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Elgenfunctlon Expansions Associated with the
Schrodinger Operators with

Long-Range Potentials

By

Masaharu ARAI*

§1. Introduction

The present paper is devoted to constructing eigenfunction expansions

associated with the Schrodinger operator

(1.1) L - -A+K(x), xGR* (72^

where A denotes the Laplacian: A =2 (82/dx*), and V(x) is a real valued con-

tinuous function. We interpret for the time being, the eigenfunction expansion

associated with a self adjoint realization H of L as follows: select suitable func-

tion 0 = 0(x; A, a), where a runs over a set @^ of indeces, out of the solutions of

the equation

(1.2) U = to

in the distribution sense and construct a measure dp on J2 = {( ,̂ a)} such that

the operator 9" defined by

(37) (*,«) =

has the following properties:

(1) £F is unitary from L2(R
n; dx) onto L2(ti; dp).

(2) (3?(Hfy) (Z, a) = 1(3; f) (X, a).

General frameworks for formulating eigenfunction expansions have been

proposed by several authors, for example by Gel'fand et al. [2], [3], which can

be applied to the Schrodinger operator L with smooth potential V in a certain

large class. They have not specified the eigenfunctions needed for expansions in
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terms of a conditions (depending on a) under which each of them is the unique
solution of (1.2). In addition, their measure dp is devided from the spectral
resolution associated with H so that it is less explicit.

Another approach is of a parturbation theoretic charactor, in which one
can adopt as the measure dp the same one as that of L with F=0. Assume
that

(1.3) V(x) = 0(\x\-8) as |*| -»oo .

The eigenfunction expansions in this sense are obtained by Ikebe [5] in the case
of d>2 and n = 3, by Thoe [17] and Kuroda [13] in the case of $>(7i+l)/2.
(Of cause, all of them allow local singularities in their respective sense. But we

will not enter this point into details.) Put 01(*,0 = (2w)"*/2^"*» C^-R*- Then
the limiting absorption principle, cf [9; Theorem 1.4], implies that the limits

exist in a certain sence and we can define

(1.4) **(• ; 0 = *!(• ; Q-R(\C\2*iO)V*i(- 1 0

if £>(w+l)/2. A somewhat long calculation shows that these two families
{0±(. ; C)} give the eigenfunction expanisons with ^ = Rn, 1= |C|2 and dp = d£

the ordinary Lebesque measure. Moreover the limiting absorption principle
cited above shows that these eigenfunctions are the unique solutions of (1.2)
under the condition

'

for sufficiently small e>0.
In the case of fl>l in (1.3), Agmon [1] gives the eigenfunctions, which

seems to satisfy merely a weaker version of condition (1.5) (cf. (5.17) of [1]).
Recently, Pinchuk [14] have obtained the eigenfunctions satisfying a modified
virsion of the condition (1.5) under the assumptions that n = 3 and V can be
decomposed as V=ViJ

rV2 such that

(1.6)
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for 5> 1 and £'>2, where A is the Laplace-Beltrami operator on the unit sphere
S"-1 in R*.

On the other hand, Kato and Kuroda [12] have pointed out the eigenfunc-
tion expansion theorem for £> 1 in (1.3), where eigenfunctions are given by (1.4)
with 0i(;c;C) replaced by the spherical waves, which will be defined by (3.3.1).

The aim of this paper is to obtain the eigenfunction expansion whose each
eigenfunction satisfies a modified virsion of (1.5), i.e. (4.1.3), with <t>i(x;£) re-
placed by the spherical waves under the condition that <5> 1/2 and <5'> 1 in (1.6)
without the condition on A V±. Our plan of this paper is as follows. In Section
2, we shall sketch an abstract method, most part of which we owe to Isozaki
[10]. He extended Ikebe's work in [6] to a fashion to be applicable to the long-
range potentials and used it to construct the wave operators. In Section 3, we
shall check up that the abstract theory given in Section 2 is applicable to the
Schrodinger operators. In Section 4, we shall introduce a modified virsion of
condition (1.3) and show that the equation (1.2) has the unique solution satisfying
this condition and totality of such unique solutions gives eigenfunction expansion
theorem. In Section 5, we shall prove two lemmas which will be used in Secticn4.

As to the eigenfunction expansion associated with the Schrodinger operator
with long-range potentials we should mention to the work by Ikebe [7], [8] and
Saito [15], [16].

