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Liouville Type Theorem for a System
{PWD), B;\D), j=1,...,p}
of Differential Operators with Constant
Coefficients in a Half Space

By

Yoshihiro SHIBATA*

§1. Introduction

Concerning the behavior at infinity of solutions of a partial differential
equation Pu= f, theorems of following three type are known. (1) The theorem
of Liouville type claims that if the function u(x) is a solution of Pu=0 such that
u(x)=0(|x|% as |x|—>oo (or li_mR"’S | u(x)|%dx =0) for some real d

Ryoo R<|zI<2rR

independent of u, then u(x) must vanish identically (see, for example, Agmon [1],
Hormander [7], Littman [9], Murata [10], Rellich [12] and so on). (2) The
theorem of Rellich type claims that if Pu has compact support, then u has
compact support (see, for example, Rellich [12], Agmon [2], Littman [8, 9],
Murata [11], Hormander [7], Tréves [16] and so on). (3) The theorem of Som-
merfeld type gives conditions at infinity which derive the unique solution of Pu=f
(see, for example, Grusin [4], Agmon and Hormander [3], Vainberg [15] and so
on). Recently the study on (1) and (2) has been completed by Hormander [7]
in the constant coefficient and the whole space case and the study on (3) has
been remarkably promoted by Agmon and Hérmander [3].

The purpose of this paper is to study the problem of type (1) for a system
{P(D), B{(D), j=1, -, p} of differential operators with constant coefficients in
a half space (boundary value problem) and to give almost corresponding results
to those obtained by Hormander [7] in the whole space case. In order to state
results more precisely, let us first of all introduce certain notations. Let R**!
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denote the n-dimensional Euclidean space, £**! its dual space and write (x, y)
for the coordinate (x, -+, x,, y) in B*™* and (&, 2) for the dual coordinate
(&, =+, €4y ). We denote by R%*! the half-space {(x, y) € B*™*; y > 0}.
For differentiation we use the symbol D =i"Y(8/0x, .-, d/0x,, 8/0y), D,
=i"}(8/dx,, -+, 8/0x,), D,=i"'8/0y. We denote by S(R%"?) the space of re-
strictions to B%*! of all elements in S(&"*) and denote by S(R%*Y) the space
of all temperate distributions in R%*' (see H6érmander [6]). For a positive
number & we put C=([0, 8); S'(R") = {ucS'(R%™Y); <u(-, ), #(-)> is a C=
function of y in [0, 6) for any ¢(x)=S(R™)}. Let o(p) be a C5((—9, 9)) func-
tion with ¢(y)=1 for y&[—9/2, §/2]. Put

<, vy = [T <otz ), v, D>udy+ (A —a(Dux, 3), ¥ 1>

for ueC>([0, 8); S'(R") and veS(R%™), where { >, denotes the duality
between S'(R?) and S(R?) and < > denotes the duality between S’(£"*") and
S(R*™). Let

P(D) = P(D,, D,) = 3\f-0 a(D,)D;

be a differential operator with constant coefficients and B;(D), j=1, ---, p, be
some other differential operators with constant coefficients of order r; where
a/(D,) is a differential operator in D, with constant coefficients. We consider
solutions u(x, y)& C=([0, 8); S'(R")) of the following equations:

(1.1) P(D)u = 0 in R,
(1.2) B(Djul,o=0, j=1,+,p, inR:.

We make two assumptions when m=1. The following is an assumption
about the number p of boundary conditions:

(A-1) The number of roots with positive imaginary part of the equation
P(&, 2)=01in 2 is less than or equal to p whenever £ 5",

Write P(€, )=TI%-1 Pj(&, A% and P(&, 2)=T1:-1P{(&, 2) where all P,(¢, )

are irreducible polynomials. Let us denote by Q(&) the resultant of (&, 2) and

(8PJ02)(¢, 2). Put Aoq={¢=8"; Q(¢)=0} and 4, = {¢=E5"; q,(6)=0}.

Note that 44 and A4, are empty or real analytic sets in this case. We de-

compose " —(4oU 4, ) into open connected components ¥, that is,
E"—(4eU4,,) = UV;

finite
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where V,N V=0 if j#j’. Write V;=V for the sake of simplicity. Let us
denote by 4,(€), j= 1, ---, m, the roots of the equation P(£, 2)=0 in 2 when
&€ V. We have that the imaginary part of 2,(§) (denoting them by Im 2,(£)) is
a real analytic function of £&. Without loss of generality, we may assume that
Im2;(¢),j=1, -, #, (#=0) do not vanish identically in ¥ and Im 2,¢),

j=w+1, -, m, vanish identically in V. Put
Ay1m = {€€V;Im2(6) =0  for some t {1, -+, #}}.

It is obvious that 4y ,, is either empty or a real analytic set. V —Ay 1, may
be decomposed into open connected components W, ;, that is,

V—AV,Im = U WV,j

where Wy, ;A W, =0 if j#j'. Write Wy, ;=W for the sake of simplicity.
Thus we have

En_(AQUAam U(UAVj,Im)) =Uw.

Moreover, when £ W, the roots of the equation P(£, 2)=0in 2 have con-
stant multiplicity and split into three classes: real roots, those with positive
imaginary part and those with negative imaginary part. We denote those by
2%8), j=1,+,a, 27(€),j=1,-, b, and 27(£), j=1, -+, ¢, where Im 2%(6)=0,
Im 2}(¢)>0 and Im 27(£)<0. Thus we have

P&, D) = a,(8) TL2-1(A— 2% - TT% s G — A3 ()P T A — A5 ()1, EEW.
Put

PYE, 2) = TL51(A— ()" = Xmo aY(O),

P, 2) = T5aG— 2560 = o af ()X,

P D) = &) TL5-Q— 250 = X0 a; (O, W,

where a=>Y_1a;, b=3V_, 8, ¢=2_1r; Note that 5<p under the
assumption (A-1). Put

Lis (&) = des(@ai)™ | By (€, DA (P(E D) dd) pm.5
)
where 7(£) is a simple closed curve in the complex upper half 2-plane which
surrounds all 2}(€),j=1, :--, b when £ W and we denote by o=(o,, -+, 03) a
set consisting of b elements of {1, -:-,p}. When 5>0 and m=1 we make
the following assumption on linear independence of boundary conditions:
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(A-2) Ly ,(£) does not vanish identically in W for some 0 C {1, -+, p}.

Main Theorem. Let u be a solution of the equations (1.1) and (1.2) which
belongs to C= ([0, 8); S'(R™)N Li,(R%*Y) for some positive number 6. We
make the assumptions (A-1) and (A-2) when m=1. Then there exist an open
cone I' in R*™* and a natural number N such that if u satisfies the condition:

1.3) tim R {  |u(w, y)|dxdy = 0
Ryoo FR

then u=0. Here I' and N are independent of u, 'r= {(x,y)EI';y=0,
R<|(x, )| <2R} and |(x, y)| =(j-1 x5+ y)2

Moreover, in the case where m=1, if at least one of (A-1) and (A-2) is not
Julfilled, there exists a solution of the equations (1.1) and (1.2) which belongs to
SR

Remark. In the case where m=0 and 4, = {£€8"; P(£, })=ay&)=0} is
empty, if u satisfies equations (1.1) and (1.2) and belongs to C=([0, 8); S'(R"))
then u=0. In the case where m=1 and the system {P(¢, 2), B;(¢, 4),
j=1, -, p} satisfies the following conditions:
@) {£€&"; ab)=a,1(6)="-=a(£)=0} is empty,
(i) for each £°=E&" all roots of the equation P(£° 2)=0 have negative
imaginary part or the degree d of P%&° 2)P*(£°, 2) is equal to or less than p
and

det ((2ri)* S B, (€%, DIHPYEY, DPH(EY, ) dA); pe g 7O
7¢0)

for some o=(oy, *--, ) {1, -++, p}, if u satisfies the equations (1.1) and (1.2)
and belongs to C=([0, 8); S(R") N LL(R%), then u=0. Here denoting by
t%,j=1, -, #, and tf,j=1, -+, v the roots whose imaginary parts are zero
and positive, respectively, of the equation P(£° 2)=0 in 2, we wrote P°E°, 2)
=114, (=7} and P*(&°, H)=1I1;-,(A—7}), and 6=(oy, ***, 0,) (d=a+Db)isa
subset consisting of d elements of {1, .-, p}. Thus in the statement of the
Main Theorem we put I'=() and interpret that the condition (1.3) is satisfied
automatically under the situation which is stated above.

We will state more details on I" and N in the proof of the Main Theorem.

On the other hand, we can show that the system {P(¢, 2), B,(¢, 2),
j=1, -+, p} does not satisfy the condition stated in above Remark, there exists
a solution u€ S'(R%*Y) N C=(R%*Y) of the equations (1.1) and (1.2) with
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lu(x, y)|%dxdy = O(RY).
1z, PIKR
=0

In general case we have N'=N and N=N' for certain class of systems of
differential operators with constant coefficients containing {P(D)=4 + k,
B(D)=1} for which the result was given in Rellich [12] or Agmon [1] where 4 is
the Laplacian operator and k is a positive number. But we can not show
that N'=N in general case.

The author wishes to express his gratitude to Professor M. Matsumura for
his suggesting the present problem and much kind encouragement. To
Professor K. Kajitani, Professor F. Suzuki and Professor S. Wakabayashi, the
autohr also wishes to express his gratitude for valuable advice.

§2. A Condition in Order That the Support of #(&, y) Is Contained in a
Real Analytic Set of Higher Codimension

When m=0, put 4,=5". When m=1, let us denote by 4; an open set
contained in W, by 4,,,(1=r=<n—1) a real analytic manifold which is defined
by &”’=u(&") where &€R2C B and u(¢’) is a real analytic function in 2.
A, ., denotes a set consisting of finite many points in £”. Further, when 1<
r<n-+1, we assume that A4, is contained in X, where

X,= {£€8"; a,(6)#0} ,
Xe = {EEE”; am(E) == ae+1(5) = 0: ae(f):i:o e = 1, °t, m—l} >
X, = {(€8;a,6) == aq(6) =0} .

Let u be a solution of the equations (1.1) and (1.2) which belongs to C*=([0, 0);
S’(R™) such that the support of ¢(&)R(€, y)¥ is contained in 4, X RL(0=r =<
n+1) for some = CF(E"). In this section we study what conditions imply
that there is a real analytic set BC A, such that codim B> codim A, and
supp ¢(&)a(€, y)CBX R.. We need the following lemma.

