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Gentzen Reduction Revisited

By

Mariko YASUGI*

Introduction

The major objective of this paper is to advocate Gentzen's first work on
the consistency of arithmetic., which appeared in 1936 ([!]). He later published
a new version of the consistency proof, and it is the reduction method of the
latter which has been mostly used for various consistency proofs. His first
work should be studied, however, more than it has been, not only for the stran-
gely beautiful flavor it contains, but also for that it gives a general reduction
method for arbitrary derivations (not just for supposedly contradictory ones),
hence giving a systematic means to investigate the structure of formal systems
of arithmetic.

We first present a reformulation of Gentzen's reduction of first order
arithmetic in [1] in the style of [2] (§1).

As an outright application of the result in Section 1, we obtain a form of
quantifier-free interpretation of formal derivations of arithmetic (§2) and an
interpretation of derivable formulas (§3) in terms of ordinal recursive functions.

Variations of the preceding results will be given in Section 4 (first order
systems) and in Section 5 (second order systems).

Many relevant studies have been made: those are seen, for example, in
several papers of Kreisel, Schiitte's book and Tait's paper (cf. [6]~[12] and
[14]). We wish to make the following points here. With our formulation,
various known results follow systematically, without individual adjustments.
It is also our point not to interpret a given system in a formal system with the
(constructive) cy-rule, for such a manoeuver seems to lose some delicate nature
of the reducts of derivations.
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Technical terms and conventions have been adopted from [1], [2], [13] and
[17], the knowledge of most of which is assumed in this article.

§1. A Reformulation of Gentzen Reduction

Definition 1.1. A formal system of arithmetic 31 (cf. [1] and [2]).
1) Mathematical symbols : 09 ', +, • , =.
2) Logical connectives: T^not), A (and), v(for all).
3) Free variables : aly a2, •••(#,&, c, •• •)•
4) Bound variables : xl9 x2, "°(x,y,z," •).
5) Terms, formulas and sequents are defined from the symbols in 1) through 4)
as usual.
6) Logical, initial sequents: ®->S), where SD is an arbitrary formula of 31.

7) Mathematical, initial sequents (Mathematical axioms):

0 = s' -* ,

s =t -*s' = t' ,

s' = t' -*s = t,

-> s+O = s ,

— > S't' = S't+S ,

-> s = s ,

r— s*r = t-*s = t,

where r, s and t denote arbitrary terms.
8) The (formal) derivation of 31 is formulated in the tree form as in [2], with
the initial (topmost) sequents as defined in 6) and 7) above. In particular,
the complete induction is formulated as below:

ind '
'

where a does not occur in §(0), F and B.

9) A term, a formula or a sequent which has no occurrences of free variables
is said to be "closed." A derivation of 31 is said to be closed if its endsequent
is closed.
10) The endsequent of a derivation P is often denoted by ends(P).

11) A cut whose cut formula is atomic (equational) is called equational; a
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cut which is not equational is called essential.
12) An inference is called weak if it is a structural inference other than an
essential cut; it is called strong otherwise.
13) A formula in a derivation P is said to be explicit or implicit in P according
as the path of formulas containing it ends in the endsequent or as a cut formula.
An inference is said to be explicit or implicit according as its principal formula
is explicit or implicit.

Definition 1.2. Reduct-forms of a closed sequent. Let S be a closed
sequent and let S be a set of closed sequents consisting of one, two or countably
many sequents. 2 is called a reduct set of S if it is related to S according to
one of the conditions listed below.
0) 2 = {S'} where every antecedent formula of S' is one of S and every

succedent formula of S' is one of S.
1) There is an occurrence of a formula SI in the succedent of S of the form

, so S is of the form

and

2) «: 733, S: rl9 «, r2-><9 and 2 = {rl9 91, r2-><9, 33}.
3) St: 33A(£, S: F-*<9l5 §1, O2 and ^-{F-*@15 33, SI, @2; r-»0l9 £, SI, 0
4) ^:^&/\^S:rly^r2->e and either ^ = {r1,SB,Sl,r2->0} or 2 =

5) 91: Vxg(*), S:r-+0l9 SI, 02 and J& = {r->elf g(n), SI, @2; /i =0, 1, 2, -},
where n denotes the numeral expressing n.
6) St : V*g(*), S: rlf 91, T2 -> 8 and JF = {r, , g(j), SI, T2 -> O} for some closed
term s.

If ^ is a reduct set of S, then we write 2S. We shall always assume that
the members of a reduct set are enumerated in the order as shown in the de-
finition.

If a closed sequent S' is in 2S, then we say that Sf is an immediate (a first)
reduct-form of S. We can define chains of immediate reduct-forms of *§*, thus
evoking the definition of the reduct-forms of S in general.

Definition 13. Reduct-trees. A reduct-tree of a closed derivation of 9i,
say P, is a tree with finite levels with zero, one, two or countably many nodes
immediately above one node, having a closed derivation placed at each node
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and satisfying the following conditions.
(0) P is placed at the bottom node (level 0) of the tree.
(k)-*(k+1) Let Q be a derivation in the tree at the k th level. Let S be the
endsequent of Q.
(t) If Q consists of closed equations only, or Q consists of a single logical,
initial sequent, then there is no node above Q. We say in this case that Q (or
the node Q sits on) is terminal.

Otherwise,
(£+1) there are nodes above Q (at level k+l). Let IIQ be the set of deriva-
tions above Q with a specified enumeration, Q0,Qi, •• •,(?,„ ••-,«<« where a
= 1,2 or cy. Then 2 = {ends(Q0), ends(Q1),^-9 ends(Qn), •••} is a reduct-set of
S, OT%=2S.

We say that each derivation in JIQ is immediately above Q.
A reduct-tree of P will be denoted by TP.

Branches and the partial orderings of nodes and branches of a tree can be
defined in the usual manner. Other common notions such as "above," "below,"
"successor" and "predecessor" of nodes, and "extension," "restriction" etc. of
branches will be used without defining them anew here.

Our task in Section 1 is to prove the following theorem.

Theorem 1. For any closed derivation of$l, there is a reduct-tree associated
with it which satisfies that every maximal, linear set of branches is finite. Name-
ly, along any branch, there is a terminal derivation.

The consistency of 31 follows immediately from the theorem.
The true significance of Theorem 1 is not the theorem as stated, but a

particular construction of a reduct-tree, which is to be presented here.

It should be remarked also that the restriction of the theorem to closed
derivations does not weaken the result: free variables in the endsequent can
be bound without changing the content of the sequent.

Definition 1.4. The height of a sequent in a derivation is defined as in [2],
and the ordinals below e0 are assigned to the derivations as in [2]; if a and ft
are ordinals of the upper sequents of an equational cut, then the ordinal of
the lower sequent is max(o:9/9). o(S;P) will denote the ordinal of S a sequent in
P with regards to P, and o(P) will denote the ordinal of P.

As an immediate consequence of the definition we have



GENTZEN REDUCTION REVISITED 5

Corollary. o(P)=l if and only if P has no strong inferences,

Proof of Theorem 1. We are to present a uniform method to construct a
tree TP for any closed P so TP will satisfy the following conditions.
a) Suppose Q2 is above Ql in TP. Then o(Q2)<o(Q1).

b) Suppose Ql is not terminal in TP. If 0(61) >1, then along any branch
passing Q1 there is a g2 above Ql (at most three levels up) such that o(Q2)<o(Q1).