In conclusion, the writer wishes to express his sincere gratitude to Professor
T. Ikebe for his kind advice. He also thanks to Mr, H. Isozaki for his kind
advice.

§2. Abstract Theory

2,1. Let M be a separable Hilbert space. Let H; (j= 1,2) be selfadjoint
operators in M, whose spectral resolutions are denoted by Ej(X) and whose re-
solvent operators by Rj(z) = (HJ—z)~1.

Let M+ and M+ be Hilbert spaces such that

^n, + d <_/i + d <jl

and all inclusions are dense and continuous. Their dual spaces are denoted by
M- and M-, respectively. We identify M with its dual space so that we have

We use ( , ) to denote not only the inner product of M but also the pairing of
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M+ and M-, and of M+ and M-, which will not confuse our arguments. We
denote by <B(A19A^) the totality of bounded linear operators from a Hilbert
space Al to a Hilbert space A2.

2,2. We assume that the limiting absorption principle is guaranteed in the
following sense.

Assumption 2.2.1. Rj(l±itJi)G<B(M+9M-) for any ^>0 and /*>(), and
the strong limit

Rj(A±iQ) = s—lim RU±iv)
P*0

exists. Moreover, Rj(A±ijj,)f is an ^--valued strongly continuous functions
of 01, A)e(0, oo) x [0, oo) for any/ec#+C/ = 1,2).

With the aid of this assumption we define

(2.2.1) E&X) = - [Rfr+iO)-Rj(i-iO)] (j = 1,2) .
Zni

which belongs to 33(M+, M.}.
Let H be a selfadjoint operator in M and £(/*) be its spectral resolution.

The set Mac(H) defined by
Mac(H) = {f&dH'9(E(X)f,f) is absolutely continuous function of /I with

respect to the Lebesque measure} ,
which is a closed subspace of M (see e.g. [1 1 ; Chap. X]). H is called absolutely
continuous if and only if Mac(H) = M,

Lemma 2.2.2. Let Assumption 2.2.1 be satisfied. Then Ej((Q, oo))Hj is ab-
solutely continuous.

Proof. Let / e M+ and A = (A19 ^2) , where 0 < ^ < 12 < oo . As is well known
it holds that

= lim Hm

Since the integrand is continuous function of (/l,/*)e Jx [0, 1], we can use dom-
inated convergence theorem to obtain

= \
d

which shows that <3i+dJ?lac(H'). Since J^+ is dense in M and Mac(H) is closed
in c#, we have the present lemma.
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Our next assumption is :

Assumption 2.23. There exist unitary operators t/jr/'O 0* >0) on M having
the following properties.

(1) Vt,(X)* = VftX).
Here and in the sequel j, A; =1,2 andj^k.

( 2 ) U%(Z)Rj(l ± ifi)f e 3)(Hk) for any / e M and X, n > 0.

( 3 ) The operator Gjk(^±ifji) 0*5#>0) defined by

(2.2.2) GJk(* ± in) = [H,-(* ± f/i)] U%(X)Rk(l ± it*)

belongs to £B(M+, Ji+) and the strong limit

iQ) = s-lim

exists in £B(Ji+, M^). Moreover, Gjk(A±iQ)fis a strongly continuous function
of

Let e be a bounded Borel set contained in (0, oo) and having a positive dis-
tance from 0. We define

(2.2.3)

By virtue of Assumptions 2.2.1 and 2.2.3, this integral is well defined and
Wfk(e) e $(Jl+9 M-\ Moreover, we have

Theorem 2.2.4. ([10]) Assume that Assumptions 2.2.1 and 2.2.3 are satisfied.
Then,

( 1 ) The operator Wpk(e) is uniquely extended to partial isometry on M
with initial set Ek(e)M and final set Ej(e)^i. (We use the same notation for its
extension?)

(2) W?k(e)*=Wfte).

( 3 ) Wfk(e) intertwines Hj and Hk. That is,

(2.2.4)

for any Borel set Ac. e

For the proof of this theorem, see [10].

2.3. We assume that the eigenfunction expansion on e associated with H±
is guaranteed in the following sense.



40 MASAHARU ARAI

Assumption 2.3.1.

