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Cohomology and Extensions of
von Neumann Algebras. I

By

Colin E. SUTHERLAND*

Abstract

We study twisted crossed products of von Neumann algebras by locally compact
groups of automorphisms, where the twist is measured by a two-cocycle on the group,
with values in the unitary group in the centre of the algebra. After examining alter-
native definitions of the crossed product, we prove the existence of "dual weights"
on the crossed product, and identify the modular objects associated with these dual
weights. We give criteria under which an automorphism of the original algebra may
be lifted to an automorphism of the crossed product, and prove conditions under which
the twisted crossed product will coincide with an ordinary crossed product. We give
examples; some arising from extension theory of abelian groups, and the others giving
a construction of factors not anti-isomorphic with themselves.

Introduction

This paper is the first in a series concerned with extensions of von Neumann

algebras by groups (locally compact) of automorphisms. Here we concen-

trate exclusively on the twisted crossed product of a von Neumann algebra <3tt

by a group G of automorphisms, the twist arising from the introduction of a

two-cocycle cyeZ^G,^), where *U is the centre of the unitary group of <3tt.

This crossed product should be viewed as the von Neumann algebra analogue

of the crossed product used in the study of central simple algebras, as well as

the analogue of the theory of (topological) group extension. However the

situation is more complicated in the von Neumann algebra setting than in

either of the prototypes; the natural algebraic conditions on a von Neumann

algebra Jl for it to be an extension of JM by G are not strong enough to ensure

that 37 is a twisted crossed product of 3M, by G. A systematic study of the
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extension theory of will be given in a subsequent paper; in particular necessary
and sufficient conditions will be developed to characterize the twisted crossed
products among all extensions.

The organization of the paper is as follows; <3tt is a von Neumann algebra,
{ag: ge(/} a representation of the locally compact group G in the automor-
phism group of <_5K, and G>eZ£(G, ^U) as above; for technical reasons we
assume c_5K# and G are both separable. In Section 2 we define, and develop
elementary properties of the crossed product <R(<5M9 G, a, o>); this definition is
a straight forward generalization of the works of Nakamura and Takeda [16],
Zeller-Meier [24], and Takesaki [23]. We also give an alternative definition,
utilizing the ideas of Hilbert modules and induced representations as de-
veloped by Paschke [17] and Rieffel [20].

Next we show how to associate to each faithful normal semifinite weight
0 on <3tt, a weight 0 on {R(<3tt; G; a; cy) which is dual to 0, the duality being
expressed by the relation of the modular objects for 0 to those of 0, and a
kind of "Plancherel property" for the weights 0 and 0. It will be seen in
[21] that it is this Plancherel property that distinguishes the twisted crossed
products. The results given here are fairly easy generalizations of those given
in [21], and by Digernes in [7].

In Section 4 we examine which automorphisms of <_3f admit liftings to
3l(i3H, G, a, cy); this is shown to be equivalent to a problem in non-abelian
cohomology (coefficients in the unitary group of JM), and an interpretation of
Z#(G, £U) is given as certain liftings of the identity automorphism of <3A,.

The final two sections are concerned with the following problem; when can
a twisted crossed product 3l(JM, G, a, o>) be expressed as an ordinary crossed
product <R(JM, G, ft) for some action ft of G on <_5K? In Section 5 we see that
this is always possible when <3tt is a properly infinite factor as well as some
other cases, while in Section 6 we see (by example) that this is not the case
when <3tt is abelian. In particular, in Section 6 we construct Connes examples

Q\tp,i> PL °f tyPe HI factors not anti-isomorphic with themselves as the
twisted crossed product of an abelian algebra by discrete groups of automor-
phisms; we also demonstrate a precise analogy of the von Neumann algebra
theory with the extension theory of locally compact (separable) abelian groups.