If 0(2i)=l5 then there are at most two levels above Q^
c) Every topmost derivation is terminal.

It is obvious that every branch has a finite extension whose topmost der-
ivation is terminal. Therefore such a TP satisfies the requisite of Theorem 1.

We shall first introduce a new rule of inference, term-replacement:

where r'-»®' is obtained from T->@ by replacement of some occurrences of
a closed term s by another closed term t where s=t is true. A term-replacement
is allowed only in the end-piece. It is regarded as a weak inference and the
ordinal of the lower sequent is equal to that of the upper sequent, (i) in Defini-
tion 1.3 will be modified so that the case where Q consists of a logical initial
sequent followed by some term-replacements be included.

For the construction of the tree, let us assume that we have defined the
part of the tree to the k th level and let Q be a derivation at level k. In defining
the immediate successors of Q, JIQ, we closely follow Gentzen's reduction
process in [2]. As we wish to avoid repetition, the reader should refer to [2];
see also [13] and [15].
0°. Q consists of closed equations, hence Q is terminal. Stop. Q has no
successor.
0*. We assume that 0° is not the case.
1°. Preliminary operation. If there are non-eigen free variables in the end-
piece of Q9 then replace them by 0 throughout. Put the resulting derivation
Q' above Q, The endsequent and the ordinal remain unchanged. This takes
only one step.

So, now,
1*. we assume there is no non-eigen free variables in the end-piece of Q.

2°. The end-piece of Q contains an ind. or an explicit logical inference. Let
/ be a lowermost such.
2.1°. / is an ind. Do the "VJ-reduction" as in [2] and add a term-replacement :
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where t=n. Place the resulting g' above Q. o(Q')<o(Q) as proven in [2], and
eittfo(g')=««fr(6)-
2.2°. I is V in the succedent. Let Q be of the form

where (a) indicates all the occurrences of a in Q, S and f$' are identical up
to term-replacements, the explicitly written Vx$'(x) is a descendant of the
explicitly written Vxi$(x) and the Greek letter above a sequent denotes its
ordinal with regards to Q,

Consider Qn for every n, n=Q, 1,2, ••• :

where (if) indicates the replacement of a by n and a wavy line denotes omission
of some weak inferences, ft1 '<fi can be easily established, and o(Qn)<o(Q) for
every n. Place {Qn}n above Q, or let J7g be {fio,fii,-,fiw-}.
2.3°. / is V in the antecedent. Let Q be of the form

8(0,

, ̂  ^ A •

Here t is closed. Place the Q' defined below above Q:
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2.4°. I is A in the succedent and Q is of the form:

r-^e,^ r -^ e, a2

Let g, be:

for i=l,2. Let HQ be {Q19 g2}.
2.5°. Other cases can be dealt with in a similar manner.
2*. It will be assumed that there is no ind. or explicit logical inference in the
end-piece of Q.
3°. There is a weakening in the end-piece of Q. Elimination of weakenings
from the end-piece of Q be defined as in [2]. Let the resulting derivation Q'
be the immediate successor of Q. o(Q')<o(Q) and ends(Q') is related to
ends(Q) according to 0) of Definition 1.2.
3*. There is no weakening in the end-piece of Q.
4°. There is a logical initial sequent in the end-piece of Q: S-»®.

Suppose first both occurrences of ® are explicit. Since there are no
ind.'s, logical inferences or weakenings in the end-piece of Q, Q consists of
®-»2D followed by some term-replacements. Stop. Q is terminal.

Suppose next Q is of the form:

® -> ® sx r -^ e

A.
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Define Q':

A - A .

The other case is dealt with likewise.
4*. There is no logical, initial sequent in the end-piece of Q.
5°. If Q were its own end-piece, then 1* through 4* would enforce that Q be
terminal; in fact Q would consist of closed equations only, contradicting 0*.
Therefore let us assume that Q properly contains its end-piece, viz., there is a
logical inference in Q. (It is automatically implied that those logical inferences
are above the end-piece.) The existence of a suitable cut is proved as in [2].
The reduction of a suitable cut is carried out exactly as in [2]. As a conse-
quence ends(Q)=ends(Q') and o(Q')<o(Q) where Q' is the reduct of Q. Place
Q' above Q.

1° through 5° exhaust all the possibilities. In the course of the reduc-

tion, each of the cases where 0(0=0(2') (1° and 3°) takes only one step, hence
at most two of such in succession. If Q is not terminal and 0(0=1, then
either 1° or 3° applies, hence there can be at most two levels above Q. It is
thus obvious that a)~c) are satisfied.

Analyzing the construction of a reduct tree we have just given, we learn
that it is primitive recursive: there is a primitive recursive enumeration of the
derivations in the tree associated with a given derivation. Furthermore the
construction is uniform in the closed derivations. More precisely, we have

Theorem 2. There is a primitive recursive function of two arguments, say
/, such that ifp represents a closed derivation P of 31 and n represents a branch
N of a tree, thenf(ntp) represents the derivation sitting at the top node of the branch

N in TP, the reduct-tree defined as above.
We denote the Go del number of P by ^Pl

Outline of the proof. It is well-known that the following functions and
predicates are primitive recursive.

seq(n): n is a sequence number (representing a branch).
n*i: the i th extension of a branch n to the next level.
sg(i): the signum function.

: P is a closed derivation of 9J.
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g is terminal.
The case conditions 0° through 5°.
The assumptions 0* through 4*.
1° applies to g and
2.1° andr
2.2° and r
2.4° and r2.4(i, rgi)=rgl+1i, for i=0,1.
2.7° applies to g, where 7 ̂  1,2,4, and r2./

rgl)=rg/"1, where g' is the suc-
cessor of g defined in 2j°.

For /=3,4,5, if P applies to g and not rfgl), then r/(re~l)=rfi'~l where
g' is defined in /°.

Note that, in 2.1°, rFi"! is a primitive recursive function of rf 1, hence of rg1.
We assume of course that those functions assume the value 0 when circum-
stances do not fit the described conditions.

Suppose now seq(ri) and c/(rPi) and define f(n, rPi) as follows.

/(«,rPl) = rPl if n represents the initial node of a tree;

( 0 if/fa rpi)=o or r(ffy, rpi));

) - sg(i) if / is one of 1 °—5° except 2.2° and

2.4°, and P applies toffy, rp"1);
if 7=2 or 4 and 2.2° or 2.4° applies to

In all other circumstances /(«, rp"1) is defined to be 0.
Note that rPl remains invariant throughout the definition and / is defined

by a primitive recursion (a course-of-values recursion) on n (n as a natural
number, not as a sequence).

Suppose g is in TP as defined above and g' is an immediate successor of
Q in TP. Let S=ends(Q) and S'=ends(Q'). Then 5" is a reduct-form of 5.
But in this particular construction, we call 5' a reduct of 5. The difference is
that, for 4) and 6) of Definition 1.2, a choice between B and C and a choice of
a term s respectively are specified here, and only then reduct-forms become
meaningful; they are not sheer forms here.