( 1 ) There are a a-finite measure space (<0, 2, dp), a partial isometry SFl

from M onto L£Q>dp) with initial set E^M, and a measurable function co: Q
-» e such that

(2.3. 1) (2^ W) (0 = *XO) (ff i/) (0 a.e. C 6 £

for each/Gc^ and Borel set Jde, where x* is the characteristic function of set
A.

( 2 ) There is a mapping 0X : Q-^Si- such that

(2.3.2)

for ea

Theorem 2.3.2. Assume that Assumptions 2.2.1, 2.2.3 and 2.3.1 are satisfied.

We put

(2.3.3)

a^J

(2.3.4)

GJ2: M-->M- is the adjoint operator to G12^^(M+f M+). Then we have

(2.3.5) St =

on M+. Since the right hand side of (2.3.5) are defined on M, we can uniquely
extend the operator 3*f on M by this equation. This extension will be denoted by
the same notation. Then we have

(2.3.6) (3&EJ.W) (0 = *XO) (StO (0 a.e. C 6 Q

that is, Assumption 2.3.1 holds true with 3lf $lt E1 and M+ replaced by £Ff , 02, E2

and M+, respectively, and with the same (Q, 2, dp) and co.

Proof. Since 0j is ^.-valued and (?I2e.3(c#L, «$_.), 0f defined by (2.3.3)
is ^.-valued so that (2.3.4) is well defined. Assume at first that the equation
(2.3.5) has been proven. Then, the assumptions (2.3.5), (2.3.1) and (2.2.4) imply
the assertion (2.3.6).

Let us prove (2.3.5) on Jl+. Let/00 be
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Then we have

(2.3.7)

and

Next, let f(X) be an c^+-valued bounded continuous function defined on e9 and
approximate it by step functions fm(X) such that fm(X) -*f(X) in M+ for each X.
Then, using (2.3.7) it is easy to see that

E((X)fm(X)dl-\ E[
e Je

= \ (
J e

which tends to zero as m,w-»oo. Thus the sequence {I E[(X)fm(X)d}} has a
fstrong limit in M as m->oo. On the other hand it converges to I E{(
de

in M-. Thus we have

( Ei(Xym(X)d^ - ( £{(M^X^ in M ,
J* J«

and so we have

Therefore we have

into the above equation. Then we have

= (f,

which is what we want to prove. Q.E.D.

Lemma 2.3.3. Assume that the assumptions in Theorem 2.3.2 are satisfied.
Moreover, assume that there exists a set S^CiM+^^H^ such that
Then we have

(2.3.8) (Hff, 0f (0) = "
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for any

Proof. The identity

(H^ 0J(0) = (2l=flrfO (C) = o>(0 (31= 9) (0 = *>(0 fo #£ (0)

shows (2.3.8). Q.E.D.

This lemma shows that the functions 0* obtained above can be regarded
as eigenfunctions in a certain sense.

Remark 2.3.4. Put e=(n,n+l] for /i=l,2,3,— and en = 2— n 1—n
for fl=0, — 1, -2, — . Then,

(2.3.9) 0^((0, oo)) = j-li

is well defined and Theorem 2.2.4 holds with e = (03oo). Moreover, assume
that Assumption 2.3.1 holds with e = (0, oo). Then Theorem 2.3.2 also holds
with e = (0, oo). Indeed, put @n = o)~l(en) and Jn be the operator on L2($, dp)

such that

Then the above theorem shows that

(2.3.10) J&£

Noting (2.3.9) and /JI3
riH^i2(O = 0 (/i^=/w), sum (2.3.10) from n= -oo to +00.

Then we have (2.3.5) with e = (0, oo).

§3. Schrodinger Operators

3.1. Let us consider the Schrodinger operator

(3.1.1) L = -

where K(JC) is a real valued bounded function such that V(x)-*Q as |^c|->oo.
As is well known the following holds (see e.g. [11 ;Chap. V§5]). The operators
—A and L restricted on CQ are essentially selfadjoint in M = L2(R

n). Their
unique selfadjoint extensions will be denoted by HI and H2, respectively. Here
CQ denotes the totality of infinitely continuously differentiate functions with
compact support. The essential spectra of f^ and H2 coincide with each other
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and are exactly the non negative real axis. Thus the spectrum of H2 on the
negative real axis consists only of isolated eigenvalues with finite multiplicities,
having zero as its only possible limit point.

As to the nature of the positive spectrum of H2, we have Lemma 3.2.3 due
to Ikebe and Saito [9]. Before stating it, we shall introduce notations and as-
sumption.

