Nr(0*(a:)pa(a; /)) = rf«*Nrfo,(a; /)),

0C1)*= f J«?g>,Gc-a; zOe-""<0-0-fo*"-1V*(«)

(4. 3. 17) Nr O* (a ; f) 0 (x) ) = 0(2>Nr (p, (a ; /) ) ,

(4. 3. 18) Nr (q,a (a ; 1) 0* (*) ) = #«*Nr (pa (a ; /) ) ,

0®*= f jBff?,(a:-a; »)e-*"t"+'*"-V(«).

Proposition 4. 3. 1. We assume that l&Z. We set

(4.3.19) £,(*;«)=

?i (^c; u) satisfies

(4. 3. 20) (m-'&. + »«) ft (x ; «)

(4.3.21)

P}(^:;M) are respectively given by the following boun-

dary values of the multi-valued analytic function ft(a;;«).

(4. 3. 22)
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(4 3. 23) ft® (x ; u) = ? l ( - x~ - £0, x+ + £0) .

I?z particular, -we have

(4. 3. 24) ?P (.r ; «) - ft® (*; «) z/ .r+>0 and

(4. 3. 25) ?P (x; M) - £T2jrfIf P Or; «) zf

Proo/. If w'<0 and Im^:::<0, Re zm (^"z^ +^Tw/-1) <0. Hence

^^(x;^) is the boundary value of a holomorphic function in the region

{.rG<C2|Im JC±<CO}. Likewise fz
(2)(^:;z^) is a boundary value from

We have

-» 2yr

If ^:+>0 and x~<CO, the contour may be closed in the lower half plane

to yield 0. Hence (4. 3. 24) is valid. Similarly we have (4. 3. 25) .

(4. 3. 24) implies that ft(1) (x\ u) and ft(2) (x\ it) are boundary values of the

same analytic function, which we denote by ^l(x\ii).

It is easy to check that both £i(x;zi) and$l(x',u) satisfy (4.3.20)

and (4. 3. 21) . (See (4. 3. 7) .) Hence these two differ only by

c (11) e~im(x~"^x**~l\ Since they satisfy the monodromy property (4.3.24)

and (4.3.25), we conclude that c (u) =0.

Theorem 4, 30 2. Assuming that l^Z, we have

(4.3.26) 4>(x)<p,(a;t)

= 2] <P-

(4.3.27)
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(pB (a\ l)<j> (x) (resp. <pB (a\ I) 0* (x) ) is given by the right hand side

of (4.3.26) (resp. (4.3.27)) with T (x — a) * ± i 0 replaced by T (x

In particular, we have the following commutation relations in the

region "where x and a are mutually spacelike.

(4.3.28) (pB(a->

\ez*il<f>(x)ps(a;l) if .r+<a+ and x~^>a~ .

(4.3.29) <pB(a;l)(l>*(x)

-2«il6*(x}vK(a:l} if x+<a^ and x~:

Proof. These are the direct consequences of (A. 8) and Proposition

4. 3. 1.

We define furthermore the following operators.

(4. 3. 30) Nr(^Ilfl>; 0) =^1(«)0i.(«)^*(ft;l)/I-

(4. 3. 31) Nr(^*,*(a; /)) =0t*(fl) ̂ (^c^011^.

(4. 3. 32) Nr(^ I l f I*(fl; /)) =Nr«§ll(*; /))

- ^t (fl) 0* (a) ^ ̂ ca; 0/2 = #* (fl) Ai (a) ^^WD^

Then from (A. 10) , (4. 3. 8) and Theorem 4. 3. 2 we have the follow-

ing theorem.

Theorem 4.3.3. Assuming 1,1'^Z, we have

(4.3.33) 0 (*)«£(*;/)

= Z! ̂  -i+i+y,i' (a ; 0 ^ -i+i+y (— (.r — a) ~ + z'O, (a; - a) + - iff)

+ S 9z -i-3,if{a\ 0 v*+j (— (x— a) +z'0, (^: + <z) + — z'O),

(4.3.34) (j)(x)(pf<*(a\ I)

2 sin T
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sin

*?>, -t-j(a;l)vf+i(-(x-a)- + f 0, (x - a) + - iff) ,
=

(4.3.35) 0*Gc) «#*(«;/)

.7=0

(4.3.36) <f>*(x)<pf>(t

. j.Y£> \— ? y & \ \~" —/
2 sin TCl

* (n'l\<ri ( ( r — n\ ~ 4- 7*0Bi',i+j\a 9 I*; Ui+j\ ^x a^ T-tu3

2 sin TrZ

<^f/ (a; Z) 0 (a:) , <pf? (a\ l)$ (x) , e^c. ar^ given by the right hand sides

of (4 3. 33) , (4 3. 34) , etc. zvith T (x — a) T ± z'O replaced by T (x-^) "

J^ particular, if l' = — l (mod Z) w

(4.3.37) ?f,(«; 000*0

) if a:+>a+ and x'

«;0 if x+<a+ and x~

if x+>a+ and ^-<a~

;0 if x+<a+ and x~>a~ ,

and if l' = l (mod Z) we

(4.3.38)
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<l>(x)<(%(a\l) if x+>a+ and x~<a~

;/) if x+<a + and x~>a~ ,

if x+>a + and

if x+<a + and

Remark. (4.3.28) and (4.3.29) imply that <pB(a\l) induces the

symplectic rotation in WB®CZ. Since ^ i + - 7-(<z;Z) Q'^Z) appears as a

coefficient of the local expansion of 0 (x) (pB (&>\ 0 > and since [0 (x) , ^ (^x) ]

= 0 if x and j;' are mutually spacelike, (4. 3. 37) is a direct corollary of

(4. 3. 28) and (4. 3. 29) . See also pp. 942—943.

Proposition 4. 39 4. Let d denote the exterior differentiation

with respect to a. Then zve have

(4.3.39) d^(a) =&+1

(4. 3. 40) d<f>f(a) =$f+i

(4.3.41) d<pB(a\t)

Proof. (4. 3. 39) and (4. 3. 40) are easy. Since Nr is a linear map,

it commutes with d. Namely, Nr (dcpB (a; 1)) =d Nr (tpB (a\ T) ) . Then

(4.3.41) follows directly from the definition of Nr (<pB(a\ Z)) , (4.3.11).

In the following corollary, we shall abbreviate V-i (— (x — a) " + z"0,

(x — a)+ — fO) to t;_i[a], and so on.

Corollary 4. 3. 5. Assuming that l^Z, zue have

(4.3.42) 2sin7T/^

dv,i \_a~] ~ — --- - -<pB (a ; /) v_l+1 \_a]
a ( — ma )

-i- { ( p B ( a \ l ) +2 s in7T/ -^_ i f ? (

(4. 3. 43) 2 sin TT/ - ̂ * (x) (pB_t (a ; /)

= {<Ps (a\l)-\-2 sin 7T/ • (pB _lt f ((2 ; /) } vt \_a\
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m

When we consider the original operator cpB (a) , we define £?f (a) and

VBILII (a) by

(4. 3. 44) Nr (pf (a) ) = 0, (*) *"te)",

where <^ (a) is given by (4. 3. 5) with the original $ (u) satisfying

(4. 1. 63) . Then we have

(4.3.26)' *(x)<pm(a)

(a}v^(-(x-a}~ + iO, (a: - a) + - zO)

(4.3.34)' 0G

= — - — r7<
2 smTTi

- -,1- -^VB (a) f ? ( - (x - fl) - + iO, (^ - a) + - »0)
2

v——- - *_» i/ » 2 J 2 J - - -

for 1'=^- (mod Z). (4. 3. 41), (4. 3. 42) and (4. 3. 43) must be slightly

changed. Denoting <^f i (a) by ^+ (a) , we have

(4. 3. 45) d<pj,(a) = -tpB ^d(-ma~~) -<pB_^

(4.3.46) <}>
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(4.3.47) <Kx)q!L(a)

1 9—<pB (a) v*±\_a] -— --- (pB (a) vf [a] + ••• .

Now we state analogous results in the orthogonal case. We omit

proofs, which are only refrains.

Remark. We have changed the definitions of (pF (a; I) , p* (a ; I) and

(pi* (a\T) below from those in [7].

We start with c/i (u) and 0* (zi) satisfying

(4. 3. 48)

We set for Z f = C

(4.3.50) 0i (a:)

(4. 3. 51) 0f (a:) = frf« (0 + tw) «g-«-(--»+«-)0* („).

<^ (^) 0f, (x') > = <0? (a;) 0,, (^') > is equal to <& (^) ^f; (^') > given by

(4.3.8).

We define pF(a; I) ^A2(WF~) by
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(4.3.52) pF(a-J) = 2 f (du du'RF(u, a'; 00(0)0*00

y, - im(a-(M+M')+a+(M-i+M'-i))

where

fA Q ^\ r> f ' i\ o- 7 / u-iO -i+t ^Ju — iO ̂ u ' - z'O(4. 3. 53) RF(u, u ; 1) = ~2z cosnl

and define operators #>F (#;/) , (p^(a;l) and <j?f/(a;f) by

(4. 3. 54) Nr (^ (a ; Q ) = exp (^ (a • I) /2) ,

(4. 3. 55) Nr (^ (a ; /) ) = 0i- (a) exp (pF (a ; Q /2) ,

(4. 3. 56) Nr (^f/ (a ; Q ) = 0? (a) exp (pp (a ; Z) /2) .

Note that

(4. 3. 57) RF(u, u';l) = -RF(u', u;I-t)

and that the anti-symmetric part of RF (u, uf ; 0) coincides with the kernel

in (4.2.44).

In what follows we assume that l^.--

Theorem 4. 3. 6. The local operator expansion formulas read as

follows.

(4.3.58)

(4. 3. 59)
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7 7 - 7 7 7*y */z* ™8ht hand, 7. , , , 7 N , * ,fpF (a ; /) 0_ (.r) / \<^ (a ; /) 0* (.r)
sides of (4.3.58) and (4.3.59) respectively, -with T (x — a) T d= z'O re-

placed by =F (^ — #) T T z'O.

We define the following operators.

(4. 3. 60) Nr (?, ,„ , , («; /))= 0,, (a) 0,2 (a) e"<a: !>/2.

(4. 3. 61) Nr(>P ,*,*(«;/)) =0J*(a)^(a)e"^a;JV2.

(4. 3. 62) Nr (fpp ,„ * (a ; 0 ) = - Nr fo, ,* ,, (a ; 0 )

Theorem 48 3. 7. Assuming I, l'^---rZs °we have

(4. 3. 63)

(4. 3. 64)

2 7/ ' N 7 / —"N s x
COS Ttl

[ — (x — a)~ + z'0? (x — #)+ — \

2 cos

(4. 3. 65)
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(4. 3. 66)
\<l>-\x)<pi>\j

= s—*—77^ (a;2 cos m

-/Vr(a;
2 cos nl

, . , , . ,, L ^c. are given by the right
(a ; 0 0- (*) / Wf/ (a ; Z) 0_

side of (4.3.63) and (4.3.64), etc., with T (x-a) + ±iO re-

placed by T (x — a) T =F z'O.

Corollary 4. 30 So W^ have the following commutation relations

in the region -where x and a are mutually spacelike,

(4.3.67) <pp(a;l)<l)±(x)

(x) (pF (a ; /) if ^:+>a+ and x~

e**il<l)±(x)(pF(a\l) if ^+<a+ and x~>a~ .

(4.3.68) ^(a;Z)0*(x)

(0J(x)^F(^;0 if ^+>^+ and ̂ :~

1— £~27r"0*(.r)<^(a; Z) if jc+<a+ and

If l'^—l (modZ), -we have

(4.3.69) ^(a;Z)0±(x)

0±Cr)<^(a;Z) if x+>a+ and
ir"0±(2;)^(a; Z) if ^+<a+ and

— <l)\(x)<p^(a\ Z) if .r+>a+ and ^c"<^~

e-
Ml<l)*(x)<p$(a\ Z) if ^+<a+ and x~>a~ .
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If V ===l (modZ), we have

(4.3.70) tf,'(a;M±(x)

a\l) if x+^>a + and x~<^

(a;Z) if x+<a+ and

if ^-">a+ and x~<a

if x+<a+ and *

Proposition 4. 3. 9.

(4 3. 71) d^(a) =^1

(4. 3. 72) J0f (a) = 0^! (a) d ( -

(4. 3. 73) ^(a; Z) = -2z cos 7rZ{^F_z+1>1 (a; Z) d(-ma')

-Z, f-i (a\l)d (ma+) } .

Theorem 4. 3. 10. Denoting w-1 ( — (x - a) ~ + £0, (x - a) + - *0)

by w-i[a\ and so on, we have

(4.3.74) -2zcos7r/(0+ */'*' '

= <Pr (a; 0 w_i [a] + — -cpF (a; I) w-i+i \a] + •
o(—ma)

— {<PF(&', 0 +2i cos7tl-(pF -i*(a-, l)}wf\_d] H ,

(4.3.75) -2z'cos7T/(

-^(«;0w!!!i [«]-—-

When we consider the original operator ^ (a), we define (pi (a),

<PFilti%(a) by

(4. 3. 76) Nr (^f (a) ) - 0Z (a) «"w/«,
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where (pi(x) is given by (4.3.50) with the original c/>(V) satisfying

(4. 2. 42) . We abbreviate (p$ (a) to (pp (a) . Since RF (u, uf ; 0) is not anti-

symmetric, the local operator expansion formula for (pF(a) is slightly

different from that of (pF(a\($). The results are as follows. See also

[5].