§2. A Reduction to Quantifier-Free Derivations

Definition 2.1. Positive and negative occurrences of quantifiers in a
formula.
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By a quasi-subformula of a formula we mean a subformula-like expression
which may have some free occurrences of bound variables. Let SI be a for-
mula of 3ft, let $ be a quantifier in SI and let S3 be a quasi-subformula of St in
which $ occurs. We shall define the positive occurrence or the negative
occurrence of # in S3. Taking SI as S3, we obtain the desired notion for SI.

1) S3 is V*S(X) where the outermost V* is #. Then % is positive in S3.

2) S3 is K A®. % is positive or negative in S3 according as it is positive or
negative in one of (£ and ®.

3) S3 is ~7$i. $ is positive or negative in S3 according as it is negative or
positive in (£.

4) S3 is Vj>©00 where $ is not the outermost \fy in S3, $ is positive or
negative in S3 according as it is positive or negative in

Definition 2.2. Positive forms and negative forms of a formula.
Let SI be a closed formula of 9i.

1) We first prepare a countable set of new symbols, which will be called ei-
genvariables and assumed to be ordered in cy-type. A figure SI* is obtained
from 81 by knocking off all the positive quantifiers in St and then be replacing
the remaining, corresponding bound variables by distinct eigenvariables. Those
new variables will be called eigenvariables for SI, or for an Sl+, where Sl+ is to
be defined subsequently. We do not specify which eigenvariables be used for
SI for the time being. SI* will again be called a formula.

2) We now prepare another countable set of new symbols, which will be called
denotation- variables. They are assumed to be ordered in cy-type. Suppose

there are m quantifiers in SI*. Let JLl9 JL2, •••, Jlm be a sequence of non-
empty, finite sequences of denotation-variables such that the variables in them
form a sequence of consecutive variables in its pre-determined order. Let
JH denote <Jll9 JL2, • •• , Jlm. We shall define some quantifier-free forms of Jl

relative to an assignment <JL of denotation-variables, which will be called the
positive forms of SI relative to Jl. We shall call Jl an assignment for SI.

Let S3* be any quasi-subformula of SI*. We shall define positive forms
of S3* relative to SI in a manner that, if S3+ is a positive form of 33*, then S3+

is quantifier-free and a bound variable occurs (free) in S3+ if and only if it oc-
curs free in S3*, and there are only finitely many of positive forms of S3* for a
given Jl.

(1) S3* is atomic. Then S3* is a sole positive form of S3*.

(2) S3* is ~7&p. For any positive form of (£*, say (£+, ~7^ is a positive
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form of SB*.
(3) 33* is (£*A®*. Let Cl5 — ,C/ be all the positive forms of & (relative to
JL) and let Dl9—,Dr be all the positive forms of ®*. Then (C^V — VC,)

A (A V ••• V A-) is a s°le positive form of 33*, where A V B is short for ~7(7A A

(4) S3* is V*S(X)- Let x be the / th bound variable in St* (in its predetermined
order). Let F(x) be a positive form of $(x) and let a be any denotation-
variable from JL^. Then F(a) is a positive form of 33*.

Now let SI* be S3*. Then any positive form of SI* is called a positive
form of 81 (relative to JJ). We may write SC+ for a positive form of SI; this does
not specify a particular one. It is obvious from the definition that there are
only finitely many positive forms of SI when an assignment JH is specified.
3) We can define negative forms of SI in a like manner, reading "negative
quantifiers55 in the place of "positive quantifiers/5 ST, 33K, etc. in the place of
SI*, S*, etc., and SC~, S3", etc. in the place of Sl+, 33+, etc. We use the same
set of denotation-variables for negative forms as for positive forms.

Corollary. 1) In (3) of 2) in Definition 2.2, if a bound variable is shared by
a C{ and a DJ9 then it is shared by all C19 — , Cm,Dl9 °8°,DM .

2) Let Sl+ be a positive form o/Sl and let 33' be the part of Sl+ corresponding
to 33*. Then $8' is obtained from 33+ by replacing bound variables by appropri-

ate denotation-variables. Therefore if (3) applies to 33+ and Ci ,•••,€„', /V» °°%
Dn' correspond to Cl9"*9Cm9Dl9-",Dn respectively, then a denotation-variable
which is shared by a C/ and a D/ is shared by all Cl9 ••• , Cm9Dl9 '*-,Dn.

The negative version of 2) also holds.

In passing, it is obvious that all the positive and negative forms of SC
relative to an assignment <Jl are decidable from SC and <_>?.

2.3. Let S:

91 DT ... 91 -»SR ift ... iR•^Ij ^2? 9 <*m ^ ^19 -°23 9 ~°n

be a closed sequent of SJL Let ^?*=(c^?1,c^?2, *-,Jlm} be an assignment of
denotation- variables for the formulas Stl9St2J

9"9e^, and let ^*=(^1,^2, •••,
^M) be an assignment for S3l9S32, —,83,,, where all of JL\JL\ -*,JLm,$\$\ — ,
^M are mutually disjoint and the variables in (<JL*9^S*) form an initial segment
of the sequence of denotation- variables in its order.

For each /, l<i<m, let Ail9Ai2,
ae°,Aip. be all the negative forms of SI,-
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relative to SI*, and for each j, l<j<n, let Bjl9Bj2, ~°,Bjq. be all the positive

forms of $8j relative to IB*, where the eigenvariables of those satisfy that Ail9

Ai2,"",Aip. share the same assignment of eigenvariables (for each negative

quantifier in 31,-); the same holds with Bjl9Bj2, •••,Bjq. for each positive quanti-

fier in S3;-; eigenvariables for different formulas are distinct, and the sequence

of all the eigenvariables for S (in an appropriate order) form an initial segment

of the eigenvariables. Then

— > Bll9 B12, • • • , Blqi, ' ' • , BJI, BJ2, •

Bni>Bn29-"9Bnqn ,

or, for short,

is called a quantifier-free form of S relative to (c^?*,-®*), and will be denoted

by [Jl*,3)*9 S] or [S\ for short.

From the way [S] was defined, it is obvious that the eigenvariables and

the number of sets of the denotation-variables for S are automatically deter-

mined from S, hence [S] is decidable from S and the number of variables in

each of JP and 31*. For our purpose, names of variables are immaterial.

Only identity and distinction of variables and the number of denotation-variables

assigned to each relevant quantifier matter.

Proposition. We can arithmetize 5R together with quantifier-free forms of

closed sequents of 31 in a manner that r[c_>$, Sp is a primitive recursive function of
r \Jfi and ^S\ where rX~\ denotes Gbdel number of X and <JL is an assignment for

S satisfying the condition in Definition 2.3.

Definition 2.4. Let a be an ordjnal below e0 and let <* be (the arithmeti-

zation of) the canonical well-ordering of ordinals below a. We assume 0

represents the least element of <*, and <* will be abbreviated to < when a is

fixed. The class of a-recursive functions is defined to be the minimal set of
(number-theoretic) functions containing all the primitive recursive functions

and closed under the "a-recursion," which is defined below.
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f(x9xl9—9xn)

a\Xy •*! j ' ", Xn9J{Ti ^A, Aj, * •", Xn)9 Aj? • •', XBJ ,

if ;c>0, where rl5 • • » , r j f e are proper to/, r* is defined in general:

r*fv v ... v ^t V-^j-^-lj 5 •A'n)

{ T(Y Y, ••• Y ^ if T^Y T ••• Y ^ -\ vt V-^s •*!? 3 -^w/ 1A *• v^s •*!» 9 •A'n) ^--^ ?