3,2, Let J3 be a real number and G be a domain in Rn. We denote by
L2/(j) the Hilbert space of all functions / on G such that (l+\x\Yf^Lz(Cf).

The norm is denoted by || ]|^jG. We write L2^(Rn) = L2^ and || 1^^=11 ||p in
short.

Assumption 3.2.1. We assume that V(x) can be decomposed as the sum
F1(X)+F2(X) such that

(i) V1 is a real valued C1 function satisfying

(|Fi(*)
i|grad

and
(ii) V2 is a real valued continuous function satisfying

(3.2.2) | V2(x)\ f£C(l+ |* I)'1-'' (<r>0).

Lemma 3.2,2, Let Assumption 3.2.1 be satisfied. Then Assumption 2.2.1 is

satisfied with M+ = £2,a+s)/2 f°r sufficiently small e > 0. In particular Ej((Q, °°))#j
is absolutely continuous (j = 1,2).

This is due to Ikebe and Saito [9; Theorems 1.4 and 1.5].

Let Assumption 3.2.1 be satisfied. We may assume without loss of gene-
rality that

(3.2.3) Fi(x) = 0 in

8<1 and

(3.2.4)
xj dxk

for any ^>0. The last one follows from Lemma 3.3 of Hormander [4].
We put

(3.2.5)
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Here and in the sequel we use the notations that r=\x\,x=x/r and xs is the
j-th component of x. It is easy to see that X(k, x) has the following properties :

(3.2.6) X(k,x) = 0 in \x\£l

and

I AX(k,x) = 0(r~2s+s)

as r->oo. Let U(k) be the operator of multiplication by exp[— iX(k,x)]9 which
is unitary in L2,3 for any real ft. We put

and

for

We owe the following lemma to Pinchuk [14; Theorem 5.1].

Lemma 3.2.3. Let Assumption 3.2.1 be satisfied with d,8'> 1/2. Let
and U^(X) be as above. Then Assumption 2.2.3 holds with M+ = L2t(1+^/2

Jl+ = L2il+s/2for sufficiently small e>0.
(We will use this lemma only the case that F2=0.)

3.3. At first let us consider the Fourier transformation (3?f) (C) = (2^)"w/2 X

[ftoe-W'^dx, C e Rn. Let Q = Rn, a (C) = | C | 2, dp the usual Lebesque measure

on Rn, ^(C? .) = (2^)""/2«+l'(fi") and jy1=-A. Then Assumption 2.3.1 is satisfied
with M+=L2t$ for p>nj2. On the other hand when we want to use Lemmas
2.3.1 and 2.3.2, we must take M+ = L2t(l+^/2^L2^ (j3>n/2, n^2). Therefore
we give up to construct the eigenfunction expansion in terms of plane waves and
will do it in terms of spherical waves.

Let {Ylm(6)} be a system of («— l)-dimensional spherical harmonics which
forms a complete orthonormal systems in L^S""1). Here / = 0,1,25-" and m
runs over a finite set which depends on n and /. The function Ylm(6) is an eigen-
function of the Laplace-Beltrami operator A on the unit sphere Sn~l belonging
to the eigenvalue — l(l+n— 2).

We put

(3.3.1) *i(*;fc,/,m) = r-

where r=\x\9 x=x/r, k>Q and /v(z) is the Bessel function of order v given by
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[ / w
/(/+n-2) + (

Then it satisfies the equation

(3.3.3) -A ^(X'9k9l9m) = Jf^(x\kJ9m) .

Let Q be the set

@ = {C = (k,l,m)'9 fc>0 and /,m are as above} ,

the measure dp on Q be the direct product of kdk on (0, oo) and the point
measure on (/,m)-set, and co(£) = k2. The well known formula

(3.3.4) /v(r) ̂ Y ̂  cos (r~ (2^1M as r-*°°

implies

(3.3.5) 0x(%; fc,/,/w) - 0(r-<"-1)/z) as r->oo

so that 0i^^2-(i+e)/2- Thus as is well known it holds that

Lemma 3.3.1 The Assumption 2.3.1 is satisfied with 0X defined as above,
e = (0, oo )

§4. Eigenfunction Expansion Theorem

4.1. The aim of this section is to prove the following theorem. We note
that the condition (4.1.3) is a modified version of (1.5)@