(4.3.77)

+

(4. 3. 78) = 9r (a) (Wo [a] - ze,0* [a] )
\0_Cr) </ (a) / 2

(4. 3. 79) d<pF(a) = —i(pFl^(d)d( — ma~) + z"0V-i.oGz) d(ma+) .

(4. 3. 80) d(pF(a) = cp1[(a)d(-ma-} +<p*1(a) d(ma+) .

§ 4. 4e Wave Functions and r Functions

We shall now investigate the properties of various vacuum expecta-

tion values, involving operators ^(a;/), (p^(a;l) and £?f/ (<2 ; /) (or their

orthogonal versions) and the free fields (j) (x) , 0* (x) (or 0 (jc) , 0* (.r) ) .

Our goal is to relate their Euclidean continuations to the wave functions

having specific monodromy properties, and thereby establish the connection

with the deformation theory expounded in the previous Chapter III.

Our argument is twofold. The present Section 4. 4 is the formal part,

in which we shall carry out the above program b}^ making use of the proper-

ties of field operators in class G. The parameters A= (A^) introduced

in Section 3. 2 naturally arise in this context. However neither the positive

definiteness of A nor the reality of the exponents 4 of local monodromy

are necessary here, at least formally. The next Section 4. 5 is devoted to the

analytical part. Using the product formula we shall derive infinite series

expansions for the wave- and r-functions, and show that they are conver-

gent in the complex domain (Propositions 4. 5. 1~4. 5. 3, Theorem 4. 5. 4).

In this way the formulas derived in this Section 4, 4 are recovered rigorously.
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Let x, x*, aly •••Jan denote mutually spacelike points of XMm. Con-

sider the following vacuum expectation values, to which we shall here-

after refer as (Minkowski) Bose wave functions:

(4. 4. 1) WB(X*, x\ L) = <0* (x*) q>B(ai\ O -~9B

wBv(x\ L) = O*Gzr, JO --$1 (av\ /v) -~<pB(an; ln) $ (x) >

wj, (.r * ; L) = <$* (:r*) ^ (ax ; ^) • • • <^\ (0V \ l y } - - ( p B (an ; 4) > -

Likewise we define the (Minkowski) Fermi wave functions WF(X*, x; .L)

= OF£-£ Or*, ̂ ; I/) ) e .e*=±, ^p, (jr; L) = * (wFv+ (.r ; L) , wFv, (x\ L) ) and

zc& (x* ; L) - J (ze;?y+ (x* ; L) , te;Jy_ (j:* ; L) ) by

(4. 4. 2) WF£,£ (x*, *; L) =<0f;(a:*) ^(^; « •••^(a7l; 4) 0£ (x) >

z;yFl,± (^ ; L) = <<^ (a! ; / ! ) • • • $C (<2V ; / „ ) • • • ̂  (an ; /„) 0± (^) >

w Jv± (^* ; L) = <0* (x*) <pF (a, \ll)— <p\ (av ; /„) • • • cpF (an ; /n) > .

We also deal with the Bose and Fermi r functions^ defined by

(4.4. 3) rB(L) =TB(a1, >-,an\L} =<^(^r, A)

Obviously (4. 4. 1) or (4. 4. 2) , regarded as functions of .r and x*, are

solutions of the 2-dimensional Klein-Gordon equation (4. 4. 1) (with 72 = 2)

or the Dirac equation (4. 2. 42) respectively. (**} Their local properties

are known immediately by applying Theorems 4. 3. 2, 4. 3. 3, 4. 3. 6 and

4.3.7. For instance assume ^:+>ay
+

+i>a++2>--->^. From (4.3.28),

$(x) commutes with $3(0,^ l^) (v + 1^/^^^) in this region. Therefore

we have °WB(X*, x\ L) =^(x^)(pB(al\ Z2) "-(pB(^\ l^<j)(x)(pB(ay+l\ l,+1) •-

<PB(^U\ 4) ) there. Applying (4.3.26) for <pB(ay\l^(l)(x) we then obtain

the local expansion for *WB(X*, x\ L) at av. Hereafter, in writing down

the local expansions, we assume x* + *>at^>--^>an for TJUB, IVB»> WF, WFV

and x* + <^ai<^--<^an for wBv, w*v. Otherwise the coefficients of the

expansions should be modified according to the commutation relations

(*} For the lack of the time-ordering sign, the expectation values (4.4.3) may more pro-
perly be called the Wightmann functions. Regarding the microcausality condition
for the ^-fields (see § 4. 5) we may confuse these two notions, since we are working
in the spacelike-separated region of arguments.

(**) In the case of WF(X*, x\ L), its transpose satisfies (4.2.42) with respect to x*.
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(4. 3. 28) , (4. 3. 29) , (4. 3. 37) , (4. 3. 38) or their Fermi versions.

(4. 4. 4)0 wa(x*9 x\ L) =~

f

?08 («;*)=<:«»,(«'*)

(4.4.4).

] cf (WB} • vj [a:*] + ]
.7=1 y = 0

[a ,] + ] c,*?, (wa) • v?,+f [fl J ,

(4.4.5)

+ S ',*,&(«>*,) •*,*.+,[«,],
y=o

) =<^(a i ; IJ •••<?>?* (a „; l^)

« / . - - - - £ ,
2 Sin Tllp

where vt[a] =vt (— (x — a) ~ — z'O, (.r — <2) + + z"0), etc

(4. 4. 5) * iv$t (x* ; L) = f; cg>+, (te;^) - z;^, [a J

sin T

sin



906 MIKIO SATO, TETSUJI MIWA AND MICHIO JIMBO

where v\ [a] =vl(— (x* — a)~+ z'O, (x* — a)+~ z'O) , etc. In deriving

(4. 4. 4) o we have used the formula

(4.4.6) g-«»(«+«-1)= JH

= 2

Set

(4. 4. 7) Y** = {(*lf .

(4. 4. 8) Y»- Euc =Yn'c

We shall see in Section 4. 5 that the wave- and r-functions are analytically

prolongable to the domain of the form (4.4.7) (e.g. (x*9al9 •••,an,x)

ey/t+2,c £or WB(x*,x\U)} , in particular to the corresponding Euclidean

region (4.4.8). Moreover they are bounded in the limit Im(;r* — a^)±

— > — oo, Im(x — a) ±-> + °° (l^^^w) and Im (o« — ̂ ) ± — > — oo (l<^ju<^v

<zri) . Hereafter in the Euclidean space XEuc we often write the variables

( — x~,x+), ( — x*~,x*+) and ( — a~9a^ as (£,£), (2;*,^*) and (av, av}

respectively. The Euclidean continuation of ?VB(X*, x\ L) is also denoted

by the same letter WB(Z*, z\ L), and similarly for u)By, WB» or fB-

Set now

(4. 4. 9) WB (x*, x;L)= UWE (^*, x\ L) /r* (L) ,

w)^ (jc ; Z/) = 2 sin TT^ • t^5/< (x ; L) /rB (L) ,

&3fl (x* ;L)=2 sin TT/, • *>%, (x* ; L) /r* (L) .

The local expansions (4. 4. 4) 0^^ (4. 4. 5) *y then imply that the Eucli-

dean continuations of (4.4.9) are multi-valued on X' =XE"C— {(av, aj) }v

=!,...,„, having the monodromic property (3.2.3). This is in fact an im-

mediate consequence of the commutation relations (4. 3. 28) , (4. 3. 29) ,

(4. 3. 37) and (4. 3. 38) among the <p- and the free 0- fields (cf. § 2. 2) .

Summing up we have

Proposition 40 4, 1. For Il9 • • - , ln(=C—Z, the Euclidean continua-

<*> vf = v-j for all jeZ.
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tions of wB(x*,x\L), wB/t(x; L) (1<[#<5#) and

<Ln) provide linearly independent elements of T^'/z\a^*:^™ct and of

^f/a^V:.*£'n
stnct respectively. They are canonical in the sense c^ (WR)

= 1, c^ly(wB) = 0, c*\,(®Bf) = <?,„ and c*% (w$J = 8,v. In particular if

&<7i> • • - , 4<£ + l for some k&Z, they coincide *with those VQ(Z*, z\ L) ?

vft(z; L) and vff(z*;L) constructed in Chapter III.

Remark. Strictly speaking we must impose a restriction on the re-

gion of x*, x, av and lv. For the precise statement see Section 4. 5.

In particular, from (4. 4. 4) 0^ (4. 4. 5) ̂  we obtain the following ex-

pressions for aQv (z* ; L) , etc. in Section 3. 2 in terms of field operators

(cf. (3.2.12)):

(4. 4. 10) a0y(x*; L) -7

,2 sin 7r

«AV (L) = 2 sin TT^r^ (L ; lfl, - lv

A, (L) = - 5^ + 2 sin TT^r^v (L; /^ - Z,) /r5 (L)

where we have set

(4. 4. 11) r^(L; /, /') =<^(a i ; A) -^f* (a,; /,)

•••^f ' fe; O •••^(^w; 4) > C^v)

= <^JB(a1; ZO •••^h'fe; y •••#B(*»; 4)

Note also that (4. 3. 41) implies

(4. 4. 12) «-^— rlos

Formulas for the Fermi wave functions are obtained similarlye

We set w^ (x*, x\ L) =t (IWF±+ (x*, x; L) , WF±. (x*, x;L)). Assuming

-- (v = l, • • - ,« ) we have
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(4.413). ^(^X,L

(4. 4.13), ze^O*,.*; L) =

(4. 4. 14) ̂ , W^ (^ ; L) =

2 cos

(4. 4. 15) „„ «;?„(**; L) = - "*>W -g^\IX]
2 cos nlu

+1] cff+y Ol>) ' wz,+j [«v] + Z] ^?2+y C^*/.) ' ̂ -1,+y IX],j-o y=i

M . f™* ̂  - n

2 cos

where wj [a] = z<yz ( — (x* — a) ~ + z'O, (x* — a) + — £0) , etc.
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We set

(4. 4. 16) WF(X*, x\ L) = rciwF(x*, x\ L)/rF(L),

wF/t (x\L) — 2i cos nlfl • IMF/* (x; L) /t> (L) ,

w J^ (x* ; L) = 2i cos nlft • w^^ (x* ; L) /t> (L) .

Proposition 4. 4. 2B For Il7 • • • , ln G C- Z-j- ̂ - ^Ae Euclidean

continuations of w^ (x*, x\ U) , wF#(x'}U) (l<±ju<^ri) and w%fJL(x^\U)

(l^/^^^) provide the canonical independent elements ofW^^^":^^^

and Wf^.^f™1 respectively. If k-l/2<lly •-, ln<k + l/2 for some

k^Z, w^ (z*, z\ L) y wFfi(z\L) and tw%fi(z^\JJ) coincide "with those

-w^ (z*9 z; L) , r w f t ( z \ L ) and zv*(z*:,L} in Chapter III respectively.

(4. 4. 13) o— (4. 4. 15) ̂  and (4. 3. 73) now yield the following (cf .

(3. 2. 22) ) .

(4. 4. 17) oj

> JF± (x* ; L) .
2 / 2 cos

=2i cos nip - r , Jv (L • lf, -/„ + !) /r ^ (L)

where

(4. 4. 18) rF;v (L ; Z, Z') = ± <^ («i ; O • • • pf* (^ ;

(4. 4. 19) _- - -log rF (L) = ̂ 1v+
~

9 (maf)

Notice that (4. 4. 11) and (4. 4. 17) give different expressions for the same
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quantities a(L), @(L). More generally by virtue of the isomorphism

(3. 2. 15) we have the following relations between the Bose and Fermi

wave functions:

(4. 4. 20) <**(**

(4. 4. 21)

(4. 4. 22)

The connection with the deformation theory enables us to express the

r functions in a closed form in terms of solutions of the non-linear total

differential equations (3. 3. 24). Namely from (4. 4. 11) and (4. 4. 17) we

have

(4. 4. 23) -d log r*(L + — ) =rf log t>(L) =0
\ /& /

where o) = o)(L) denotes the 1-form (3. 3. 57), corresponding to w = w(L).

As we shall see in Section 4. 5, the r-functions satisfy the boundary con-

ditions tB(L), t>(L)— »1 as 1^ — aj->oo (#=£y). Hence (44.23) implies

further that

(4.4.24)

Remark. The relation (4. 4. 24) is intuitively an obvious consequence

of the formulas (1. 5. 7) and (A. 31). Observe first that the symplectic

vector space WB in Section 4. 1 and the orthogonal WF are the same
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objects in the /^-representation, including the holonomic decomposition

y*©y Moreover the rotation T1 induced by (PB = (PB(&', ^ + ~Q~) is identical
\ ^ /

with the one induced by <pF = (pF(a\l). If we denote by (I±E)/2 the

projection operators onto y* or V9 (1. 5. 7) and (A. 31) yield

(&By2 = nr (<PB) det

V) det

Noting <^^> = 1, ((pFy = l and jE2 = l we see that nr ((pB) -nr (^) — 1.

Hence (4. 4. 24) applied to the products (pB(ai\ l\ +-Q-) "•^(^n; ^ + -9-) and
\ ^ / \ ^ /

VFfai', li) "%<pF(a>n\ 4) shows that their expectation values are mutually

inverse.