We should point out that this paper is intended to lay a very general base
for the study of twisted crossed products; it is not intended to give detailed
information on the many interesting special situations to which the theory
may be applied. We hope to present such information at a later date.
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§1. Preliminaries and Notations

Throughout, c_5K will denote a von Neumann algebra with separable predual
Jtt*, and G a locally compact separable group; on G we will invariably work
with a left Haar measure; the modular function of G will be denoted dG. If
M is a separable Hilbert space, L2(G; M) will denote the Hilbert space of equi-

valence classes of measurable functions f : G-+M for which /G||^(^)ll2^r<0°.
The centre of JM will be denoted 3>(3tt), the unitary group of JM. is ^(^H),

and the group of all automorphisms of ^i will be written Aut(c_5}f). When we
refer to a Borel structure on ^(^SH), we mean that Borel structure generated
by the strong-*-topology on ^(JM) (this structure is standard) ; Aut(c_5ff) will
be considered as a topological group, the topology being that of pointwise
norm convergence on JM* (see [2], [9]).

If G and JM are given, a representation of G on cSff, or in Aut(^)? means
a homomorphism a: g^G-^ag^Aut(^i) which is continuous; in particular,
for X^L JM, the map g^G-*ag(x) is strong ^-continuous. If {ag: g^G} is a
representation of G on <3H, then for each geG, ag(Z(^M})=S>(J^), and thus
G acts on the Polish abelian group ^(SG^O) ; it is this action which gives
rise to the cohomology groups which will be of interest.

Let A denote a Polish abelian group, and {ag: g^G} be a group of
homeomorphisms of A, with(g,a)^GxA-^ag(d) being continuous. In [15],
C.C. Moore has defined cohomology groups H%(G; A) appropriate to this situa-
tion. If G is descrete (and hence countable) these reduce to the classical,
algebraically defined cohomology groups (see [14]). If G is not discrete they
may be defined as follows ; let Cn(G, A) denote the space of all Borel functions
0: GxGX'"XG (n copies)->^4; we refer to such functions as rc-cochains.
Define boundary maps dn: C\G9 A)->Cn+1(G, A) by the formula

(We write A additively, and G multiplicatively.)

It is trivially verified that dn+1 - dn=Q for all n; the cohomology groups H^(G; A)

are defined as the quotients Hn
a(G; A)=Zn

a(G; A)/^(G; A), where Z^(G\A)
=kernel(dj are the /t-cocycles, and B%(G'9 A)=Image(dn_1) are the boundaries.
As usual we write d for dn. It should be remarked that Moore gives an
alternative definition using equivalence classes of elements of Cn(G\ A) as n-
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cochains; this is preferable from a topological point of view, but will play
little role here. For our purposes, it will be more convenient to have at our
disposal cocyeles and cochains 0 satisfying the additional property that <t>(gl9 ••-,
gn)=0 whenever any one of the variables gl9 ••-, gn is the identity; such cochains
will be said to be normalized. In [8, §6] it is proved that any cohomology
class (with arbitrary cochains) contains a normalized element, and that any
two such elements differ by the boundary of a normalized cochain; the proof
given there is for the purely algebraic case, but obviously works in the context
of Borel maps.

§2. Crossed Products with Cocyeles; Elementary Properties

Here our context will be as follows: JM is a von Neumann algebra and
g^G-*ag^Aut JM a continuous representation of G on c5K. We let eye
Zl(G, ^(SCcSJO)) be a fixed normalized Borel two cocycle. We shall refer to
the system {JM,, G9 a, &} as a projective covariant system (usually abbreviated
P.C.S.).

We shall give two definitions of the crossed product of JK by a and o> ;
the first is an immediate generalization of the definitions of Zeller-Meier [24]
and Takesaki [23]; the second is independent of any particular realization of
c5K on Hilbert space, and uses the theory of inner product modules over von
Neumann algebras, [17] and induced representations [20].

Definition 2.1 Let {c5K, G, a, &} be a p.c.s., and suppose Jft acts on the
Hilbert space M. The crossed product of JM by a and <y, denoted <R.(JM, G,
a, a) is the von Neumann algebra on L\G9 M) generated by the operators

(2.1)

where

Remarks. 1) If o>(g, h) = l for all g, h&G (we write o)=i) the above
definition reduces to the crossed product defined by Takesaki in [23].