Lemma 2.1. Let f(&, y) belong to C=([0, 0); S(8")). If the support of f is
contained in the plane &' =0, then f has the form

f€,9) = 2 &', N@DYo

1) We denote by #(¢, y) the partial Fourier transform of «(x, y) with respect to x.
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where fo€C=([0, 0); S'(Ey")), 0 is the Dirac measure at the origin in Ei7,
a=(a,_,41,**,a,) and Dgr=(Dy, . .-, Dg). Here we wrote E=(Ep Epr)

and E”=(En—r+1’ "t En)

Proof. From a theorem due to Seeley [13] it follows that f has the form
f& y) =23 D°8(E, y)  when y=0

where the g,(£, y) are continuous functions of polynomial growth, F(&, y)
=2 Va1=, D°8a(€, ) EC=((— o0, 0); S’(8")) and the support of F(¢, y) is con-
tained in the plane £”=0. Thus, by a slight modification of the proof of
the fact that every distribution having the point x, as support has the form
f=2D1a15,3D"3(x—x,), we have that for ¢(&’, yY)€S(Ey" X R;) and o(”)
eCr(gs)

(F, 4®0) = 33 (F, @ (h(E")E")"/a)(D0)()

@[ <7

where h(¢”)ECF(E;) equals to 1 in a neighborhood of the origin in Zj~.
Since

(F, sQh(£")%/a!)
= 31| (=D yo’, y)ae'ayl | De e e aller(E, )de”
= <{'§1D§’,y[s —De)hE")E) @ 1gs(€, )ETE, (8, 1)),
if we put
Fu€'.9) = 3, 0%,L | (= Dyt iatleste, y)ae,
we have
F =3 FE, )®Dg,
where DE',J,=(D51, =+, D¢, ., D,)and Dg"=(Dg, .., -+, D). Since
[ (= Deyire e atiente, y)de”
is a continuous function in (¢’, y) of polynomial growth, Fu(&’, y) belongs

to S(8y "X R}). Further, choosing o€Cy(&7) with (D70)(0)=1 and
(Dgp)(0)=0 for f#a and |B| < g, we have, when y <o,
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<Fo(€, y), 6Ny = <I§EQFM(E', Y)®Dgd, $(¢)Rn(E")>
= {F(E, »), $(£)Q0(E")>

for any ¢&S(&y"), which shows that Fu (&', y) €C((— oo, 0); S(Bp ™).
Q.E.D.

First of all we consider the case where the support of ¢(&)4(€, y) is con-
tained in A4, or 4, 2<r <r+1) which is contained in X,. Let us denote by 4
such an 4,. When the codimension of 4 is positive, that is, 4,=4 2<r=<n-+1)
and AC X,, we denote by v(£, y) the composition of @¢(&)u(é, y) and the map
Er= (&, E” 4+ u(&")) (defined arbitrarily for &’&2). It is obvious that the
suupport of (£, y) is contained in the plane £”/=0. Thus, by Lemma 2.1, we
can write v as a finite sum:

WEL3) = 33 vele’ BDYO,

=s

where 0 is the Dirac measure at 0 in 5}, a=(a,_ 45 **, @,) and ve(&’, »)
C=([0, 9); S'(8r"*'xX RY)). Letusfix a (Ja|=s) and let ¥ be a CF(&57")
function with (D®"¢)(0)=1 and (Dfy)(0)=0 for f#a and |f|<s. Hence
we have

PE, mE), Dol ¥), 2(ENo(¥)>
= {P(&, D)B(E)E, y), 2(E )W (E" —u(ENo(y)> = 0

for any z(¢')eC(2) and po(y)=S(RL). This shows that

@.1) <ay(&’, uENva&’, »), W&, y)> =0,

for any w(&’, y) € S(2x R.). Here we wrote for any open set £ in
Ft:Sy (2 X RY) = {p € C~(8*x RY); There is a ¢ & S(8*x R') with supp &
C 2 X R'such that 6=¢|,5,}. (2.1) shows the support of v,(&’, y) (|a|=s)
is contained in {&'€2; a,(¢’, #(¢"))=0} X R}. Since

0 = <P, D)¢(EYuE, ), 2(E W (E" — (ENn(y)>
= <a(&’, wENVE, ), 2(EN0(y))

for any x(¢) € Cv({¢' € 2; af¢’, #(£)) #0}) where y € CF(E(7") with
(D*y)(0)=1(|a| =s—1) and (DFy)(0)=0 for #~a and |B|<s, we have that
the support of v,(¢’, ¥) (|a| =s—1)is contained in {&'E2; a (&', u(£'))=0}
x R%. By repeating the argument we conclude that the support of v,(&/, y) is
contained in {&'€82; a,(&’, u(&))=0} X R} for all @ (|a| < 5), which shows that
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the support of #(£)4(€, y) is contained in {(&’, u(£"); &’€B,_,} X R} where
B, ,=1{'e2; af&’, m(€’)) =0}. Consider the case: m=0, that is, 4=A4,.
Since <{a(&)3(E)U(E, y), v(€, y)>=0 for any vES(E" X R.), we have that the
support of ¢(&)&(¢, y) is contained in B,X R}, where B,= {¢€5"; a,(&)=0}.
When B, (0=r =<n) is empty, it is obvious that ¢(£)&(¢, y)=0. On the other
hand, when B, (0=r=n) is not empty, we have, using a theorem due to
Hoérmander [see Theorem A_-3 in Appendix], the following

Lemma 2.2. Let usC=([0, 8); S(R")) N LL(R%*") be a solution of the
equations (1.1) and (1.2). Assume that supp #(£)a(€, y)CA, (r=0 or 2=r
<n+1) for some ¢(§)= C=(E"™), A, is contained in X, when 2<r<n+1 and that
B, (0=r=n) is not empty. Put N, = the codimension of B, in 8" " (0=r Zn).
Set

I,z = {(x y)er,; y=0, R<|(x, )| <2R}

where I', is an open cone in R"™ which for every analytic manifold M, and
E,EM, contains (n(&,), 0). Here when r=0, M, is contained B, and when
1=r=n, M, is contained in {(¢', u(¢")); £’€B,} and n(&,) denotes some normal
of M, at &, in R;. If u satisfies the condition:

lim R | |uCx, y)|dxdy = 0,
B Fr,R

then F[oh)=0. Here T denotes the inverse partial Fourier transform with

respect to £.

Remark. (i) The codimension of {(&, u(¢")); ¢’€B,} is N,+r in 8"
(ii) When r =0, Lemma 2.2 shows the Main Theorem.

Proposition 2.3. Assume that the set {£€8"; a,(6)=a,_()="=ay(&)
=0} is not empty. Let I be an open cone in R**' and N’ an integer such that
every we S (R N C=(RY™Y) which is a solution of the equations (1.1) and (1.2)
with the condition :

22 tim R | wex, y)12dxdy = 0
Ryoo

R

is equal t0o 0. If M CE” is a C* manifold where a,(€)=-+--=ay(€)=0 and if
&, E M, then it follows that the closure of I' contains (n(&,), 0) = 0 and that
N’<Zcodim M. Here n(&,) denotes some nomal of M at &, in 8".
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Proof. We may assume that M is defined by &/ =¢(¢’) where ¢’ €0 CE",
¢EC~(w) and &,=(0, ¢(0)). Here ! denotes the codimension of M. For
€ C7(w) we put

wx, ) = | exp €/ 0(€) XL ENE - Yool

where h=Max {r;+1; 1<j=<p} and o€ C7((—2, 2)) with o(y)=1 for
—ye&ll, 1]. Since

Dy(y*o(¥)|y=0 = 0, 0=k=Max {r;; 1I=j=p},

a (&, ¢()) =0,0=j<m, <supp x,

we have

PO, 3) = 33 [ /€', o) exp {iGe -+ 0 X} 2(E)dE"- DY(3*0(3)) =0

r,
i

B(Dyw(x, y)| y=0 = Z‘_(.) S b€, (&) exp {i(x" <& +d(&")-x")}
< 2(ENAE DYy o)y =0  j=1,,p.

Moreover, the condition (2.2) follows from (A-1) for w if codim M < N’,
which gives a contradiction. If I' contains no normal which has the form
(n(&,), 0) at &, and if supp x is sufficiently close to &, the condition (2.2) follows
from (A,-2) for any N, which completes the proof.

Remark. Proposition 2.3 shows that Lemma 2.2 is very precise.

Next we consider the case where the support of ¢(&)4(€, y) is contained in
A,y (r=0, 1, -+, n) where 4, ., is contained in X, for some e0 (i.e. 1=<e=m)
if 1=r=<n. We need the following fact due to Wakabayashi [16, Lemma 2.10].

Lemma 2.4. Put
P&, ) = ¥+a(E)¥ 7+ +ai€)

where a,(€) is real analytic in a connected open set V (CE"). Then there exists
a real analytic function D(€) (Z£0) in V such that the roots of p(¢, )=0in 2 have
constant multiplicities for & and are real analytic functions of & in each connected
component of {£€V; D(€)7=0}.

When 1=r <n, by assumption we have 4,,,CX, (e0) and P(&’, #(&’), 2)
=3V _oa &, €N, a(&, m(E))#0 for &€ R. Soit follows from Lemma 2.4
that there exists a real analytic function D(¢”) (£0) in £ such that the roots of
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P(&’, u(&), 2)=0 in 2 have constant multiplicities and are real analytic functions
of £ in each connected component of {§'&€82; D(’)#0}. Thus denoting by
Vo each connected component of {¢'82; D(&')#0}, we have that the imagi-
nary parts of the roots of the equation P(¢/, u(¢’), 2)=0 in 2 are identically
zero or real analytic functions of £ in V. Denote the latter by Im 2,(¢"),
j=1, -, k, and put

Ay 1 = {'€Vo; Im 2(€') = 0 for some j {1, -+, k}} .

It is obvious that 4, 5 Im is empty or a real analytic set. Vo— A, o Im AY be
decomposed into connected components {Wy ;}. We write Wy ;= Wy for the
sake of simplicity. Thus when &’ & Wy, the roots of the equation P(¢’, #(£'),4)
=0 in 2 have constant multiplicity and split into three classes: real roots, those
with positive imaginary part and those with negative imaginary part. We
denote those by Y&, j=1, -, a, 2}(&), j=1,--,b and 25(&), j=1,-,c
where Im 25(6")=0, Im 2}(¢)>0 and Im 2;(¢')<0, and then we have

P, u(&), 1) = 250 a,&’, m(EN¥
= a&, w(E)) 141 A—23EN) - T15r A— A€ - TL5=1 A— 275
a &, mEN))#0, & W,
Put
P, 2) = TL5a1 A= 23EN" = im0 (€N,
PHE, D) = T Q=) = D=0 af (€W,
P, D) = af¢, w€) TL51A—27(€Ys = Timo a5(EN
where =Y, a;, b=, 8, e=> 517}
Let Z be any open set such that ZN 4,.,, is contained in A, = {(¢’, #(&’);
E'eWg}l when 1=r=n. Let ¢,(6) be a C7(Z) function and v(¢, y) be the com-

position of ¢(&)¢,(6)(€, y) and the map (&', &+ 1(€’)) (defined arbitrarily
for &€ Wy). Since supp ¢(&)p,(E)A(E, y) T Ay 2 X R, the support of ¥(&, y) is

contained in the plane {{SE"; &”=0} x R. and we can write v as a finite
sum:

WE, ¥) = Daiss V€', Y)RDg7d

using Lemma 2.1. Let us fix & (|a|=s). Let ¥ be a C5(&}v) function with
(D)(0)=1 and (DP)(0)=0 for f#a and |F|=s. We have
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(2.3) <P, m(E"), Dyva(€', y), 2(EN0(¥)>

= <P(¢, D)s(E)y(OME, ¥), 2(EW(E" — (€ Ne(¥)> =0,
2.4 <BE, &), D)valE, ¥)|ymor 2(E7)>

= <By(&, D)s(E)(IE, )| y=0r 2(EW(E"—u(€)> =0

j=1,,p,

for any 2(§)ECy(Wo) and po(y)ES(RL). In order to simplify the notation,

e y) = { S(EYUE, ¥) when r =0

+7 veE, ¥) when 1=<r<n
W { A, when r =0

N Wo when 12rZn,

P&, D) when r =0

P, D,) = { PYE Dy) when 1<r<n

E y — =

*TY | pxe, Dy when 1<r<n

B¢, D,) when r =0

B{(&¢,D) =
J( y) { ‘BJ(E,: Iu(EI)J ‘Dy) When lgr_é_n .