We shall now generalize the above discussion to include n(ii —1)/2

parameters A. As shown in I (or in Appendix to this Chapter) ? in in-

vestigating the vacuum expectation values of the form ^(7r"0O, ^ 'LS

natural to consider an extended sympletic or orthogonal space parametrized

by a symmetric matrix A= (AAJ;) with by = l (v = l, • • • , ;z). Let el9 --,en

be a basis of Cn. We equip it with a symmetric (possibly degenerate)

inner product by setting (0^6^ = ̂  (#, V = l, • • • , T?) . Consider the

sympletic vector space TVs(yi) — (T^g^C2) (X)C7, where the inner product

<( , )^ and the expectation value •( >j among the ideal basis 0(/i) (u)

= 0(M)(H)^/i> ^'^(u) =$*(u)®eM are given as follows.

\2xud (u

(4. 4. 25)
\<^--'^;,gr'^a )?A \<P'"v ' \u) , <p-

/ 1\
•o,

I

We define operators ffi (x) , <fifw (a:) ((4. 3. 5) - (4. 3. 6)) , <p&

tfP> (a; 1), tf*v (a; I) ( (4. 3. 11) - (4. 3. 13) ) and 0#>Mi (a; J) , ^1.

<?%\;iz (a\T) ( (4. 3. 30) - (4. 3. 32)) by the formulas cited here, using
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0*(v)(&) in place of (f)(u), 0* (u) respectively. From the definition

(4.4.25) and the condition ^vv = l, it follows in particular that the ex-

pectation values (and hence the inner product) of ^ (u) — k^™ (u) and

0 ( v )(w')> 0*(V)(O vanish identically:

, = o ,

<0*w («') (0*> (u) -^w («)) >. = 0 ,

and similarly for 0*(^ (#) — A^0*(y) (#) . This observation leads us to the

following consequences : (i) the local expansion formulas (4. 3. 26) -

(4. 3. 27) , (4. 3. 33) - (4. 3. 36) are valid for the products 0(v) (x) <p$ (a; t) ,

etc. having the same superfix (accordingly the right hand sides of the

formulas should be superfixed by the same v) , while (ii) products

(<t>(l* (x) — Afly<t>M(xy)<p$ (a\ /), etc. with different //, v cause no singularities

at x = a. To see (ii) we note, for instance,

(4. 4. 26) Nr ( (<fi<* (x) - ^M (x) ) <pg> («;/))

= (0"" (x) -W (x)) .ef"

/ [a] ,

and so forth.

Thus the commutation relations among the ^-fields and the free fields

0(<u) (x) , 0*(/<) (j;) read as follows. For convenience we use the vector

notation $(x) = (0CB (a:) , • • • , ^ (x) ) , <?* (j:) = (0* (1) (x) , • • • , $** (n) (x) ) .

(4.4.27) ^'(«

x<$>a;r if ^+>a+ and x-

if a:+>fl+ and

(l')-1 if x+<«+ and x~

Here we have set
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(4.4.28) M,(/)±l = l+(e±WI-l)JE,^

V

Likewise 0£?iy (a; I) and ^j? (a; /) (/eZ) satisfy (4. 4. 27), where

(p$(a\l) are replaced by ^^ (a; Z) and ^f+^C^;/) respectively.

We now consider the 72X72 matrices ze;5(^;*, .r; L, A), ws(x;L,k) and

ze;jf(.r*; L, ^4) of wave functions, whose (//, v)-th components are given by

(4. 4. 29)

We set also

(4. 4. 30) tg(L, A) =tcBfa9 -~,an; L, yi) = <^1} (a!; ̂ ) • • • ̂ n) (^n; 4) >vi •

From (4. 4. 4) 0~(4. 4. 5)JV we may readily write down the local expansions

for (4. 4. 29). Assuming Il9 • • • , ln$£Z we have

(4. 4. 31) „ ro,(x*,x; L, A)^-tB (L, A)-A-v0 [>*]
7T

(4. 4. 31)

where = signifies "modulo single-valued regular functions", and Cy

C*^(zf5) denote matrices with entries

Similarly we have

(4.4.32), 7^(x;
2 sin
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;

2 sin;

(4.4.32)* *w|(^*;L,y
.7=0

2 sin

2 sin 7T.L

Set

(4. 4. 33) ^)B(^, ̂ ; L, ^) =7Tic;a(^*, ^; L, A)/rB(L, A) ,

WB (x\ L, A) = 2 sin nL -WB(X\ L, A) /rB (L, A) ,

'&$ (x* ;L9A)=2 sin nL • lw% (x* ; L, ^) /ra (L, ^f) ,

and denote by xe)^ (a:*, ̂ :; L, A) , wBfl (x\ L, A) and tWBfJL (x* ; L, A) the

corresponding /f-th row vectors of (4 4. 33) .

Proposition 4. 4. 30 For 119 • • • , ln^C— Z, the Euclidean con-

tinuations wBv (z*9 z;L,A)9 wBfl (z; L, A) (l5j/^;z) and ze)^ («* ; L, /I)

provide canonical independent elements of W^^"^.:^^ (A, ^(y)) (A(v)

= Wiw- ,O=v-^ row o/ J) and of W%^f?**(A) respectively.

If k<^llf • • • , 4<C^ + 1 /o^" 5om^ k^Z they coincide with vQ(L;A),

vv(L\ A) and tVv(L, A) respectively.

In particular we obtain (see (3. 2. 41))
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(4. 4. 34) a*(L, A, A,) =7

A, (L, A, A,) = * frjg (** ; L, ^) „„ ,
2 sin nl,

a.,,, (L, A) = 2 sin ?r^ • tg^ (L,A;lfl, -/„ + !) /rs (L, A) ,

&, (L, /i) = -<?„„ + 2 sin ?rZa • ra;, (L,A;lf,- /„) /ra (L, ^) ,

where

(4. 4. 35) ra* (L, ̂  ; /, Z') = <^« (a, ; /O • • ̂ f<"' (a, ; /,) -

(4. 4. 36) — - - -log rB (L, 4) = - Cl;/1 (<& a) „ ,
~

— log rs (L, A) = - cf,
+

A
a (ma+)

The orthogonal case is quite parallel. We set

> oo, r> cox, <0ww,0*w («o
' '

and define (p*jP(CL\ I), etc., similarly as in the symplectic case. The Fermi

wave functions wF(x*9 x\ L, A) — (eivF^B (x*, x\ L, A)) SiB*=±9 WF(X\ L)

=£ (*«>*•-,- (^:; L) , £WJT_ (x; L) ) , te;f (x*; Z>) = (wj^. (x*; Z/) , wj_ (x*, L) )

are now 2nX2;x, 2nXn and 72X2/2 matrices, given by

(4. 4. 38)
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WF±(X;L, A^ = <^Oi;l

w*F±(x*;L, /i),,=<^

The r function reads

(4. 4. 39) rf(L, A) = <^> (a,; /,) -^ K; 4) >, .

Assuming Zl5 • • • , Z^^Z+1/2 we give local expansions for (4.4.38)

(4.4.40)0 wr(x*,x;L,A) = ~?r^(L; A) ( - @f [3:*],
7T 2

(4. 4. 40), z^'O*,*; I-,^)*5

(4.4.41).

; L, A) = ~r' > E,A • w_lf [a ,
2 COS ?!/„

,,., (w,) £^ • tw_,.+/ [a J + S Cy. , (te;,) £

2 COS 7T.L

(4. 4. 42),

2 cos 7

x; L, A) = ('wr±, + (.x*, x;L, A), W±>-(**, x; L, A)).
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2 cosTtL, '

Therefore if we set

(4. 4. 43) fcS?5 (.r*, *; L, /i) = niwP (x*, x; L, A) /r, (L, ^),

fy j- (x; L, A) = 2z cos ?rL • TO^ (x: L, /I) /T> (L, /i),

' w £ (x*; L, 4) = 2i cos ?rL • 'w$ (x*; L, A) /rf (L, A).

Their ,«-th row (resp. column) vectors w(f^ (x*, x; L, A), wFu(x; L, A)
(resp. w'f" (x*; L, A)) provide the canonical independent elements of

W^l^S^lct(A,^} (resp. WJ;^;:::>;strict(^)) in the sense that ^0)O£>)
= 0, cLvi,(TO^)=0, cLt(w^)=^, c^CK>|J=^v. In correspondence
with (4. 4. 16) -(4. 4. 18) we have (cf. (3.2.44))

(4. 4. 44) oiL + l 4 A, =JwX0Jw(j:*)pg)(fl1; ^) -^+1(a.; /,)

—
2' ' '/ 2cos7rL

(4. 4. 45) a,.L + ^ = 2» cos itlf • r,. (L, /< ; ̂ , - /, + 1) /r, (L, ̂ ) ,

+ ~, yl) = -^. + 2* cos^-r,. (L, yi; /,, -l,y-c,(L, A)
\ £* '

where

(4. 4. 46) r,* (L, ^; Z, Z') = ± <^ (fll; IJ-tf*™ (a,; lj

The relations (4. 4. 19)-(4. 4. 23) are all valid with obvious modifications.

Our original cases (4. 4. 1) - (4. 4. 3) are obtained as the special case
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AAJ, = 1 for all jU9v = l, -~,n (cf. Proposition 3.2.14).

Consider now the most general wave functions

(4. 4. 47) <0*<**>...0*<*-tyiP^^

(4. 4. 48) <0 .̂..0£^

In (4.4.47) we have set 4*<** = <p*<**(x*), ?$>

and the fields <pmv*\ which stands either for <P?$% (&t>t'9 h^ or f°r

q^&*> (ayk\ lyj) 9 are placed at V = vl9 •••, vm. Similar convention is used in

(4.4.48), where £?,£,= + or -. Notice that (4.4.47), (4.4.48) re-

duce to 0 unless k + m + l and the number of the starred operators <f>*(Ki\
^B*<vfc> ^or ^<Kt^ ^F#O»P^ are JJQ^JJ even> By the same reasoning as above

we see that the Euclidean continuation of (4. 4. 47), viewed as a function

of (zl9 zd = ( — xf, #1"), gives a #rth element of a function belonging
ft

to T/t/r"»***»®»*i»"*»*»»8tr*c't //f 3 J? \ /TNTT/O.^."sin.strict / A 1 \ (1 =AT—th
,«i , ,«*, i, ,aw > t> > i ^^^ ,zf ,«!,-, „ «

row of yi), and hence is a linear combination of wB(zf9zl9L9A9^Ki))Kift

(l<=z'f^&), ze^BO^; X/, A) jnfti (l^A^^). The same argument applies separa-

tely to each variable xf or x$. Indeed we have the following formula,

which is a direct consequence of (A. 27):

(4.4.49) ^f*'^»t M^

0

te)^
= Hafnian

0

where w^1*"'^* denotes (4.4.47), and
*.*l,"S**»Ai,-,*l V • • />

(4. 4. 50) ze>k* = wf (x?; L, A) Kv/tB (L, A),

9 xft; L, A) Klt/rE (L, A),

L, A) yfl/rB (L, yl),
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Note that tf = r^ (L, A; I,, — ly)/rB(L,A) if <p*^' is starred and <pB(y) is

not. For a symmetric matrix faii)i^ij^k we set Hafnian fay) = 0 (k:

odd), = XI ajih'"ah-ih (^: even), and the lower triangle of (4.4.49)
pairings

is omitted under the convention that the matrix inside is symmetric.

Likewise in the Fermi case we have

(4. 4. 51) tf>£'**'* *

0

= Pfaffian

0

Again w^*'"'"* stands for (4. 4. 48) , and& JT «!-%, ^.../^ v / '

(4. 4. 52) ®'r* = «;> fe* ; L, 4) KV/rF (L, A) ,

*e>F*^ = tc;̂  (x* 9 X f i \ L 9 A) Rfi/rF (L, A) ,

w^ = wj- fa ; L, J) ^/rF (L, A) ,

In (4. 4. 51) and (4. 4. 52) we have omitted to indicate £*, % for simpli-

city. For a skew symmetric matrix (<2#) i^i./^fc we set Pfaffian (<%) = 0

(*: odd), = J] sgnO1^2;::^)^^."^.^ (*: even)^, and the lower triangle
pairings

of (4. 4. 51) is omitted under the convention that the matrix inside is

skew-symmetric,

Formulas (4. 4. 49) - (4. 4. 52) tell that the quantities wB(x*9 x\ L, A) ,

WB (x\ L, A) , w| (x* ; L, A) , *•*;„ (L, 4; lft, — 4) and their Fermi versions

are elementary. On the other hand, these are characterized by linear and

(*} As is well known (Pfaffian A)2=det A, but Hafnian A is not related to det A.
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non-linear total differential equations according to the results of Chapter

III. Thus we have a complete characterization of arbitrary wave- and r-

f unctions.

§ 4. 5o Convergence of Products

In this section we exploit the product formula to define rigorously

the product of our field operators. In particular, we obtain infinite series

expressions for r functions and wave functions. Our idea of convergence

proof is the same as that of Section 2. 3. Contrary to the divergence of

(2. 2. 28) in 1-dimensional case, r function itself has a convergent series

expression here. We shall mainly deal with the symplectic case. The

orthogonal case is similarly treated.

Following the notations in the previous section, we set

(RS>(u,u') \
(4.5.1)* RB(u,u')=\

\ RF(u,u')l

where R& (it, u') =RB (u9 u' ; /„) ̂ -^c^-Cu+^^+Cu-1^-1))

u + u' — iO

(4.5.2), A,(«X)

,i0 (-*) 0

From (A. 24) we have the following infinite series for

(4.5.3) logr f i = 2y]— I ••• I dur-duzi trace AB(ul9
&21JJ —- —"

i-i, u2{)RB(u2l, uj.