Theorem 4.1.1. Let Assumption 3.2.1 be satisfied for d>l/2 and df>0.
Then the equation

(4.1.1) (L-&2)0 - 0

has the unique solution in the distribution sence such that

(4.1.2) u = t-U(±k)h(-',k9l9m)

satisfies the condition

(4.1.3) i
- x± ikx

for each sign and each (k, /, m) e Q. We denote this unique solution by ^(x;kf I, m).
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Let Q and dp be the same as those in Section 3.3. Define

(4.1.4)

for f^L2(R
n), where l.i.m. means the limit in L2(Q,dp). Then £Ff is a unitary

operator from L2(R
n) onto L2(Q,dp) and it holds that

(4.1.5)

for anyf^L2(R
n) and any Borel set Jd(0, oo).

Proof, Let w be the difference of two solutions of the equation (4.1.1)

satisfying the condition (4.1.3). Then it is a solution of the same equation

satisfying the condition (4.1.3) with u replaced by w. Therefore w = Q by virtue

of Lemma 1.9 (ii) of Ikebe and Saito [9], which proves the uniqueness.

Let H3 be H2 with V2 = 0. Then Lemmas 3.2.2, 3.2.3, 3.3.1 and Theorem

2.3.2 implies that

(4.1.6) <ft(k,l,m) - GtaflPi/O)^. ; k,I,m)

gives the two systems of eigenfunctions in the sense stated in Section 2.3, where

U&= U$2 and Un=U^. Let £)=€%. Then the assumptions of Lemma 2. 3. 3 are

satisfied so that the equation (2.3.8) holds, which implies that 0f satisfies (4.1.1)

with F2=0 in the distribution sense. Now let us assume that u defined by

(4.1.2) with 0 = 0ir satisfies (4.1.3), in particular, 0f(° ; /c,/,m)eL2f_(i+s)/2. On
the other hand Lemma 3.2.2 and the assumption on F2 implies that

and

satisfy Assumption 2.2.3 with the suffix 1 replaced by 3, U23= U32 = identity and

M+ = M+ = ̂ 2,(i+£)/2- Now we have

(* ; k,l,m\
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which satisfies (4.1.1) in the distribution sense by virtue of the same argument

as that on 03, Now R2(k
2=FiQ)V2<l>3 satisfies the radiation condition (4.1.3) by

virtue of Theorem 1.4 of [9]. Thus we know that $f — U^ and 0f — $$ satisfy

(4.1.3) so that their sum 0f (• ; kJtm)—U(±k)^ ; k,lfm) also satisfies (4.1.3).
We define

(4.1.4') (fff/) (U,m) = (/,#*(• ; M,m))

for/eZ,2,(n-s)/2- Then Theorem 2.3.2 shows that this operator £Ff can be
uniquely extended to the unitary operator from L2(R

n) onto L2(@, dp) and this

extension satisfies (4.1.5). The operators defined by (4.1.4) and (4.1.4)' are

coincide with each other for f^L2 with compact support so that the definition

(4.1.4) is well defined and this £Ff has the properties stated in the present

theorem.

In conclusion, we will complete the proof of the present theorem if we
show the following lemma.

Lemma 4.1.2. Define 0f(- ; kfl,m) by (4.1.6) and u by (4.1.2) with 0 = 0*.
Then u satisfies (4.1.3).

This lemma will be proved at the end of Section 4.3.

4,2. Now we must show Lemma 4. 1.2. We will show it only for 0J. (The
proof for 0i~ is similar.) So we omit the sufficies and put

(4.2.1) «(/*) = <K-\k,l,m\v)

and

(4.2.2) u(fJL) = u ( - i k , L m i t J L )

= 0(- ; k,l,m\ fJi)-

where U(k) = GK$[—iX(k, •)] and X(k,x) is defined by (3.2.5). We put

(4.2.3)

and

(4.2.4)

where r=\x\,x~xs/r and x=(xltx2,
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In the sequel we fix (fc,/,m)e£ and assume that Assumption 3.2.1 is sa-

tisfied with d> — and F2=0.

Lemma 4.2.1 ( 1 ) <f>(ju) -»0(0) weakly in I/2,-(n-s/2) as & \ 0.

( 2 ) 0(#) = 0(- ; k,l,m'9 ju) (#^:0) satisfies the equation

(4.2.5)

in the distrubution sense.