0 otherwise.

Note that when a is concretely given, < is a primitive recursive predicate.

An a-recursive function for any a below eQ is called an ordinal recursive
function.

Theorem 3. Let P be a c/osed derivation of 91 and 7e£ o(P) be 0. Let

S0=ends(P) and let a=o)taS+1. Then there is an a-recursive function i/r such that

for any assignment of natural numbers to the eigenvariables for SQ, -fr determines

a quantifier-free form of S0, [S ]̂, and some closed terms so that SQ*9 a closed,

quantifier-free sequent of 5JJ obtained from [S0] by replacing eigenvariables and

denotation-variables by the numerals of the assigned numbers and the terms deter-

mined by V respectively, is provable in 5R without inferences of the ind. and the

essential cut, hence without quantifiers (in fact the derivation is variable-

free), i/r also determines such a derivation. Precise requisites on ty will be

described in the proof below.

Proof. We can define some primitive recursive functions and predicates

of the following properties. (See also the proof of Theorem 2.)

cf(rf 1) : f is a closed term.

v(rri) : the value of t if cf(rf 1).
l(n) : the length of n if seq(n).

(n)i9 where 0</</(«)—!: the i th entry of the sequence represented by n

if seq(n).

cs^S^) : S is a closed sequent.

as(m9
rsn) : m is an assignment of denotation-variables for S if csQ~S~T).

qf(q, m, r*S^) : q is a quantifier-free form of S relative to m if cs(fS~\) and

We may write this as q=qf(m,rS~]).

: T is a quantifier-free sequent allowing the occurrences of eigen-

variables and denotation-variables.

: the number of eigenvariables for S if cs(rS~V) or
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the number of denotation variables in [S].
Q is a closed derivation of 31.
the endsequent of Q if cd$Q\).
Q is a closed derivation of 31 without ind.'s, essential cuts and

quantifiers.
Sb(^T\n)(

rs1\ — ,rJ/i)) (=rr*~i): the result of substitution of numerals
fi1; • ••,!!,, for the eigenvariables of T and of terms sl9'"9st for denotation-
variables of T when qf$T)9 r=£f~ri), l=d£T~^ and 7f=(7il3 — ,wr).

Now, the property V has to satisfy is expressed in the condition (C) below.
(C) Let r=e(rS0~

]). Suppose seq(ri), l(ri)=r and n represents (n^n^ •••9nr). If
i/r(ri)=m, then

(1) seq(m),
(2) qf((m)0, (m\, ̂ ) and l(m)-2=d(qf((m)l, r^))?

(3) ct((m),)9 or (/w)f-=
r,y|._1"

1 where ,?,._! is a closed term5 2<i<l(m)— 1, and
(4) o/*((m)/(w))5 or cJ*(^l) where ̂ 1=^)^, and ̂ (g/((m)1? r^l), n, a)

=ends(rR]), where cr—fe --sJ/c^-z).
We construct V via another a-recursive function 9(72, ^).

(*) Let P be as in the theorem and let TP be its reduct-tree. Let/fe rP"!) be
the primitive recursive enumeration of TP (for all P) defined in Theorem 2.

We shall construct an a-recursive function 9(71, q) satisfying the following
condition (C').
(C') Suppose f(q, rpi)^rgi (so Q belongs to TP\ Let S denote the endse-

quent of Q, or rS^=ends fg1). Changing P to Q and S0 to S in (C), if we
suppose <p(n9 q)=m, then (1)^(4) in (C) hold for n, m, S and Q for a fixed P.

If we let Q be P, then we obtain V: i^(n)=^p(n, (0)), where (0) represents
the bottom node of a tree.

For the construction of 9, still further primitive recursive functions and
predicates are necessary.

-< : (arithmetization of) the canonical ordering of ordinals below

: the number of free variables in the end-piece of Q if
w(q) : the number of weakenings in the end-piece of Q.

ju(z) : (Godel number of)

if rfi Wfe r^) and z-(H5g).
Note that if Q is in TP, then
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,p): v((n, qJ)</J.((m, pj) .

<p will be in its essence defined on #(z). Namely, we shall define a func-
tion 9(7) so that <p(z)=<p(n, q) when z represents the sequence (n, q). We shall
often write (p(n, q) for <p(z).

g(n) : Godel number of numeral n (as a function of ri). We also write
this as r?A

i(n, q) : f(q, rp1) = rg"1, n is an assignment to the eigenvariables of
ends(Q), 2.2° applies to Q, and i(n, q) is the entry of n which is assigned to the
explicitly written Vx in Vx$(x).

a(n, q) : the conditions as above hold, n =(nl9 i(n, q), n2, n3) where nl9

i(n, q), 772, n3 are assignments to the eigenvariables of (J, A^), v^, i$(x), A2, re-
spectively, and

a(n, q) = (nlf n2, i(n, q), n2, n3) ,

P(n> 9) '• f(q> rP~]}=['Q~], 2.3° applies to g, n=(nl9 n2, n3) where nl9 n2 and
n3 respectively are assignments to the eigenvariables of Al9 Vx%(x) and (A29 A),

and

n(n9 q\ i = l, 2 :f(q9
 rP^)=rQ\ 2.4° applies to Q and n(n, q) is the as-

signment to the eigenvariables of ends(Q{} induced from n.
d(n, q) : 3° applies and d(n9 q) is the assignment to ends(Qf) induced

from n.

Similar functions can be defined for 5°.

f (w, 0*0) if 1° or 2.1°
applies

if 2.3° or 2.5° ;
(n(n, q\ ^*0) if 2.4° (and Ql is taken);

4° or 5°.

r2(w, q)=(r2(n, q), q*l) if 2.4° (and g2 is taken).

With all this at our disposal, we are to find out a primitive recursive scheme
n so
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1, q) = II(n, q, ̂ (^(n, qj), <p(r2*(n, q))) .

Define <p(n,q)=Q if f(qJP*l)=Q. Suppose /(#, rpl) =£ 0. Then we go
over the reduction process (the construction of TP) defined in Section 1. The
case descriptions there, 0°~5°5 are primitive recursive (as a function of q).
We shall constantly write rg1 for/(#, rp"1).
0°. g consists of closed equations, hence no need to define terms.
1°. Substitution of 0. Since the end-sequent remains unchanged, the in-
duction hypothesis applies:

<p(n, q) = <p(n, q*G) =

If /i(n, q) = a>

then v(n, #*0) =

where o(fi)=o(e') and e(re/1)<e(re1). So v(n,q*Q)<f*(n,q')9 or (w,
and hence rx*(«, q)=T1(n, q).

2.1°. F/-reduction. ends(Q')=ends(Q).

Define 9(71, #) = ^

fi), so (/i, gr*OK(^ ?)•
2.2°. V in the succedent. Let S denote ends(Q) and let 5£ denote ends(Qf).