We set S^= ±1 if /JL^V, =0 if ^ = v, and define
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(4. 5. 4) epv (u) = A^e^fl ( - e^u)

0/2 + (6 flf -1)1 y

(4.5. 5) B £„(«) = («„, («))„.,-!.....»,

/2 si
(4.5.6), P, («,«') =

2sin7rf u-u

Then (4. 5. 3) is rewritten as

(4.5.7) logr, = 2£

X trace

Let C70 be a relatively compact open subset in Yn'c X C*X Cn(7l~1)/2

where we identify C71 and C7l(ri~1)/2 with the parameter spaces {L

= (SM fl.v=i.....n} and {>!= (A / tv)AiV=li... inU^ = ̂ , ^v = l C«, v = l, ••• ,»)} re-

spectively.

We denote by E^v and Pv the bounded linear operators in L2 (R X R)

= L2(RXR', (du/2it) X (du'/2K) ) given by

(Ef,f)(u9u')=elu(u)f(u9u')

and

^ . B
2;r u — u+iQ

respectively. We set also

Ci= max

C2= max sup|||PJL2(jKxJS),
y=l,»-,n U0

where ||| • |||L*(,RX.R> denotes the operator norm.

Proposition 4. 5. 1. We assume that CjC2< — . Then the right
n

hand side of (4. 5. 7) is uniformly convergent in U0.

Proof. The integrand of l-th term in (4. 5. 7) consists of nl functions

of the form
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(4. 5. 8) Ff,..fl(ult -, «,) =

2 sin 7rLa , x 2 sin

It is sufficient for us to prove

for some £ such that 0<£<1, and C>0. Without loss of generality we

assume that e/» l / t l-£Al/is= — 1. Let m be the integer such that 5^, • e^,

= -"=^-1^
£^m+1

 = 1 and ^m,m+1.£^+lX/m+2--l. Then we have m<Z.

We assume that ^ftl^= — 1. (The other cases are similarly treated.)

We set

(4.5.10) /1(«1,«wtl)= P-^-- fJo 2?r Jo
dum

Jo 2n

X

(4. 5. 11) ffl («m+1, «0 = ̂ ltei («m+1) f " ̂ =±L- - - f ̂
J-°° 2n J-°

For («!, • • • , <2n) €E Y71'^, e^v(u) is exponentially decreasing as e^ |— >0 or oo.

Hence

and

belong to L2(RxM). We set

3= max sup
^,v=l,.»,n J70
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±= max sup

where IHUac/e ;jz> denotes the norm in L2(RxR). Since fi = Pf,zEflzfl^"-

P,mfQ and g^E^^P^-'-P^g, belong to L2(RxR), we have the

following estimate.

r r^
J J Z7T

Thus we have shown (4. 5. 9) .

Choose vl9 • • - , vk so that l^v1<y2<-"<vfr</2. Let us consider log r/?

in the limit

(4. 5. 12) min lm.(av.+1~av.)
 ±—>oa.

i^j<fc ' J

We denote by yly+1 (/ = 0, • • • , ̂  — 1) the submatrix M^.+i^.+r-'

(V0 = 0), and by Z,/+1 (; = 0, - • - , * — 1) the submatrix (^W^

Since in the limit (4.5.12) eftlf(u) tends to 0 except when

^v/+] for some ./, the following cluster property follows from Proposition

4. 5. 1 and its orthogonal version.

Proposition 48 5B 2B J^ the limit (4. 5. 1 2) we /z^?^ /or * = B or

F

(4. 5. 13) * Km log r* (a^ • • • , an ; L, /t)

&
= 5 log r* far19 " "J a»/*i ; ̂ ' ^^ *

Denoting by ^ the exterior differentiation with respect to (aly • • • , an) ,

we have

(4.5.14) Jlogr a=S f- (dUl
1 = 2 J J
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X trace AB(uly u2)RB(u2y uz)---AB(u2l_ls u2l)dRB(u2l,

X ( — 2z sin nlid ( — f>
\

— 2i s in7tlnd(—m<z~)

+ trace HI 1EB (u^) PB (ul9 uz) -••EB(ul)ul
1

— 2i sin nlid (m af)

— 2i sin 7tlnd (

Once the convergence of log rB is shown in a region, log TB is analyti-

cally prolongable as long as Jlogr^is convergent. Hence the following

propositions improve the estimate of the domain of convergence of (4. 5.

7).

Proposition 40 5, 3e Let U0 be as in Proposition 4. 5. 1, and set

Cs = max sup || e^ (u) • 2 sin nlv \\L-un
ft,v=l,—,n U0

if C5< — > (4. 5. 14) is uniformly convergent in U0.
n

Proof. If we denote by EB (resp. Ps) the bounded linear operator

in L2(K)n given by (Erf) (u) =EB(u)f(u) (resp. (Prf) (u) = J_°° du'PB(u,

u')f(u')) for f(u)=t(f1(u),---,fn(u))^Lz(R)n. Our assumption im-

plies that \\\EBPB\\\L2(R)n<,l. We denote by ^ (resp. jv) the fjL-ih row

vector (resp. the y-th column vector) of EB(u). Denoting by ( ? ) the

inner product in Lz(R)n, we have

f"
J_o

where Ce = ||fc/l||L.(JB,»|||PJ|i.(jB,»|j1,|U.(jB,.. Hence 9 log rB/d( — ma~) (v = l,

-•yri) are uniformly convergent. Likewise we can prove the convergence

of the other half.

Let U1 (resp. C72) be a relatively compact open subset in Cn (resp.
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(4.5.15) max sup | Re (/„-/
fj.,y=1,—,n U1

For L= (8^1^)^ „=!,... >n^Ui we set l'v=lv—-y-( max Re ^4- min Re Z^
" ft=l,—,n p=l,—,n

Then (4.5.15) implies that iReZJK— . We set
£j

(4.5.16) 4,(ti)=ev(u)\u\1'-1',

(4. 5. 17) a Ei («) = (<4 («) ) *,-i...,. ,

(4.5.18)a

We denote by £B and P'B bounded linear operators in Lz(K)n given by

and

respectively. The boundedness of P^ is proved in Section 2. 3. We set

C8= max sup
^,^ = 1,— ,71

Now we have

exp - ni

r
j-o

where

Hence we have the following proposition.

Proposition 40 5. 4* We assume that C7C8< — . Then (4. 5. 14)
n

is uniformly convergent in any relatively compact open subset of

Yn'cXU1XU2.
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Remark. The complexified Poincare group acts on (Xc)n by (af ,

ai, "', a+, a~)^->(ca? + b+, c~la±+b~, • • • , ca+-\-b^, c~la~ + b~) , where c

=7^0, b±^C. log TB(al9 '", #«; L, A) is invariant under this action. This

is obvious for the translation (c = T). If c^l, we can deform simultane-

ously the paths of integrations. Then the homogeneity of RB (u, u' ; Z) ,

RB (cu, cur ; Z) = RB (u, u' ; I) , assures the invariance. In other words, for

sufficiently small AA/s and Z/s log TB is analytic at (al9 "'jO,-^ as long as

for some 6 the following condition is satisfied.

Im ( e ± t 9 a f ) <Im (e±teaf) < - <Im (^±4 X) .

In particular, if al9 -~,an are real and satisfy ai<^'-<^a%, a^^>'"^>a^ or

^i">'">^n> <2r<"'On, log r^ is analytic at (al9 ••• ,an) . Also we note

that log r,B is analytic if

Im af < • • • <Im a^_! = Im #*<••• <[Im a J

except for a^ = a^ or a^_i = a~.

The infinite series expansion for the wave function Z£;5(^:*, .r) =

tvs(x*, x\ al9 • • • , «2n; L, ^() is obtained from (A. 28) . Setting

(4. 5. 19) £?*(» = -e^\u\-l^(u^e-im{^-a^u+(x-a^u-1}
9

e*' (x) = \il\-
l^(-l^e-

im{(x-a^u^x-a^u-1\

ev(x) = | « I1"-1!? (a) g"*<(*-^)-«+(*—v)^>j

£ (X) ===tf-^|«| l'-1fl(-«)^»«*-«,)-« + <*-a.)*«-^

we have

We fix (aly --9an) in y*.Euc= yn.e n (X^^and choose (L, ̂ ) so that

the series ^PB(EBPB)1 is convergent. If Im(.r* — aA) ±<0 (resp. Im(aAz=o
^f(^:*) (resp. e^(x)) belongs to L2 (R) as a function of u.
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Hence if Im x^±<J.m af and Im &*<lin x~, (4.5.17) is convergent. We

consider the analytic behavior of *WB(X*,X) when (x*, x)

Theorem 4. 5. 5. We set ^ = (^, • • • , ̂ n) and A(v) = (^ • • • , A,,) .

The />th row vector of WB(X*, x) belongs to WB'x(\'a'1',
l.^an (A; /l^) as a

function of x. The v-th column vector of WB(X*,X) belongs to

Proof. We fix x* in XEuc so that Im ̂ *:n<Im af. Abbreviating

a,\k) to ^(^ = 1, .»,«), we set

„, . _B(} "
Corresponding to (A. 28) and (A. 29) , *w'B (x) ftv has two analytic expres-

sions. The first one corresponding to (A. 28) is as follows.

(4.5.21)

v e'n (x) Xnv 1

By the same argument as for (4. 5. 20) we know that (4. 5. 21) is analy-

tic if Im fljjjLi<Clm x±<^Im af. Moreover the Euclidean invariance assures

that (4.5.21) is analytic if Im a^Li<^Im x±^Im a* except for x = ay-l or

x = ay. (See the remark below Proposition 4.5.4.)

The second expression for

which corresponds to (A. 29) is as follows.

(4. 5. 22) ^ ("du g-'-«''-a'>--+«'*-')*"-1>f,.(j:-a,; -«)
Jo

+ f |^ (A^e? (x*), -, A,ne* (x*) ) f] PB (ESPB~)l

J 2?r 1=0
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X

»-i(adh-i£i,(x—a»'9 —u)

0

The proof of coincidence of these two expressions given in the Ap-

pendix works here, for it consists simply of algebraic manipulations of

bounded operators. Hence (4. 5. 21) and (4. 5. 22) give the same analytic

function. From the second one we know that the local behavior of

WB(x)flv at x = av is of the form

An analogous argument for WB (x) ft9 shows that w'B (x) ^ and WB (x)

coincide if Im x* =Im a* and ReC + t̂:'11) >Re (±a*) .

Now let us consider the differences

- - - - A _ , , , .

„..„„_ - > . . . > - "'* * ( } " '

where the quotients of expectation values are defined by using (A. 29) ,

or equivalently (A. 30) .

Since we have

Nr ( (0""' (x) - ,̂0" (x) ) $») = Nr (^ (?5("" (a) - J,,,0 w (^) ) )

we conclude that wi(^)A;VV' and ^B(^)H\V^ coincide and are regular at

x = av. Hence all wave functions of the form

are analytic continuations of ivB(x*9 x) fl^. The local be-

havior of w5(^:*,^:)^ at ^ = jc* is known from the expansion
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Since lwreg(x) is regular at #==,2:*, w5(.r*, a:) AV has the desired property

there, hence everywhere in the finite plane.

It is obvious that wB(x^9x)MV satisfy the Klein-Gordon equation. It

is also easy to see that the L2-norm of e^(x) is bounded if Im(x — a^) ±

>£>0 01 = 1, • • • , 7 2 ) . Hence WB(X*> x) IJLy is bounded there. Likewise the

monodromy properties and the Euclidean invariance imply the boundedness

of IVB(X*, x) MV as \x\— >oo. Thus we have proved the first half of Theo-

rem 4. 5. 5. The second half is proved similarly.

Remark 1. If we choose (L, A) so that max |Re (lft — Zv) |<C1
ft,v=l,—,n

that the series £] P'B (E'sP's) l is convergent, then (4. 5. 20) is uniformly
1=0

convergent in any relatively compact open subset of

* (l^<v^w) } X C72 X C72 .

Since we have proved the existence theorem for wave functions in Section

3. 2, r functions and wave functions are real analytic with respect to arbit-

rary, distinct x*, x and alt ~-,an as long as A is real and positive definite

and 0<7V<1 (v = l, • •%;z ) . For example, for n = 2, this condition says —1

<A<O where A= ( , - , ) . We note that the convergence proof in this\A I/
section cannot cover this interval if \al — a2\— >0.

Remark 2. As mentioned above in the proof, once we have establi-

shed the convergence of the infinite series, the formal arguments in Section

4. 3 and Section 4. 4 survive as rigorous ones. In particular, the associa-

tive law

(4. 5. 23) <>j • • • <Pn> = Or • • (<£W+i) • • • <?n> ,

(4.5.24) = ft...
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are valid as long as they are convergent, since (4. 5. 23) and (4. 5. 24)

follow from changing the order in summation of Jj trace (ABRB) l and
1=0

2 {RB(ASRBY} ,v respectively.
ft, V = l

We shall list the infinite series expansions for several ;z-point func-

tions in Section 4. 4. In the sequel we assume that Im af </ • • <CIm &%•

5

(«,) (0 + *«)«'«, -,0,

f-
J
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7T
»_,,+,._,_,(- («„-«,) -, («„-«„) +)

+ f 4^ ( W O,) (0 + *«) l<+*, -, 0, A, ,+1«*+1 (a,) (0 + i«) '••", - - •)
*/ £K

f ~ (^ef (fl.) (0 + »«) «'+', • ... 0, A, ,+1e*+1 (fl.) (0 +
J 2?r

Now we abbreviate cp$ (av\ lv} to (p$ (v = 1, • • • , n). we set

( 2i cos nli \ -i
•-. _ H^r

2i cos nln/

Denoting by £ and £* the sign + or —, we have

^4. O, Zidj -p

Svni £iri/2 "5
= ^_^_(g!([+e}i (— (X — X) , (X —X) )

^/
* — * ~ f ^ — f - * j I / / \ x r k - \ e £i=° I —ev,(x) (O — iu) z
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(4. 5.26) F

— f>f (-r\ (f\ — iii\*^l I"&„/ I ~L,) \\J LM,) AU'U I
, ^ \ / \ / /

(4.5.;

*,(^*) (0+

28)

+
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5 29^ )
.0.29),

= f — ( - A**?' (*„) (0 + in) l*+*, • - • , 0, ̂  v+1**+1 (a,) (0 +
J 2n

Remark 1. The identities (4. 4. 18) - (4. 4. 20) are directly checked

from the above formulas.

