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Liouville Type Theorem for a System
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of Differential Operators with Constant
Coefficients in a Half Space

By

Yoshihiro SHIBATA*

§ 1. Introduction

Concerning the behavior at infinity of solutions of a partial differential
equation Pu = f, theorems of following three type are known. (1) The theorem
of Liouville type claims that if the function u(x) is a solution of Pu=Q such that

u(x) = O(\x\d) as |x |~>oo (or KmR~d \ \u(x)\2dx=G) for some real d
R->~ JR<\x\<2R

independent ofu, then u(x) must vanish identically (see, for example, Agmon [1],
Hormander [7], Littman [9], Murata [10], Rellich [12] and so on). (2) The
theorem of Rellich type claims that if Pu has compact support, then u has

compact support (see, for example, Rellich [12], Agmon [2], Littman [8, 9],
Murata [11], Hormander [7], Treves [16] and so on). (3) The theorem of Som-
merfeld type gives conditions at infinity which derive the unique solution of Pu=f
(see, for example, Grusin [4], Agmon and Hormander [3], Vainberg [15] and so
on). Recently the study on (1) and (2) has been completed by Hormander [7]
in the constant coefficient and the whole space case and the study on (3) has
been remarkably promoted by Agmon and Hormander [3].

The purpose of this paper is to study the problem of type (1) for a system
{P(D), Bj(D), j = l 9 ' ~ 9 p ] of differential operators with constant coefficients in
a half space (boundary value problem) and to give almost corresponding results
to those obtained by Hormander [7] in the whole space case. In order to state
results more precisely, let us first of all introduce certain notations. Let Rn+l
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denote the n-dimensional Euclidean space, En+l its dual space and write (x, y)
for the coordinate (xlt °"?xn,y) in Rn+l and (£, /) for the dual coordinate
(£1,-, £«,*)• We denote by m+1 the half-space {(x, y) e /Z*+1; j>0}.
For differentiation we use the symbol D = i~1(d/dx1, •••, d/dxn, d/dy), Dx

= i~1(d/dx1, —, d/dx,), Dy = rld/dy. We denote by ̂ (^T1) the space of re-
strictions to ^!t+1 of all elements in S(R*+l) and denote by <S(R+*1) the space
of all temperate distributions in J2++1 (see Hormander [6]). For a positive

number d we put C°°([0, <*); £'(/Z")) = {« e ^(/T^) ; <X% jO> 0(0> is a c°°
function of y in [0, 5) for any 0(jc) e £(#*)}. Let a(j) be a CJT(( — 0, 5)) func-
tion with d( j) - 1 for j; e [ - fl/2, <V2]. Put

<„, v> = r <a(y)u(x, y), v(x, yy>xdy + <(l-o(y))u(x, y), v(x, j)>
Jo

for wEEC°°([0, d); c57(12K)) and v^S(R^^ where < >, denotes the duality
between S^Rty and ^(/ZJ) and < > denotes the duality between <57(12M+1) and
S(Rn+l). Let

= P(DX, Dy) = S7=o a/A)Di

be a differential operator with constant coefficients and Bj(D)9j = l, •••,/;, be
some other differential operators with constant coefficients of order r j where
aj(Dx) is a differential operator in D^ with constant coefficients. We consider
solutions u(x, j)eC°°([0, d); <S'(Mn)) of the following equations:

(1.1) P(D)u = 0 in Rl+\

(1.2)

We make two assumptions when m^l. The following is an assumption
about the number p of boundary conditions :

(A-l) The number of roots with positive imaginary part of the equation
P(£9 X) = Q in ^ is less than or equal to p whenever

Write P(f, J) = n*-i PfaW' and P(e, ^)=II}.i/>X^ ^) where a11 PXf' ^)
are irreducible polynomials. Let us denote by Q(£ ) the resultant of JP(f , /I) and
(dPldXtf,*). Put ^{feS"; 6(0 = 0} and ^= {ee5B; a.(0 = 0}.
Note that Je and Attm are empty or real analytic sets in this case. We de-
compose Bn — (AQ\JAam) into open connected components VJ9 that is,

B*-(AQ(JAmm)= U Vj
finite
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where F;-fl F/ = 0 if j^j'. Write V~ V for the sake of simplicity. Let us
denote by ^j(S)yj= 1, • •• , w, the roots of the equation P(f, ^) = 0 in ^ when
<?e F. We have that the imaginary part of .̂(£) (denoting them by Im /t/<? )) is
a real analytic function of f . Without loss of generality, we may assume that
Im <*/£), j= 1, • • • , >", C"^0) do not vanish identically in V and Im^-(f),
j = ju+l, "•, m, vanish identically in V. Put

Av,im= {feK; Im^(f) = 0 for some re {1, • • - , #}}.

It is obvious that AVfIm is either empty or a real analytic set. V — AVtIm may
be decomposed into open connected components WVJ9 that is,

where ^FJn WVJ' = 0 if j^/. Write WVJ=W for the sake of simplicity.
Thus we have

Moreover, when ^ePF, the roots of the equation P(f, ^) = O I n ^ have con-
stant multiplicity and split into three classes: real roots, those with positive
imaginary part and those with negative imaginary part. We denote those by

q(£)9j = l,-,a, *;(£), 7' = l,-,k and Jj(£), j = l, -, c, where I
Im 4(j) > 0 and Im ^j(f ) < 0. Thus we have

-n}-!^^
Put

2f-o
= 25-o

where fi=2J-i ay» ̂  = 2y-i^y» c = 2y-iry Note that b^p under the
assumption (A-l). Put

where r(f) is a simple closed curve in the complex upper half ^-plane which
surrounds all tf(£),j = 1, ••- , b when f e W and we denote by (7 = (c71, • • • , ay) a
set consisting of 5 elements of {1, • ••,/?}. When 5>0 and m^rl we make
the following assumption on linear independence of boundary conditions :
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(A-2) LW ,<?(£) does not vanish identically in Wfor some crC {1, ••• ,p}.

Main Theorem. Let u be a solution of the equations (1.1) and (1.2) "which

belongs to C°° ([0, d); £'(1T)) n L^C^T1) for some positive number d. We
make the assumptions (A-l) and (A-2) when m^l. Then there exist an open
cone F in Rn+l and a natural number N such that ifu satisfies the condition:

(1.3) Hm R'N ( | u(x, y) \ 2dxdy = 0

then w = 0. ffere r <z«rf N are independent of u, FR= {(x,

R<\(x, y)\ <2R} and \(x, y)\ =<2J-i *J + J2)1'2.
Moreover, in the case where m^l, if at least one 0/(A-l) and (A-2) is not

fulfilled, there exists a solution of the equations (1.1) and (1.2) which belongs to

Remark. In the case where m = 0 and AOQ = {<f e IT ; P(<? 5 <*) = a0(<? ) = 0} is
empty, ifu satisfies equations (1.1) and (1.2) and belongs to C°°([0, d); <S'(RnJ)

then u = 0. In the case where m ;> 1 and the system {P(<f, /t), Bfi:, ̂ ),
j = !5 •••,/?} satisfies the following conditions:

(i) {feS"; ^(0=^-1(0= - =<%(£)=0} is empty,
(ii) for each £°&En all roots of the equation P(f°, ̂ )=0 have negative
imaginary part or the degree d of P°(£°, A)P+(f °, ^) is equal to or less than p
and

-1 J ^/e°, ^-^
•ycg0)

for some ^ = ((7^ ••- , ad)d{l, •••,/?}, if w satisfies the equations (1.1) and (1.2)
and belongs to C°°([0, d); cS'(JT)) n LlJJttF), then «=0. Here denoting by
T*9j = l9 ••- ,#, and ry"5j = l, .--, v the roots whose imaginary parts are zero
and positive, respectively, of the equation P(f°, /) = 0 in ^, we wrote P°(f°, ^)
= H^i^-r?) and P+(f°, ^) = n/-i(^-r;), and o = (av .-, arf) (J = a+6) is a
subset consisting of d elements of {1, •••,/?}. Thus in the statement of the
Main Theorem we put r = 0 and interpret that the condition (1.3) is satisfied
automatically under the situation which is stated above.

We will state more details on F and N in the proof of the Main Theorem.
On the other hand, we can show that the system {P(<? , ^), B£f, <*),

7 = 1, °",p} does not satisfy the condition stated in above Remark, there exists
a solution u^S\R^)n C^R^1) of the equations (1.1) and (1.2) with
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( \u(x, y)\2dxdy = Q(RN/).

In general case we have N'^N and N=N' for certain class of systems of
differential operators with constant coefficients containing (P(D) = A + k,
B(D)=l} for which the result was given in Rellich [12] or Agmon [1] where A is
the Laplacian operator and k is a positive number. But we can not show
that N' = N in general case.

The author wishes to express his gratitude to Professor M. Matsumura for
his suggesting the present problem and much kind encouragement. To
Professor K. Kajitani, Professor F. Suzuki and Professor S. Wakabayashi, the
autohr also wishes to express his gratitude for valuable advice.