We may identify § and f§' without loss of generality. Take the same assign-
ment of numbers for Sf as for S; this means the eigenvariables of %(i)
receives the assignment to the corresponding ones of %(x). Thus, if the original
assignment is n, then the resulting one is a(n, q). (a(n, q), q*i(n, q))=T1(n, q)

<(«, q) since o(Qi)
<^o(Q). Therefore, for a(n, q) and i=i(n, q), there is a

quantifier-free form of Si9

[5,]: J* - 4*, (8f(i))*, (V^gW)*, ^2* •

It can be easily shown that if F is a positive form of $00, then the occurrences
of i in F corresponding to the indicated i in §(&) can be located. From this
fact, F(b), the expression obtained from F by replacing those occurrences of i
by b, serves as a positive form of g(6), where b is the eigenvariable for the

V* in V*g(*) in (Vxg(*))*. So, if

then
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where ' means some change in the names of eigenvariables, can serve as a
quantifier-free form of S. This process of transpassing from [Sj] to [S] is
primitive recursive in S and [St]. Let S;* be the result of substitution of a(n,q)
for the eigenvariables and the terms determined by <p(a(n, q), q*i(n, q)) for the
denotation variables in [SJ. It has a derivation of the desired sort. S* ob-
tained from [S] by replacing eigenvariables by n (numeral of /(», q) for b) and
denotation-variables by the terms determined by <p(a(n, q)9 q*i(n, qj), is identical
with S-*. So we can take the same derivation. Thus,

9(71, q) = JT^/i, q, <p(a(n, q), q*i(n, q)))

where Ufa, q, m) specifies [S], some terms and a derivation depending on n, q
and m.

TI(*> q) = (afr, q), q*i(nt qj)<(n, q) ,

hence <p(n, q) = Ufa, q, ^(^(

2.3°. V in the antecedent. Let S denote ends(Q) and let S' denote ends(Q').
[S] can be induced from [£"] as follows. Suppose

[SI: 4*, ®(0)*, (V*S(*))*, 4* - ^* -

Let (S(0)* be F1(t),F2(t)5 •••,Fk(t), where r indicates all the occurrences of t

corresponding to those in SCO- Then

[S]: 4*. ^(cO, F2(c2)? -.., F,(c,)5

where ' means some changes in the names of denotation-variables and cl9

C2>°">ck are some appropriate denotation- variables, can be a quantifier-free
form of S. If we assign t to cl9 -°,ck and retain all other terms for denotation-
variables, S*=Sf* can serve as the desired sequence for S and n. So, for a
primitive recursive H2,

*i(n, q) = r*(n, q) = (fl(n, q\ q*QX(n, q);

<p(n, q) = II2(n, q, ^*(

2.4°. A in the succedent. Let S, Sl and S2 denote ends(Q)9 ends(Q1) and
ends(Qz} respectively. There is a quantifier-free form of Sl9 [SJ, and an as-

signment of terms determined by ri(n, 4)- With S2 and r£n, q) likewise.

Let [SJ: 4* - A*, Au*, -, A**, (8
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and [SJ: A** - 4**, A**, -, >V. (

Consider

A*, 4** - 4*. 4« (V ,̂*) A(\MA (^ ASy*, (SI, A§t2)**, Af, A** .
i=l /=!

By rearranging the order of formulas and renaming variables in an appropriate
manner, we obtain from the sequent immediately above,

lS\:Z-» A19 (V4,) A(\A4-X <& ASy~, 4,i=i j=i

which can serve as a quantifier-free form of 5. An assignment of terms to
denotation-variables in [S] can be induced from those for [SJ and [S2]. Let

S,*: A' - 4', ̂ u', ..., 4/, (

and S2*: ̂  - 4", ^21", -, V7,

be the instantiations of [5J and [S2] respectively by n1=n(n, q), n2=r2(n>
the terms hereby determined.

and (n

hence r^(nt q)=rl(n, q) and r2*(n> q)=T2(n> q}> an^ there are derivations of S-f
and ^2*, say Pl and P2 respectively, of the desired sort. Consider P/:

1^LL^
(«i

Similarly we obtain P2' whose endsequent is

A', A" - A,', A,", <& AS,)', («, AStX7, 4', ^2

Applying A in the succedent to the endsequents of P/ and P2', we obtain a
derivation of the sequent:

which is the instantiation of [S] with regards to n and the terms which have
been determined by n± and nz for [SJ and [̂ 2] respectively. So for a primitive
recursive U3,
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<p(n, q) = 773(/i, q, ^p(r*(n9 q)\ <p(r2*(n, q))) .

2.5°. A in the antecedent. Suppose a variable-free sequent of the form

S*: 4*, (SlA»)*, A19 -, ^, 4* -> ^*

and a derivation of 5* of the desired sort have been obtained. Take the sin-
gleton assignment of denotation-vairables for B and assign the term 0 to each

denotation-variable to obtain B, Consider:

, (SlA»)*, A1 f\B, . . - , Am/\B, A* ^ A* .

Other cases of 2.5° can be dealt with in a similar manner.

3 ° . Elimination of weakenings. o(Q ') < 0(0, e^Q ;1) < efgi) and wfg '1

w(r21). Thus, (£(«, q), #*0)<(«, #). There are an assignment and a derivation

desired for Q'. For the formulas in ends(Q) which do not occur in ends(Q'\

take the singleton assignment of denotation-variables and assign 0 to every

such denotation- variable. A desired derivation can be obtained from one for Q'

by adding some weakenings at the end if necessary.

4°, Q consists of ®-*3) alone. Take the singleton assignment to denotation-

variables, so [S] will have the form

D(a, b) -> D(cf d)

where b and c denote eigenvariables, and a and b denote denotation-variables.

Let n be (nl9 n2), where n^ is assigned to b while n2 is assigned to c. Then assign

n2 to a and assign n± to d9 to obtain a logical, initial sequent. Here <p is di-

rectly defined.

As for other cases of 4° and 5°, since the endsequents remain unchanged,

the induction hypothesis itself can serve as <p(n, d) :

<p(n, q) = <p(n, q*Q) .

(n, q*OX(n, q) since o(Q')<o(Q) .

5°. (n, q*G)<^(n, q) and the endsequent remains the same. So

9(n, q) = <p(rf(n, q)} .

Summing up the construction of <p for all the cases, we can easily see

that a primitive recursive II as desired can be defined.
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§3. An Interpretation of Arithmetic

As an application of our theorem in the preceding section, we shall show

how to interpret the system of arithemetic in terms of ordinal recursive func-

tions. The result is originally due to Kreisel: see [7].

Theorem 4. Let SI be a closed theorem of 31. Let

A: A(cl9 --,cg, al9 •••,a />)

be the positive form of SI with the singleton assignment of denotation-variables to

negative quantifiers; cl9"*,cq is the list of the denotation-variables in A and al9"*9ap

be the list of eigen-variables in A. Then, for some ordinal a below £0? there

are a-recursive functions of p-arguments, say 9i,--,<pq, such that for any p-

tuple of numbers (nl9 °°e,^) A becomes a true statement of arithmetic under the

assignment,

We may express the theorem as follows'.