Lemma 2.5. Let ¥, W, P° and P* be as in the above statement. Then
2.5 {PYE, D)PH(E, DYNE, y), wE', y)> =0
for any w(&’, y)ESy(W x RY).

Proof. Repeating integration by parts, we have

2.6)  0=<PE, #&), DYHE, »)2(€)o(»)>
= i N2} Cmhar @7 (€)DJITHPYUE’, DYPF(E, DINE, 1) 4o
2(EVD}o(y) | y=o>+<PE's DYP*(E, DYNE, y),
P~(&, D)o(»)x(£)> .

Here we wrote
P(¢, D,) = Xm0 a;(E)Dj .

Since the roots of the equation P~(£/, )=0in 2 have all positive imaginary
part when £ W, we can define the Lopatinski determinant of the system
{P_(E,Dy)’ D§—15j=1: B E} by



72 YOSHIHIRO SHIBATA

L(&) = det((ni)™ fxﬁk-Z(P-(e', D))z = 1.

Since L™(§’)=1%=0 in W, for any w(&, y) € S(W x R}) where exists a
So(W x RYL) function (z(¢’, y) such that

P (&, D)z(¢, y) = W&, ), Diz(€, Y)|,-o =10, j=0,,é—1.
Q.E.D.

Lemma 2.6. Let 9, W, P’ and P* be as in Lemma 2.5. If ¥ satisfies the
Sformula:

@7 CPUE, D)PH(E, DYNE, y), w(&', y)>
= W&, y), PUE, —D)P(E —Dyw(E, y))>,
for any we S(U X RY) then
<HE, y), 2(ENe(y)> =0
for any x(€)ECT(U) and pEC5(RL). Here U is any open subset of W.

Proof. Let U be any open subset of U such that the closure of U is
contained in U and compact. It is sufficient to prove that

(2.8) <HE, p), 2ENe(y)> =0,

for any x(¢)eCy(U) and p(y)ECZ‘?,)(IE). From (2.7) and Lemma 2.5 we
have

(2.9) <HE, ), PAE, —DYPHE, —DYw(E, y)> =0,

for any w(&’, y))ES(Ux R.). Since we can choose 7 so large that

P&, 2—ir)PH(&', A—ir)#0 when & U and 2 is real, we can put

WE', ) = 2(€)- | exp {—iG—ir) D FDIPYE, 2= iNPHE, 2= in)] 2
=20,

for any x(&")eCs(U) and p=C5)(R.) where o, is compactly supported C=

extension of p to y <0 (see Seeley [13]), and then w(&’, y) belongs to Sy(T x RY).
We obtain, using (2.9),

<HE, p), e 2(ENo(y)> = 0
for any z(¢’)e C5(U) and p(y)E C Gy (RY). Q.E.D.

2) Here & denotes the inverse Fourier transform with respect to y.
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Next lemma which is inspired by an idea due to Hormander [7] plays an
essential role in this section.

Lemma 2.7. Let %, W, P° and P* be as in Lemma 2.5. Put M;
={(, w&), 2%¢&"); ¢ eW},j=1,-,a. Letd; j=1, -, a, be non-negative
integer such that 8;<a;. Assume that 6;=(61, -+, 03, 6i.,)E R is a normal
of M; at (£q, w(&G), AUEQ) (6= W and |6;|=1) and ¢>0. If u belongs to
L2, (R%) and satisfies the condition:

(10)  lim R-@@-2p+r+D S luCx, y)|%dxdy = 0 for 8,21,
e ¢z, 3/R-051< 8
y=0

then there exists a small neighborhood ® of &, contained in W such that

__(i:,l___kl!_ (EN29(&NNi-1=k=Y )k (2! y
(i—1—k—v)! b )AHE) D;0(¢, D}’)v(E )l =0
2EY =0

for any x(")ECy(w) and 0<v=05;—1 where we interpret that 23’y *"*""=0
ifi—k—1—v<0. Here uis as in the first place of this section and

d =318, T§-s A= KEN = Teo bEWV, b€) = 1,
0, 2) = T5a A= KEN P, D), EEW.

2.11) Tao 20hm0

Proof. Let us write a;=a, 8;=6, 0}=0, and 2)(§")=A(¢'). Let w, be an
open neighborhood of &; with o, C . Put

m = Max{sup(| 823/0¢,(&")|), sup(|0n,/0&,(")]);

@y ©y
h = 1’ ...’r’j =n—r-+1, e, n, i =1, ...,a} .

Let ¢, be a positive number determined later on and 6" =(6;_,.,, -+, 63).
If 6,,,=0, we choose p=C7(R") so that supp oC {yER"; | y| <e}, p(0)=1
and (D})(0)=0 for v>1. If 6,,,>>0, we choose pECF(R") so that R.N
supp(Dyo)C {yER; | y—0,..| <&} forv=1 and p(0)=1. In the latter case,

we choose ¢, so small that 6,.,—¢,>0, and then (D;0)(0)=0 for v=1. Lete,
be some positive number determined later on such that

2.12) e—2n—r)r+1)m*+ 3k, .110;]%ei=2¢>0.

Then using the inequality:

3) The notation: w;C C W, means that the closure of @, is compact and contained in W.



74 YOSHIHIRO SHIBATA

la+b|?>27a|?—|b|?,
and the formula:
01+ 2 an—rs1 On;/08(EQ)0 ;4 O2/OE ,(E0)0psy = O, h=1, -, r,
we have
DT (e 21 Ontj 08 (E)x;+ 02BE (E)y )
227G 1P {00 Xl |G, )= 0412 — |-+ [}, EEw;.

Here

[+ P2 32T {200mn s | 022;/08,(EN) |21 x5/ | (%, ¥)| —6;]?
+2?=n—r+llaﬂj/afh(é/)_aﬂj/afh(fé)|2|0j|2
+ 102(8)0&, 12| ¥ |(x, )| —Oppa |2+ | 02/0 ,(6") — 82/0&1,(£8)|?] 0511 |} -

If we choose @ (C C,) so that when & Ew
|02/0¢ (') — 04/0€ (€ | ey, |Ou;/08 () — On;[0,(E0)| <ey,
j=n—r+1,-n,
and put
V" =" ER™ |, p)/1(x, »)| (O, 0,40 | <&}
V= A nErR; |X/(x »|—0|<e ", p)EV’},
we have
| PS20—r) (@ + DmP + 2050010519, (7, »)EV”.
Thus, we have, using (2.12),

r{CAUD I CIHI (R CHH (V) = (€D ]

when (x’, y)EV”, (x, )&V and &cEw. It is obvious that ¥ is a conic
neighborhood of # in R, If we choose ¢, and ¢, so that ¢, and ¢, satisfy

(2.12) and 0<¢,, £,<e/2v/n+1, then

floxp =i -&/ 4" (&) + y-2E N} 28 Do) DY)

is rapidly decreasing for y =1, x€C5(w) and s €C5({x"ER"; |x"'— 0" | <&;})
when |(x, y)/R—0|>¢/2. Whenr=1, let 0 be a CF(R") function such that

suppoC {x"ER"; |x"—6"| <&} and

2.13) (1/2zy S (— X"y = 1,
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(2.14) (127 S(——x”)f’a(x”)dx" =0, p#a |fl<s.

Repeating integration by parts, we have
(2.15) 0= <P, DYPHE, DYIE', y), 2(EN0(y[R)(—iy)'e ™€)

= S, Szhichye)- U LR eyt Do, DYSE, 1) o0 2(EDD
(—1—k—uv)!

+<QE, DYNE, y), Ti-1(—D,— 2(E")H (& )o(y/R)(—ip)*e 21T .
Since
L1 (— D, — 2U&N[x(E")o(y/R)e 2 (—ip)]
= 2(&") L1 ;(— D, — 2 )HR* 3hi<y, ci(—iy/R) (D3 p)
-(W/R)(1/R)* " e &)
and
(D p)0) =0, &—I=1,

where ¢, is some constant, we have

2.16) <O, DYIE, y), TLiar (=D, — (&) Hx(E )0 (Y[ R)(—iy)'e 21Ty
= WE, y), PAE, —D,)P*(, —D)x(E)o(y/R)(—iy)’e 2T .

When r =1, noting that ¥=v,, and writing

&(511) — (1/271_)1‘ S e_ix”s”o'(x”)dx” ,

P&, —D)P+(¢', —D,) = T(¢/, —D,),
(8/02YT(E", ) = T, 2,

we have, using (2.13) and (2.14),

<HE, y), TE, —D,)2(E)e % (—iy)*o(y/R)y+ R
= 2hv2a (T )Vl ¥), TOE, HENENDI(—iy) oy R)e™ MM« R

= Sha; () Dosis 0ale’, ), 6T, 2N 2€)(=2) @y

*(/R)(1/R)*~e €27y R
= 2llaiss 2vza; (7D 7 2esi=uve(€’, IQDPY, ¢, TNO(E, 2(ENx(E)-
«(—iy/R)* (DY o) (¥ R)(1/R)' e ¢ 175(— Re")>
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= 2hvza; ()7 2ocicy cKS(EB(EME, ¥), TOE, AEN2(E)e(—RE”
~ u(&")e M (—iy/ R DY~ o)(y/R(1/RY ™) = 0,

where ¢, are some constants. Therefore, since || =0, it is sufficient to show
that

2.17) Lim <o(E)A(EIE, »), TO(E, AENx(EVo(— RE"— (e’ e iNEDs
«(—iy/R)" (D} 'e)(y/RYA/RY™) = 0.
When r =0, it is sufficient to show that
2.17) Lim <g(@)a(&, y), TOE, AENx(E)e™ @/ (—iy/R)™ (D} o) (y/RYA/R)™>
=0.