§2, A Condition in Order That the Support of ii(§9 y) Is Contained in a
Real Analytic Set of Higher Codimension

When m = Q, put AQ=3n. When m^l, let us denote by A1 an open set
contained in W, by Ar+1(l^r^n— 1) a real analytic manifold which is defined
by £" = /*(£') where Sr^^dBn'r and /*(£') is a real analytic function in Q.

An+l denotes a set consisting of finite many points in Sn. Further, when 1^
r 5^72+ 1, we assume that Ar is contained in Xe where

Xm= {£€=*"; *„(

Xe = {S^Sn; am(£) =•••= ae+l(S) = 0, ae(t)*Q e =

- 0} .

Let w be a solution of the equations (1.1) and (1.2) which belongs to C°°([0, d);
S'(RnJ) such that the support of *(£)£(£, j)J) is contained in ArxR^(Q^r^
n+ 1) for some <t>^C%(Bn). In this section we study what conditions imply
that there is a real analytic set BdAr such that codim^>codim^4;. and
supp 0(f)A(f , y)dB X JRJ.. We need the following lemma.

Lemma 2,1, Letf(E, y) belong to C°°([0, a); cS(SM)). ^/"^ JM/J^O^ off is
contained in the plane f/ = 0, then f has the form

1) We denote by «(<f, 7) the partial Fourier transform of u(x, y) with respect to x.
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where /^eC^O, a); S\8^~r))t 8 is the Dirac measure at the origin in 3%",

a = (an_r+1, —,aj and D^ = (D^_r+1> — , D^). Here we wrote <?' = (^ °~> <?«-*•)

Proof. From a theorem due to Seeley [13] it follows that /has the form

, y) = 2 ifg.(e, y) when j^o

where the go>(f > y) are continuous functions of polynomial growth, F(f , j)
=2i«is,^flk»(^ j)eC°°((-oo, a); cS7(^)) and the support of F(£, y) is con-
tained in the plane <f" = 0. Thus, by a slight modification of the proof of

the fact that every distribution having the point XQ as support has the form

(*-*o)> we have that for 0(f7, y)GS(5*frx R\) and p(O

2 (
I«lg?

where /zCf^^CSrCS^') equals to 1 in a neighborhood of the origin in Er^>.
Since

(F,

= 2 t (-^.^(f7, j)rf
I8I^«J

if we put

FJ&, y} = 2 ^f'.,[ t (-^mf^
181^1 5 J

we have

F = 2 F(f7, ̂ )®/)^ ,
1*1 g«

where D?,,=(Dtl, -, De..r, D,) and Df"=(I»^_r+1, •-, D{JI). Since

J (-0

is a continuous function in (f x, 7) of polynomial growth, F^f x, j) belongs
to cS/(S'|ry x /?i). Further, choosing peCST(5^) with (jD|^)(0)=l and

= 0 for /9^a and | ft \ ̂  ^, we have, when y <a,
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. y). tf(O>*' = < 2 F&

for any 0e<S(S||rr), which shows that F,(£7, j)eC°°((-oo5 a); <S7(S£rr)).
Q.E.D.

First of all we consider the case where the support of 0(<f )$(<? , j) is con-
tained in A0or Ar (2^r^n+l) which is contained in X0. Let us denote by A
such an 4r. When the codimension of A is positive, that is,Ar = A(2^r^n+l)
and AdXQ, we denote by v(f, y) the composition of <f>(E)u(E, y) and the map
<?i-»(f7, f/7 + ^(<?7)) (defined arbitrarily for <?'££). It is obvious that the
suupport of v(f , j) is contained in the plane f/7 = 0. Thus, by Lemma 2.1, we
can write v as a finite sum:

v(f , J) = S v*(f

where d is the Dirac measure at 0 in •£?£", <x = (aM_r+2, "•,«„) and v^c7, j)
C°°([0, 3); c57(5|rr+1X M)). Let us fix a (| a | -5) and let ̂  be a C^/71)
function with (Z)V)(0)=1 and (D^)(0) = 0 for y?^a and |/9| ̂ s. Hence
we have

- o

for any *(£ 0 e CST(^) and p( j) e cS(^i). This shows that

(2.1) <*0(e
7, ^(eO)^7, y), w(e7, j)> = o ,

for any w(f7, 7) e vS0(-0X/2+). Here we wrote for any open set *S in
S*<S0(£ X «i) = {^ e C°°(5* X M); There is a 0 e <S(3k X J21) with supp $
dtixR1 such that 0 = 0 1 ^>0} . (2. 1) shows the support of vtf(f

 7, j) ( | a | = s)

is contained in {<?7e^; a0(f
7, ^(f7))^10} Xfi+. Since

0 =

for any *(<?7) e C?({f7 e ^2; a0(f
7, ^(f7)) ^0}) where ^eC^Sp?1) with

(DV)(0)=l(k| =j-l) and (D^)(0)-0 for /9^a and |/9| ̂ j, we have that
the support of v^f7, j) (|a| =s— 1) is contained in {<?7e£; ^(f7, /£(f/)) = 0}
X /2i_. By repeating the argument we conclude that the support of vtf(£

7, y) is
contained in {f7 e J2 ; a0(£

 f , #(£ 7)) = 0} X M for all a ( \ a \ <; s), which shows that
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the support of 0(<?)#(<f, y) is contained in {(£', #(<?')); £'<^By_^ xMl
+ where

£r-i={£'^£; <%(£', jM(f/)) = 0}- Consider the case: /w = 0, that is, 4 = 4,.
Since <a0(<f)0(<f )#(<?, >0» K£* J>)> = 0 for any vecS0(£

Bx JBi), we have that the
support of 0(£)#(£, j>) is contained in £0X M, where 50= {<f eS"*; 00(<f) = 0}.
When Br (Q<*r^n) is empty, it is obvious that 0(<f)#(<f, jO = 0. On the other
hand, when Br (0^r^g«) is not empty, we have, using a theorem due to
Hormander [see Theorem Ap-3 in Appendix], the following

Lemma 2.2. Let weC~([0, S)\ Sf(Rn))^L2
loc(R

n^1) be a solution of the
equations (1.1) and (1.2). Assume that supp $(<?)$(<?, y)dAr (r = 0 or 2^r
^n+ l)/0r some 0(£)eC°°(SM), ^4r w contained in X0 when 2^r^n+l and that
Br (0^r^«) £y «or empty. Put Nr = the codimension of Br in 3n~r (O^r^ri).
Set

where Fr is an open cone in Rn+l which for every analytic manifold Mr and

SQ^Mr contains («(<f0)> 0)- Here when r = 0, M0 is contained BQ and when
l^r^n, My is contained in {(£', /*(£')) 5 £f€=Br} andn(S^) denotes some normal
of Mr at £0 in M%. If u satisfies the condition:

lim R-(Nr+r^ I | u(x, y) \ 2dxdy = 0,

then 3l[<!>u] = 0. Here £F denotes the inverse partial Fourier transform with

respect to £.

Remark, (i) The codimension of {(£^ /*(£')); £'&Br} is Nr-\-r in En.
(ii) When r = 0, Lemma 2.2 shows the Main Theorem.

Proposition 2.3. Assume that the set

= 0} is not empty. Let F be an open cone in Rn+1 and N' an integer such that

every w^S\Rn^1) fl C°°(^Tr) which is a solution of the equations (1.1) and (1.2)
with the condition:

(2.2) lim R-** { | w(x, y) \ 2dxdy = 0
Jr

0. If MdSn is a C°° manifold where am(£)="-=a0(£) = Q and if
M, then it follows that the closure of F contains (n(£Q), 0) ^ 0 and that

M. Here n(£0) denotes some nomal of M at <?0 in 3n.
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Proof. We may assume that M is defined by £ " = 0(<?') where £ '

a>) and £<,=(0> 0(0)). Here / denotes the codimension ofM. For
<y) we put

w(jc, j) - exp {/(*' • f '

where A = Max {ry+l; 1 ̂ j^p} and p e C<T(( — 2, 2)) with p( y) = I for
l, 1]. Since

we have

. J') = 2 flXf- *(fO
y=o J

= 2 */*',

Moreover, the condition (2.2) follows from (Ap-l) for w if codim M<N',
which gives a contradiction. If F contains no normal which has the form

(H(£O)> 0) at ^o an(i if SUPP X is sufficiently close to f 0 the condition (2.2) follows
from (Ap-2) for any JV, which completes the proof.

Remark. Proposition 2.3 shows that Lemma 2.2 is very precise.

Next we consider the case where the support of 0(f )$(<? , y) is contained in
Ar+l (r = 0, 1, ••• , w) where Ar+1 is contained in Ze for some e^O (i.e. l^e^m)
if 1 <^ r ̂  n. We need the following fact due to Wakabayashi [16, Lemma 2.10].

Lemma 2A

"where ak(S) is real analytic in a connected open set V (d3n). Then there exists

a real analytic function D(<?) (^0) in V such that the roots ofp(s, /l) = 0 in X have
constant multiplicities for c and are real analytic functions of '<? in each connected

component of {f e V; D(£) ^ 0} .