3/1— 3/,V*i---V*^(/i(*i, '"9xp)9 — ,/,(*i, — ,*,),*!, —,xp) ,

where 1/15 ••- , 3/9 are function quantifiers, has! an interpretation with

fl' <Pl, —9fq' 9q-

We shall first prove the following

Proposition. Let x be a primitive recursive characteristic function of the

variable-free sequent s of 31. We shall also use x to denote such a function for

formulas. Let PQ be a derivation 0/— >§l whose ordinal is 6 and let a be o>"0+1.

For any 2 in TPo, we write S for ends(Q) and (S) or S(c,a)for the quantifier-free

form of S with regards to the singleton assignment (of denotation-variables}.

(*) There is an a-recursive function 90(n,q) satisfying the condition (D) stated

below.

(D) Let r=e(rS~]). Suppose seq(ri), l(n)=r and n represents (nl9nz9"'9nr).

If90(n,q)=m9 then

(1) seq(m),

(2)

and (3)



GENTZEN REDUCTION REVISITED 21

where m denotes (m03ml9 -^m/.j).
rS(m9m)l is a primitive recursive function of n, m and q.

Proof of Theorem 4. Assume for now that the proposition holds. Let Q
be P0; hence S is ->Sl. For any n=(nl9 •oa,« /)), if <pQ(n9 (0)) = m, then x^A^m^Tip)
=0; namely ^4(c,a) is true under the assignment a:n and c:w. Define

<pi is a-recursive and with those <Pi,-°,<pq, the theorem holds.

The proposition (*) is proved in a manner similar to the proof of Theorem
3. We shall follow it and sketch only some new aspects.

Define v£n,q)=Q if f(qJP^)=Q. Suppose ftqSP^Q.
0°. It can be easily proved that z(l&)=0 if S=ends(Q) and Q satisfies 0°.
Let <pQ(n,q) represent the empty sequence.
1° and 2.1°. The induction hypothesis applies.
2.2°. Let i denote i(n,q) and ni denote a(n,q). If 90(nhq^i)=mi9 then

Si(mith^ is of the form

^'— 4, no, *•&% ^z,
where J' for different i's differ only by the numerals substituted for denotation-
variables; the same with other formulas, i does not change except at the
indicated places. Ff'(i) and FQ(I) differ only by the numerals substituted for
denotation-variables. <pQ(n,q) is obtained from mi by replacing the numbers
corresponding to F'(i) and FO(I) by p(j), where p is difined below, retaining
other numbers invariant.

p(i)=^(rFi(i)^)-mF+^(rFi(i)'])''mFQ9 where mF is the sequence of numbers
(from mf) corresponding to the negative quantifiers of f$(£) and mFQ corre-
sponds to those of V*3C*:). P is primitive recursive in f(q, rpo"1) and 9?

0("i^*0»
and hence 90(w, ^) is defined by

90(«, ?) - n(n, q, 9oKw* ̂ ), ^*'(w, ^))) ,

or

9o(«, ?) = E(n, q, <pfa*(nf q)))

with a primitive recursive J7.
From the definition, x(*~S(<pQ(n, q), rip) =0 is obvious, where X denotes the
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numeral of X.

2.3°. Let n denote P(n,q). If m=<pQ(n,q*Q), then

x$S\m, *)"!) - 0 .

5"(̂ 5 n) is of the form

<Po(n,q) is obtained from m by replacing the numbers corresponding to F'(t)

and .FoC?) by p, which is defined below, retaining other numbers invariant.

p = /(^(O^-m^+K^W1)^^ ,

where mF is the sequence of numbers (v(r^),cy), cr corresponding to the positive

quantifiers of F(i), and mFo is the sequence of numbers (s, CTO), <TO corresponding

to the positive quantifiers of $(x). p is primitive recursive in /(#, fPo1) and

2.4° . Consult 2.4° in Section 2 for notations.

Suppose © is in A and suppose c7x is the sequence of numbers corresponding

to ©', and <72 corresponding to S". Define

If ® is in yij or A2, define a by

a = ^(

If ® is StxA^j an^ if CTi3°'2Jcr3 respectively correspond to

Other cases of 2° are treated in a similar way.

3°. For the extra formulas in ends(Q), assign 0 to every denotation-variable.

4° and 5°. Follow Section 2.

§4e Some Variations

1. We shall first discuss how to modify our formulation of the reduction of a
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formal system of intuitionistic arithmetic, which we shall call 3>. 3? is obtained
from 31 by regarding V, D and 3 as primitive symbols and by imposing the
condition that in the succedent of a sequent there be at most one sequent-formula.
The definitions and the theorems we have established for 9i are valid for 3>
also; only a minor adjustment is necessary. We shall note how to modify some
notions.

In Definition 1.2, the formulas SI do not remain in the succedents of
reducts and several cases be added: SI is SB V<£, S is T-^Sl and ^ = {r-»33} or
2={r-»<S}; si is SB v@:, s is rl9 SI, r2-+e and ^={rl3*B3Sl,r2-^0; rl3®3Sl3

T2->e} ; 31 is SBiD@; 5 is r->Sl and -S = {», T-^S} ; §1 is S3z>(E, S is I\, SI,
r2->0 and -y={rl5 si, r2-*33; K3 rl3 SI, r2->0}; SI is a*g(*), s is r->34K*)
and -y = {r-^g(»} for some closed term s; SI is 3xg(jc), S is F1? 3xg(x)3 r2-»0
and 2 = {F19 g(n), S13 T2-^0; n^03!323 -}.

Note that many of the weakenings in the succedent employed in the proof
of Theorem 1 are unnecessary for 3f due to the restriction on the sequents.

In Definition 2.1, the notions of positive and negative occurrences are
subjected also to those additional connectives and such notions be defined also
for the 3-quantifiers. In Definition 2.2, SI* is obtained from SI by knocking
off all the positive V-quantifiers and the negative 3-quantifiers in S13 then
replacing the remaining bound variables by distinct eigenvariables. In defin-
ing positive forms, only the singleton assignment is allowed to any 3-quantifier
in SI*. (3*30*0)* is dealt with as (4) there. The negative forms can be
defined in a manner dual to the positive forms, except that the restriction of
the "singleton assignment" as stated above is not imposed here. The quanti-
fier-free forms of a sequent S are defined as in Definition 2.3; here multi-numbers
of formulas are permitted in the succedent. Theorem 3 holds as it reads.
Note that 5JI and 3f are equivalent when confined to quantifier-free sequents,
hence 31 in Theorem 3 can be replaced by 3f. In the attempt to prove this
theorem for S, one finds that the singleton assignment to a 3-quantifier in
SI* is adequate.

The proof of Theorem 1 for 3f supplies us with the means to establish the
well-known Harrop's result on intuitionistic arithmetic with regards to the
connectives V and 3. This technique is originally due to Scarpellini (cf. [15]).

2. As an immediate consequence of Theorem 3 (both for SJi and Qf) follows

the theorem: a closed provable sequent whose antecedent-formulas are universal

and succedent formulas are existential in prenex normal form is provable
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without essential cuts and inductions.

3. We shall next present a variation of the preceding results which regards
some compound formulas (called elementary) as atomic. Related notions
and results are seen in [16].