Note that r—I/=1, r—/=a;—v=ae;—(9;,—1)=1. Let us show (2.17) and
(2.17)’. We denote by;@_l_ I the left hand-side of (2.17) and (2.17). Put
(=) (D3 "e)(¥) = 2(¥)
_ +oo
Flol) = (1/20) |~ exp {ias}atr)ay
F'lletlx, y)¥ y=0

e - | TR 520

where ¢ =¢(£)¢,(¢) when 1=<r<n. Define v by Fv]*=(&E)(&, DFul(E, 2),
where Y& C5(8"*Y) is equal to 1 in a neighborhood of (&4, #(&5), 2%(&5)). Put
I=1I,+1, where
L = (R KS(E)W (€, NFul(€, ), TDE, 2ENx(E)
«8(— R(E" — m(ENFPARG— 2E
I, = (R Ks(O)1 — (€, D)Fuil(€, 2), TE, 2ENx(E)
«6—R(E" — n(ENF[BIR(A—A(E))) .
Since we can choose w(C Cw,) and v so that there exists a positive constant ¢
such that
[2—2(¢")| =c¢ when (& )esupp[l—¥(€, V]Nwx ),

we obtain, using the fact that F[s] S,

4 Fppalx, »=(1/20" | e 8O, »ae.

5 F0IE D=, | Temicotrrangr, yyanay.
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| DIFAIRA—MEM|=Cy(1+CRA+2I)™™,  j=0,1,2,-,

for any N and some positive constants C, and C when (£, 2) =supp[l — (&, 2)]
NoXx 8+).  Therefore we have

lim7,=0.
Ry

On the other hand, since ¢(E)Y (&, NF[u)(3, HEE(E*), we have

(2.18) [vx, I=SCA+ x|+ [y,

for some positive constants C and k, and ve LZ,, I?”Tl). Setting

J(x, y) = S exp {—i(x" & +x" (&) 4 y - AENY TV (E', (€N)2(8")dE’,
we have

SS T, 2ENx(E)s(—RE" — uENFPIRA— AE)))e = NdEda
= R J(x, y)(—iy/R)* (DY 0) ¥/ R)o(x'[R)

We obtain, using Cauchy-Schwarz’s inequality,

@19 1< ([ e iy

1Cx, 35/R-01<?/2

¢ § 1960 ) 1101 RY DY Dot RIS R 1y

1Cx, /R~ 81<E/2

=y ([ 1 )1 196e DOIR D3 o) R R dxdy

1Cx, 9)/R-01>8/2

= L(R)+1(R).

It follows from Theorem A,-1 and Lemma A -2 that

[JCx, ) 12| (7/R)* (DY~ 0)(y/R)a(x”'|R) |*dxdy < CR™** ,
105, 33/R-61<28

imr ([ bepradscimrr ([ e
Ry

Ryoo
1¢x, 9)/R - 01<8/2 1¢x, 9)/R-01<E
=0

for every k€ R'. Hence we have, using the fact: y —v=a;—9;+1,

Rz c{rReeym ({0 ) e,

1¢x, 9)/R-61<€/2
y=0
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and then it follows from (2.10) that hm I,(R)=0. On the other hand, using
(2.18), we have

[v(x, Y)J(x, y)(—iy/R)* (D} p)(y/R)a(x"[R) | < CR7 (1 + [x]| + | y[)~*+®
when |(x, y)/R—6|=¢/2. Therefore we have lim I(R)=0. Q.E.D.

R-»o
For later reference, we now present some facts concerning elementary
algebra.

Lemma 2.8. 1) Put f(D)=a,X+a, A+ - +a,_; and f5(2)=(d|d2)°f;.
Then we have
f(‘)(ll) .fl‘l(ll) """ Sf;—l'(ll)
5 l(xl) f‘i‘l (), e, S35R)
£, ﬁ(m ------ yAeh
FED, ), 25
— (_ 1)2?=12?=i+1ajai {Hq 1(]"_' 1)!/]:[}::‘2(& ]‘=1a ) }
'a;ln t=1 H;=z+1(l _)‘])

Here ¢ =Y_, a;, 0<q<m and a,,#0.

2) (cf. Hormander [5]) Let k()=2*+au_,2* '+ +--+a, be a polynomial with
constant coefficients of order p. Let q,(X), v=1,---, u, be some other polyno-
mials with constant coefficients. Let 2;, j=1, +--, [, be the roots of the equation
k(2)=0 with multiplicity a;. Then we have

(2.20)

2.21) det(2mi)™* § u DI D) Dy
q1(_11): ‘11,('/11): ‘Ilw 1)(7‘1) :%(x_l): :%m 1)(1)

9u(4), gi4y), ‘hm V(2,05 qu(Ay), - :Qy«w 1)(1)
I ]._.[s<m_,s Iise<jsi(2,— 2"

Lemma 2.9. Let k(2), q,(2), v=1, +--, 1 be as in Lemma 2.8. Assume that

2.22) det(@2)™ § DA @) ), s 0.

Put q,()= Qy(Dk(A)+qi(2), v=1, -+, n, where degqy(A)=u—1. Then the
system

{27 %), v = 1, -, 1}, {g2(2), v = 1,-++, u}]
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forms a base of polynomials of order less than r+ . for any r (>0).

Proof. It is sufficient to show that [{AY7%k(), v=1, -, 7}, {q/(2),
v=1, .-, u}] are linearly independent over the complex number field C.
Assume that

251 @)+ 20 B45(H)=0

for some @;, 8;&C. Then we have

b BQ7I) § g (DAKW) AR =0, =1,
From (2.22) it follows that #;=0 for all j. Thus we have
o1 @2 Hk(2)=0.

Since k(2)#0, we have that a;=0 for all j. Q.E.D.

Lemma 2.10 (Green’s formula). Let U be an open set in 8* and U’ be any
open subset of U such that U'C CU. Let 248),j=1,",a, b_e C* functions in
U such that 2(&)#2;7(€) if j # j' when é€U and let aj, j=1, -+, a, be natural
numbers. Set

P&, 2) = T3 Q= 40" = S0 ¥, €U,
Let B,,j=1, ++-, a, be non-negative integers such that f;=c;, j=1, -, a. Put
0E¢, ) = ‘;"=1(3‘“'{j(5))wj_ﬁj: m = -1 a;—f;,
12— zj(f))gf = ;toml qj(f)lj .

Let Bj(&, %), j=1, ---, m’, be polynomials in 2 of order r; whose coefficients are
C*™ functions of € in U. If

det ((2ni)~! f BE, DAQE, D) dA); 4y 0 #0 in U,

then there exist ordinary differential operators C;(&, D,), j=0, -, t—m,
E(¢, D), j=1, -, m', F, (¢, D,), v=0, -+, 8;—1,j=1, -+, a, whose coeffi-
cients are C* functions of € in U’ such that

(223) <P(§: Dy)u(‘f’ y): V(E, y)>—<u(5, y)» P(f’ —Dy)v(f: y)>

= 20720<DIPE, DYu(E, Y| 40 CE, DYVE, Y)| -0
+Z;”;l <B;(E: Dy)u(Er y) l =0’ Ej(Ef Dy)v(fr y) I y=0>

a Bj—1 m—m’ Vi—1 (i_l_k)! . (E)i-1-kE-Y
+Z]=l Zy=0 <21=0 Ek=0 -(_i_—-—l-—k—_ U_)! q,(E)l](E)

“D350(¢, DYu(€, )| y=0 Fy €, DYVE, P 0>
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for any u(€, y)eC=([0, 8); S'(8%) and v(&, y)=S(U’X R.). Here we inter-
pret that (€)' *V=0if i—1—k—v<0, F, (¢, D,)=0if 8,=0, C(¢, D,)=0
if t<m, E{¢, D,)=0 if m'=0, and t=Max {r;; 1< j<m'}.

Proof. Since U’ is compact, it follows from Lemmas 2.8 and 2.9 that
there exist C*~ functions in U’:a, ;(£), I=1,,m—m', v=0,, 8;—1,
j=1, -, a, such that

(2.24) 2 =Z§=12€f;;lai,,-(f)(zs":om’ iy (—1—=k)!

mqi(f)lj(f)f—l—k_yﬂ

EEU/, l:l’ eee, m_.m/_
(2.24) and repeated integrations by parts show that there exist ordinary
differential operators G, ;(¢, D,), v=0, :--, #;—1 j =1, ---,a, whose coefficients
are C= functions of € in U’ such that
(2.25) <P(&, D)ué, y), v(E, y)>
— E.= Bj—1 m_—-m' ifl (i_l—k)!
2 DT T (i —1—k—)!
-D}OE, DYu(&, ¥)| y=o Gy (€, DIVE, P)] 4= >
+<Q(E, Du(€, y), 235-1(—Dy—2,ENPiv(E, ¥

q,-(f)l,-(E)"l'k‘”-

We write, using Euclidean algorithm,

226)  ByE ) = R(E DPE N+S,E DOE )+BYE A,
j=1,,m, E€U’,

where deg R(&, )<r—m, deg S;(¢, )=m—m’'— 1, deg Bi(¢, )=m' — 1.
Since, by assumptions we have

det ((2zi)™! f Bi(&, DAFHQ(E, D)D) poy o 70, EET,

it follows from Lemma 2.9 that there exist functions b; (&) j, k=1, -+, m
which are infinitely differentiable in U’ such that

(2.27) FU=3W b, (&)BIE Y, j=1--m, E€U".

Thus, repeating integrations by parts, we have from (2.27) that there exist
ordinary differential operators E,(€, D,), j=1, «++, m’, such that
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KO, DYu(g, y), 25-1(—D,—2,(E)Fiv(E, y)>
EJ=1 <B;(§, _Dy)u(f’ y) I y=0s Ej(EJ Dy)V(E, y) | y=0>
+<u(€, y), P(E, DYv(E, y)> .

It follows from (2.26) that

21 <BYE, DYu(E, ¥)| =0 ELE, DIVE, Y| y=0>
ZJ=1 <[‘BJ(E Dy) RJ(C’ y)P(E: Dy) Sj(f, D,v)Q(E: Dy)]
U(E, y) l y=0- Ej(E: Dy)V(f, y) I y=0> .

Since deg R;(¢, )=<t—m, there exist ordinary differential operators C;(&, D,)
j =0, «--, t —m whose coefficients are C= functions of & in U’ such that

ZL=1<R (€, DYPE, DYu(€, y)| y=0 EfE, DYV(E, ¥)|y=0>
= 20 KDIP(E, DYul€, u)| =0, CHE, DYUE, P)| =0 -

Since deg S,(£, H)<m—m'—1, it follows from (2.24) that there exist ordinary
differential operator H, ,(§, D,), v=0, -+, 8;—1, j=1, ---, a, whose coefficients
are C> functions of & in U’ such that

_Z.’?Ll <S1(E’ Dy)Q(f, Dy)u(f: y) | y=0s Ej(E: Dy)V(E, y) I y=0>

= X5 2 Zi:‘l’_(;-(iT_l_—_k-fc_)i)y "G LY (I i

'D_’;Q(E’ Dy)u(E! y)l =0’ H\l,j(‘f: Dy)v(E! y) I y=0> .

Thus, we have

<P(E, Dy)u(E) y): V(E, y)>_<u(51 y): P(E’ —‘Dy)V(f, y)>
= 2526”<D§P(5: Dy)u(fl y) |y=07 Cj(E: Dy)v(‘f, y)]y=0>
j—1 m-—m’ i—1 (l_l—k)’ )y (E)i—1-k-V
+Z]=1 2€=0 Ek=0 (i 1 —k—V)! qt(E)lj(E)
°D§Q(E: Dy)u('E’ y)’y=0’ (Gv,j(‘f: Dy)+Hv,j(E: Dy))v(E: y)|y=0> .

This shows the lemma.

Lemma 2.11. If the system {P(¢, 2); B/, 2), j=1, -, p} satisfies the
conditions () and (ii) stated in Remark of Section 1 for each £ W, then $=0.
Here ¥ is as in Lemma 2.5.