When l^r^n, by assumption we have Ar+1dXe (e^O) and

=2J-oflJ-(f
/, XfO)^'> flXf7, XfO)^0 for f7e^. So it follows from Lemma 2.4

that there exists a real analytic function !)(<?') (4^0) in J3 such that the roots of
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#(<f 7)' ^) = 0 in /I have constant multiplicities and are real analytic functions
of f' in each connected component of {<?'e«0; D(g')^Q}. Thus denoting by
VQ each connected component of {<?'e,0; Z>(<? ') ̂  0} , we have that the imagi-
nary parts of the roots of the equation P(f ', #(f 0> <0 = 0 in /* are identically
zero or real analytic functions of £' in V. Denote the latter by Im /ly(f ')>
7 = 1, ••- , k, and put

AVQtIm = {f'e F^; Im J/f) = 0 for some j e= {1, • • - , fc}} .

It is obvious that Av^Im is empty or a real analytic set. VQ— ̂ F^.im maY b£

decomposed into connected components {Woj}. We write WQJ= WQ for the
sake of simplicity. Thus when f 'e JF&, the roots of the equation P(f ', &(£'), X)
= 0 in /I have constant multiplicity and split into three classes : real roots, those
with positive imaginary part and those with negative imaginary part. We
denote those by $(?),j = l,-,a, ^(5f),j = l, .-,6 and Aj(?), j = l,-,c
where Im ^(fO = 0, Im ^(£')>Q and Im ^7(eO<0, and then we have

Put

where fl=25-i *j> ̂ =2}-i ̂  ^=25-i r,-
Let Z be any open set such that Zf}Ar+1 is contained in Aw= {(f7, ^(fx)j

<fxe FFfl} when l^r^n. Let 0x(f) be a CS°(Z) function and v(f , 7) be the com-
position of 0(f )0i(f)^(f» y) and the map fi-^C^f^ + XfO) (defined arbitrarily
for £'&Wo). Since supp 0(f)*i(f)^(f , j)c^x .Ri, the support of v(f , j) is

contained in the plane {£ eSw; f/x = 0} X fii and we can write v as a finite
sum:

using Lemma 2.1. Let us fix a (| a | =s). Let ^ be a Co>(^g//) function with
(D»(0) = 1 and (D V)(0) = 0 for £ 7^ a and | ft \ ̂  j. We have
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(2.3)

= <P(£, D,)*(0*i(0a(£, JO, *(fO^"-Me')Mj)> = 0 ,

(2.4) <*/£', Kf), J>>«(f, JO I ,=o, *(O>

, 30 U, tffW'-Me^ = o

for any X^O^C^^) and p(j/)e^(^). In order to simplify the notation,

) whenr=0
v(£',y) =

Ij. whenr=0

V0

Dv) whenr=0

P°(£', Dy)

P^f, Dy) when r = 0

', Dy) when

when r = 0
«(f n)= ">*•">'

3 y } B£?,#(£'), Dy) whenl^

Lemma 2e5. Let v, W, P° and P± be as in the above statement. Then

(2.5) (PQ(£f, Dy)P+(E', Dy)v(<E', y), w(£', y)y = 0

for any w(f', y)^SQ(Wx Rl+).

Proof. Repeating integration by parts, we have

(2.6) 0= ~~

Here we wrote

', /),) = 25-o aJ(f')D'y .

Since the roots of the equation P~(fx, /l) = 0 in A have all positive imaginary

part when <feFF, we can define the Lopatinski determinant of the system
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Since £-(£') = 1 ̂  0 in HP, for any w(f, 7) e SQ(Wx R\) where exists a

SQ(W X JRi) function (z(f, y) such that

p-(f ', />,Mf' JO =
Q.E.D.

Lemma 2.6. Lef i>, FF, P° and P+ be as in Lemma 2.5. If v satisfies the

formula:

(2.7)

X *i

/or fl/i,y *(Oe Cot*/) owrf pe C~0)(^l). ^ere 17 w anj ope/i ^wfo^r o/ W.

Proof. Let £/ be any open subset of U such that the closure of U is

contained in U and compact. It is sufficient to prove that

(2.8)
for any %(£')&€ *(0) and p(y)eC(°S)(JBi). From (2.7) and Lemma 2.5 we

have

(2.9)

for any w(<?7, j)e<50(£/x R+). Since we can choose r so large that
7, ^-ir)P+(f7, ^-i»7fcO when f'e £7 and ^ is real, we can put

for any j(f/)eCST(t7) and peC^)(J?i) where pQ is compactly supported C°°

extension of p to y<0 (see Seeley [13]), and then w(f7, j) belongs to SQ(Ux R+).

We obtain, using (2.9),

for any /(fOeC?(&) and p(^)eC5)(«i). Q.E.D.

2) Here 3^ denotes the inverse Fourier transform with respect to y.
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Next lemma which is inspired by an idea due to Hormander [7] plays an
essential role in this section.

Lemma 2.1. Let v, W, P° and P+ be as in Lemma 2.5. Put Mj

= {(£', j«(f 'X Aj(f 0; f ' e fF}, j = 1, — , a. Letdj,j=l,—,a,be non-negative
integer such that 8^ajm Assume that 0. = (0{, • ••, 0j, 0j+1)elC[.+1 is a normal

of Mj at (£{, XfoX *?(fo)) (foe W and \0j\ =1) and e>Q. If u belongs to

iiocCRI^1) and satisfies the condition:

(2. 10) Mm R- PC V V+r+1> | w(^ y) 1 2^^ = o far 5,^1,
«-*<*» J

IC*,JO/JB-0yl<8

^0

rtere exwrs a small neighborhood o> of£0 contained in W such that

(2.1 1) ., , . ,-0,
(J. — 1 — K — V) \

^(f 0> =
for any x(£')^C *(<*>) and 0^,v^d.— I where we interpret that ^(f/)l'"1"*"v=
z/ 1 — k — 1 — v < 0. £fere M is as in the first place of this section and

Let us write ay = a, 5y = 5, 0i = 0k and ^J(f/) = ^(fO- Let ^i be an

open neighborhood of f J with cyxc C JF3). Put

m = Max{suP(| w?/
CO, ^

A = 1, "-,r , j = n — r + l, --,71, z = 19 —,«} .

Let ^i be a positive number determined later on and 6// = (63
n_r^l> • • • , ̂ j).

If 0B+1 = 0? we choose peCS'CU1) so that supp pC {^e/21; | j> K^}, P(0)= 1
and (DJXO) = 0 for *>>!. If ^+1>0, we choose peC^I?1) so that Sj. n
supp(£>»C {j^e/P; | ̂  — ̂ M+i I Oi} for »:> 1 and p(0)= 1. In the latter case,
we choose ^ so small that On+l — e^O, and then CDjp)(0) = 0 for v^l. Let £2

be some positive number determined later on such that

(2.12) ^-2[(^

Then using the inequality:

3) The notation: o>iC c PF, means that the closure of o>i is compact and contained in W.
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\a+b\*>2-1\a\a-\b\t,

and the formula :

we have

,j)-0J2- I '"I},

Here

-fyWtfQ H */
, y)\ -0n+l\*

If we choose o> (c CG^) so that when <f

and put

F" = {(x", jOe^1; |(x", 7)/|(x, y)\ -(<?',

F = {(*, j) e .R^1 1 ; I x'/ 1 (*, y) \ - 0' \< ,„ (

we have

Thus, we have, using (2.12),

2UI (** + 25-.-r+1

when (xf',y)^V", (x, y)& V and <f'eco. It is obvious that F is a conic
neighborhood of 6 in Rr+l. If we choose el and £2

 so that ex and e2 satisfy
(2.12) and 0<£1; e2<e/2x/«TT, then

Jexp { - i(x' • f + y

is rapidly decreasing f or r^l, ̂ ^C?(cu) and a<=CZ({x"^Rr; \x"-g"\ <£j})
when |(jc, y)/R-8\>e/2. When r^l, let a be a C?(BO function such that
supp ffC {x"e «•"; \yf'-6"\ <e,} and

(2.13) (l/2*y j (-^OV^Odx" = 1,
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(2.14) (l/2*)r j (-*")M*"¥*" = 0,

Repeating integration by parts, we have

f', D,)0(£', j) | y=Q9 %(£')

Since

m. i (-

and

(Ds~'/o)(0) = 0 ,

where c; is some constant, we have

(2.16)

When r 5: 1, noting that v= va and writing

(d/dX)'T(?, X) = T<'\£', X) ,

we have, using (2.13) and (2.14),
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where c, are some constants. Therefore, since \a\ ^0, it is sufficient to show
that

(2.17) M
B->«»

'(-iyixr-'w-'ptoiiwiRr-^ = o.
When r = 0, it is sufficient to show that

(2.17)' li
><»

= 0.

Note that r~l^l, r—l^ai—f^ai—(dj—l)^l. Let us show (2.17) and
(2. 17)'. We denote by Hm 7 the left hand-side of (2. 17) and (2. 17)'. Put

= 000

. jO*>
0 y<0

where 0 = #(f )*i(f ) when l^r^n. Define v by £F[vf = 0(£}vK£,
where ^^CQ(SH+I) is equal to 1 in a neighborhood of (££, ̂ (fi), ^5(fo)). Put
J=/1+/2 where

/2 = (i/JO'-'-^OCi-iKf, X)WuMf. X),

Since we can choose <a(c Co)j) and V so that there exists a positive constant c
such that

I^c when (£, ;i)6supp[l-V(£,

we obtain, using the fact that

4)

5)
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", j = 0, 1, 2, ..-,

for any N and some positive constants CN and C when (<?, ̂ )esupp[l — ^(f,

n o> X 2?g"fx. Therefore we have

lim /., = 0 .