First introduce < as a primitive symbol together with the axioms on it.
A formula of thus extended 5JJ is called elementary if all quantifiers occurring
in it are bounded. A cut whose cut formula is elementary (an elementary
cut) or an explicit logical inference whose principal formula is elementary
except the V in the succedent (an elementary logical inference) is regarded as
a weak inference. The subsequent list shows how to modify the original
results to the present purpose.

Definition 1.3, (t). Read "closed, elementary formulas" in place of "closed
equations."

Definition 1.4. The degree of a formula is defined to be the number of
logical symbols in it relative to elementary formulas. (Elementary formulas
have degree 0.) The height and the ordinal assigned to a sequent are defined
as usual relative to this notion of degree.

Notice that an elementary cut or an elementary logical inference does
not increase the ordinal, since it is regarded as a weak inference.

In the proof of Theorem 1, introduce a new rule of inference, bounded
quantification, as well as tr:

. r-*

where A(b) is elementary and k is a numeral. (0<fcZ)y4(0))A°9- A(&—1<
k'DA(k—lJ) is called the sub-formula of the bq and vy(y<k^A(yJ) the prin-
cipal formula of the bq. The lower sequent is assigned the same ordinal as
the upper sequent. The bq is allowed only in the end-piece and is regarded
as a weak inference.

0°. Q consists of closed elementary formulas, hence terminal. Stop.
2°. Read as follows. The end-piece of Q contains an ind. or an explicit

logical inference whose principal formula is not elementary or which is an V
in the succedent.

2.2°. Case 1. V*S(*) is n°t elementary. Do as in Section 1. Case 2.
V*S(*) is elementary, hence is of the form vx<tR(x)9 R(G) being elementary.
For the sake of simplicity, let us assume Vx$(x) remains unchanged to the
endsequent. We quote the reduction for this case from [16].
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Assume t=n for some numeral n. If n =0, then Q Is reduced to

___
K vx<tR(x\ A2 '

If »>0, consider the derivation Qk for each k<n:

•-••'(ft)

r

A -* k <nD.R(ft), Al9 Vx<tR(x), A2

Then Q is reduced to

Since fi'<ft, the ordinal decreases.
3°, The elimination of weakenings in the end-piece is defined as before.

If the auxiliary formula of an explicit logical inference or a bq remains une=
liminated, then apply that inference at the end.

4°. If both occurrences of © are explicit., either Q consists of ®->©
alone or all the formulas in Q are elementary. Q is terminal either case. Sup-
pose 2) is of the form

3) -»©

3D ̂ > 2) ®3 r -^ 0

and some weak inferences apply to S> to result in ®. Q is reduced to

5°. We may assume as in Section 1 that Q properly contains its end-piece,
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and the existence of a suitable cut can be established as usual, hence the appli-
cability of the essential reduction.

Finally, the bq can be eliminated without essential cuts and inductions
(cf. [16]); thus follows our theorem.

What about Theorem 3? To make the discussion simple, we deal with
the "elementary sequents" only: the antecedent formulas are prenex universal
in elementary formulas and the succedent formulas are prenex existential in
elementary formulas. Define negative forms for the former and positive forms
for the latter, leaving the unbounded V-quantifiers untouched. Hence there
is no need to knock off any quantifiers and no necessity of eigenvariables.
In (3) of 2), Definition 2.2, 7=r=l. The denotation variables come in only at
the prenex quantifiers. Theorem 3 can be stated and established as in Section
2: Let

be a provable elementary (and closed) sequent of SR, where V£ is short for
Then there exist closed terms 3M, ••-, 3^, ••*, Sw§1, •-, 8m,pm9

> * « ! > — > * « . « » S 0

l), -, Bn(intl\ ..-, Bn(in>qn)

is provable in 91 without essential cuts and inductions.
From this follows that a provable sequent as (*) is provable without es-

sential cuts and inductions.

4.* We close this section with an application of our technique to the cy-con-
sistency of arithmetic. The ey-consistency has been proven in [20], [21] and
[25], and Kreisel has shown in [22] that ^-induction (applied to a suitable
arithmetic) is optimal for a proof of the ^-consistency. Here we shall briefly
outline our method, which does not diverge much from Kreisel's first approach.
For the functional translation of formulas and ordinal recursive functionals,
the reader should refer to [23] and [24] also.

We employ Kreisel's formulation of the cy-consistency (cf. Appendix of
[20]): if a formula "ByA(y) is SR-provable, then there is an ordinal recursive

* This item has been added after G. Kreisel's suggestion. The author thanks him for his
valuable comments on this article.
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functional ®(p) (of some order) such that p[Q(p)] is not (the number of) a proof
in 91 of the formula ~7A(®(p)}.

Definition 4.1. 1) Consider a closed sequent S of 91. If a positive oc-
currence V y is in the scope of a negative occurrence v# in a succedent formula
SI of &, then V y is said to depend on V* in 3L In an antecedent formula of
S, the positive and the negative be reversed.
2) 9l(f ) will denote the system obtained from 31 by adding to it some function
parameters and new axioms and rules of inference concerning them. To make
things simple, we describe the system for one unary function symbol f (cf. [16]).

(1) f (mi) = nl9 f (w) = n2 ->

is an axiom, where n± and nz are distinct numbers, (f -axiom)

(2) f-replacement

f(m) = n, F(n) -> A(n) f(m) = n, P(f(m)) -> A(f(m))
f(m) = n, F(f(m)} -* A(f (m)) ' f (in) - n, r(n) -* J(n)

where m and n are numerals and T(FJ) and d(ri) indicate some occurrences of
n in F and A respectively.

Proposition 4.1. Let S: 3t1? -8o,3lw— >3319 - B - ,^B M Z?^ a closed sequent of 91.
Lef 51 denote one of*8l9 •8a,S3» (Stl9

 >9o
9Slw) a«6? /e? A(a, b) be the positive (nega-

tive) form of SI relative to the singleton assignment, where a denotes all the
denotation variables and b denotes all the eigenvariables in A. Now, if S is 91-
provable, then

(i) {vMX** fufaj, • • • , fiiki(xitkly)} i

is %l(f)-provable, where f's and g's are distinct function symbols, the x in a f(x)
represents all the bound variables such that the positive (negative) V associated
with f(x) depends on the negative (positive) V's associated with x, i ranges over
l,"a,m and] ranges over !,•••,«. Furthermore, one can construct a derivation of
(I) primitive recursively in a derivation of S.

Proposition 4,2. The reduction method in Section 1 applies to 9l(f ) with a
minor modification.

Let £: T->J be a closed sequent.

S = {/(m,) = nl9 «", f(mk) = nk, r -> A\nl9 -, nk = 0, 1,2, ».}
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for some ml9 "',mk

is a reduct set of S.

The f -replacement in Definition 4.1 does not increase the ordinal.
If the upper sequent of an ind. is assigned the ordinal o>*H ----- f oA

and if the induction term contains p occurrences of f , then the lower sequent

is assigned the ordinal CD . If the upper sequent of a V in the antecedent
is assigned the ordinal a and if the term to be quantified has p occurrences of
f, then the lower sequent is assigned the ordinal a+l+p.