Proof. By assumption, we have @+b=<p in W. Let a=(o,, ***, 07,3) be
any subset consisting of @+ 5 elements of {1, ---, p}. Put
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Lo(€') = det ((2mi)™ S B, (€, DAFUPYE, DPE, D) d)jpmr. 345, EEW,
YED

where 7(&’) is a simple closed curve in the complex A-plane which surrounds all
2%, j=1, ---,a and 2}(¢’),j=1, ---,b. Since L,(¢’) vanishes identically in
W or a real analytic function of & in W, putting 4, = {¢'€W; L(¢)=0},
we have that 4, =W, 4, is a real analytic set in W or A4,  is empty. By
assumption we have that QA,_‘r is empty where the intersection is taken over
alloc{l, +--, p}. Let L,(¢’) not vanish identically in W and U be any openset
whose closure is compact and contained in W —A4,_. It is sufficient to show
that

(2.28) <HE, y), wE', y)> =0
for any w(&’, »)€Sy(U X R}). It follows from Lemma 2.10 that there exist
ordinary differential operators C,(¢’, D,),j=0, +-, t—(@+b), E(&', D), j
=1, -+, d+b, whose coefficients are C= functions of & in U such that
(229) <P%&, D)P*(&, DY, y), w(&', y)>
= 232 XDIPYE’, DYPH(E, DYE', ¥)| =0, C(&", DYWEY)] y=o>
+Z?:€<B0'j(‘sll Dy)ﬁ(flw y)ly=01 Ej(E,: Dy)W(EI, y)ly=0>
+<HE, y), PYE', —D)PHE, —D)WE, )
for any w(&’, »)ES(U X R%). Here t=Max{r,;; I=j<a+b}. Since it
follows from (1.2), (2.4) and Lemma 2.5 that
CPAE'DYPH(E, DYE, y), w(E', »)>
= U, y), PUE, —D)PH(E, —Dyw(&’, y)>
for any w(&’, )€ S(U X RY), (2.28) follows from Lemma 2.6.
Now we shall prove the assertion: there exist an open cone I', natural

number N and real analytic set B contained in W such that if ue L%, (RN
C>=([0, 8); S’(R")) satisfies the condition:

lim R‘NS lu(x, y)|%dxdy = 0,
r

Ry -
then the support of W', y) is contained in BX R%, in the following cases.
Case 1. =0 and 5>0 in W.

Since we have 5= p by the assumption (A— 1), we put
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Lo(¢') = det((2ai)™ f B (&, WP, M7 jpmr, 5, EEW,
A, = {£'eW; L(¢) = 0}

for o=(oy, -+, 05)C {1, +--, p}. Put B= N A where the intersection is taken over

alloc {1, .-+, p}. When r =0, we have that B is empty or a real analytic set
in W by the assumption (A-2). But when 1=<r=n, one of the following three
cases may occur: (I) Bis empty, (II) B is a real analytic set in W, (III) B=W.
For the case (IIT) we have the following by Theorem A,-3.

Lemma 2.12. Let u be as in the first place of this section and Vv be as in
Lemma 2.5. Assume that the hypotheses of Case 1 are fulfilled in W, 1=r=<n
and W =B (Case III). Set

r¢m = {x, y)ervn; y=0, R<|(x, )| <2R},

where T'YD is an open cone in B which contains (n(¢’), 0) for every &' & W.
Here n(&’) denotes some normal of {(¢', n(&)); &€ W} at (¢, w(€)). If u be-
longs to L% (R%) N C=([0, 9); S'(R")) and satisfies the condition:

tim R { s |uCx, ) %ddy = 0

Ryo
then ¥=0. Here r is the codimension of {(&', w(€")); &' €W} in B".

Proof. Put uy=u when y=0 and u,=0 when y<0. Since the support of
B(&)¢,(&)t(&, y) is contained in {(¢/, u(&")); & € W} x R, the support of
B(&)d1(E)F (&, ) is contained in {(&'u(&")); &’ W} X 8. Let o(2) be any
C7(8;) function. It follows from Lemma A,-2

lim R |58, FTuix, ) dxdy®

Ryo

= Clim R | qun |, ) |"dxdy,
R-yo0 R

where I'z={(x, y)€I'"; R<|(x, y)| <2R} and I' is another cone which
satisfies the same condition as I'“!D,  Then we have, using Theorem A,-3 that

() (E)o(DF[u)(&, )=0. This shows that ¢(&)s,(&)a(&, y)=0. Therefore,
we have $=0.

Proposition 2.13. Suppose that the hypotheses of Case 1 are fulfilled,

6 F-1 denotes the inverse Fourier transform with respect to (&, 2).



84 YOSHIHIRO SHIBATA

1<r<nand W=B. LetI be an open cone in R*** and N an integer such that
if weC™(RY)NS(RAHY) satisfies the equations (1.1) and (1.2) and the support
of W(€, y) is contained in {(&', 1(&")); &€ W)} X R} with

(2.30) fim R‘”S Iw(x, y)|2dxdy = 0
R-yoo r

R

then w=0. Then the closure T' contains (n(&’), 0) for each &S W and N<r.
Here n(&") is as in Lemma 2.12.

Proof. Since W =B, L,(¢’) vanishes identically in W for all ¢ {1, -+, p}.
So we have, using Lemma 2.8, that there exist C= functions C;,(§'), »
=0, -, B;—1,j=1, -, b, of & in W such that if we put

W(E, ) = [Dho1 P51 Co(E)ip)'e™ €9y,

we have that w(&’, y) does not vanish identically in Wx R’ and satisfies the
equations:

P&, u(@), DYWE, ») =0,  y>0,
B, u(&), DYWE, D) yee =0,  j=1,p.

Here ¥(£')eC7(W). Hence, putting
wCx,7) = | exp {0 &/ E DI, )

we have that w(x, y) does not vanish identically in R%*!, belongs to S'(R%*)
N C=(R%*') and satisfies the equations (1.1) and (1.2). (2.30) follows from
Theorem A,-1 if N>r, which gives a contradiction. If I' contains no
(n(€4), 0) for some &¢ and if supp v is sufficiently close to £§ the condition (2.30)
follows from Theorem A,-1 for any N, which gives a contradiction.

Lemma 2.14. Let u be as in the first place of this section and v be as in
Lemma 2.5. Assume that the hypotheses of Case 1 are fulfilled in W. (1) If Bis
empty, then V=0. (2) Suppose that B is a real analytic set in W. If u belongs
to C€=([0, 9); S'(R™) N L% (R"*Y) and satisfies the condition;

tim R0 [ o u(x, ) %dxdy = 0,
then v=0. Here I''D is an open cone in R™' which contains (n(¢’), 0) for
every analytic manifold C CB and &' &C, when n(€’) denotes some normal of
{€, we)); &'eC at (¢, w&), I'i={(x, y)er"?; y=0, R<|(x, y)| <2R}
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and N, is the codimension of B in 87",
Remark. N,+r=1 for any r €{0, ---, n+1}.

Proof. 1In the same way as in Lemma 2.11, we ‘have that the support of
v(&’, y) is contained in BX R.. If B=¢, then $=0. This shows (1). Since
the codimension of the analytic set {(&’, #(6’)); &’€B} X &} is equal to N,+r,
we have the assertion (2) in the same way as in Lemma 2.12.

Proposition 2.15. Suppose that B is a real analytic set. Let I be an open
cone in R"*' and N an integer such that if we C=(R%)N S (R satisfies the
equations (1.1) and (1.2) and the support of W(E, y) is contained in {(&, n(¢"));
& B} x R%* with

Ry

lim R™¥ Sr |w(x, y)|2dxdy = 0
R

then w=0. If C is a C*~ manifold contained in B, then the closure of I' contains
(n(&"), 0) for each &’ &C and N <Codim C +r. Here n(¢’) is as in Lemma 2.14
and Codim C denotes the codimension C in 87"

Proof. We may assume that C is defined by 7”/=v(»") where 7'Ew
C8y"* (k is codimension of C in &), v is a C= function in o, ¢&'=(7’, 7”)
and (0, ¥(0))=¢&3.  Put L=(f}(%))j=1,- p,4=1,5 Where

S’y = @)™ § B, ('), DIE, wlo'), D).

Since all minor of L of order 5 vanish identically in @, we have that the rank /
of L is less than b in . When />0, without loss of generality, we may
assume that

41" = det(fu(r) et
does not vanish identically in . When />0, we put
W' 3) = =S et A0 i)™ § @PBPHC, ), D)}
A Yari) § PP, Cla'), D) A

where ¥(7") is a C5(o— {n'Ew; 4(1")=0}) function and 4;(7") is the (j, k)
cofactor of (f;4(%")); =1, and C(2")=((7"), #(x’, ¥(7))). When =0, we put
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WE, ) = Qai) [ P, <o), DYyt
where ¥ (%) is a C§(w) function. It is obvious that we have

P, ('), DYW(n’, y)=0, >0, B(7', (1'), Dw(n’, )| )=o=0, j=1,--,p.

Thus, putting
W(x; y) = S ei(x’-'ﬂ’+x”-g('q'))w(77/, y)dﬂ,a x” = (xn—r—k+1: R xn) 3

we have that w(zx, y) satisfies the equations (1.1) and (1.2). Since |W(7’, »)|=
C,- |¥(7")| e~¢» when y =0 for some positive constants C, and C,, we have

[w(x, y)|*dxdy< CR"**

IFNIKE
y20

for some positive constant C. So if N >Codim C +r=N, +r, then

liilR’NS [ w(x, )|2dxdy = 0.
R-> r

R

This gives a contradiction. Thus, we have N<Codim C+r. If I does not
contain any (n(&4), 0) and if supp ¥~(7’) is sufficiently close to 0

tim R [ |w(x, y)[*dvdy = 0,
R-yoo I'p
for any N. This gives a contradiction. Q.E.D.

Next we consider the case when @>0. Put

L8 = det ((2zi)™ f By (&', DA (541 (A—23(E)" %
PHE, D))y EEW,

if @>0 where 0=(0,, -, 0,) 0=0;=<a;), b+1=p'<p and o=(oy, --, o)
(c{L, -, p}).

Case 2. a>0 and there exist p’, d, o, having the properties:
(1) b+1=p'<p,
(I1) Xj-1(e;—08)+b=p’,
() if p’<p, LY"¥-7)(&') vanishes identically in W for any p”(p’'+1=<p"
=p), o' =01, -, o) {L, -, p)} and &' =], -, 07) with 0=0j=<a,



LiouviLLE TYPE THEOREM 87
j=1, -, a, and 2}%.,(a;—0,)+b=p”, such that L@ %)’y does not vanish
identically in W.

Remark. When r=0, the hypotheses of Case 2 imply the assumption
(A-2).

Put B={&'eW; L®%°)(&’)=0}. It is obvious that B is empty or a real
analytic set in W.

Lemma 2.16. Let ¥ be as in Lemma 2.5. If the hypotheses of Case 2 are
fulfilled in W with 3¢, a;+b=p’, then the support of ¥ is contained in B X R:.
Remark. If B=¢, then $=0.

Proof. Let U be any open set in W whose closure is compact and con-
tained in W —B. 1t is sufficient to show that

(231 <HE, »), wE, > =0,

for any w(&’, »)ES(U X RL). We obtain, using Lemmas 2.5 and 2.10, (1.2)
and (2.4), that
P&, D)P*(E', DYNE, ), w(&, y)>
= <, ), PU(¢', —D)P*(E', —Dyw(&’, y)>
for any w(&’, y)€S(U X R.). Therefore, (2.31) follows from Lemma 2.6.