On the other hand, since 0(£)vK£> -O^MC^ fy^£'(2n+1), we have

for some positive constants C and fc, and v^Lloc(R
n+l). Setting

J(x, y) =

we have

We obtain, using Cauchy-Schwarz's inequality,

(2.19) |/il<(l/10cv-V)+r( (J

•( 5Sj^^
r /•

| v(x, y) | | J(x, y)(y/R)v~l(Dy
y-

lp)(y/R)o(x///R) \ dxdy

It follows from Theorem Ap-l and Lemma Ap-2 that

\ u(x, y) \ 2dxdy

for every fce JB1. Hence we have, using the fact: r — ̂ ^«j — ̂ + 1,

( f | v(x, y) \ 2dxdy}l/2 ,
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and then it follows from (2.10) that lim I3(R) = Q. On the other hand, using

(2.18), we have

I v(x, y)J(x, y)(-iylR?-\Drlp)(ylRW*f'IR) I ̂  CR~\1 + \x | + | y \ Y(n+^

when | (x, y)/R — 0 1 ^ e/2. Therefore we have lim I(R) = 0. Q.E.D.B-><»
For later reference, we now present some facts concerning elementary

algebra.

Lemma 2.8. 1) Putfj(X) = amV + am^+ ••• + «._, andf?(X)=(d/dX)%

Then we have

/iftX

(2.20)

^w and amT±Q.

2) (c/. Hormander [5]) Z,ef A:(^) = /l''+a^_^'"~14 ----- Ha0 *e « polynomial with

constant coefficients of order n. Let q^(X), v=\, •••,/*, be some other polyno-

mials with constant coefficients. Let A j , j = l, •••, I, be the roots of the equation

= Q with multiplicity a,-. Then we have

(2.21)

Tlj-i ils<«ys'!

Lemma 2.9. Let k(X), q-u(X), v — \, •••, fi be as in Lemma 2.8. Assume that

(2.22) detCC&O"1 /
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forms a base of polynomials of order less than r + y. for any r (>0).

Proof. It is sufficient to show that [{P~lk(X)9 v = 1, — , r}, {q'v(X),
v= !,•••,#}] are linearly independent over the complex number field C.
Assume that

for some ay, £yeC. Then we have

W))-W = 0 , /

From (2.22) it follows that /?y = 0 for ally. Thus we have

Since k(X)&0, we have that a~ 0 for all j. Q.E.D.

Lemma 2.10 (Green's formula). Let U be an open set in 3k and Uf be any
open subset of U such that U' C. C U. Let /l/f), j = 1, • • • , a, be C °° functions in
U such that Ay(f ) ̂  ^/(f ) ifj^j' when g^U and let a j f j = l} -",a, be natural
numbers. Set

Let ftj,j = l, *•- , a, be non-negative integers such that ftj^ajt j = l, • • • , a. Put

Le? 5y(f, ^), 7 = 1, • •• , m! ' , be polynomials in X of order r j whose coefficients are
C°° functions oft in U. If

Xe^)^-1(e(f^))-1^)y>,=1>...jM'^0 in U,

then there exist ordinary differential operators C,-(f, Dy), j = Q,~-,t — m,
Etf, Dy), j = 1, — , m', Fv_/f , Dy), v = Q,—,pj-\,j = \,—,a, whose coeffi-
cients are C°° functions of £ in U' such that

(2.23) <P(f, D,)«(£, y), v(t, y» -<«(£, y), P(f, ~Dy)v(5,

+25-1 25K1 <2r=oM'

, y)\y=0,
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for any «(£, y)<=C°°([Q, -5); S'(SkJ) and v(£, j)<EcS0(t/7X^). Here we inter-

pret that ̂ (ey-^-^O iyi-l-fc-v<0, FVJ(e, D9)=0 ifftj = 0, C/f, D^)=0

Proof. Since £/7 is compact, it follows from Lemmas 2.8 and 2.9 that
there exist C°° functions in £/7: G^/f), /= 1, ••- , m — ra7, y = 0, ••- , /£,— 1,
j =1, •••, a, such that

(2.24) *-' = JX-iJvtfal.wfeTrfW

, / = !, --.m-m'.

(2.24) and repeated integrations by parts show that there exist ordinary
differential operators G^/f, ^X y = 0, •••, ̂ -— 1 7 = 1, ••-,«, whose coefficients
are C°° functions of f in C/x such that

(2.25) <P(f, Dy)u(S, y), v(S, yj>

We write, using Euclidean algorithm,

(2.26)

where deg £/<?, /t) ̂  r - m, deg ̂ (f, ^ ̂  w - m' - 1, deg B'tf,
Since, by assumptions we have

it follows from Lemma 2.9 that there exist functions bLk(£)j,k=l,°",m'

which are infinitely differentiable in Uf such that

(2.27) ^ = 2Jli *y.*(0^7(f , ^X 7 = 1*-. ̂  f e C/7.

Thus, repeating integrations by parts, we have from (2.27) that there exist
ordinary differential operators Ey(£, Dy),j = l, •-, m7, such that
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y\ 2'-i(--D,

It follows from (2.26) that

, J0l,=o, £/£- ^
. Dy)-Sj(S, D,)Q(f, />,)

Since degJZ/f, X)^t—m, there exist ordinary differential operators Cj(S,Dy)
j = 0, •••, t—m whose coefficients are C°° functions of £ in [/' such that

Since deg^/f, ^)<w — m'— 1, it follows from (2.24) that there exist ordinary
differential operator H^j(£, Dy), v=0, •••, ftj— I, j = 1, ••• , a, whose coefficients
are C°° functions of £ in U' such that

= 25-1 S^^r-r 2i-i . gXf

Thus, we have

a "V137— l/Xl^-^/ Xl'-l (g* ^ fe)' n(ZM
/-l2jvio \2ji-0 ^ = °/. . g i W X j

\i-l-k-if

This shows the lemma.

Lemma 2.11. Tjf rte 5-j^em {P(f, J); 5/f, ̂ ), j = l, — ,/;} satisfies the
conditions (i) awrf (ii) stated in Remark of Section 1 for each £&W, then v = Q.
Here v is as in Lemma 2.5.

Proof. By assumption, we have a + b^p in W. Let o = (olt ••• , a^+j) be
any subset consisting of a + 5 elements of {1, ••-,/*}. Put
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) = det ((2m)-1

where r(<?0 is a simple closed curve in the complex ^-plane which surrounds all

^y(fO»7 = l' —* « and <*/(<?')> J = l> —* *• since Ar(f') vanishes identically in
W or a real analytic function of <?' in FF5 putting ^L<r= {f7eFF; Lf(f

/) = 0} ,
we have that AL(F= W, ALff is a real analytic set in W or ALff is empty. By
assumption we have that fl AL is empty where the intersection is taken over

<r

all a c {1, •••,/*}. Let AXO not vanish identically in JFand £/be any openset
whose closure is compact and contained in W — AL<T. It is sufficient to show
that

(2.28) <v(^, 3,), w(e', y)> = 0

forany w^f7, j;)e<S0(Cf x JZ+). It follows from Lemma 2.10 that there exist
ordinary differential operators C/f7, D,), j = 0, - • - , t - (a + 5), £/£7, />,), j
= 1, •••, a + 5, whose coefficients are C°° functions of ^7 in U such that

(2.29)

7, y),

for any H>(<?7, j) ^<SQ(Ux j?i). Here ? = Max {r^^. ; 1 ̂  7 ̂  a + 5} . Since it
follows from (1.2), (2.4) and Lemma 2.5 that

for any w(<?7, j/)e<S0(C/ X R\), (2.28) follows from Lemma 2.6.

Now we shall prove the assertion: there exist an open cone F, natural
number N and real analytic set B contained in W such that if u^Li^R^^n
C~([0, d); S'(Rn)) satisfies the condition:

\u(x, y)\2dxdy = 0,

then the support ofv(£', y) is contained in BxT$\.,in the following cases.

Casel. a = 0 and 5>0 in W.