2) If G is descrete, our definition is (a unitary transform of) that given
by Zeller-Meier in [24].

3) If JH is a factor, or if the values of co are scalars, /T is (the identity
tensor) the left regular cy-representation of G. Our theory will thus apply
to the algebras generated by regular projective representations of locally
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pact groups.

Proposition 2.2. Let {<3tt9 G, a, CD} be a p.c.s. Then the generators I*(x)9

X*(h) of 3l(3M, G, a, CD) satisfy the relations

Ad r(A)(/*(jc)) = 7*(a* (*)) > x (E JM, h e G ;

*W(*) = />fo A))

Proof'. We compute, with f <EL2(G,

and

where we have used the cocycle identity for G> and the fact that a) takes values

in the centre of JM. Q.E.D.

Our definition of the crossed product apparently depends on the Hilbert
space on which JM is realized. This is not the case; the proof of this fact is
identical with that given by Takesaki in [23] for the case of ordinary crossed
products. We record this as

Proposition 23. Let {<3tt, G, a, &} and {31, G, ft, v} be p.c.s.'s. If there
is a normal isomorphism K: JM-*32 with fcoa=fto/c and /coo)=voK9 then there
is a normal isomorphism K: 3l(JH9 G, a, cy)->5i(373 G9, fi, v) with ic(I*(x))

, and <r(g))=^(g

The other ingredients of our crossed product, namely the action of G and
the cocycle may be changed within certain limits to produce isomorphic crossed
products.

Proposition 2.4. Let {JH, G, a, CD} and {3tt, G, ft, v} be p.c.s.'s. Then
if either

(i) a=p and CD is cohomologous to v

or
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(U) 0)=!;, and there is a Borel map g^G-^ug^
cU(^[) with ugh=ugag(uh)

and ftg =Ad ugoag(g, h e G), then there is a normal isomorphism *c : <R(<3tt, G, a, CD)

, G, ft, v) with *(/*(*))=/*(*), x<=Jtt and <rfe))e/%3K)Avfe), g(=G.

Proof. We may suppose that JM. acts on the Hilbert space M and that
and crossed products involved act on L2(G, M).

(i) If o) is cohomologous to v we may choose a Borel map b: ge(j-»
^<EE<UCZ(JfO) with a)(g, h)=ag(bh)b*hbgv(g, h) for all g, h<=G. Define a unitary
B on L\G, M) by (BS)(g)=b^_^(g)9 £SEL2(G, M). Direct computation yields

BI*(x)B*=I*(x)=lP(x) and BX*(h)B*=I*(bh)X\h), xE^Jtt, htEG, and we may
take K= Ad B.

(ii) We first note that if ftg = Adugoag then Zl(G^(Z(3tt)))
=Zl(G,c(](Z(^M))). Now if co, v, a, ft are as in (ii), define a unitary U on
L2(G, M) by (US) (g)=ug-i£(g). Another easy computation yields KT*(jc)Z7*
=P(x) and ur(h)U^=P(uf)r(h)=P(uf)^(h). We set A: -Ad U. Q.E.D.

For later purposes it will be convenient to have an alternative presentation
of the generators for the crossed product in case the action of G on Jli is im-
plemented (on the Hilbert space M).

Lemma 2.5. Let {^Hi, G, a, co}be a p.c.s. with JM acting on M, Suppose
there is a group g-*ug of unitaries on M with ag=Adug. Then the operators

on L2(GiM)=M®L\G) generate an algebra isomorphic with &(<3M9 G, a, CD).

Proof. Define a unitary U on L2(G,M) by (U£)(g)=ug£(g). It is
trivial to compute that U /*(*)#* ==/(*) and m\h)U*=T(h). Q.E.D.

Remark. If CD takes scalar values, T(h) is nothing but uh®n^(h), where
K* is the left regular cy-representation of G.