Lemma 2.17. Suppose that the hypotheses of case 2 are fulfilled with 0;>0
Sor at least one j, say, ;>0, j=1, -=-, k. Set

I'; = {(x, y)ET;; y=0, R<|(x, )| <2R},

where T ; is some open connected cone which for every & € W — B contains some
normal of M;= {(&', w(&"), 2U&)); & € W—B} at (¢, w(&), 2%&)). If u
belongs to L% (R"*") with

loc

(2_32) @ R (2(®;-8)+r+1) S Iu(x, y)lzdxdy =0, j=1, e, k,
r

Ry AR

then the support of V(&' y) is contained in BX RY. Here u and ¥ are as in the
first place of this section and Lemma 2.5, respectively.

Proof. Let U be an open set in W whose closure is compact and con-
tained in W—B. It is sufficient to show that
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(2.33) <HE, y), wE, y)> =0,

for any w(&’, y)&S(U X R%). It follows from Lemma 2.10 that there exist
ordinary differential operators C;(¢’, D,), j=0, ---,t —(@+b), E;(&’, D,),
j=1,p, F, (¢, D), v=0,-,09,—1, j=1, -+, k, whose coefficients are C*
functions of & in U such that

<PE, DYPH(E, DY, p), w&', y)>
= 2;":‘()“-11) <D§' Po(f-' Dy)P+(E,» Dy)ﬁ(‘flw y) ly=0’ Cj(fl: Dy)w(f,: y) Iy=0>
+Z!J”=l <Bcj(5,’ Dy)‘h’(&/’ y) I y=0> Ej(E/J Dy)w(E/—' y) l y=0>

k §;—1 d—1 i=1 (l_l_k)' (EN20(E\i-1-k~V
+21=12u=0 <2'='0 k=0 (i—l—k—V_)! b,(f )/1.1(5)

-DiQ(E, DYWE, )| y=0 Fy &', DYIWE, )| =0
+<HE, y), PYE’, —D,)P*(E, —DYw(E, y)>
for any w(&, )€ S(UX RL). Here t=Max{r;; 1=j<p}, d=33-19;,
31 (A 2(EN =30 b, (EV, QE)=es (A= 2(EN* 1+ PHE', ). Since
it follows from (2.32) and Lemma 2.7 that
i —1—k)! )
D e TIL L G A1/ AR DU G |
i—1—k—v)!
F, (&, Dyw(E’, y)|,-» = 0,
for all v=0, :+-,0;—1, j=1, -+, k, and it follows from (1.2), (2.4) and Lemma
2.5 that
B, &', DYNE, 9| ym0r EAE, DIWE, )|yp =0, j=1,-,p,
KDJPYE’, DYP*(E', DYNE’, ¥)| =00 CHE', DYW(E,, )| gm0 = 0,
j=1, -, t—(@+b),
we have
CPYE, DYPH(E, DYNE, p), W&, y)> =<9, »), PX(¢', — D,)P*(&', — Dw(&’, y),
for any w(&’, ))ES(U X RL). Thus, (2.33) follows from Lemma 2.6.

Make the same assumption as in Lemma 2.17. Let n;(¢’) denote some
normal of M; at £’ and 6 R}*! be a normal of M, at & W —B. Let D be
a subset of {2, -+, a} and let ¢ be a CF({(x, y)ERY"; |(x, y)—0| <2¢}) with
¢=1on |(x, y)—0| =e for sufficiently small . Assume that 6 =n,(£{)=n,(£{)
for some n;(£%) when j €D and 6#n;(&5) for all ni(&5) when je&D. Choose a
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small neighborhood @ of &; so that {n;(¢), &’cw} C {(tx, ty); t =0,
[(x, »)—0| <e} when jD and {n;¢&’); &=} N {(tx, ty); t+0, |(x, y)—0|
<&} is empty when j& D. Put

0E, ) = (/’L—3"(5’))“’”1’81’+1 §-2(A—23(EN)" % PH(E, 2)
b (A—c (&N, EEW,

where 4 =a;—0,+1, p;=ay—08;, j=2, -, a, #;+a=8; j=1,+, b, (&)
=2, j=1, -, a and 7, ()=2+ (), j=1, -+, b. Put

[BI(E: 1_'1(5/)) -, B{fH(¢, 71(‘5,)) By(¢, "'2(5,)) ., B, 7€), :l
By(&', 7y(&"),+, B, T1(5 N, By, Tz(f ), =+, Bif1TO(E, 7(€7)), - '

It follows from the hypotheses of Case 2 and Lemma 2.8 that the rank of L is
equal to p’ in W — B and that

By, (&, 7i(E), ) BYD(E, 7€), Bo, (&, &), -+
4(¢") = det : : :
By (&, €, e, BYEOE, 1), Boyl&, 7€), -

does not vanish in W—B. So there exist real analytic functions C;(¢")
s=1, -, p;—1, j=1, «-+, a+b in W— B such that Cl,,l_l(E’)¢O and

WE, y) = D TUIG Ci(EN@n) e €7 y(@)
satisfies the equations:

P&, DYw(E, y) =0,y>0 and By&, DIwE, ¥, =0, j=1--,p,
where ¥(6')eC§(») and P(&’, D,)=P%¢’, D,)P*(¢', D)P~(£', D,). So setting
Wi, ¥) = S WE', y)exp (i - & -+x" ()} e’ ,
we have that w(x, y) satisfies the equations (1.1) and (1.2) and that w(x, »)

belongs to S (RN C>(R%). Put

= Max {s; C;,(£’) does not vanish identically in @ when j €D} .
Note that if {2, ---,k} N D is not empty we may assume that N'=a,—8,=a;—9;
for j€{2, -, k} ND. Put N'=u;,—v;, k=1,-,t and C,z={(x, »)EC;
y=0, R<|[(x, y)| <2R} where C, is a small conic neighborhood of n,(£¢).

Since supp ¢ C R"%*!, it follows from Theorem Ap-1 and Theorem Ap-4 due
to Agmon-H6érmander [3 Theorem 3.1] that
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lim g |w(x, )| ?dxdy|R++2N
1R

R>»e JC

g}}m S [w(x, y)|26((x, J’)/R)dxdy/R'+1+2N’

Zlim j (%, V)R- | Dhor Fix, ) |2dxdy/ R,

where

Fyx, y) = S exp {i(x'« &' + X" u(&) +y 1, (ENY Cip; v (ENP(E)AE"

Since 7;,(8") #~ 7 (') if jy # jy’, we have, using Corollary Ap-5,
tim | Fy(x, 9)Fy G 7)6(x, YRy R* =0, kK.
Ry

Thus, we have, using Theorem Ap-4,

lim S |, )| %dxdy| Rr+ey’
1L,R

R JC
>C2er |1 Ciny oy O 728 >0.
This shows that
S [w(x, J’)IzdxdngR(zN’hﬂ) )
CI'R
In the same way, we have, using Theorems Ap-1 and Ap-4,
SC [w(x,p) | 2dxdy<= CR@N +r+1)
1,R

Summing up, we have proved.

Proposition 2.18. Make the same assumption as in Lemma 2.17.

Let

6,cR%Y* (j=1, -, k) be normal of M; at E¢,&W —B and C; a small conic
neighborhood of 0;. Then there exists a solution w(x, y)E C=(R") NS (R%E™)
of the equations (1.1) and (1.2) and a natural number N; such that N;>a;—0; and

w(x, y) satisfies for some positive constants d, and d,
d, RN+ < S [ w(x, y)|2dxdy< d,R@Ns+r+D)
Ci,r

where C; p={(x, y)EC;; y=0, R<|(x, y)| <2R}.

Remark. For example, if D is empty, then N;=a;,—0,.
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Case 3. a>0 and 5=0 and L®"®7(&’) vanishes identically for all p’
(I=p'sp), 6=y, -, 9,) (0=0;=e;) and 6=(0y, -+, 0,/) (C{L, -, p}) in W.

Lemma 2.19. Let u and ¥ be as in the first place of this section and Lemma
2.5, respectively. Suppose that the hypotheses of Case 3 are fulfilled. If u

belongs to L% (R%*") and satisfies the condition:

lim R | uGx, p)Pdsdy =0, j=1,a,
r

Boe iR
then V=0. Here I'; and I'; p are as in Lemma 2.17.

Proof. In the same way as in Lemma 2.17, the assertion follows from
Lemmas 2.5, 2.6, 2.7 and 2.10 and formulas (1.2) and (2.4).

Proposition 2.20. Suppose that the hypotheses of Case 3 are fulfilled. Let
I' be an open cone in R™' and N is an .integer such that if uS' (RN
C=(R"*) satisfies the equations (1.1) and (1.2) with

lim R {  Ju(x, y)|%dxdy = 0
R-yoo I'p

and the support of 4(&, y) is contained in {(&', w(¢')); & EW} X R then u=0. If
(&6, 1(E0), 23(60))= M, then it follows that the closure of I' contains some normal
#0 of M; at (&, (€y), 2}(€0)) and that N<r+1.

Proof. Let /(&) be a Cy(W) function. It follows from the hypotheses
of Case 3 that

Bj(E,’ Z?(6,)) = fBJ'(E,’ x)(z—lg(fl))-ld'{ = L(l’s'j)(fl) =0 ’ j = 1: e, D,
where 0=(a,, .-+, @;_;, @;—1, @4, -*=, @,). So, putting
05, 3) = | exp (G +&/+27+ a€)+ y- BENHHENE,

we have the assertion in the same way as in Proposition 2.13.

Case4. a>0 and 5>0 and L®®%)(&’) vanishes identically for all
PA=p'=p), 0=, -, 9,) 0=0;=e;) and 6=(0y, -+, 5,) (C{L, -, p}).

Let B be as in Case 1. We have the followings in the same way.

Lemma 2.21. Let u and ¥ be as in the first place of this section and Lemma
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2.5, respectively. Suppose that the hypotheses of Case 4 are fulfilled, 1<r=<n
and B=W. If u belongs to L% (R%*Y) with

lim R~

R>e SI‘CRIII) Iu(x’ y) |2dxdy =0,

then ¥=0. Here I' {'D is as in Lemma 2.12.

Proposition 2.22. Suppose that 1 < r = n, the hypotheses of case 4 are
fulfilled and B=W. Let I" be an open cone in R**' and N an integer such that if
weC~(RY)NS'(R%™) satisfies the equations (1.1) and (1.2) and support of
W(E, y) is contained in {(&', w(&'); & €W} X R, with

lim R™¥ Sr [w(x, y)|%dxdy = 0,

== R

then w=0. Then the closure I" contains (n(€’), 0) for each & =W and N<r.
Here n(&’) is as in Lemma 2.12.

When r=0, the assumption (A-2) implies that B is empty or a real
analytic set. Noting this, we have the followings in the same way.