Since we have b^p by the assumption (A— 1), we put
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for a = (a1, • • • , a y) c {1 , •••,/>}. Put 5 = f| .4 where the intersection is taken over
<T

all ad {1, •••,/*}. When r =0, we have that B is empty or a real analytic set
in Wby the assumption (A-2). But when l^r^w, one of the following three
cases may occur: (I) B is empty, (II) B is a real analytic set in W, (III) B=W.
For the case (III) we have the following by Theorem Ap-3,

Lemma 2.12. Let u be as in the first place of this section and v be as in
Lemma 2.5. Assume that the hypotheses of Case 1 are fulfilled in W, l^r^n
and w = B (Case III). Set

n/J/) = {(x, j;)er<"'>; y^O, R<\(x, y)\<2R} ,

where jT(///) is an open cone in Rn+l which contains («(£')> 0) for every £' 'GE W.
Here n(£f) denotes some normal of {(£', /*(£')); f'e W} at (S', v(£% If u be-
longs to L2

loc(Rl+1)nC°°([Qf 3); ^CR*)) and satisfies the condition:

Mm R'" [ CUD I wfr, y) 1 2<ferfv = 0
R-*'** J1 R

then v = 0. ^fere r is the codimension of {(<?' ', XO); f/e ^"} ** ^n-

Proof. Put MO=Z^ when j^O and i/0=0 when j<0. Since the support of

> J) is contained in {(£', KO); f ' e w} x M, the support of
ol(£, ^) is contained in {(f'XO); f7^ 1^} X 5J. Let p(J) be any

function. It follows from Lemma A-2

lim JT " L I ff -
B-J.OO J ^ Jf2

^ C lim U-w ( ,Iin | «(*, j;) i *dxdy ,

where F^= {(x, ̂ e/17; R< \(x, y)\ <2R} and r' is another cone which
satisfies the same condition as JT(/J/). Then we have, using Theorem Ap-3 that

^(f^fM^^oKf, ^==0. This shows that 0(f)01(f)^, j) = 0. Therefore,
we have v = 0.

Proposition 2.13. Suppose that the hypotheses of Case 1 are fulfilled,

3!~l denotes the inverse Fourier transform with respect to (<f, /
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l^r^n and W = B. Let F be an open cone in Rn+l and N an integer such that
1) satisfies the equations (1.1) and (1.2) and the support

, y) is contained in {(<?7, Xf')); f'e W} X R\ with

(2.30) lim R~N \ w(x, y) \ 2dxdy = 0

then w=0. I%e« the closure F contains (n(£'), 0) for each £'&W and
Here «(<?') is as in Lemma 2.12.

Proof. Since W = B, LJjz') vanishes identically in W for all o c {1, •••,/?}.
So we have, using Lemma 2.8, that there exist C°° functions C^(<?7), *>
= 0, — , PJ— 1, j = l, —, 6, of ^x in ?Fsuch that if we put

we have that w(f7, j) does not vanish identically in Wx R+ and satisfies the
equations:

j) = o,

Here i^(£7)&C%(W). Hence, putting

wfo y) = i exp {i(xf"S

we have that w(x, j) does not vanish identically in J2+"1"1, belongs to ^(Jii4"1)
nC^J^71) and satisfies the equations (1.1) and (1.2). (2.30) follows from
Theorem Ap-l if N>r, which gives a contradiction. If F contains no
(«(£ o), 0) f°r some £ o and if supp ̂  is sufficiently close to £6 the condition (2.30)
follows from Theorem A^-l for any N, which gives a contradiction.

Lemma 2.14. Z,e£ w &e &y in the first place of this section and v be as in
Lemma 2.5. Assume that the hypotheses of Case 1 are fulfilled in W. (1) If B is
empty, then v = 0. (2) Suppose that B is a real analytic set in W. Ifu belongs
to C°°([0, 5); cS7(liw))ni^i2oc(^+"1"1) and satisfies the condition',

lim JR~(JVr+l') \ Crn j u(x, y) \ 2dxdy = 0 ,

then i) = 0. Here F(II) is an open cone in Rn+l which contains (n(£'),Q) for
every analytic manifold CdJ? and <f7eC, whenn(£') denotes some normal of
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and Nr is the codimension of B in S|~r.

Remark, Nr + r^l for any re{0, —,11+1}.

Proof. In the same way as in Lemma 2.11, we 'have that the support of
v(£', y) is contained in Bx R\. If B = <f>, then v=0. This shows (1). Since
the codimension of the analytic set {(<?', #(£')); f7eJ5} x5i is equal to Nr + r,
we have the assertion (2) in the same way as in Lemma 2.12.

Proposition 2.15. Suppose that B is a real analytic set. Let F be an open

cone in Rn+l and N an integer such that ifw^C°°(Rl+1) n Sf(R^) satisfies the
equations (1.1) and (1.2) and the support ofw(£, y) is contained in {(f/ #(

\w(x, y)\2dxdy = 0

then w=0. IfCisaC00 manifold contained in B, then the closure of F contains
(n(£f), 0) for each £'<=CandN^ Codim C + r. Here n(Sf) is as in Lemma 2. 14
and Codim C denotes the codimension C in 3rr.

Proof. We may assume that C is defined by ??// = K^/) where rjl '
r~A (k is codimension of C in <f?g'~r), v is a C°° function in o), Sf = (rjf, ??")

and (0, K0)) = f «- Put L=(/y^O)/=i,.,,,^i,...F where

Since all minor of L of order 5 vanish identically in o>, we have that the rank /
of L is less than b in o>. When />0, without loss of generality, we may
assume that

does not vanish identically in o>. When / >0, we put

where V^J?') is a C|T(a>— {^'^cu; J(77') = 0}) function and djk(ri') is the (j, fc)

cofactor of (/•yi07/))y.*-i.--.i and ^('?')=(*'('?/). M'?', ^C5?')))- When 7=0, we put
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, y) = (2^/

where VC9?') is a CS°(t») function. It is obvious that we have

Ptf. ffoO. D,Wy', y) = 0,y>0, Bfcf, Ctf), £>0?', j) I ,-o=0, 7 = 1, •»,/

Thus, putting

w(*, y) = \ e^'^'-w'Vwtf, yW, *" = (*.-,-*+!, -, *J .

we have that w(x, y) satisfies the equations (1.1) and (1.2). Since (w^'* j)l
when j^O for some positive constants C1 and C2, we have

for some positive constant C. So if N > Codim C + r ̂  Nr + r? then

1m R-» ( \w(x, y)\2dxdy = 0 .

This gives a contradiction. Thus, we have N ̂  Codim C+r. If T does not
contain any (n(£o), 0) and if supp ^(??0 is sufficiently close to 0

Hmir" ( |H<JC, y)\2dxdy = 0 ,
,B->«« Jrw

for any JV". This gives a contradiction. Q.E.D,

Next we consider the case when a>0. Put

'5^ = detail)-1 f B.tf, ^-
j

if a>0 where 8=(dl,—,da) (Q^d^aj), 5+l^p'^p and a = (a1, ••- , <y)

(C{1, .»./»}).

Case 2. c>0 and there exist p', 8, a, having the properties:
(I)

(II)
(Ill) if^^p, L^"-s'-^') vanishes identically in W for any p"(p'+l^p"

gp),o' = (o{,»>,o's>y(c{l,-,P)} and «/ = (*{,»-,*0 with 0^»jga,,
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j = l, — ,a, and2;.i(aj—5y) + 5=jp
//, such that lX's'°">(e') does not vanish

identically in W.

Remark. When r = 0, the hypotheses of Case 2 imply the assumption

(A-2).

Put £=={£'efPr;Z,c*''*i<r)(£/) = 0}- K is obvious that 5 is empty or a real
analytic set in W.

Lemma 2.16. Let v be as in Lemma 2.5. If the hypotheses of Case 2 are

fulfilled in W with 25- 1 &j + b = p/, then the support ofv is contained in BxR+.

Remark. IfB = <t>, then v = 0.

Proof. Let U be any open set in W whose closure is compact and con-

tained in W — B. It is sufficient to show that

(2.31) <v(^^w(^,j)> = 0,

for any w(£', y)^SQ(Ux JBi). We obtain, using Lemmas 2.5 and 2.10, (1.2)

and (2.4), that

, Dy}P+(?, D,)*?, y), w(f,

for any w(?7, ;y)e<S0(J7x JB+). Therefore, (2.31) follows from Lemma 2.6.

Lemma 2.17. Suppose that the hypotheses of case 2 are fulfilled with £y>0

for at least one j, say, fl/>0,y* = 1, •••, k. Set

Fj>R = {(x, j)er,; y^Q, R<\(x, y)\<2R} ,

where r • is some open connected cone which for every g'EzW — B contains some

normal of M y = ( ^ X^X *?(£0); S'^W-B} at (£' , /i(fO, ^<O)- // w
/o LlJJK*?1) with

(2.32) lim jR-{2(-y-«/>+^1) ( | u(x, y) \ 2dxdy = 0 , j = 1, — , fc,
^" J

e support ofv(^} y) is contained in BxRl. Here u and v are as in the

first place of this section and Lemma 2.5, respectively.

Proof. Let £7 be an open set in W whose closure is compact and con-

tained in W—B. It is sufficient to show that
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(2.33) <K?,y),w(e',yy> = o,

for any w(£', y)<=<SQ(UxR\.). It follows from Lemma 2.10 that there exist
ordinary differential operators C^', Dy), j = 0, •••, t -(a + 5), £,.(£', Dy),
j = l, -~,p, Fvj(£', Dy), v=Q, •••, dj-\,j = \, —, k, whose coefficients are C°°
functions of £ ' in U such that

, y), »>(£

for any w(f, j)e S0(UxR\). Here f = Max{r;-;

nj-j^-^CfOy^S-o^XO^. fi(f)=2J-i(^-^(fO)'l^-P+(f/, ^). Since
it follows from (2.32) and Lemma 2.7 that

for all v=Q, —, ds— l,j = l, •••, k, and it follows from (1.2), (2.4) and Lemma
2.5 that

7) I =o> = 0, j = 1, •»,/»,

we have

for any w(f', j)e^0(C/ X «i). Thus, (2.33) follows from Lemma 2.6.