Remark 2. If we set A//v = l (X v = l, • • • , w), the above formulas

give corresponding ones for rB(L), ws(x*9 x\ L) and so on.

Example (2-point functions). Let us carry out the calculations for

2-point functions in more detail. We set

A = lai ] L=tl* ] A = f1 ^
\ a,/' \ J' ~U I/

and I — 2wz v — (#r — ̂ a") (^r — ̂ 2") •

Writing down the formula (4. 5. 7) in this case, we have

(4. 5. 30) log rB (L, A) = £ J^Z_g wlf (^)

(4.5.31) *{fc)(*)= f .,- f^i . ^fc
^7T 27T

o

X f
U1

JrU2

and the parameter 1 is given by

(4.5.32) l^WsmTr

In (4. 5. 31) Ukl signifies u^1 for even k and u\ for odd ^. Expressions

for the expectation values among the ^-fields are obtained by applying
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(4. 5. 23)B, (4. 5. 24)B. For k = Q, 1, 2, ••• we set

ru1 duk(4.5.33) /{*>(*)= f
J 2n 2n

yA

'« = f "-f-r^J J 2;r

Xexp — —
<o

U1-\-U2

It is easy to see that (7?*11' (0 =ff?f+1) (0 , /ffii W =ffP'

Set further

(4. 5. 34) /, (* ; 1) = ]

= ]

Notice that ft, At— >0, Sfi->l as t^-oo. We have then

(4. 5. 35) «<» (fll ;

(4. 5. 36)

, A)
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(4. 5. 37) «<» (fll; A) ̂  (a, ; /,) >Vr B (L, ^)

where the left hand sides are identified with their Euclidean continuations

to -Or-tf2-) -^(0+7r/2)/2>72, af-at = te~i{°^/2m, and e = ^

c J= vsin Ttli sin 7rZ2. From (4 4. 35) , the coefficients F, G of the holono-

mic system (4.3.22) for w(L — — ; A\ are given b}^

(4.5.38)

f~* /"* I 1 7

with c7 = Vsin TT/j/sin 7T/2.

Comparing (4. 5. 38) with (3. 3. 42) , we have

(4. 5. 39) f±l(t; 1} = ~-(c'Kl(t; I))*1 (t^'^^ltavh ^(t; 1),
t \ at

h j ( t : 1) =sinh 0, (/: 1)

where /C = /Cj (£; I) , 0/ = 0 / ( ^ ; A ) satisfy

(4. 5. 40) * -—log £ = / tanh20

= iltanh 0 (1 - tanh'0) + — sinh 20
dt dt t 2

In particular if / = Z , — Z2 = 0, then (/» = (/>0( i ; A) satisfies
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~ 2/1Regarding the asymptotic behavior 0 0 (£ ;A)~—K Q ( t ) (£—»oo) we con-
n

elude that our 00(£;I) coincides with <b\t; 0 ,—) in Reference [12].
\ it I

The formula (3. 3. 57) for d log ?B combined with (4. 5. 38) gives

(4. 5. 42) d log rB = - — (t ((*$\2_Sinh
20) --l/2tanh20)dt,

2, \ \\ dt ' ' t '

or along with the boundary conditions TB—>1, 0—^0 (£—»oo),

(4. 5. 43) r B = exp { - — f *ds (s ( (-^-} * - sinh20) - — tanh20) 1
[ 2 Jo* \ \\ ds' ' s ')

where 0 = 0 j ( ^ ; A ) .

Finally we note that in the case of equal exponents li = lz, the

matrices 2? f/, —i-; ̂  = F f /,--i-. L --i-:^ and Cf' 1-^-'~(' l

II—-TJ-',&} depends essentially on the combination A ^ A s i n T T / ! as follows.
^ /

(4.5.44) F^-l^W1 ^^FQ-.ismitrf1 ^ fl 1

\ 2 / V e v' 2 V

sn

where

(4.5.45)

-j (< ; A) .

So far, we have considered vacuum expectation values. Now we

study the product (pB (a^; /O • • • (pB (an I O itself. From (A. 25) we have

(4. 5. 46) Nr,(^> (fll; ̂  -^ (fl.; «)
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RB(u,u') = (R^(u,u'»=f] f..
1=0 J

xRs(u, uJAB(ul9 Uz)RB(u2, u

If we set

(4.5.47) £,.,(«,«')

. e-*-^--*^--1' (« - z'O) ~l>+1

(4.5.48) PB,2 («,«')

2 sing/, . i ( _

we have

(4.5.49) ^(«, «')=-«- («,«')+!: [
z=i J

X ̂ 5jl (

Likewise, assuming (4.5.15), we set

(4.5.50) 2?ifl («,«')

w + ^/ — z'O

(4.5.51) ^,2(^,^)

where l'v (v = l, • • • , n) are given in the proof of Proposition 4. 5. 4. Then
we have

(4.5.52) RB(u,u'}=RB(«,«') + £] f...
i=i J

Proposition 4. 5. 3'. Under the same condition as in Proposition
4. 5. 3, (4. 5. 49) is uniformly convergent in any relatively compact

open subset of UQX {(u, u'} €EC^Im u>0, Im ur>Q}.
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Let Y^ denote the closure of Yn'c, Y^= {(aly • • • , <ZB)

* for

Proposition 4. 5. 47. Under the same condition as in Proposition

4 5. 4, (4. 5. 52) is uniformly convergent in any relatively compact

open subset of Yn'c X U, X U2 X { (a, w7) e C*|Im z;>0, Im «7>0>. More-

over, RB (u, uf) is of polynomial growth as |Re«|, | Re u' \ —• > oo for fixed

Im u and Im uf .

The proofs are similar to those of Propositions 4. 5. 3 and 4. 5. 4.

Remark. In Propositions 4. 5. 4 and 4. 5. 4' the upper bound for C10

may be chosen arbitrarily large if we choose Ui so that

(4. 5. 53) Cii= max sup | sin nlv\
»=!,—,» ITj

is sufficiently small. Hence if we set Aflv = l(jU,P = l, --,n) the original

case of Nr ((pB(^i\ li) •••0>s(fln; 4)) is covered as far as Cn is sufficiently

small. We also call the reader's attention to the difference of conver-

gence domains in Propositions 4. 5. 4 and 4. 5. 47 with respect to (al9 • • • ,

an) „ RB(u,u') is continuous when a^ — <2/{_i tends to 0, but r# is diver-

gent. This is the same situation as in the 1-dimensional theory in Sec-

tion 2,

Theorem 4.5.6. We assume that alt -••,an^XMln are mutually

spacelike and the convergence condition of Proposition 4. 5. 47 is valid

with Llv = 1 (1< ,̂ v<,n) . Then the product (pB (affW ; /ff(1)) • • -(pB (aa(n} ;

^ff(n)) (^"^©n) is independent, of 6. In particular the Euclidean con-

tinuation of {(pE(ai\ 4) '"^E(^\ 4) ) is a single-valued real analytic

function of (al9-~9an) except for a^ = ay (l<^jU<^P<;ri) .

Proof. We set

= <^> exp J J^ff («, u') (f> (u) 0* («') .

The assertion of the theorem is nothing but
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(4.5.54) O,> = <*V>,

(4.5.55) R f f ( u 9 u ' ) = R f f . ( u , u ' ) ,

for 0", 0"'E:@n. Since both <(<£V> and R f f ( u , u f ) depend analytically on L,

we may assume that L is real.

First we assume that ?i = 2. (4.5.54) follows directly from (4.5.

30). To prove (4.5.55) we may assume that al9 <22eXMin HXEuc by Lo-

rentz covariaiice. For x*, x satisfying Im.r*±<CO, Im.r *>•(), we have

(4. 5. 56) <0* (x*) yd (x) >/<p,> - <0* (x*) 0 (x) >

- r [Xdudu/e^m^u+^n^Rff(-tiJu
/^ei^n^s^f'l

Jo Jo ---

From the remark below Theorem 4. 5. 5, we see that <(0* (x*) (pa(t> (x

<£V> is the canonical element — vQ(L) in WJ; lx^'^ci. Hence (4.5.56)
7T

is independent of ff.

Setting

#2 i *1 • 2 _i_ ™1± __ —ix -±_x

have

o = f °°
J-o 2;r 2;:

where

We note that RGa'(pliP1'} is exponentially decreasing as \pl\, \pl'\-*&o.

Hence we have Rff ( P \ p l f ) =Ra- (P\plf), or equivalently, R f f ( u , u ' ) 6 ( — u)

X 0 (zO = ^ff. (z^, u') 0( — ic)0 (uf) . Likewise we can prove RG (u, u') 6 (eu)

X 0 (e V) = RG, (u, u'} 6 (eu) 6 (s V) where £ , £ ' = + . Hence we have proved

the theorem in the case n = 2.

Now we exploit (4. 5. 23) and (4. 5. 24) to prove (4.5. 54) and
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(4. 5. 55) respectively. Since the convergence of Rff (u, #') is assured by

Proposition 4. 5. 4', (4. 5. 55) for n^>3 follows from the case n = 2. As

for (4. 5. 54) we have not yet proved the convergence of <(<^ff)> when

al9 -~,an are real. The domain of convergence for ((pay depends on ff.

From the remark below Proposition 4. 5. 4, we know that ((ps&aa)', I ear)

'••tpsfaffM', J<r (n>)> is analytic when ^OL)>-">fl^(n) and fl7OL)<-"<flT(n), and

that the domains of convergence for <^s(aff(1); £«r<i>)"'^sGz<r(»>; 4cn))> and for

<^Oer<i); 4-a>) •••^3<><r(/+i); 4-(/+i>) <Ps(a<r(j)', lew) ••'PsfaffM', 4cn>) > have a
non-empty intersection. Since they coincide there, we have proved the

theorem.

We shall list the commutation relations among our field operators.

We assume that a^ and az are mutually spacelike. The letters j, k below

will denote integers.

(4. 5. 57) B <PB Oi ; l

(4. 5. 58) B <pB (ai; I?) <pB_l2+k

(4. 5. 59) B cpB (^ • IJ <pf*+J (a2 ;

(4. 5. 60) 5

(4. 5. 61) „

(4. 5. 57) IP <£p («! ; ^) (pF (a2 ; Z2) = <pF (a2 ; 4) ^ (a, ;

(4. 5. 58) F

(4. 5. 59)
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(4. 5. 60) f

(4.5.61),

In order to prove (4. 5. 58) s we recall the reader to (4. 3. 29) . Com-

bining this with (4. 5. 57) B we have

<pB(a*', Is)

0 (x) (pB (az ; Z2) ^5 («! ;

where x is placed near ^n. Then the local expansion at x = az yields

(4. 5. 58) 5. Other cases are proved similarly.

From (4. 5. 57) B we have concluded that the Euclidean continuation

of ((pB(a>i\ li) "'9B(an\ /„) y is single valued. The above commutation rela-

tions provide us with a complete information on the sheet structure of the

Euclidean continuations of several r functions and wave functions given

in Section 4. 4. For example we have

(4. 5. 62) <,~'<pB(al9 a^ li)(pB-iz+k(az, az\ lz) • • • >

= ̂ rtX---?ii(*i;«^ii+*(0i + ^^^

for l^-^Kl. Since <-"0b(*n5i; ^) ̂ 1+fc (a2, a2; Z2) • • • > (resp. <"'^ii+*

(a2, a2: 4) <ps(ai, &i\ l^) •••» is real analytic for Im^j — <22)>0 (resp.

Im^ — a2) <CO) > (4. 5. 62) is a direct consequence of (4. 5. 58) B by analy-

tic continuation.

§ 4. 6. Neutral Theory

In this section we shall discuss in more detail the original case of

(pB(a) , (pF(a) and related fields, which are constructed on the basis of

neutral free fields. As we shall see the operator theory in this case has

physical content.
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The fields (pB(a) and (pp(a) axe introduced in (4. 1. 65) and (4. 2. 44)

respectively. We are also interested in the fields <pE (a) =* (<£?+ (a) , (f>B_ (a)}

and (pF (a) , whose norms are respectively given by (cf. (4.3.44),

(4.3.66))

(4.6.1) Nr (^ (a) )=0±(*) *'*<«>'',

(4. 6. 2) Nr ((pF (a) ) - 00 (a)

As shown in (4. 3. 26) ' and (4. 3. 67) , they appear as the leading coeffi-

cients of the local expansions for ^(x)(pE(a) or (f)(x)(pF(a) . Clearly

<PB (#) > 9p (a) and (pF (a) are Lorentz scalar, while (pB (a) transforms as a

spinor.