The F7-reduction when t contains f assumes the following form Qn:

f(m) = ny U-> A

where t is of the form s(f(m)) (cf. [16]). This is defined for every n; place {Qn}n

above Q,

ends(Qn) is related to ends(Q) by the definition immediately above.

The reduction for an explicit V in the antecedent is carried out in a similar
manner.

Corollary. Suppose a sequent of the form (1) in Proposition 4.1, which
we write II-* A here, is %l(f)-provable. Then

hjfmj) = » i ,—, hq(mq) = nq, H -> A

is provable without essential cuts and inductions, where Al9 • • % hq are some function
symbols from fs and g's in (1), ml9 -"9mq are some numbers, and such a deriva-

tion is obtained uniformly in nl9 "'9nq.

For the sake of convenience, we assume henceforth all the primitive re-
cursive functions in $i.

Proposition 4.3. There is an ordinal recursive functional <f>(f,x) such that
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if~7Vy-HzA(n,y9z) is %1-provable with a proof P, then

w verifiable for any specified interpretation of f. Here A is quantifier free.

Proof. From the assumption we get a derivation of ^y~7A(n,, y, f(yj) in
5R(f) (Proposition 4.1). By the corollary of Proposition 4.2,

f(m£ = nl9 • • - , f(mq) = nq-* ly7A(m, y9 f(y))

is provable without cuts and inductions for every #-tuple (nl9~*9nq) (for some
fixed ml9 • • • , wg). We can then find a number m depending on (nl9 '"9nq) so that

f(mj =»!,-, f(mq) = nq-> 7A(n> m9 f(m)}

is verfiable. For any specified interpretation of f, there is a (n^'-^n^ so
f(m1)=n1, •••,f(mq)=nq are true, m is determined uniformly in / and ""P1, thus
can be expressed as $(/, rp"1-). This 0 serves as the E in Lemma 1, p 47? of [20].

0 is defined uniformly in f with the e0-recursion. The soundness of the
system of such functional can be established in primitive recursive arithmetic
with the transfinite induction along e^ See [23] and [24].

§5, Second Order Systems

We can apply the reduction method to some second order systems of arith-
metic. We assume the knowledge in the second order concepts. See [15]
and [17] as references.

Second order free variables will be denoted by a, /? , -•• , bound variables by
9,Vr

? '"5
 an<i abstracts by U, F,"-. A second order system of arithmetic is

obtained from 91 by applying the inferences to all those sequents of the extended
language and by adding the equality axioms

s = t, 3l(,y) -» Sl(0

for every formula SI as initial sequents and some rules of inference concerning
second order quantifiers :

V in the antecedent
_ /a

, where V is an abstract.
-*e

V in the succedent

- "^ ?'&(&) ^ where a js an eigenvariable (viz., a does not occur in the
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lower sequent).
We do not specify the class of abstracts V which are permitted in the V

in the antecedent.
The first system we shall consider, which we call S, is a second order system

described as above, where the abstracts V in the V in the antecedent are re-
stricted to arithmetical ones (namely, no second order quantifiers be involued in

V}.
The second system we consider is SINN, the system with the Hi-compre-

hension axiom which is formulated in [15].

1. It is known that S can be interpreted by arithmetical predicates, or sets
(cf. [17]). We can establish this fact by our technique.

Here closed sequents are those which have no free variables - first order or
second order.

Two cases be added to Definition 1.2: SI: VpSfeO, S: r->0l9
<$l9B2 and 2 =

{r-*Ol9i$(V),$l9G2
m

9 V ranges over all the closed, arithmetical abstracts};
81: V^S(9)3 S: A, SI, r2-*9 and 2 = {rl9 g(F), SI, r2->©} for some closed,
arithmetical V.

Let SI be a formula in a derivation P, let l(A) denote the number of logical
connectives in SI and let e (SI) be the sum of second order quantifiers in SI
and second order eigenvariables in SI. (We assume that a free variable is
used as eigen only at one V in the succedent and it occurs only in the related
places.) Define g(Sl;P), the grade of SI relative to P, to be <y-5(3l)+/(8l).

Corollary. *$(«))
hence

if a is an eigenvariable and actually occurs in F(a) and V is arithmetical not con-
taining eigenvariables.

if V satisfies the same condition as above.

It is convenient to use the system of ordinal diagrams 0(1 5 <y2) for the
reduction of S (cf. [17]): We write (a, a) for (0, a, a) here.

The ordinal diagram (o.d.) of an initial sequent is 0.
A weak inference does not increase the o.d.
If a is the o.d. of the upper sequent of a logical inference with one upper
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sequent, then the o.d. of its lower sequent is a+1. For one with two upper
sequents, assign Oi$a2.

If the o.d.'s of the upper sequents of a cut are al and o2 and the grade of
the cut formula is g, then the lower sequent is assigned the o.d. (g, o^a^.

If the o.d. of the upper sequent of an ind. is a and the grade of the induction
formula is g, then its lower sequent is assigned the o.d. (g+l,a).

Let us write < for <0 of the system 0(1, <y2). For the computation of

o.d.'s, consult [15] and [17].
1°. If there is a non-eigen second order free variable in the endpiece of

Q, then substitute for it the abstract {^r"^»}(0=0).
2°. I is a second order V in the antecedent:

o

Note that V is closed under the condition 1*. Define Qf:

I is a second order V in the succedent :

r -^ e1,V9'g(9'),e2.
For each closed, arithmetical V, define gr:



32 MARIKO YASUGI

a'<a since the substitution of V for a does not increase the grade. (See
Corollary above.)

Between 2° and 3°, insert the reduction of an equality axiom in the end-piece.
(See [15] and [17].)

5°. The case where the suitable cut concerns the second order inferences.
The reduction is done in the same manner as 10.1.2 of Chapter 2, [15]. Note
that the comprehension abstract V is closed and arithmetical, hence the de-
crease of o.d.'s.

2. An interpretation of SINN in a system with the constructive o>-rule has
been given in [16]. Here a closed formula or a closed sequent means one
closed with respect to first order variables; hence it allows second order para-
meters.

In Definition 1.2, add two cases: SI: V?3(p), S: r->9l9 SI, <92 and 2
= {r-*9l9 g(F), SI, ©2l V ranges over all the semi-isolated (or, n\- in wider
sense) closed abstracts}; SI: V?S(9), S: r^T^O and -S' = {/1

1,g(K),Sl,
rz-*B}, for some semi-isolated closed abstract V. With a technique which is
a combination of the reduction methods in 1 of this article and in [16], we
can establish our Theorem 1 for SINN.

3. Although this is not strictly along the line of this article, let us remark on
the ey-consistency. Let @ denote any system of arithmetic which has an ef-
fective translation into a system of constructive <y-rule, say ©*, which accepts
a constructive cut elimination proof, hence a consistency proof. @ can be first
order arithmetic (cf. [12]), the @ in 1 of this section, SINN (cf. [15], [16] and
[26]), or the system with the provably Ji-comprehension axiom (cf. [27]).

Suppose 3xS(*) and "^^(m) are 5-provable for all m, where there is
an effective enumeration of derivations of ^^(m) for all m. Then ^x%(x)
and Mx~7%(x) are S^-provable, contradicting the consistency of @*.

A constructive version of the cy-consistency for any such system requires
a more delicate analysis of the system.
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