Make the same assumption as in Lemma 2.17. Let «/£') denote some
normal of M,- at f' and 0e.Rl+1 be a normal of Mx at f $e PF-5. Let Z) be
a subset of {2, •-, a} and let 0 be a CZ({(x, y)<=Rl+1; \ (x, y)-6\ <2e}) with
0 = 1 on | (x, y) — d \ ̂  s for sufficiently small s. Assume that 0 = n^fd) — n^'o)
for some «X£6) whenj'eD and d^n^d) for all n^d) when j'^Z). Choose a
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small neighborhood a of <?o so that {n/ (<?')> f'^cy} C {(tx, ty)\ t ^0,

l(*. J>)-0|<4 when jeD and {«/£'); f /ea)> n {(fx, 00;
< e} Is empty when j & D. Put

where fi1 = aj-d1 + l, u.^a^ — 8^ j=2, —, a, vj + a=pj, j = l, •••, b, r/f')

= ̂ (O.7 = 1. -.«. and ry+.(O

It follows from the hypotheses of Case 2 and Lemma 2.8 that the rank of L is
equal to p' in W—B and that

does not vanish in W — B. So there exist real analytic functions Cis(S
f)

s = l, —,Uj-l,j = \, —,a+bin W-B such that C .̂/f 0^0 and

satisfies the equations :

P(f/,D,Mf/,j;) = 0,^>0 and B^9D9)^
f, y) I ,,0 = 0, ./= !,-,/>,

where ^O e C?(o>) and P(l;f, Dy} = P\? , D,)P+(f ', D,)p-(£', Dy). So setting

w(x, >;) = J w(^, j)exp {/(x'-f' + ̂ -KfO)}*7 ,

we have that w(x, y) satisfies the equations (1.1) and (1.2) and that w(x, y)

belongs to <S'(R'p l) n C~(JB J+1). Put

N' = Max {^; C;-s(f
7) does not vanish identically in o> when j

Note that if {2, • • • , k} fl D is not empty we may assume that N^^ — d^ a^ — dj

for je{2, — ,fc}n/>. Put N' = yLjk-vJk,k=l,*~,t and C lf lz= {(̂ :, 7)eQ;
j^O, jR< | (A:, j)| <2J?} where Q is a small conic neighborhood of ^(fo).
Since supp (frdR^1, it follows from Theorem Ap-1 and Theorem Ap-4 due
to Agmon-Hormander [3 Theorem 3.1] that
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lim j I w(x, y) \ 2dxdy/Rr+l+2N'

^Hm j | w(x, y) \ ̂ ((x, y)/R)dxdy/Rr+1+2N/

^Hm ( <t>((x, y)/R)- |2*-i^*(^ J) 12dxdy/Rr+l,

where

fk(x, y) = [ exp {i(x'-£' + x"'M(?')+yrit(e'y)}CJ- „. _„. (t'W(£')dt'.
J K K> 3k Jk

Since r/ft(f')^ryft/(f
x) ifjk^jk', we have, using Corollary Ap-5,

lim F,(x, ^)M^7)^((x, y)IR)dxdylRr+l = 0 ,
s->«» j

Thus, we have, using Theorem Ap-43

lim { | w(jc, y) \ 2dxdy/Rr+l+2N/

This shows that

In the same way, we have, using Theorems Ap-1 and Ap-4,

Summing up, we have proved.

Proposition 2.18. Make the same assumption as in Lemma 2.17. Let
1 0" = 1, — , k) be normal of Mj at £'Q<=W-B and Cj a small conic

neighborhood of 0y. Then there exists a solution w(x, y) ̂ C^R^1) fl cS7(JB++1)
of the equations (1 . 1) and (1 .2) and a natural number Nj such that N3- ̂  aj — d. and
w(x, y) satisfies for some positive constants d1 and d2

^(2^y+r+l) ̂  f | w(^ ̂
JCj,R

where ChR= {(x, y)eCy; j^O, i?< |(^f j)| <2R}

Remark. For example, if D is empty, then N
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Case3. a>0 and 5 = 0 and L(p'-*'°\£f) vanishes Identically for all p'

j) and a = (ov -, ey) (C {1, .»,/>}) in PF.

Lemma 2.19. Let u and v be as in the first place of this section and Lemma

2.5, respectively. Suppose that the hypotheses of Case 3 are fulfilled. If u

belongs to Z^CR*"1"1) and satisfies the condition:

\u(x, y)\2dxdy = 0, j = l, ~-,a,

then v = 0. Here Fj and F ̂ R are as in Lemma 2.17.

Proof. In the same way as in Lemma 2.17, the assertion follows from

Lemmas 2.5, 2.6, 2.7 and 2.10 and formulas (1.2) and (2.4).

Proposition 2.20. Suppose that the hypotheses of Case 3 are fulfilled. Let

F be an open cone in Rn+l and N is an -integer such that if wGtS/(J?+*1)n

C°°(Rn^1} satisfies the equations (1.1) and (1.2) with

I u(x, y) 12dxdy = 0
Z

and the support ofu(£, y) is contained in {(£', X<?0); £'^W}X R\ then u=Q. If

(£6, X£6X ^J(SQ)}^MJ} then it follows that the closure of F contains some normal

^QofMjat(£'0, Xfa

Proof. Let -^(fO be a C^(W) function. It follows from the hypotheses

of Case 3 that

where d = (alf ••• , a^i, «y— 1, «y+1, • •• , aj. So, putting

v(jc, y) =

we have the assertion in the same way as in Proposition 2.13.

Case 4. a>0 and 5>0 and L<*' •*•*)(£') vanishes identically for all

/ (1^/^/0, ^ = (^ -, O (0^^«y) and a = (a1, -, ^ (C {1, -,p}) .

Let 5 be as in Case 1. We have the followings in the same way.

Lemma 2.21. Let u and v be as in the first place of this section and Lemma
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2.5, respectively. Suppose that the hypotheses of Case 4 are fulfilled, IrgrsSn

and B=W. Ifu belongs to L2
loc(R^) with

ym/T'f \u(x, y^dxdy = Q,
JR+Q* j r^IJ;

then v = 0. Here F^in is as in Lemma 2.12.

Proposition 2.22. Suppose that l^r^n, the hypotheses of case 4 are

fulfilled and B = W. Let F be an open cone in Rn+l and N an integer such that if

weC%ffi!l+1)n<5/(J£!l*1) satisfies the equations (1.1) and (1.2) and support of

w(S, y) is contained in {(<f', /<<?'); f'e FF} X Jft wifA

= 0,

Z/2£fl w=0. 7%£« ?fe closure F contains (n(£')t 0) /or eacA g'^Wand N^r.

Here n(£') is as in Lemma 2.12.

When r = 05 the assumption (A-2) implies that B is empty or a real

analytic set. Noting this, we have the followings in the same way.

Lemma 2.23. Let u and v be as in the first place of this section and Lemma

2.5, respectively. (1) Suppose that the hypotheses of Case 4 are fulfilled and B is

empty. Ifu belongs to Lioc(R
n++1) with

\u(x, y)\*dxdy = 0, j = l, -,fl,

then v = 0. (2) Suppose that the hypotheses of Case 4 are fulfilled and B is a real

onlay tic set in W. Ifu belongs to li\^(Rn+1} with

\u(x, y)\2dxdy = 0 , j = 1, •••, a ,

Hm JZ-c^r+D J ̂  | w(^ ̂  12rf;crf;; = 0 t

then v=0. Here FJtR is as in Lemma 2.17 and F%n and Nr are as in Lemma

2.14.

Proposition 2.24. Suppose that the hypotheses of Case 4 are fulfilled and B

is a real analytic set. Let F be an open cone in Mn+1 and N an integer such

that lywe^C-B"*1) n C%K!i+1) is a solution of the equations (1.1) and (1.2) with
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lim R~N \ | w(x, y) 12dxdy = 0
R+~ JrK

and the support o/w(<?, y) w contained in {(£', ju(fO); £'e PF} X J^3 Z/zera w = 0.
If CdB is a C°° manifold, then the closure of F contains (n(^), 0) /or each

£'e C a/?£/ some normal ^0 of Mj at (£'', /*(fO> ^?0?0) /or ^ac^ g'^W — B.
Moreover, we have N^r +1. Uer^ w(£x) w 05* in Lemma 2.14.