( 3 ) w(#) = u(*',k,l,mi ^)^^2,-d+e/2) satisfies the equation

(4.2.6.) (£-*

/» ?Ae distrubution sense, where

(4.2.7) /i =
2r

(4.2.8) /2 = -2tU(k)^(kfX)
oxj

r dr

Moreover, we have

(4.2.9)

Proof. The assertion (1) follows immediately from (3) in Assumption 2.2.3

with c#+=£2,(i+e)/2 and ^+ = £2,1+5/2* which is guaranteed by Lemma 3.2.3.
Let \^ be in M+=L2ti+z/2 and #>0. Then

Put ^ = [L-(fc2+*/0]9> 9 e CST. Then we have

9 9)

for any ^eCJT, which implies (4.2.5) for #>0. Let & j 0 in the above equa-

tion to obtain (4.2.6) for ju = Q. Thus we have the assertion (2).

A direct computation shows that
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(4.2.10) (L

where

(4.2.11) / = -U(k) [2i(grad *)-(grad ^)

Subtraction (4.2.10) from (4.2.9) yields (L—iP)u(fi)=f. Noting the definition

(3.2.5), it is easy to see that/defined by (4.2.11) can be decomposed as the sum

of/x and/2 defined by (4.2.7) and (4.2.8), respectively.

Now the estimates

(4.2.12) 0lf - and r
j

and (3.2.7) show (4.2.9). The first one in (4.2.12) is nothing but (3.3.5), the

second follows from (3.3.4) and the well known formula /i(r) = r "^(r)— /v+1(r),

and the third follows from the facts that (—-*,-—) h(x; Jk,/,/w) = r"<ll"2>/2x
\dxj dr/

J^(kr)( -- Xj — )Ylm(x) and that r( - —Xj — ) V is bounded in r^l for
\dXj dr/ \dxj dr/

any smooth function ^ depending only on x. Q.E.D.

If /is in jL2,(i+s)/25 then the limiting absorption principle (Theorem 1.4 of

[9]) shows that u(ju) converges to some u in I>2,-(n- e)/2j which coincides with u(0)
by virtue of (1) of Lemma 4.2.1 and it satisfies (4.1.3) with upper sign. But in

our case /^L2>(1+s)/2 in general so that we must follow the calculations in [9]

step by step.

4.3. We put Er={x',\x\*zr}. The following two lemmas will be shown
in the next section.

Lemma 43.1 Let K = —K1+i/e2, /c2>0 and ft be real. Let veZ^p satisfy the

equation

(4.3.1) (L-V)v=/

in the distribution sense, where f=fi+f2 and fi andf2 are defined by (4.2.7) and

(4.2.8), respectively. Then we have

(4-3.2)

and

(4.3.3) ll^

for sufficiently small e. Here and in the sequel C denotes several constants not
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depending on £2>0.

Lemma 43.2. Let v be as in Lemma 4.3.1. Then there is a constant C not
depending on p, K2 and v such that

(4.3.4) l|vi|-(1+s)/2f£p^Cp-e||^v||(_1+s)/2^Hh«(p) 02:1) ,

where a is a certain function not depending on v and /c2 and having the property
that a(p)-*Q as p-*oo.

The following lemma is essentially Lemma 1.11 of [9] so we omit the proof.

Lemma 4.3.3. Let {vm} be a sequence in L2>_(1+E)/2 and vm \ 0. Assume that

as m-*oo

with some real ft, and there is a constant C not depending on m such that

(4.3.6)

0 as p -*oo uniformly in m,

where JZ)(m) is defined by (4.2.4) with ie = \/k2—i/i.m.

Then {v^} has a strong limit v in I>2p_a+s)/2, which satisfies

(4.3.7) (L-£2)v = g

(4.3.8)

and

(4.3.9) 3)Wvm-*> &~kh in L^E^ as m

Lemma 4.3.4. Let u(ju) (ju>0) be as in Section 4.2. Then U(JJL) satisfies the

following:

(i)
(2)

(3) ||H(0)ll-(i+e)yifjBp-*0 as P -»oo uniformly in p..