These fields along with the auxiliary free ones obey simple commuta-

tion relations in the spacelike region of arguments; namely they either

commute or anticommute. We have (cf. (3. 3. 26), (3. 3. 37) with Z =

l'=± 1/2)

fA a Q^ /(4. 6. 3) cpB (a\ * * S T -O \

^ w^af± (a) 6 (x) —

Moreover <pB and (pB
± satisfy

(4. 6. 4) <p, (a) <pB (a') = <pB (a') <pB (a) ( (aT - a' T) (a' - a' ~) <0) ,

pf (a) ¥*(«') = -«* («') ?f(«)

(£,£'= + ; (a+- a' +)

and

,. fl ,,(4.6.5)

Similarly we have (cf. (3.3.66), (3.3.68) with Z = 0, I' =0)
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(4. 6. 6) cpF (a) <l)(x)=\
I — 0 (x) (j)F (a) (a

The commutation relations among <pFs and ^F?s read

(4. 6. 7) p,(«)^(a') =<pr(a')<pr(a) ((a+-a'^

(4.6.8) (PF^Q-)^ (&'} -

The relations (4. 6. 4), (4. 6. 5), (4. 6. 7) and (4. 6. 8) are proved by

a similar method employed in the previous section. Essentially they are

reduced to the local commutativity of <pB (a) 's (resp. <pF (a) Js) and the local

expansion (4. 3. 26)' (resp. (4. 3. 67)). It is also possible to give a di-

rect, computational proof to the former. Since the arguments are almost

the same, we consider here the case of (pB (a).

The norm of the product q>B (a^) (pB (az) is obtained by applying the

product formula (A. 25). We have

(4. 6. 9)

P(<ZI, flj) — I I du du'R(u, u' ; alt

where the kernel R (u, u' ; alt az~) is given by the following infinite series:

(4. 6. 10) R (u, u' ; a,, «,) = U S -R£} («,«'; «i, «i) ,

- f°° f°°/7 //
~ Jo Jo r " « + «! — £0

X exp { - £ ?w ( (af -

= r- rJo Jo
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(4.6.11)21

poo poo

= ••• dut-
Jo Jo ul

j
ruz

(4. 6. 11) 22

-rJo

+ N T T / N72I + (af - a}) C72i)

where Uk = u1^l ----- h u^ U'k = wf1 H ----- h wi"1. A change of countours(*} ^t->

^10% shows that (4.6.10) is convergent for real alya2^XMm provided

— (a i — a^) (ai—a%) is sufficiently large. We emphasize here that it is

analytically prolongable to the -whole region where a^ — az is spacelike.

For, as shown in the previous section (cf. Proof of Theorem 4. 5. 6) the

wave functions corresponding to the kernel (4. 6. 10) gives the canonical

basis VQ (z*, z) of W2;fc*aifttl at least if al9 a2^XMin HXEuc and la.-a^l.

On the other hand, existence and analyticity fcf the latter has already been

proved in Chapter III for arbitrary distinct al9 a2^XEuc.

From the Lorentz covariance it readily follows that (q>B (a^ (pB (a2) >

= <^B(<22)^s(a1)>. One may check this directly by a similar infinite series

expression (cf. (4. 6. 67)). Hence our problem is to prove the following:

Proposition 4.6. I. If (af — a2~) (a? — #2
+)<0, we have

(4.6. 12) R (u, ur ;a1,a2)=R (u, ur ; a,, a^ .

(*) Contours for MI, MBI or M«+I in (4.6.11)^ should be properly modified in accordance
with the rule u-t-ui — iQ, etc.
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Proof. By the remark given above, it suffices to prove (4. 6. 12)

assuming a^ — az \ ̂ >1. Set R$ = R$ (u, u' ; al9 a2) , R^ = R$ (u, u' \a2, a^ .

Without loss of generality we assume <2f — <2^~<<0, a± — a^>0 and show

that

(4. 6. 13) l

(4. 6. 14) l

(4. 6. 15) z R$> + ̂ yz) = - 2R® ,

(4.6.16), R£-Rtf>=0.

This is sufficient for our purpose, since then we shall have

R(u9 u'\ al9 az) —R(u, uf \ az, aj

as desired.

To prove (4. 6. 13) t we rewrite the left hand side in the form

(4.6.17),
21

/~1') \ ' ^"(0

fc = l

r° r° r+ ro /7?y r°° r°°
= -. du.-du^ -£?*- ... du

j-oo j-oo — — j-oo 2nuk Jo Jo — t+1-duu
—

"+1 - 2 V^y,! - z'Q 7^ j - iO
X

X e-i

where UQ = U and u2i+1 = u'. By assumption af — <2^"<^0 and a± —

hence we may close the contour of ^-integration in the upper half uk-

plane. Evaluating the residues we obtain I$ = Jk-i — Jk* with

ro ro fc-i poo poo 21
(4.6.18),* Ji«=2z - ILduA - H dus

J-oo J-oo j=l - JO Jfl ̂  = fc + l -
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f°° f°° 2l

— 2z 1 • • • I JJ du j '
Jo Jo y=2

X JJ

From (4. 6. 17) , and (4 6. 18) lfc we have

We see also that if af — ̂ 2~>0 and af — a?<0, then all the J^)Js yield

0. Exchanging aj and az we have (4. 6. 16) z. The identities (4. 6. 14) t

and (4. 6. 15) i are proved by a similar calculation. We leave the details

to the reader.

The fields (pB (a) and (pp (a) are of particular interest because they

possess asymptotic fields. We set

(4. 6. 19) 0f± («) = lim AM. f dxl

t-*±co 2 JX° = t

(£=+ or -)

(4. 6. 20) & («) = lim ili>L f ^i ^.
i-*±oo 2 Jz°=i

Here the limit is taken in the weak sense. Namely in (4. 6. 19) a limit
co "1 f* f*

of the form lim ][] — I ••• I dul-"dukpk(ul, • • • , uk\ t) : 0 (#fc) •
t - » ± o o f c = O ^ I J J - -
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°° i c* c*
understood to be ^2 — I '" 1 du^"duk ( lim pk(ul9 • • - , uk\ t}}\

fc=o k\ J J — — *-»±«>
<$ (&j) :, and similarly for (4. 6. 20) .

Proposition 4. 6. 2. We have

(4. 6. 21) 0f± («) = (0 + m) §*0S (M) (e = ± )

(4.6.22) Nr(02(w))=0(w)-expf -2 {°°du'd(± (\u\ -u'
\ Jo -

Likewise *we have

(4.6.23) Nr(^(^)) =</»(«)

Xexpf-2 {°° du'0(± (|«l-« /))0 t (
\ Jo -

Here rwe have set $ (u) = <p ( — u) , 0f (M) = 0 ( — «) .

Proof. We shall prove (4. 6. 21) and (4. 6. 22) . Calculation of

(4. 6. 23) is quite similar.

By the definition we have

(4. 6. 24) Nr (0f± («) ) = S !#?> («)
*=<>&!

#?> («) = lim -ilM- f ^x1 { (p
«->±oo 2 J^" = «

x («<"('

+ k (pB

= lim ! • • • lda0-- ' f i?««P2*+i(^; «o, • • - , «jfc;
t->±oo J J - -- -

Here the coefficient p2k+i(u',uQ, '-,uzk;t), after ^-integration, is given by

(4. 6. 25) p2fc+i (« ; «o, • • • , ^2^ ; 0
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/ imt I 1/ L ifL Us . \ / 1 i -*-Xexp — (u2j-i+ u2j) 1+

At 1+ - = 0, the coefficients of the exponential factors are real analytic
UU0

(except for the delta function), so that 1+ - = 0 has no contribution

in the limit £— » ± oo by the Riemann-Lebesgue lemma. Outside there the

exponential factors are written as JJ expf —imt^ii^-^u^ • ( - +
J=l \ \UU0 UZ

( ~L \~1\X 1 1+ - I ). Applying the formula
\ uu§> I

lim ~l e-ixat = 0(^0)2x8 (x)
t^±°° x — iO

we then obtain

(4. 6. 26) lim p 2fc+iO; «o, • • • , uzk\ t}

This shows that

(4. 6. 27) 0f±
Ci:) («) = (0 + »«) '*^

and we have (4. 6. 22) . This completes the proof of Proposition 4. 6. 2.

For u^>Q we set

(4.6.28) NfO)

(4.6.29) NJ(«) = r^M / e(±( M -M / )
Jo

Then (4. 6. 22) and (4. 6. 23) are respectively written as (cf. (2. 1. 32)
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(2. 1. 33) )

(4.6.30)

(4.6.31)

where ^>0 and 0±f («) = 0± ( — M) , 0±f (M) = 0± ( — u) . In particular

0f («) 0± («) = ^f («) 0 («) , ^ («) 0S («) = 0f («) 0 («) hold. Regarding

(4. 6. 28) - (4. 6. 29) we see that the correspondences 0(w)i->0f(#) and

0(^)^0+ Of) (£— + or — ) are mutually inverse operations. Making use

of (4. 6. 30) - (4. 6. 31) we may verif}r the following canonical anti-com-

mutation (resp. commutation) relations for 0+ (u) (resp. 0± (u) ) :

(4.6.32)

(4. 6. 33)

where e= + or — . The relations between the asymptotic and auxiliary

state vectors are also derived from (4. 6. 30) - (4. 6. 31) .

Proposition 4. 6. 3. We have

(4. 6. 34) (vac \ 0? («*) -05 («,) = II

0? (Wl) - - - 0? (f O I vacy - n e («i - «/) ' ̂  («i) ' ' ' ̂  («*
i^j

The same relations hold if -we replace 0+ (11) , 0(«) by 0±

Corollary 4. 6. 4. T7z£ S-matrix for cpB (a) (resp. (pF ( a ) ) is given

by

(4.6.35) 5- (_)N<N-»/*

where N = NB(°°} (resp. IMJ(oo)) denotes the total par tide -number

operator.

We omit the proof.

Summing up we have shown the following. On the one hand the
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field (pB (a) , constructed from free boson, is an interacting f ermion field

satisfying the Lorentz covariance, microcausality and asymptotic complete-

ness condition. The field (pF (a) , on the other hand, is constructed from

free fermion and behaves as an interacting boson with the above mentioned

properties. Moreover their asymptotic fields are in a reciprocal relation,

and their jS-matrices coincide.

Remark. It is instructive to note the reciprocity at the level of the

correspondence between the rotation T and the kernel R. In general

let WF be an orthogonal vector space, and let <( )> denote the expecta-

tion value corresponding to a holonomic decomposition WF=V*@V.

Setting (-w, w' ^B = ( ww'y — ̂ w'wy we see that the underlying vector

space of WF is also endowed with a structure of a symplectic space, which

we denote by WB. As usual K, J=K+tK and H=K—tKwi\\ denote

the tables of expectation values, the orthogonal and symplectic inner pro-

duct respectively. Let now T=TF be a rotation in WF, and let S be its

conjugate transform (Section 1. 2) . Then S=TB is a symplectic rotation i.e.
tTBHTB = Hif and only if T2 = l (or equivalently S2 = l by Proposition

1.2.2). In this case the matrices RF= (TF-l) (K+*KTF) ~l and RB

- (TB-1) (K-tRTB)-1 are reciprocally related through

RFH=TB-1, RBJ=TF-l.

As remarked in p. 910, the symplectic space WB in Section 4. 1 and

the orthogonal WF in Section 4. 2 are the same objects, on which the

symplectic and orthogonal rotations TB = T^B(O) = 1 — 2PB, TF = T^(0) = 1

— 2PF are defined to satisfy T| = l, T|> = 1. Indeed these are mutually

conjugate, and it is easy to verify directly that

PB(u,u'} =! '
2 u — u —tQ

The r functions for these fields are obtained exactly by relating them to

the Euclidean deformation theory, just as in the complex case discussed in

Section 4. 4. Let us now examine the properties of wave functions. We set
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(4. 6. 36) <WE (y , x)=(ff> (y) <p* (a,) --(pB (an} 0 (x) > ,

tvB9± (x) = (<pB (a i) • ' ' <^± (<O ' ' ' VB (* ») 0 (:r) > ,

(4. 6. 37) w*. (y, x) se, - <0e, (y) ̂  (<zO • • • cpF (an) ^e (x) (e, e' = ± ) ,

and

(4. 6. 38)

Here also we assume y^^>aj ^>-"^>a^ for the. sake of definiteiiess. Local

expansions for (4. 6. 36) and (4. 6. 37) are obtained by applying (4. 3.

46) - (4. 3. 47) , (4. 3. 67) - (4. 3. 68) respectively. As remarked there,

formulas for WBS take the same form as in the complex case, whereas

those for w/s are slightly changed. The results are as follows.

(4.6.39),, ie',(y,.r)= -*-̂ ,|>]
7T

Ho

+ . Zl < : 0 Cv) 0j (30 : VB («j) • • -^ C^n) >'^y [y] •

(4.6.39),
ro

(y) 0^ OO • • -^f +y (av) • • -<pB (an)yv^\_av~\

(4.6.40)/ip

(O ' ' ' ??£__, («y) ' ' "^ («n) >^+/[« J

—

^^
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+ wiAIXJ + ]

(if /* = V).