For the sake of completeness we will give an alternative definition of the
crossed product, one which is independent of any particular realization of c_5K
Hilbert space. The construction, and the proof that it does indeed give an
alternative definition, rely on the machinery of inner product modules over
von Neumann algebras and induced representations as developed in [20] and
[17]. We will assume some familiarity with these results and techniques.
The construction is also intimately related to the "dual weight constructions"
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as carried out in [23] and [7] ; this relationship will be investigated more closely
in Section 3.

Let {c_5 ,̂ G, a, co} be a p.c.s. We begin by defining the "twisted
convolution algebra of functions on G with values in c_5J{?" in analogy with
the twisted group algebra associated to a scalar-valued two-cocycle on G.
The fact that our cocycles are Borel rather than continuous complicates
matters slightly.

Definition 2.6, JC0(^5 G) is the space of norm-bounded Borel maps
x: g^.G->x(g)<=3tt with {g: x(g)^®} precompact. JC(3H,G) will denote
the linear space of equivalence classes of elements of JC^JM, G) under the
equivalence x~y if x(g)=y(g) almost everywhere with respect to Haar measure
on G.

We endow JC0(^M, G) with a product, an involution and an c_5K-valued
pre-inner product as follows

Definition 2.1. For x0, y0^JC0(JH, G) define

= \ ajl(a>(gh9 h-^ahJG

and

Oo, y0> = \ y0(h)*x0(h)dh
cm. JG

where dG is the modular function of G.

Remark. The above formula are motivated by thinking of XQ as being
represented in 5i(c5K, G, a, <y) by the operator JG X°(g)I*(x0(g))dgm, while the
identification of x0 with JG ^(x^gty^g) dg gives rise to an equally valid
algebraic structure on JCQ(^M, G), various formulae (such as that for generators
of the commutant of the crossed product) become more simple with the
structure we have defined (see Section 3).

Lemma 2.8. With the product and involution as in 2.7? JC0(JM, G) is
an associative involutive algebra. Further, for ;c0, yQ^JCQ(JM, G) the classes
of xQyQ and xl (in JC(c_5K, G)) depend only on the classes of XQ, y0 and XQ respec-
tively. Finally <^0, J0> depends only on the classes of x0, y0 in JC(c5K, G).

Proof. For x0<=JC0(3M, G) it is clear that x$<^JC0(<3M, G) and that the
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class of xl depends only on that of XQ. Also

-\ g)

To check that the product lies in JC0(3H, G), let x0, yQ^JC0(JH9 G) and
c5KJ. Then

\\*«(gh)\\\\y(h-l)\\dh .

Since fc-*||^0(^)ll> lljo(£)ll are bounded, Borel, and of compact support,
(*oJo)(g)e*-3ffor each g, and g-K^oJoXg) i§ norm-bounded and of compact
support; the map is also evidently Borel. Again it is clear that the class of
xQy0 depends only on the classes of x0 and y0 in JC0(c5Jf, G).

We check (formally) the necessary algebraic properties. For xG9yQ,zQ^
JC0(JM, G) we have (noting that by the cocycle identity ag-i(o)(ghk, k~lh~l))»

ahk(a>(k-\ A-1)) = aJ1(Q>(gA, h~% aj\a(ghk, k~1)) for all g, h,

f t flSXffAfc, fc-1/.-1))^.^^-1, h-^)ahk(X,(ghk))ah(y0(k-^)z0(h-^dkdh
JGJG

\ *7l(&(gh, h-l))ah[ajh\a>(ghk, r^K
JG

Also, if x0, yQ^JC0(JM, G), then
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where we have used the identity

ojXfc, fc-^K-uKAT1, fc)*Xrt k~lg)* = cafe-1, ^)*o.(g-1A:. /O ,

a consequence of the cocycle equation for o>.

The proof that <*0, >>„> defines an element of JM and that this element
t-Jit

depends only on the classes of *0 and y0 in JC(<3tt, G) is almost trivial, and

is left to the reader. Q.E.D.