Proof. Lemma 4.2.1 shows that u(j£) satisfies the assumption on v in
Lemma 4.3.1 with fl=— (l + e/2). Thus Lemmas 4.3.1 and 4.3.2 show that

w(^)e£2,-(i+8)/2 and that (1) implies (2) and (3). Therefore, it is sufficient to
show (1) alone. Let us assume that (1) is false. Then there is a sequence {jum}
such that vm | 0 as m-»oo and a^lW^JII-d+e)^-*00- Then vm==amu(vm)
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satisfies (4.3.5) with gm = o^/and g = 0 by virtue of (4.2.6) and (4.2.9). The
assertion (4.3.6) follows from ||vJ|_(1+8)/2=l and Lemmas 4.3.1 and 4.3.2.
Therefore, we can apply Lemma 4.3.3 to see that {vm} has a strong limit v in
L2>_(1+s)/2 which satisfies (4.3.7) with g=0 and (4.3.8). Therefore, we have v = 0
by virtue of Lemma 1.9(ii) of [9]. But this is a contradiction because ||v||_(1+s)/2

= 1 by virtue of ||vJ|_(1+g)/2 = 1. Q.E.D.

Proof of Lemma 4.1.2. Lemma 4.3.4 shows that we can apply Lemma
4.3.3 to obtain that U(JUL) has a strong limit u in Z/2,-(i+e)/2 as # J, 0 which satisfies
(4.3.7) with g replaced by / and (4.3.8). On the other hand Lemma 4.2.1 (1)
shows that this u coincides with u(0) defined by (4.2.2) with ju = 0, that is, u de-
fined by (4.1.2). Q.E.D

§§„ Proof of Lemmas 4,3.1 ani 4.3.2

5.1. We put Er={x; |*|^r}, Br={x; \x\^
and Sr= {x; \x\ =r}.

Lemma 5.1.1. Let v e H1M(E^ fl L2. Then

(5.1.1) limj R\v\2dS=Q
R-*°*JSR

and

(5.1.2) M— (

Proof. The surface integrals have a meaning for R> 1 since

If (5.1.1) is not true, then there is a constant J>0 such that I \v\2dS:>d/R
J%

for large R9 which contradicts the assumption ve£2. If (5.1.2) is not true, then

there is a constant d>0 such that -^-l | v\2dS^ d so that I | v\2dS^dR+c
dRJsR JsB

for large jR, which contradicts the assumption v^L2. Q.E.D.

Lemma 50l,2o (1) Let K be a complex number and ]3 be real. Let ve
L2$ n H2Joc satisfy

(5.1.3) (£-*> = ge=Z, iP.

Then we have grad

(2) Let ^ = «;1+f/c2, ic^^O and ft be real. Let v^.H2iioc satisfy (L—ic2)v =

ip and v, grad veL2,3-i/2- Then vel^p and
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(5.1.4) l«1*kll|v||^C{||^Wv||p_1A+|M|p

Proof. (1) Let <p be a real valued smooth function depending only on r =
\x\. Multiply both sides of (5.1.3) by <pv, integrate (by parts) over BR. Then
we have

(5.1.5) ( 9|gradv|2*c+( ^^vdx-{ <p—vdS
dr JsB dr

K2)\v\2dx = <pgvdx.
JBR

Put 9 = (l+r)2/J. The second term of (5.1.5) is estimated by

so that, taking the real part of (5.1.5), we have

JsR r

In order to prove the present lemma, it is sufficient to show that

(5.1.6) limRef 9— vdS^Q.R+°* *sR dr

Now, the integration by parts yields

2Re( p-v<fo = ( ?\V\*dS-[ LTJ-l + ^
JBR dr JSR JBR\ r or

Differentiate both sides of this equation with respect to R to obtain

J_A f
2 dRls JsB dr 2JsB\ R dr

Thus Lemma 5.1.1 shows (5.1.6), which proves (1).
(2) Taking the imaginary part of (5.1.5), we have

, .-. _, , . ., <P\v\*dx
dr JsR dr

(5.1.7)
= Im I <pgvdx ,

JBR

and so we have

/• r ia«
\v\dS+

SR



ElGENFUNCTION EXPANSION 53

1/2
+

JBR

Let 9 = (l+r)2/J in r^3 and = 1 in r^2. Devide both sides of this inequality

by (f 9>|v|W)1/2toobtain

Let R tend to oo. Then the assumptions that v, grad veL2>i3_1/2 and Lemma

5.1.1 show that

lim 1 q>\—

which yields the estimate (5.1.4). Q.E.D.

Now we can prove the first half of Lemma 4.3.1.