§3e Proof of the Main Theorem

Now we prove the Main Theorem. Whenw = 0, it follows immediately
from Lemma 2.2 (r = 0). We may assume that m^l. Let u be a soluiton of
the equations (1.1) and (1.2) which belongs to C°°([0, <5); S'(RHy)r\Lfoc(R

H
+

+1)
and satisfies the condition (1.3). For a while let Wbs as in Section 1. When
the hypotheses of Case 1 are fulfilled in W, we write W=X0>W and choose N and
F so that N^ Ni +1 and rz)r(II). Here if 5 = 0, we interpret that JVi=oo
and r(II) = 0. When the hypotheses of Case 2 are fulfilled in PF, we denote by
X0jW each connected component of {£e PF", lXi8f<r)(£)=|=0} and choose TV and

F so that (aj — dJ)+l'^Nfj=lf ••- , & and rz> U {ry, l^j^k}. Here if the
hypotheses of Lemma 2.16 are fulfilled, we interpret that Uy-1-^ = 0 and
(aj — dj) + l = 00. When the hypotheses of case 3 are fulfilled in W, we write

W=X0>W and choose N and T so that N= 1 and J1 D U y-i/Y When the hy-
potheses of Case 4 are fulfilled in W, we write W= X0iW and choose TV" and F

so that 7^=1 and riD UJ- i /^U/ 1 ™. Here if 5 = 0, we interpret that
ro= U w X0>w. Thus, using the notation in Section 1, we have

where E= U {f e W\ L(/'/'s'tr)(f) = 0} and it is obvious that Y0 is open. Let U
be any open set such that U is contained in Wr\Y0 for some W. Let 0 be any
Co(U) function. It follows from Section 2 that #(£)£(£, j) = 0. Thus we have
that the support ofw(<f, y) is contained in Y1XR\. Suppose that {feFF;
£X.8.°-)(f) = o} is not empty for some W. Let U be any small open set con-
tained in W and let 0 be any C?({f e 17; (9/^fJ L^'^^^^O}). ^2= {f e 17;
L^«s'-)(f) = 0, (a/ae,)L^'s'^(f)^0} is an analytic manifold of codimen-
sion 1 or empty and the support of $(<?)$(£, y) is contained in A2XR\. If A2

is not empty, A% may be defined by <?w = ^(f/) where f'eoxz j- '̂1, /« is 'a real
analytic function in &> and f/ = (flf • • • , fn_i). We can denote by ̂ "(f

) = ̂ (f0,7 = 1* .-, A, and ^(^ X*0)
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7 = 1, °", c, the roots of the equation P(f7, Xf'X ^) = 0 in X when <?'ea> and we
have 0>0. When the hypotheses of Case 2 are fulfilled in a, we choose #and
r so that N^(aj-dj)+2fj = l, —,k, and r=) U {ry; l^j^k}. Then we

have that the support of 0(£)#(£, j) is contained in {(f7, XO; f / e(f / e Q )5
L^//-8/-^(fO = 0} by Lemma 2.17. When the hypotheses of Case 3 are fulfilled
in a, we choose AT and P so that N^2 and rz) d}Fy; 1<^7<^0}8 Then we
have $(£)&(£, j) = 0 by Lemma 2.19. If the hypotheses of Case 4 are fulfilled
in <y, we choose JV and r so that tf<2 and TlD U {ry; 1<7<4 U/1™.
Here if B stated in Lemma 2.23 is empty we interpret that F(II) = 0. Then we
have that $(£)#(£, j) = 0 by Lemma 2.23. In the same way, we have the support
of fl(£, y) is contained in AQ U Aam U ( U AVjtIa). Let t/ be any small open set in

V stated in Section 1. Let 0 be any C?( {0 e Z7; (6>/6><? J Im ̂ (f) ^ 0, Im J/£) ̂  0,
2<7<fc}) function. The support of $(£)6(f, j) is contained in {feJ7;
Im ^(£) = 0, (9/6>ej Im^(0=^0, Im^y(0^0, 2<^j^k} which is a real analytic
manifold of codimension 1 or empty. In the same way, we choose N and r so
that $(<f)$(<?, y) = 0. By repeating the argument, we have that the support of
$(<?,y) is contained in AQ(JAam. Let U be any small open set contained in

{eeSB; (0/0O6(0 ̂ °' a^(f) ̂ °} • Let * be any ^^C^7) function. The sup-
port of 0(e)6(<?, j) is contained in {f e 17; fi(f) = 0, (9/^02(0^0, a,(f)=^0}
which is empty or a real analytic manifold of codimension 1. In the same way,
we have that #(£)#(£, y) = 0. We repeat above reasoning on {<f e 5""; aw(f) ̂  0},
and then we have that the support of A(£, j) is contained in y4flw. Let C/ be any
small open set contained in {<?e5B; (d/df^am(f)^09 am^)^Q}. Let 0 be
any CfCIT) function. The support of <t>(E)b(E,y) is contained in {feJ?*;

«»(0 = 0»(0/9f«)fl«(0:?fcO» fl«-i(0^0} which is a real analytic manifold of
codim 1 or empty and contained in Xm_l. In the same way, we have, using the

results of section 2, that 0(<f )$(<?, j) = 0. By repeating the argument we con-

clude that the support of $(<?, y) is contained in X^_2. Repeated arguments

imply that the support of $(<f, j>) is contained in XQ. Therefore, we choose N

and r so that A(£f j) = 0 by Lemma 2.2.

Finally we show the last statement of the Main Theorem. First of all,

we suppose that the assumption (A-l) is not fulfilled, that is, there exists a

£Q^Sn such that the number of roots with positive imaginary parts of the equa-

tion P(f°, /l) = 0 in 2 is greater than p. Since the union of all W stated in Sec-

tion 1 is dense in Bn, any open neighborhood U of £° intersects some W. Thus,

for some W. Put
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where

fj k(f) = (2m)-1 f

Since b>p, A(£) has rank r (O^r^p) in W, that is, some minor J(f) of A(C) of
order r does not vanish identically in Wwhen l^r\^p and every (r + 1), •••,/>-
rowed minor of A(£) vanish identically in W when l^r^p— 1. Whenr^O,
we may assume without loss of generality that

When l^r<^p, we put

where 4yfft(£) is the (,/, fc) cofactor of (/y,*(f))yf*-i..".r and #(f) is a
function. It is obvious that we have

(5.1) P(C,D,)G(e,y)= 0,

(5.2) Btf,

When r = 0, we put

where 0(f) is a C^(FF) function. It is obvious that G(E,y) satisfies the equa-
tions (5.1) and (5.2). Put

u(x, y) = (2n)-» J G(f, j) exp

It is obvious that u(x, y) belongs to S(Rl+1) and satisfies the equations (1.1)
and (1.2), since (/(<?, y) satisfies the equations (5.1) and (5.2). Next, we suppose
that the assumption (A-l) is fulfilled but the assumption (A-2) is not fulfilled
for some W. Then p^b and LJrf0.(f) stated in Section 1 vanish identically for
all a= {alt ••• a%} C {1, •••,/?} in FT. Thus it follows from the same reason as
the first case that there exists a solution u(x, y) of the equations (1.1) and (1.2)
which belongs to <5(12++1). This completes the proof.
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Remark. When we put N= I and r = Rn+\ for any system {P(D), 5/D),
7=1, °--,Jp} which satisfies the assumptions (A-l) and (A-2) we have that if
uGL^m+^nC-ftO, d); iS'GR*)) is a solution of the equations (1.1) and (1.2)
with

lim R'1 ( \u(x, y)\2dxdy = 0 ,
22-*<» J

then w=0.

Example 1 (Rellich [12] or Agmon [1]). We consider a solution

C-flX), ^'(/Z^n/iiocC^r1) of the equations:

(5.3) Au+ku = 0 in R%*\

(5.4) w|,-o = 0 in JZ",

where A= ~^n^iD]-D2
y and ^>0. Put A+ = {S^En; \£\2>k},

denote by ̂ ±(?) = ± z\/|<? |2— ̂  the roots of the equation ^2 + | £ | 2 — fc = 0. It
follows from Lemma 2.5 that

for any v(f , j>) e cS0(^
+ X R\). Since u | ,_„ = 0, we have

),v(S,yy>

f, o»+<a(f, j), (-z»,-
^-^(OMe,j)>.