We note that (4. 3. 45) implies

(4.6.41) <^(fli)-" - - - = - - 1 —

=--1-— -r Bn

Likewise we have

,--
(4.6.42), «,$,*> (y, *)=!*>-

-w± [y]

. o o

(4.6.42), ^±3(y,a:) =^
^

X (WoC^J +W0*|>J)

+ S <0± (y) VF (^i) • • '^J (^v) • • -<Pr (&n} > '
j=i

+ Zl <0± (y) ^ («i) • • -9-j («0 • • -?F (^0 > • ^* [^ J .
y=l

Here we have set zf^±) (y, jc) =* (twF(y, x) ~t + , ivF(y, x) x ,_) as before.

(4. 6. 43) „„ ± wr, (x~) = l<p, (fll) • • -^ (O "V («.) ' ' '9* («•) >

' ̂  ^^ " 'V* (a^ '"(pF ^

(if
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(4. 6. 44)

+ ] <<
j=i

(if A = V).

9~l

From (4. 6. 39) 0- (4. 6. 40) flv we see that the Euclidean continuations of

(4. 6. 45) WB (y, x) = nwB (y, x) /HBn ,

&>Bfl± (X) = 2tVB^ (X)

provide the canonical basis {wB(y, x) , wBfJL+ (x) (l^A^^)} of

and {wBti- (x) (l^A^^)} of W^a'i,!»,an respectively. In particular, from

(4. 6. 40) AV and (3. 3. 11) we obtain expressions for r functions involving

(4. 6. 46)

(4. 6. 47) <<pB (a,} ...<p° (a,} •••(?*_ (a,) ~-(pB (aj >/r^ - - g»/2

where F = ( f f l v ) 9 G=(g/*v)~1 denote solutions of (3.3.24) corresponding

to ic; = n;(0), and the left hand sides of (4. 6. 46) - (4. 6. 47) are identified

with their Euclidean continuations.

The situation is somewhat different for the Fermi case. Set

(4. 6. 48) (*> WF (y, x) = mivF (y, x) /rFn ,

wFfl (x) = 2iwF (x) /?Fn .

Then the Euclidean continuation of wFfl(x) belongs to Wjp,'oif
0..., 0»

c*} The definitions of WF* and 4bpv given here differ from [5] by the (actors —1 and
— 2i respectively.
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— W^a^:;an- Their 0-th coefficient matrices of local expansions CQ =

{CQ \vuFft/j n,v=i,-~,m ^o ~= \CQ \v&Ffi) ) ft,y=i, —,n are or trie lorm

(4.6.49) C0 = 1-T, C?=-1~T

where

0 -ii

?Yn 0

(4.6.50) T =

Let ii> = u>(0)

= *C«;
J(0), ---,*ze;B(0)) be the canonical basis of W>^..fB|l, for which we

have C0(u>)=l and C0* (u?) = -e2H= -G'1 with H=1H^-1H (see

(3. 3. 7) and Proposition 3. 2. 5) . Since wFfl is a linear combination of

wy(Q)'s9 we have w)^ = e (?wFl9 - • • , 'w^) =Cu?(0) with some C. Compar-

ing the 0-th coefficient matrices we obtain 1 — T=C, —I — T=C( — eZH).

Since l. + e?H is invertible, this implies

(4. 6. 51) T= tanh H= (1 - G) (1 + G) ~l.

In particular C=e~H(cosh H)~1 = 2G(l-}-G)~1 is invertible, so that wFfJL

^») is also a basis of W^...(ln.

Proposition 4e 6* 5. TAe logarithmic derivative of r functions

are given by

(4.6.52) af logr^--— 60,
^

<a? log rF7l = —trace (T9 + ®*T) + — fl>
T: £j

-where o) is the 1-form (3. 3. 57) associated with the system (3. 2. 24)

corresponding to w = w (0) , <2^^f T is given by (4. 6. 51) . Moreover

we have

(4. 6. 53) rsn • rFn = Vdet cosh H" .

Proof. Expression for dlogrBn follows from (4.6.41). We con-
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sider dlogtm- Denoting the 1-st coefficient matrices of local expansions

by Q (WF) and C*(wF), we have from (4.6.44)

(4. 6. 54) d log t>B = —trace (d (ze>F) rfA - Cf (ze>F) dA)

in the Euclidean region. On the other hand, the relation WF— (1 — T)

Xxc;(0) implies that d (WF) - (l-T)a and d* (#>*) = (l-T)/9a= - (1

+ T)a by (3. 3. 7) , with a = a(I/2) =la. Combining this with (4. 6. 54)

and noting that trace Tad A = trace dAlalT = —trace TdA - a =

— trace T[a, dA] = -—trace T®, we obtain (4. 6. 52) .
& 2

To prove (4.6.53), we calculate the dlog of the right hand side.

(4. 6. 55) d log Vdet coshH = — d trace (log coshH)
Zi

= — trace (tanhH-dH)
£j

= —trace f T • ( - —} G~ldG } .
2 \ \ 2' I

Making use of the differential equations (3. 3. 24) , we have

(4. 6. 56) trace (T(-—\ G~ldG } = —trace (T0 + TG~l®*G}
\ \ Zi ' ' Zi

= — trace (T6» + @*T)
£j

since T commutes with G. Now (4. 6. 55) , (4. 6. 56) and (4. 6. 52) imply

d log TBn + d log rFn = d logVdet cosh H .

Since r^, "CFn~ »1 and Jf-~>0 as |aA — a t f |— >oo for all jtt^P, we obtain

(4. 6. 53) . This proves Proposition 4. 6. 5.

r functions involving <^± (a) or <^F (a) are obtained b}^ applying

(A. 27) or its orthogonal version. Set

(4. 6. 57) r^^.iSm= <yB (*0 - - •< (aPl) - - -^ (a J •

^"^=<^(aO---^(«v1)"^'(O'"

Here ^ft(^V4) (resp. <pF(av.}) are placed in the Vrth position for z" = l,
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From (4. 6. 46), (4. 6. 47), (4. 6. 50) and (4. 6. 51) we have then

(4. 6. 59) r£r'Vm = Pfaffian (* (tanhH) ,,J ,, fc=,i, ...fW .

In particular the 2-point functions are given in terms of (/j(t) =

in (4.5.36) (with 1 = 1) as follows. We set a1-a2 = tei6/2m,

(4.6.60) <?*(«,)

zsinh 0(0

-£sinh0(0

dt

(4.6.6i) ((pF (<2X) (pF (<22) y
1 0 C t) I 1 I 7 / / ^ V / \ \ • '= cosh ̂ ^ x exp ^-y | 5a5( (—^-(5) ] —sin

<jpF(a^(p*

Combining this with the result in [12] we have the following short

distance behavior:

(4. 6. 62)

) >—const. ^"* Hog —
\

Compare with the result of [11] which states
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(4. 6. 63) ((pF (<2j) cpF (<22) y, (<pF (<2X) <pF (<22) )^const. t~~1/4.

Infinite series expressions for these r functions are also avaulable.

In the bosonic case they are almost the same as in the previous section.

Set

(4. 6. 64) EB o (11) — (e^ „ (u)) ^ y=1

Then

lui dui 2i 2i
(4.6.65) logra.=f]l f

*=2 21 J

2i
—- - trace (EB> 0 (u 0 ESi 0 (wz) • • • EB> 0 (u z) ).

Formula (4. 6. 65) is exactly the one half of (4. 5. 7) with %ftj, = 1 and

Z^l/2 (/^, v = l, • • • , n) . We have further

(4.6.66) fS++=-gJ- J-f^"'^"4"1 2' 2'

2Z rr-

2i 2i
^7T 27T

2Z 1 r

where [•••]^ signifies the (#, v)-th matrix element. For n = 2 these for-

mulas read in the Euclidean region

(4.6.67) logr« = i]|^r(0,
*=i 2k

(4.6.68)

where - (af - a,-) = fe{ V2w, af - a? = te'io /2m, and e'2*' (0 , /,(*

ha(t;T) denote those in (4.5.31), (4. 5. 33) - (4. 5. 34) respectively.

In the fermionic case we set
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(4. 6. 69) £,.„(«) = (-e^,o («))*..=!,..,* .

We have then (cf. (4.6.59))

(4.6.70) logr^-f]! f- {dUl.-dUl '>* + "«) '•(«
1=2 2/ J J — — U! — U2 + iQ u2 —

trace

(4.6.71) itanlLff=-i; f- (W-^,+1 »(»
z=o J J Ui —

...

with du=du/2Tt\u\. For ^ = 2 they reduce to

(4.6.72) logr,,= - f ;— f- f^r--^/1"^2

*=i 2^ J J — — Wi + z^2

(4.6.73) ?3?=f] f- {dui-dut.
k = Q J J

X exp f - — (J72*+i + C/

respectively, where t = 2m^J — (a^ — a2) (af — a£) and t/i =

These expressions (4. 6. 70) - (4. 6. 73) are in agreement with those

for the scaled ?z-point functions of the 2-dimensional Ising model [11],

[13].

Appendix

We summarize here generalities on norms and rotations in a symplec-

tic vector space.

A symplectic vector space W is by definition a vector space over C

equipped with an anti-symmetric inner product <( , )>. Throughout this
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appendix we assume N=dimGW to be finite/*5 Infinite dimensional case

is dealt with similarly as in the orthogonal case (see Section 2. 1) .

Let T(W) be the contra variant tensor algebra over W, and let I(W)

denote the bi-ideal of T(W) generated by elements of the form ze;(X)z£/

-<wf®w-(w, te/> (w, w' EE W) . We set A(W) =T(W)/I(W) . In

contrast with the orthogonal case, dimcA(W) = oo even if W is finite

dimensional. We denote by S(W) the symmetric tensor algebra over

W. Let K be an element of Homc(W, W*) . The bilinear form Wx W

— >C, (w, ze/) >->£ (w) (w') is called an expectation value if K(ZV) (ze/)

— /c(w')(w)=(zv,?v'y holds for all w, ze/ €E W. Given an expectation

value, the associated norm map Nrff is defined as in the orthogonal case.

Denote by 8 the linear map W*-»Endc (5(W)) such that each

fl(w*) is a derivation: 5(w*) (1) =0, <J(w*) (tv-a) = w* (w) *a + w-d

(w*) (a) (w*^W*,ive:W,a&S(W)). Then there exists a unique

linear isomorphism

(A.1) Nr«: A(W)->S(W), Nr,(l) =1

characterized by either of the following properties:

(A. 2) (i) Nr j e (wfl )=wNr f f (a)+ff w (Nr l c (a) ) (we TF, ae A(W))

(ii) NrK (flw) - NrK (a) - w + ft, (Nrff (a) ) (w e W, a e A ( W) )

where (Jw = 5 (A; (w) ) , ft = S C/C (w) ) (weW). The term of degree 0 of

Nr^Ca) in the graded algebra S(W) = C@W®& (W) ©••• is also called

the expectation value of a and is denoted by (a)K. Note that (w--wryK

= 1C (w) (ze/) (ze>, ze/ e W") . For notational simplicity we often drop 1C.

An element of A(W) (resp. *S(W)) is called an operator (resp. a norm).

Denoting the inverse map Nr"1 by : :, we have the following formulas:

(A. 3) iWi-'-Wjci: Wi'-w'i :

=13 ̂ X^-Xw^wi,^

Here the sum is taken over all the partitions {fjil9 • • • , #m} [_H#i > '",/i'k-m}

and

(!i° We do not assume the inner product to be non-degenerate, unless otherwise stated.
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(A. 4) : wr.-Wfc^SC^X^w^

(A. 5) Nr(w1-'-wk) =1] (WtoW^'-'tw^w^w^'-w^

where the sum is taken over all the partitions {/^, • • • , jU2m} LJ {v1? • • • ,

An important example of an expectation value ^ yK is provided by

a holonomic decomposition W= V*@V.(*^ Here V*, V denote holonomic

subspaces of Win the sense that <t;, z/)> = 0 for any ?y, ?/€= VX?y*> 77*'^

-0 for any v*,v*'^V*. We have then A(W) =S(V*)-S(V) and

5(W) =5(V*)-5(V). We define the expectation value by <(z; + z;*)

• (v' 4- •£>*') > = <f, t;*x> (77, z;7 e F, u*, 77*x e V*). The corresponding norm

map (A.I) is then a (S(V*) , S (V)) -isomorphism. Take a basis 7^*ey*,

-, r, N=2r) so that

/ o\
,=,...., 1

Then A. (W) is isomorphic to the algebra of differential operators with

polynomial coefficients CLci, -',xr, , • • • , by the identification v*
I dxi dxrl

d i d \= Xj, Vj = . The norm of P(x, ] is usually called the total symbol
dxj \ dx'

of P. The vacuums \vacy•, (vac\ are defined in just the same way as in

the orthogonal case.

Let C[[*]], A(W) [M] and S(W) [[*]] denote the algebras of for-

mal power series in t with coefficients in C, A(W) and S(W) respecti-

vely. We call an element of A(W) [M] (resp. S(W) [W]) an operator

(resp. a norm), also. When we fix an expectation value in W, C-linear

isomorphisms Nr and : : are uniquely extended to C[[^]]-linear isomor-

phisms between A(W) [[*]] and S(W) [M], which we denote also by

Nr and : : respectively. We set S(W) [ [ f ] Y = {a e S(W) [[^]] \a

e©^(W)(X)C[M] for some k^N}. Then A(W) [M]r= {a e
j=0 C def

A(W)[[^]]|Nr (a)^S(W)\_\_t\J} is independent of the choice of expectation

values.