Lemma 2.23. Let u and ¥ be as in the first place of this section and Lemma
2.5, respectively. (1) Suppose that the hypotheses of Case 4 are fulfilled and B is
empty. If u belongs to L% (R%) with

lim R | Juw y)axay =0, j=1,a,
r

Rye .
> iR

then 7=0. (2) Suppose that the hypotheses of Case 4 are fulfilled and B is a real
anlaytic set in W. If u belongs to L (R"%*") with

lim R0 | JuCx, y)l%dxdy =0, j=1,a,

R-yo Pj,R
lim R lux, y) %dxdy = 0,
By I"RH)

then V=0. Here I'; p is as in Lemma 2.17 and T'Y" and N, are as in Lemma
2.14,

Proposition 2.24. Suppose that the hypotheses of Case 4 are fulfilled and B
is a real analytic set. Let I' be an open cone in R*' and N an integer such
that if we S (B N C=(RY) is a solution of the equations (1.1) and (1.2) with
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tim R { | wCx, 3)"dxdy = 0
R>o 1‘R

and the support of W(&, y) is contained in {(&’, u(&")); & € W} X R%, then w=0.
If CCB is a C* manifold, then the closure of T contains (n(¢’), 0) for each
&' e C and some normal 0 of M; at (€', w(&’), 2YE")) for each & =W —B.
Moreover, we have N<r +1. Here n(¢’) is as in Lemma 2.14.

§3. Proof of the Main Theorem

Now we prove the Main Theorem. When m=0, it follows immediately
from Lemma 2.2 (r=0). We may assume that m=1. Let u be a soluiton of
the equations (1.1) and (1.2) which belongs to C=([0, 8); S'(R")) N L2 (R%)
and satisfies the condition (1.3). For a while let # be as in Section 1. When
the hypotheses of Case 1 are fulfilled in W, we write W=X, ;, and choose N and
I so that NN, +1and I'DI'™, Here if B=(, we interpret that N,=co
and I'™=(@. When the hypotheses of Case 2 are fulfilled in W, we denote by
X, each connected component of {£& W, L®"»(£)=%0} and choose N and
I' so that (¢;—0;,)+1>N,j=1, ---,k and I'D U {I';, 1<j<k}. Here if the
hypotheses of Lemma 2.16 are fulfilled, we interpret that U%., I';=¢ and
(¢;—0,)+1=0co0. When the hypotheses of case 3 are fulfilled in W, we write
W =X, and choose N and I" so that N=1and I'D Uj.,I";, When the hy-
potheses of Case 4 are fulfilled in W, we write W=X,; and choose N and I"
so that N=1 and I'D U4, I';Ur™. Here if B=(@, we interpret that
I'™=g¢. Put Y,= Uy X,p. Thus, using the notation in Section 1, we have

& = YOUAQUAa,,,U(UjAVjI,m)UE= Y,U7Y,

where E= U {¢€ W; L ®)(€)=0} and it is obvious that ¥, is open. Let U
be any open set such that U is contained in W N Y, for some W. Let ¢ be any
C7(U) function. It follows from Section 2 that ¢(£)@(¢, y)=0. Thus we have
that the support of #(£, y) is contained in Y; X Ri. Suppose that {E€W;
L(?"a'“)(f)=0} is not empty for some W. Let U be any small open set con-
tained in W and let ¢ be any Cg({€€ U; (8/8€,) LY "¥2)(£)£0}). 4,={(€U;
L&"50(£) =0, (8/0¢,)L? 57 (€)= 0} is an analytic manifold of codimen-
sion 1 or empty and the support of ¢(£)A(¢, y) is contained in 4,X RY. If 4,
is not empty, 4, may be defined by &,= (&) where &' €wcC 8, u is 'areal
analytic function' in @ and &'=(&,, ---, £,_,). We can denote by 2%(&’, (&)
=20, =1, -, a, 2j (¢, w€N=27(&"), j=1, -, b, and 27(¢’, u(¢")=27(£),
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j=1, -+, c, the roots of the equation P(¢’, #(£"), 2)=0in A when & Ew and we
have a>0. When the hypotheses of Case 2 are fulfilled in @, we choose N and
I so that N<(a;—08;)+2,j=1, -, k, and 'DU{I';; 1<j<k}. Then we
have that the support of ¢(£)2(¢, ) is contained in {(&’, u(&); &' {f'Ew;
L&) (¢"y=0} by Lemma 2.17. When the hypotheses of Case 3 are fulfilled
in @, we choose N and I' so that N<2and I'DC}I';;1<j<a}. Then we
have ¢(&)2(&, y)=0 by Lemma 2.19. If the hypotheses of Case 4 are fulfilled
in @, we choose N and I' so that N<2 and I'D U {I';; 1<j<a} UT'.
Here if B stated in Lemma 2.23 is empty we interpret that '™ =@. Then we
have that ¢(£)#(¢, y)=0 by Lemma 2.23. In the same way, we have the support
of 4(¢, y) is contained in 4o U 4, U( L,) Ay, 1m)- Let U be any small open set in

V stated in Section 1. Let ¢ be any C7({¢p = U; (8/9¢,)Im 4,(£) #0, Im2,(£) 0,
2<j<k}) function. The support of ¢(&)A(E, y) is contained in {£€U;
Im 2,(&)=0, (8/8¢,) Im 2,(¢) #0, Im 2;(§) 0, 2< j<k} which is a real analytic
manifold of codimension 1 or empty. In the same way, we choose N and I" so
that ¢(€)4(&, y)=0. By repeating the argument, we have that the support of
%(¢, y) is contained in AqU A, . Let U be any small open set contained in
{E€ 8", (0/6£,)0(8)#0, a,(£)#0}. Let ¢ be any C5(U) function. The sup-
port of ¢(€)(&, y) is contained in {£€ U; Q(&)=0, (8/0¢,)Q(£)+#0, a,(&)+=0}
which is empty or a real analytic manifold of codimension 1. In the same way,
we have that ¢(6)4(¢, y)=0. We repeat above reasoning on {{ € &"; a,,(6) %0},
and then we have that the support of #(¢, y) is contained in 4, . Let U be any
small open set contained in {£=E£";(8/9¢,)a,(6)#0, a,_(£)#0}. Let ¢ be
any C5(U) function. The support of ¢(&)A(&,y) is contained in {£€E5";
a,(&)=0, (8/6¢,)a,(£)+#0, a,_,(£)#0} which is a real analytic manifold of
codim 1 or empty and contained in X,,_,. In the same way, we have, using the
results of section 2, that ¢(£)A(¢, y)=0. By repeating the argument we con-
clude that the support of #(&, y) is contained in X,,_,. Repeated arguments
imply that the support of #(£, y) is contained in X,. Therefore, we choose N
and I" so that (&, y)=0 by Lemma 2.2.

Finally we show the last statement of the Main Theorem. First of all,
we suppose that the assumption (A-1) is not fulfilled, that is, there exists a
£ 5" such that the number of roots with positive imaginary parts of the equa-
tion P(£°% 2)=01in 2 is greater than p. Since the union of all W stated in Sec-
tion 1 is dense in B”, any open neighborhood U of &° intersects some W. Thus,
b>p for some W. Put
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A®) = (1 esez, EEW,

Ly b

where
£346) = @) § B, DI(PHE, D).

Since 5> p, A(£) has rank r (0=<r=p) in W, that is, some minor 4(¢) of A(£) of
order r does not vanish identically in W when 1=n=<p and every (r+1), -+, p-
rowed minor of A(£) vanish identically in W when 1=r=p—1. When r=0,
we may assume without loss of generality that

4(&) = det (f; (&) 4=1,r -

When 1=r=p, we put
G(E, 3) = [ 5 4msd MO MO {2 § P EPHE, )M}
FAE@R) § P HPHE D)HSE)

where 4; (&) is the (j, k) cofactor of (f; x(£)); 4=1,., and 8(¢) is a CT({E€EW;
4(£)#0}) function. It is obvious that we have

(5.1) P(¢, D,)G(¢, y)=0, y>0,

(5.2) B{&, D)G(E, ¥)y=o=0, j=1,---,p.

When r=0, we put
G(, y) = Qai)™ ¢ ePNPF(E, 2))'d2-¢(¢)

where ¢(€) is a Cg’(W) function. It is obvious that G(&, y) satisfies the equa-
tions (5.1) and (5.2). Put

u(x, y) = (2z)™* S G(&, y) exp (ix€)dE .

It is obvious that u(x, y) belongs to S(R%*') and satisfies the equations (1.1)
and (1.2), since G(¢, y) satisfies the equations (5.1) and (5.2). Next, we suppose
that the assumption (A-1) is fulfilled but the assumption (A-2) is not fulfilled
for some W. Then p=5 and Ly, (&) stated in Section 1 vanish identically for
all 6={oy, ==+ o5} C {1, -+, p} in W. Thus it follows from the same reason as
the first case that there exists a solution u(x, y) of the equations (1.1) and (1.2)
which belongs to S(R%*!). This completes the proof.
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Remark. When we put N=1 and I'=R"*, for any system {P(D), B;(D),
j=1,+,p} which satisfies the assumptions (A-1) and (A-2) we have that if
us LL (RN C=([0, 8); S’(R") is a solution of the equations (1.1) and (1.2)
with
imR* [ Gyl = o,

Ry
RL[(%,NI<2R

20

then #=0.

Example 1 (Rellich [12] or Agmon [1]). We consider a solution ue&
C=([0, 0)S’(R™) N LL (R%*") of the equations:
(5.3) du+ku=0 in R,
(5.4) ul,o=0 in R
where 4= —3V_, D?—D? and k>0. Put A*={£€8"; |£|2>k}, A
={E€8"|€|2<k, £, >0}, A= {£=E"; |€|2<k, £,<0}. When {E 4™, we can
denote by 2*(§) = i/ & [?*—k the roots of the equation 2+ |&|?—k=0. It
follows from Lemma 2.5 that

LDy =2 (N, y). (€, y)> =0,
for any v(€, y)ES,(4* X R}). Since u|,_,=0, we have

LDy= 25 (ENAE, »), v, ¥)>
= iK8(¢, 0), ¥(&, 0)>+<A(E, »), (—Dy— 2" (ENVE, ¥)>
= <B(E, »), (= Dy =2 (EW(E, y)) -

Then it follows from Lemma 2.6 that the support of 4(¢, y) is contained in
{E€ 8" |61°Zk}. Put 2L(6)= £Vk— 6|2 E€{é € 8"; [6]°<k}, Let u
satisfy the condition:

lim R JuCx, )| dsdy = 0
R-»o0 I'p

where I' is an open cone which contains a normal of M= {(x, y) R""; |x|*
+y*=k, |x|*<k and x, =0} for every (x,y)EM and I'y= {(x, )I"; y=0,
R<|(x,y)| <2R}. When €45, I'" contains an outer normal of {(&, 2%(£));
E€ A%} at £ A%, Tt follows from Lemma 2.7 that

(D, —2L(ENAE, 0), 2(6)> =0,
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for any x(§)eCr(4%). Since u|,_,=0, we have that
D&, 0), x(6)>=0, j=0,1,

for any #(6)€Cg(45%). Thus we have that the support of #(&, y) is contained
in[{€€8"; |€|2<k, £, 20} U {¢€&"; |£|>=k}IX R.. When E€4°, I' con-
tains an inner normal of {(£, 22(6)); £ 4%}. Tt follows from Lemma 2.7 that

D, —2ENu(E, 0), 2(€)> =0,

for any 7(6)eCg(4%). So we have that the support of #(£, y) is contained in
[{€€8"; |6|2<k, £,=0} U {¢€E"; |£|>=k}]X RL. Let ¢ be any Cy({¢
€8"; |£|2<k}) function. The support of ¢(£)&(&, y) is contained in {£=&";
|&|12<k, £,=0} X R, and {¢€E";|£|?<k, £=0} is a real analytic set of
codimension 1. I' contains some normal of {(£:2%(&));&,=0, |&|2<k}.
#(&)(E, ) has the form:

HEWM(E, ) = Daiss Val€, I®DeA(E),
where &' =(&,, -+, £,). It follows from Lemma 2.7 that
D3+ E 12—k (&, ), W&, y)> =0,
&, N y=0 2> =0,
Dy=220, EVal€', P ymor 2(6N =0, |al=s

for any w(&’, y)eS({E€ 87 |€'1°<k} X R} R)) and any z(&)eCs({tcELT,;
|&/12<k}). Then we have that ¢(§)4(€, y) has the form:

S(EWE, ¥) = Daiss-1Val€’, Y)QDe () -

Repeating this reasoning on v, (| @| <s—1), we obtain that ¢(&)4(&, y)=0. So
we have that the support of #(¢, y) is contained in {{E8"; |€|?=k}. Let U
be any open set contained in {§€E"; £,>0, £5+--- +£E2<k} and let ¢ be any
°°(U) function. The support of #(£)4(£, y) is contained in A,x R where
= {k— &2 &)eE"; &'=(, -+, €,), |&'|*<k} which is real analytic
mamfold of codimension 1 in &". When £ 4,, the roots of the equation
P(&, )=22+|€|2—k=0 in 2 is zero with multiplicity 2, that is, P(£, 2)=2?,
éed,. (0,--,0,1)is normal of real analytic manifold {(¢, 0); £ 4,} where
P(¢, )=0 and I" contains (0, ---,0, 1). Let v be the composition of #(£)A(¢, y)
and the map &+ (€,+/k— |&'|2 &). v, y) has the form:

V(f, y) = Elwlés vw(EI’ y)®D516(EI) s
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for the support of (¢, y) is contained in the plane & =0. It follows from
Lemma 2.7 that

<Djva(&’, y), W&, y)> = 0,

<al€, M) ly=or 2(E)> =0,

<Dyyol&’, ) ym0r 26> = 0,
for any w(¢’, y)e S({&'c 81; |€'|?°<k} X R}) and x(&)eCy({&'e &
|€’|2<k}). Inthe same way, we have that the support of #(¢,y) is con-

tained in {{€58"; £,=0, £5+---+&2=k}. Repeating the argument we con-
clude that u=0. Summing up, we have proved.

Theorem (Rellich [12] or Agmon [1]). Let I' be an open cone in R"!
which contains a normal of M = {(x, y)E R*™*; x,=0, |x|*+)y*’=k, |x|?<k} at
every (x, y)EM. Set

Iy = {(x,»)Er; y=0, R<|(x, )| <2R} .
Ifus C>([0, 8); S'(R") N LL(R%) is a solution of the equations (5.3) and (5.4)

with

tim R [ |ux, 3)|%dxdy = 0,

y ] B
then u=0.

Remark. Let ¢(¢) be a Cy({¢€E8"; |£|Xk, £)0}). Put
w(x, y) = S ei=E{eM% @y _ oA O} ¢(£)dE .
Then ¥(x, y) is a solution of the equations (5.3) and (5.4) with
C.R= SFR [v(x, ¥)|2dxdy< C,R

for some positive constants C, and C,.

Example 2. We consider a solution ue C=([0, 6); S'(BR")) N LE(R"*?) of
the equations:
(5.5) P(Dyu= (D2+Di—Ku =0, in R,
(5.6) B(D)ul, = (D,—i(k—1/D)u|,o =0, 1in R*,
(5.7 ByD)u| oy = (D,—iDy+i)u|,og = 0, in R",
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where k satisfies ((k+1)/2?>k>1. When &>k, we can denote by 1*(¢)
= 4i\/EZ—k the roots of the equations P(¢, )=0in . When £{>k and ¢,
=(k+1)/2, we have

Qri) j( By, NA—2+()da =0, j=1,2.
When £2>k and &, (k+1)/2, we have
(Q2ri)t f B,(€, D@A—27(€) A0, j=1,2.
Where £ <k, the roots of the equation P(£, 2)=0 are all real and we have
det (2ri)™ f B,(&, DIUPE, )2, 41
— det [} jgf;})/z] — —i(e,—(k+1)/2)%0.
In the same way, when &=k, we have
det ((2ni)~? jf By, DIYP(E, ))d2); 4o 150 .

Then the support of (&, y) is contained in the plane {£€8"; & =(k+1)/2}
X R%. This is real analytic manifold of codimension 1 in £” and (1,0, ---,0) is
its normal. Let I" be an open conic neighborhood of (1,0, -:-,0) in B**' and
set

I'p = {(x,y)ET'; y=0, R<|(x, )| <2R} .
If u satisfies the condition:
tim R {  [u(x, »)|%dxdy = 0,
R-yoo I'p
then u=0.

Remark. Let be a Cy(8*Y) function. Put
wx, ) = | exp i+ 1)/203,+ 7€)~ (b= ]2y} p(e")de",

where £”=(&, -+, £,). w(x,y) satisfies the equations (5.5)~(5.7) and there
exist positive constants C, and C, such that

crs | e pladscr,
1%, 9)/R-(1,0,,0)I<E
20
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for small positive ¢.

Example 3. Let us consider a solution u&C=([0, §); S'(R") N L4 (RT™)
of the equations (1.1) and (1.2) for a system:

P(D) = (D,—D)D,—D,—1), B(D)=1, ByD)=D,,
By(D) = D, B(D) = D5+23;..D;D,, ByD)= Dy;—(4D,+2)D;.

When &,%1/6, we have
det ((2i)™ f B(&, DA (A— &) (A— & —1)72d2), 4oy ..s=0
det ((2i)™ f By(€, DA (2 — ) (A—€,—1)7d2), 4oy =0,
det (i)™ jf B, (6, DA A—E) A,y O
for all ¢ =(o,, 0,, 05, 0,) With g,=35,
det (i)™ f Bo (&, DI A= E) (A= — 1)) oy .40,
for all 6=(a,, 0,, 03, 0,) With 0,=35,

det ((27ci)‘1fB,j(E, DAY A—E)HA—&,—1)"%d2); 4., =0
forallo.

Since the normal of {(£, 2); A=¢,, &,=&=1/6} and {(¢, 2); A=¢&,+1, &,51/6} is
(—1,0,:-,0,1), it follows from Lemma 2.17 that if u satisfies the condition:

lim RS [ |uCx, ) |%dxdy = 0,
B R -h0,m0, i<
920

then the support of #(¢, y) is contained in {é=8";&,=1/6} X R.. On the
other hand, there exist C=({¢ €&"; &,=1/6}) functions C; (&) such that

Wx, y) = S 520 CLE)y) & E 78 + 3o C, (E)ip)e ™t E]g(E)dE

is non-trivial solution of the equations (1.1) and (1.2) where C;,(£)=1 and
s(&)eCr({é€E”; ¢,+1/6}). Further, we have

CR< | |v(x, )| dxdy< C,R°

1¢#,9)/R=(~1,0,,0,1)|<E
20
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for some positive constants C, and C,. This is an example for what we could
not take N;=a;—d; in Proposition 2.18.

§4. Appendix

Here for the convenience of readers we state some results due to Hérman-
der [6] and Agmon-Ho6rmander [3] which is used in our paper without proof.

Theorem Ay-1 ([6])). If u is a smooth density with compact support on a
C= submanifold M of R" of codimension k, then

(A1) S |0(6) |?dE< CR*, R>0.

1EI<R

If I is a closed cone in R" which contains no element==0 which is normal to M
at a point in supp u,

(Ay2) 186)| <Cx(1+ €)Y, eeT,
for every integer N. Here 1(§) denotes the Fourier transform of u.
Theorem Ap-2 ([6]). Let usS'(R"), 4 €Li,, 0 R" and ¢>0. If

1€ CT(R") and v= yu, it follows that for every kE R

@y mrr | peraescimrr | e,
e IE/R-0I<8 e |E/R-0]<28

where C =(2z)"" S | x|de .

Theorem A,-3 ([6]). Let ucsS'(R") be supported by a real analytic set A
of codimension k>0, and assume that 6= L?,.. Set

Iy = {€eI; R<|E|<2R},

where I' is an open cone in R" which for every analytic manifold M C A and
X E M contains some normal of M at x,. If

tim R | (a@)1%e = 0,
R-» I'p

it follows that u=0.

Theorem A,-4 ([3]). Let ¢ be a continuous function with compact support in
R*. If ucS’ and tt=10,dS is an L*? density with compact support on a C*
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manifold M C R" of codimension k, then
lim S |u(x) | %p(x/ R)dx/ R = (2z)~*~" S M| u(€) | X SNE #(x)da(x))dS(€) ,

where dS is the Euclidean surface element on M and do is the Euclidean integra-
tion element in the normal plane N¢ of M at &, passing through 0.

Modifying the proof of Theorem A, -4 slightly, we have the following.

Corollary A,-5. Let U be an open set in 857", let n(&'), j=1, 2, be C=(U)
functions such that u,(€')=E 1 (¢’) when &’ €U and let x be a C3(U) function. Put

Fix) = S exp (i &'+ X" EN2ENE, j=1,2.
Let ¢ be a Cy(R}) function. Then it follows that
lim S Fi()F,x)6(x/R)dx/R* = 0.
Ryoo

Here w,(8")Fu,(¢') means that |u,(E')—uE')| >0 when &'€U, x'=(x, -,
Xei)s X = (Xpoprrs +0, X,) and 2= _1s(§), -, i) (G=1, 2).

Proof. Let ¢(x)= é( —x), thus & S. The Fourier transform of
R**@®(R¢) and Fy(x) are R™*¢(—x/R) and x(§)®d(6” —u,(£")), respectively,
so the Fourier transform of F;(x)¢(x/R)R* is

@R (O(RE 1), RE"— m(a'Da(n)d
Hence it follows from Parseval’s equality that
S Fy(x)F(x)6(x/R)dx/R*
— @R [ ORE — 1), R — i V@)’
= oy | 00, Reue)— m(& — IR HE — R de’

Since
|2(¢’—7'|R)|<C,
[0’y R(u€)—m(&’—7'|R))| <Cy(1+1|7°[)™™  forany N,

for any >0 there exists a large number K such that



LiouviLLE TYPE THEOREM 103

| Ssmf.g,f 2HEN2(E =7 |RYD(r', R(uAE')— (€' — n'[R))dE'dn’|

<c [ixeraek1<e,

where C’ is independent of K. On the other hand, we have

R| (&) — (& —7'[R)| > R| 1) — (&) | — | £4(E)] | 2" | —CR?,

when 7’| <K and & &supp x, where C is some constant independent of R.
Since | #,(6") — 1,(6')| =C’ when & &supp %, we have that

|2(2, R(uo(€")—m(&’ —7'|R))| <C/(1+C'R), ¢'Esupp x and [7'|<K.

Therefore we have

lim Sg 2EVUE — 7' |RYO(r's R &) — m(E — 7' |R))dE'dn’ | <e ,

for any >0, that is,

{11

[2]
[31
41

[5]

[61
7

[8]
91

[10]

lim SS 2(EN2(E — 7' |R)O(7’, R(ufE")—m(&'—7'|R))dEdn’ = 0.
Q.E.D.
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