Then it follows from Lemma 2.6 that the support of £(<?, y) is contained in
}, Let u

satisfy the condition:

\u(x,y)\2dxdy = $

where F is an open cone which contains a normal of M= {(x, y)^Rn+1; \x\2

+y2=k9 \x\2^k and ^^0} for every (x,y)^M and FR= {(x,y)r; j^O,
l (^y) \ <2J^}. When f ̂ A\3 P contains an outer normal of {(<f,,

at f e^4i. It follows from Lemma 2.7 that
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for any *(<f ) e C5TC4+). Since u | ̂ =0= 0, we have that

for any x(E)^C~(A+). Thus we have that the support of $(<f, y) is contained
in[{<?GE^; |£ |2<&, £^0} U {feS*; |£12=&}]X J^T. When fe^L Peon-
tains an inner normal of {(<?, ̂ -(f)); f ̂ A^}. It follows from Lemma 2.7 that

for any x(f)^C^(A-). So we have that the support of $(<f , j) is contained in
l f | 2 <fc , f1 = 0}U{fe5"; |e]2 = £}]xJ^. Let 0 be any C?({£

"; | f |2<A:}) function. The support of #(£)£(£, 7) is contained in {feS";
|f |2<fc, e1-0}x^i and {fefiP; |£ \2<k, ̂  = 0} is a real analytic set of
codimension 1. F contains some normal of {(f • ̂ +(f )) ; f i = 0, |f

;) has the form:

where E' = (£2> '"> fn)- K follows from Lemma 2.7 that

<(D2+ If'I'-fcKCf7, y), *(£', j)> = 0

= 0 f

for any wC^^e^oCff eSf1; |f7 |2<fc} X JZi) and any
| f 7 1 2 < A:} ). Then we have that 0(£)fl(£, j) has the form :

Repeating this reasoning on v^ ( | a \ ̂  j — 1), we obtain that #(£)#(£, j) = 0. So
we have that the support of fl(£, j>) is contained in {c e Sw ; | f | 2 = k} . Let 17
be any open set contained in {S^Sn; ^X), £iH ----- h£2<fc} and let 0 be any
C<T(Z7) function. The support of 0(£ )6(£ , j) is contained in ^jX.Ki. where
^1= {(v/fc_ |f 1 2, £OeS"; £/ = (£2, -, fj. I^I2<^} which is real analytic
manifold of codimension 1 in B*. When £&Alt the roots of the equation

, /I) = ^2 + |f I2— fc=o in /I is zero with multiplicity 2, that is, P(£, ̂ ) = ̂ 2,
. (0, •", 0, 1) is normal of real analytic manifold {(£, 0); fe^} where
= 0 and r contains (0, ••- , 0, 1). Let v be the composition of 0(£)fl(£, y)

and the map £ H» (f j 4- >/£— |£x|2' f 0- v(^ * j) has ^e form :

v(£, J) =
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for the support of v(£,y) is contained in the plane ^ = 0. It follows from
Lemma 2.7 that

<Dyv«(t',y)\y=0, %(?)> = Q,

for any w(t', y)£ES0({£'^ 3*-1; \£'\2<k}xl&) and
|<?'|2<fc}). In the same way, we have that the support of $(<?, y) is con-
tained in {<? eJ?n; Si = Q, c|H ----- h <?;; = &}. Repeating the argument we con-
clude that w=0. Summing up, we have proved.

Theorem (Rellich [12] or Agmon [1]). Let F be an open cone in Rn+l

which contains a normal ofM= {(x, y) e Rn+l ; x^Q, \ x \ 2 4- y2 = k, \ x \ *^ k} at
every (x, y) e M. Set

FR = {(x,y)^r;y^>Q, R< \(x, y)\<2R} .

If USE C°°([0, d) ; ^(/Z*)) 0 ifocC^T1) is a solution of the equations (5.3) and (5.4)
with

lim JT1 f | w(jc, j)|2^crfj; = 0 ,
R+™ jrR

then w = 0.

Remark. Let 0(f) be a CS"({£ eSB; lf|2<A:, f^O}). Put

v(x,j) = J ̂ •e{^tt)^X-«^0(f)rff .

Then v(x, j) is a solution of the equations (5.3) and (5.4) with

\v(x,

for some positive constants Q and C2.

Example 2. We consider a solution we C°°([0, (5); S'(Rtt)) n ZrLt^T1) of
the equations:

(5.5) P(D)w = (D2
y + Dl-k)u = 0 , in J2^+1 ,

(5.6) A(i)>|,=o = (D,-i(*-l/2))w|,-o = 0 , in Rn ,

(5.7) *aP)«l,-o = (/>,-«>i + i>|^ = 0 , in 18" ,
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where k satisfies ((fc+l)/2)2>&>l. When S\>k, we can denote by ^(

= ±iV£?— fc tne roots of tne equations P(£, /l) = 0 in L When Sl>k and

, we have

When f f >& and S^(k+ 1)/2, we have

^0 , j = 1, 2 .

Where £i<k, the roots of the equation P(£, ^) = 0 are all real and we have

= -/(?!-(*+ 1)/2)=|=0.

In the same way, when f f = fc, we have

det ((2WI)

Then the support of fl(f , j) is contained in the plane {f e^M; f1 = (fc+l)/2}

X 12+ . This is real analytic manifold of codimension 1 in Sn and (1,0, •••,0) is

its normal. Let F be an open conic neighborhood of (1,0, --sO) in Rn+1 and

set

r^ = {(X, y)^F; y^>Q, R< \(x, y)\<2R} .

If u satisfies the condition:

lim R~l { | u(x, y) \ 2dxdy = 0 ,
B^oa J r R

then w=0.

Remark. Let ̂  be a C^(Bn'1) function. Put

w(x,y) = J exp {,X(fc+l)/2.^1 + ^^O-(fc-l)/2^}-V<f/Orff//,

where f / /==(f2» '"^O- w(^j) satisfies the equations (5.5)-(5.7) and there
exist positive constants C: and C2 such that
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for small positive e.

Example 3, Let us consider a solution weC°°([0, d); S'(RnJ) n L2
loc(R

n++1)
of the equations (1.1) and (1.2) for a system:

P(D) = (Dy- A)4GO,-A-1)2 , B^D) = 1 , B2(D) = D, ,
BJiD) = D2

y , B£D) = Dl+^^DjD, , B5(D) = D^y-(4Dl

When £i=$=l/6, we have

det ((2mYl f Btf, X)#-\l - f ,)' V ~ f i ~ l)"2^.*-i..-..5= 0 ,

det ((2mYl

for all <j = (<?!, cr2, t73, (74) with d4 = 5,

det

for all cy = (crl5 <72, (J3, a4) with a4=5,

det

for all a .

Since the normal of {(£,*); *==£i, £1 =1=1/6} and {(f, ̂ ); ^ = ^+1, fx =1=1/6} is
(— 1, 0, ••• , 0, 1), it follows from Lemma 2.17 that if u satisfies the condition:

UmiT3 ( \u(x, y)\2dxdy = 0 ,

then the support of $(<?, y) is contained in {S^Sn; S1=l/6} xR\.. On the
other hand, there exist C°°({<f <=Bn; f1=^l/6}) functions C,-f,(£) such that

is non-trivial solution of the equations (1.1) and (1.2) where C1>2(<?)=1 and
0(e)eEC0~({<f €ESn; fx =1=1/6}). Further, we have

| v(x, y) 1 2&rfj;^ C2jR
5
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for some positive constants Q and C2. This is an example for what we could
not take N~ai—-dj in Proposition 2.18.

§4. Appendix

Here for the convenience of readers we state some results due to Horman-
der [6] and Agmon-Hormander [3] which is used in our paper without proof.

Theorem Ap-l ([6]). If u is a smooth density with compact support on a
C°° submanifold M of Rn of codimension k, then

R>Q.

If r is a closed cone in Rn which contains no element 3=0 which is normal to M
at a point in supp u,

(AP-2)

for every integer N. Here $(<?) denotes the Fourier transform ofu.

Theorem Ap-2 ([6]). Let ut=S'(Rn}, u(=L2
loc, 0 <= Rn and e >0. If

X<=Co(Rn) and v=xu, it follows that for every ,

(Ap-3) Urn R"k

where C=(2x)-n ( \x\df .

Theorem Ap»3 ([6])0 Let u^S'(Rn) be supported by a real analytic set A
of codimension fc>0, and assume that $^jLfoc. Set

; R<\£\<2R},

where F is an open cone in Rn which for every analytic manifold MdA and
contains some normal of M at XQ. If

it follows that u = 0.

Theorem Ap-4 ([3]). Let $ be a continuous function with compact support in
Rn. If u&S' and u = u0dS is an L2 density with compact support on a Cl
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manifold MdRn of codimemion k, then

lim ( | u(x) | 2t(x/R)dx/R* = (2*)-*-" \ I t/0(f ) 1
 2( ( <t>(x)do(x))dS(£) ,

R~*-°a J J M J JVgJVg

zs J/ze Euclidean surface element on M and do is the Euclidean integra-

tion element in the normal plane N% of M at <?, passing through 0.

Modifying the proof of Theorem Ap-4 slightly, we have the following.

Corollary Ap-5. Let U be an open set in 8l7k, let #/<?'), j = 1> 2, be C°°(C7)

functions such that ^(f 7) =1= ̂ 2(f 0 when £'<=U and let x be a C~(U) function. Put

Fj(x) = exp {/

<t>bea CQ(RX) function. Then it follows that

lim { Fl(x)F2(x)^IR)dxlRk = 0 .
R->°° J

>0

= 1. 2).

Let 0(x) = 0( — x), thus </> e iS. The Fourier transform of
and F/x) are R-k<f>(-x/R) and ^(f/)®^(^"-A;-(f

/))> respectively,
so the Fourier transform of F^x^x/R^R'11 is

Hence it follows from Parseval's equality that

J FJdF&cWx

= WR*-* J

Since

')- 1&'- JIK))) | < Q(l + I ,' I )-" for any N ,

for any e>0 there exists a large number K such that
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where C1 is independent of K. On the other hand, we have

when \7i'\^!iK and f'esupp x, where C is some constant independent of R.

Since |#2(O — ̂ i(OI s^C' when <?' esupp *, we have that

'H), e'GEsupp* and |^|^^.

Therefore we have

for any e>0, that is,

lim ([ tffW-W^W, R(»2(t')-Mt'-y'/mdW = 0.
K^ooJJ

Q.E.D.
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