Denoting by m the maximal ideal C[[£]]£, we set

We assume that the inner product is non-degenerate, hence W is even dimensional.
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(A. 6) G(W,i) = {g^A(W) [[>]]|Nr(g) =<

(A. 7) &(W,t) = {g^A(W) [[*]] | Nr (g) = aep/\

C

It is shown below that G(W,t) (resp. G(W, £)) forms a group (resp.

a semi-group) independent of the choice of expectation values.

Let vl9 •••,VN be a basis of W, and set

(A. 8) ^=(<tV**>) /,*-i...,*,

H=K-*K, J=

The product of greG(T7, £) and an element aeA(TF) [[^]]/is given

as follows. Without loss of generality we assume that g is of the form

(A. 9) Nr(ff) =cw1"-wse
p/\

j,k=l

where cJl)eC[|>]] (Z = l, • • - , 5;j = l, • • • , JV) and rjk^rt[9rjk = r^9 and
iV

that a = 2 tVO = 7:e; where f / G E C [[£]]. Applying (A. 3) we have

(A. 10)

where w(1) -

(A. 11) Nr(gw) -
1=1

where ze;(2) - X] ^ C1 + RK) frc**
J,k=l

Now we assume 5 = 0, so that we have c = (gy. Noting that 1

+ R*K is invertible, we define T= (tjk)j.k=i,'".N by

(A. 12) (l + RtK)T=l+RK.

Then (A. 10) and (A. 11) imply

(A. 13) gvk = £ v,gt» (k = l9-9N).
j=i

(A. 12) is rewritten as
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(A. 14) R (K- 1KT) =T~l.

Proposition A. 1. If R= (rjk)j.k=i....,N is a symmetric matrix such

that rjk^m, then T= (1 + R1K) ~1(l + RK) is symplectic in the sense

(A. 15) 1THT=H,

and moreover

(A. 16) tjk-8jk<=n\.

Nozv -we assume that His invertible. If T = (£/*)/,*= lf...f N satisfy

(A. 15) and (A. 16), then K^KT is invertible, R= (T-l) (K-1KT) ~*

is symmetric and

The proof is not so difficult.

We remark here that, contrary to the orthogonal case, an element

W never induces a non-trivial rotation in W. To see this observe

that if w,wz = c for wl9wz^W9 c^C, then c = 0 and either TV1 = 0 or

"W2 = Q. Now let WQ^W, T^End(W) satisfy zv0-w = (Tw) ZVQ for all tv

^W. We have then (Ttv — zv) WQ — [ze;0, w] , so that w0 = 0 or T-w = *w,

[zv0,w]=Q for all zv(EW, i.e. T=l.

The following proposition is sometimes useful in order to obtain R

from T.

Proposition A. 2. We assume that H is invertible and set

(A. 17) E-l = H~lJ, P=(l-T)/2.

Suppose there exist X± that are invertible and satisfy

(A. 18)* PX+(1-P)=0, (1-JP)X_P = 0, X.=X+E-\

Then the following R satisfies (A. 14).

(A. 19) B R=- 2X~lPX+H~l.

Proof. R(K- 1KT} = - 2X~lPXJr (H~1K - H~l *
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= -2Xl1PX_P=-2P = T-l.

In the orthogonal case, if we modify (A. 18) B so that

(A. 18), PX+(1-P)=0, (1-P)X-P = 0, X_=X+E,

R is given by

(A. 19) , R=- 2Xi1PX+ J-
1.

Remark. The condition (A. 18) # ensures the left invertibility of

K—tKT. Indeed a similar calculation shows that

If we assume further the condition

(A. 18) i PX~l (1 - P) = 0, (1 - P) X~1P = 0

then (X+^l-Pj+X^FjX+H-1 is also the right inverse of K-'KT.

Similarly in the orthogonal case (A. 18) F implies

(X?(I-P) + Xi1P)X+J-1- (K+'KT) =1 ,

while

(A. 18)J PX+l(l-F) =0,

guarantees

(K+'KT) - (X+l(I-

Now we investigate the symplectic analogues of the transformation

rule (1. 5. 20) - (1. 5. 21) and the product formula (1. 4. 6) - (1. 4 7) in the

orthogonal case. Most of the formulas are obtained by replacing 1K, H,

J and det by — 1K, J, H and det"1, respectively, in the orthogonal ver-

sion.

Let < X be another expectation value, and let Nr', : •/, etc. denote

the corresponding objects. We have then

(A. 20)

= <<7>expl f] trace { (Kf - K) R} l ,
21 1=1

(A. 21) Nr'(g)=<g>'exp(p'/2)
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where

P' = 2 r'^vjv,, R' = (r'ik) = R (1 - (K' - K) R)

Proof. We shall prove (A. 16) . (A. 17) is proved similarly. Us-

ing (A. 5) , we have

l f]
2 J,k=l

11 N

-^-7^ 2] Oi^2! 2 yi ,* i ,y« ,*»=i

Then from (A. 6) , we have

=1 + 1 E
2 y,*=i

Setting «^?7 fc» = <u,u t>' - (v}v »> = «u*uy», we have

If we set /i = — trace { (^ — K)R}1
9 a little computation of combinatorics

^/
will show that

<g>7<Q> = -l-" -I" • • ~

= exp f] /, = det {1 - (K' - K) R} '* .
z=o

Combining (A. 20) and (A. 21) with (A. 10), we conclude that the
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definitions of G(W, t) and G (W, t) does not depend on the choice of

expectation values.

There exists a unique C[[zf|] -linear anti-isomorphism * :

A(W)[[Y]] characterized by w* = V — Iw for w<=W.

We denote by Nrx(resp. Nr_ tK) the norm with respect to the ex-
1 N

pectatioii value .K(resp. —tK). If Nrx (g) = <(g) exp — ]Tj rjkv3vk where
2 / , fc=i

and ryfc = rwem, we have

(A. 22) Nr _,*g* -
2

Hence using (A. 20) and (A. 21) , we have

(A. 23) Nr*(g*) -<g>det(l + J^)-*expl f]
2 y,*=

where R*= -RQ + JR)'1.

Remark. In the orthogonal case, we have

(A.23)x Nr(g*)=<flr>det(

where R* = -R(l -}- HR) ~\

The product formula for operators in G(W,t) is also a corollary of

transformation formulas (A. 20) and (A. 21) .

Let A— (AA1I) p, „=!,... ,n be a symmetric matrix with/U=l (v = l, -sn).

Let T^(v) (v = l, • • - , « ) (resp. T;^) be a copy of W (resp. Vj) . We con-
n

sider the symplectic space @W(v) equipped with the expectation value
v = \

<*W> = ̂ <^-f,>. Let </"" GE A (W"") [ M ] c A (0 W') [ M ] (v = 1,
A = l

• • • , ; z ) be an operator given by

Nr(0«)=<firw>expJL f] r«t;fz;W,
2 y,*=i

where <gf ( l">eC[M] and r^ = r^em. We set

0

0
and
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Then we have

(A. 24) <g-H)---g t o )> = <gra)>-<g<n)

(A. 25) Nr (pw. • -ffW) = <gr«- - .gr«>expl £ fj
2 ^,v=i y,fc=i

where : : =R(l- A(A)R)~1 .

Remark. In the above if we set A^ = l and identify n copies v^

(v = l, "m
9ri) with the original ones, we get formulas in the original space

W. Since we do not assume the non-degeneracy of the inner product,

the specialization to A^ = 1 does not violate our arguments. We note also

that the analogous results in [1] in the orthogonal case are valid without

the assumption of the non-degeneracy of the inner product. (Cf. Remark

1. in p. 256 [1] and Remark in p. 16 [2].)

If wl9 '-9wk<=W, (A. 5) implies that

fO for k: odd
(A. 26) <wv ••«;*> = |

for k: even

where y]x means the summation over (k — 1) !! pairings satisfying Ji

<"><O"fc-i and Ji<J2, "'Jk-i<Jk' In the orthogonal case, we have

(A.26)/ <w1-w;jt>

for k: odd

w> for ^: even'

These formulas are generalized as follows. We explain the symplectic

case. We also omit A, since it is nothing more than a special class of

expectation values. Let gv (v = l, • • • ,» ) be an operator given by Nr (gp)
v/2 where <g,>eC[[>]] and p^Sz(W) (g)m. Let gv'(v = l, -, »)

c
be an operator given by Nr(g^) =wvNr(gry) where wve W(^)C[[jt]]. Let

c
i»i, '",»*} (l^Vi<~'<Vm<^n) be a subset of {!,-••,»}. We set

where
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if ve{j>, • • • * * }_

if

We also denote the elementary quantities a{VjtVJ,} (l^j<Zj'^&) by

Then we have

f 0 f or k : odd
(A. 27) a{Vl>...iVk} =

I < 3 " ' 0 - f o r

An analogous formula for the orthogonal case is a corollary to (1. 4. 10) .
n ... M

In this case we need sgn . . L and obtain the expression of the form
\Jim"Jk/

0 for k : odd

VT /I • • • & \ r /

S sgu —au*"a'*-i** ±or *: even •

This quantity is called the Pfaffian of the anti-symmetric matrix

0 a,9 <z1fc

On the other hand the quantity (A. 27) is called the Hafnian of the

symmetric matrix -a Ik , where the diagonal elements

are arbitrary.

We shall give a simple proof of (A. 27). The idea of the proof is

the same as that of Theorem 1. 5. 8.

We denote by W* the dual vector space of W, and by £1, • • • ,?^

the dual basis of the basis v^-"9vN. Let W*(l° (resp. <?5°) (v = l, - • - , « )

be a copy of W* (resp. £,) . We set W"= W©T'Vr*(1)©---©T^*(/l). We ex-

tend the expectation value (hence the inner product, too) in W to W

trivially. Namely, we set <^-^)> = <^)^> = <^)^)>-0. We denote by

W(l>) the dual vector space of W*(v} and by c(v} the natural isomorphism
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tw:W-+W*\ We define an operator gy^ A(W) [[*]] by Nr (ft) =

Setting A,= ; l> '"' fc we have <V"^>
IflfJ if veK-,^},

= {J(«(^)(wJ,1))---*(«("*)(«'0)Nr(gf1...2fJi)A*}U.f.o. Here v = f = 0 means

the natural projection S(W) [W]->S°(W)(g)C[W]. Thus the problem

reduces to the one in S(W) [[*]]. Notice the formula (A. 25) which

states that the product gi'~gn is of the form <(yV'-yO exP (P/2) with

P^5(W)[[^]]. Hence the following lemma completes our proof. We

leave the proof of the lemma to the reader.

Lemma. If g-<gX/2 with p^S(W)\\t\'\ and f]v<=W* (v = l, • • - ,

^) , we have

if ^-

if k = 2m .

The generalization to the case where Nr (gr£) =ze;y, !•••«;„, fcy Nr(gv) is

straightforward. In this case we need the quantities of the form

in the Hafnian or the Pfaffian.

The above result asserts that the quantities of the form (cfi"'- w^*'2:

— :w2eP''2: — sOA^r-flO and (g,-- : w^e**'2: -gn>/<gi-"gn> are ele-

mentary. Now we shall give formulas for such quantities. We return

to the formulation including A.

We set Nr(g / (v j )) =wj Nr(g(j;z)) where wj = I] IV/0^/0 (Z = l,2),

with c'i^ E: £[[£]]. Then we have for I<^y1? u.*^

(A. 28) <g(1)...g^~V(yi

(*) if Vl=v,, we set
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(i^K-i^K 0 ^1+1K--ilnK\
<» , . - - , ' ^ c n ) ) ; : : : :

^ K - ' K 0 ^1K-^nnKl

xR(l-A(A)R)~1

wnere Ci == \£i i , * * °, GI n ) \* — J-? " j P* — -*•> * *" > ^/ » and

if ViO2

if Vi = V2

C if Vi>V 2 .

From (A. 10) and (A. 25) we obtain the formula for <ie7!w;2g(1)"-g(ll)>
TV n

where °wl= Jj Zj vTciVj (^ = 1>2), ^{^ e C[[^]]. In general, denoting by
.7=1 v = l

= l, 2; v = l, • • • , TZ) the column vector : , we have for 1<

X

k Anl
{J

(A. 30) -^
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^•.• A *K A K'"

1UK *..llnK \(c

xRa-A(A)R)-1 0 ... 0

~ (K if
where K= \

('K if

Analogous formulas in the orthogonal case are valid if we replace

'K by -'K.

If we set g/(*2) = w2g(V2> = : w£ Nr (g(l<2)) :, we have

= +
u

6

where c= £J R^^Kc^. Then (A. 29) and (A. 30) give two dif-
/<=!

ferent expressions for the same quantity. We shall give a direct proof

of the coincidence of these two(*}. For the sake of simplicity we assume
•i-l-io-f- M <"" %ithat V!<^2.

We set

(AH ••• AIV I_I\
; ;

"ml ' ' * ^nvl-ll

Then we have

(A. 29)=

The case when g'^** =g^v£'W2, is similarly proved
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'c,• (A&'K, A&K) -R(l-A(A)R)-

tc1(A1<S)lK,A,&K')-R(l-A(A)R)-1A

0 0

c2+

0 ...... 0

= (A. 30) .

Finally, using (A. 23) - (A. 25) we have

(A. 31) Srgr* = g*g = <gr>2det(l + KR)-1.

Hence we conclude that G(W, t) is a group.

Along with Proposition A. 1, we have thus proved the following for-

mula :

(A. 32) Nr (g) = <gX/2, p = f] rjkv,v,
j,k=i

R=(T-1) (K-lKTrl

<g>
2 = nr (g) det (H~1K- H~UK- T) "l

where nr(g) =g*g = gg*.
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