Corollary 5.1.3. Let v be as in Lemma 4.3.1 and s be sufficiently small.
Then we have

(5.1.8) {

and

(5.1.9) flJMIa-a

Proof. Since veL2^ satisfies (4.3.1) andv, AveL2>/oc so that
We can apply the above lemma, repeatedly, to obtain (5.1.8) and

since/e£2>8_(n-s)/2, which implies (5.1.9).

5.2.

Lemma 5.2.1. Let v be as in Lemma 4.3.1. Let <p be a real valued smooth
function depending only on r and vanishes in r^ 1. Then we have
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= \
J

BR

$V\*dS-
2 JsR 2 JsR

_Re( /"-!)("- 3) yj
JBB 4r2

+Re(
J JBS

Sketch of the proof. Rewrite the equation (4.3.1) in the form

multiply both side of this equation by <p^)rv, integrate by parts over BR and take
the real part. Then we have (5.2.1). For the details, see the proof of Lemma
2.2. of [9]9 only noting that the surface integrals appearing by integration by
parts do not vanish in our case. Q.E.D.

Let us calculate the last term of (5.2.1).

Lemma 5.2.2. Let v be as above. Then we have

(5.2.2)

2i\ {^JBUWr dr \dr / drz J

dr 2r

(k)^(k>BR dr

9/x vdx .

Proof. Recall the definition (4.2.7) of /x. The integration by parts yields
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Now, we have

fd.n-l -Vd . / i - l .j\., j ji — -f - —IK — 4. - _-2& \(f)l(xik,i,
\dr 2r J\dr 2r /

n —

0r2 r 9r 4r2 / 2r
2

^

Put this equation into the last term of (5.2.3) to obtain (5.2.2).

Proof of Lemma 4.3.1. The assertion (4.3.2) has been already proved in

Corollary 5.1.2.

Let us put <p = a(\x\)(l+ |x|)8, where a(r) is a smooth function such that

0<CK<1? <*'(r)^0 and

0

Then we have

r dr

and

1 d<p s

2 dr 2

With the 99 defined above we can apply Lemma 5.2.1. The left hand side of

(5.2.1) is estimated from below by

(5.2.4) —
2 dr

Let e be sufficiently small. The sum of the volume integrals of the right hand

side of (5.2.1) is estimated by
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(5.2.5)

BS JBB

+8 1 -®v | 2dx}1'2

BB

J/2"

+

for any 7?>0? where we used Corollory 5.1.3, the fact that/2eL2>(i+s)/2 and

d>—. We can apply Lemma 5.2.2 to estimate the last term of (5.2.5) to obtain

(5.2.6) |f
JB

^

SR

for any 77 >0, where we used again Corollary 5.1.3.



ElGENFUNCHON EXPANSION 57

Combining these three estimates, we have

(5.27) — ( a(
2 JBR

where we put

IS(R)=\
*S

and used the estimate

\ |
J BIZ

wich follows from Lemma 2.1 of [9].

Since £)v,fl9 v^L2^/2(El)} Lemma 5. LI shows that

= 0.

Take the inferior limit of the both sides of (5.2.7) and let 77 be sufficiently small.
Then we have (4.3.3). Q.E.D.

5.3. Proof of Lemma 43.2. The definition of 3)r enables one to write

which, integrated over the sphere Ss gives

(5.3.1)

Employing the equation (5.1.7) with <p= 1 in the last term of (5.3.1), we have

(5.3.2) K\\ \v\2dS^\ \3)rv\2dS-4K\K2\ \v\*dx+2*l Im( fvdx
JSR JSR JBR JBR

Now remember the definition (4.2.10) of/to obtain

fvdx = f -(L-/
BR
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JsRdr JsR dr

= the above two surface integrals —

-f U<t>lfdx-2UlitS <f>ldx,
JBR JBR

where we used the relations (4.2.6) and v = 2iK1K2. Now,

Im [ Uhfdx = Im 2i[ M^YA+^n
JBR JBR dr \dr 2r

= 2f OX ̂ +n-l\
JsR8r \dr 2r I

Put these two equations into (5.3.2) to obtain

sR

n - (
sR

which implies

f |v
JsB

Multiply both sides of this equation by (1 4-J?)""1"8 and integrate from p to oo

with respect to R to obtain (4.3.4) with a(p) = C — *x -(i+e)/2^p + ||0i||-(i+e)/2>J&p .

Q.E.D.
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