From this point on, we shall largely ignore the distinction between

Jf0(c5^, G), and JC(<3tt, G); thus we assume that the product, involution and

inner product are defined on JC(<5H, G).

Lemma 2.9. The inner product < « , e > o« JC(^H, G) satisfies
Un,

0 <^3 A:> >0 (i/i c^K) onrf <.r, ̂ > =Q only ifx=Q,
<3rl <3n,

"} <*-y> *=<**?!#
, G)} = JK.

Proo/. i) That <x, x> „ >0 in JK is clear. If x^JC(JH, G), <x, x> m
«_ l̂ <->%

=0 and ^eJJ/^, then 0=/G^(x(g)*Jc(g)Xg, so that ^(x(g)*x(g))=0 a.e.

Letting ^ run through a countable dense set in 3tt* we see x(g)=Q a.e., and

so x=Q in cX(c_3/, G).

ii) trivial.

iii) if zGe5K, and <P is a continuous compactly supported function on

G with SG\Q(g)\2dg=l, then with x(g) = 0(g)z and y(g) = Q(g)l, we see

=z, and %, jGE Jf(c^5 G). Q.E.D.

At this point, JC(<3tt, G) is established as a right rigged space in the

terminology of [20]. We give some other properties of JC(^5H, G), which are

reminiscent of left Hilert algbebras.

Lemma 2.10. For x, y, z&JC(<3H, G), we have
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o
ii) <xy, xj'X^lkdWOIDlPO, y>jf ^ere atflMOII) & the (bounded)

operator of convolution on the left by the function g-*\\x(g)\\ on L\G).

Proof, i) For x, y, ze J£(c5K, G), we compute

= ( ( flfc
JcJc

= f f or
JGJG

where we have used the cocycle identity to replace a^o^"1/"1, /))*. ajl(co(lk,

/c-V-1)) by ar^wC/fc, JT1)).
ii) For x, j e JC(JM, G) we compute, with \&- e ^/J,

, so

f ( IGJGJG

^)) I dhdkdg

<\(\JG J

< ("((JG J

With Y^(h)=ir(y(K)*y(h)~) we see

^IWIWOIDII ' t +(y(h)*y(h))dh
JG

Since ^ is arbitrary, the proof is complete. Q.E.D.

We now introduce on JC(<3H, G) the structure of a right ^-module — it is
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in fact also a left JC(<3tt, G) module, and also a left J^-module, but for our
purposes these structures are irrelevant.

Definition 2.11. For x<=JC(3M, G)9 a<E <3M, define

(xd)(g) = x(g)a.

Lemma 2.12. i) With the above structure JC(JHS G) is a right ^i-module.

ii) <*a, yy =<x, y> a, x, y<=EjC(3tt, G), a^^i.un cjw

Proof. We leave the routine calculations to the reader. Q.E.D.

Remark. In the terminology of [17], JC(JM, G) is a prehilbert c5ff-module
(Lemma 2.9 (i), (ii), 2.12 (i), (ii)); in the terminology [20] it is a left prehermitian
JJf-rigged Cf-module (Lemmas 2.9, 2.12).

In order to apply the ideas of [17] and [20], we need to make one modifica-
tion in our setup. Let 3£(<3tt, G) denote the self-dual completion of JC(<5H, G)

(see [17]) and e: JC(JM, G)-*3E(<3M, G) be the canonical inclusion (denoted
x-*x in [17]). Since bounded module maps of JC(c_5K, G) extend uniquely to
3£(3tt, G), we have, by Lemma 2.10 (ii) an action of JC(JK, G) on 3£(3tt, G)
as bounded c5Jf-module maps fo(jt): xe JC(<3H, G)} determined by xi(x)i(y)

=c(xy) (x, y<=JC(Jtt, G)). By [17], 3C(JM, G) is a (comglete) Hilbert ^-module
so that the algebra -C(3£(<3ft, G)} of all bounded module maps of 3£(3H, G)
to itself is a von Neumann algebra.

Definition 2.13. The abstract crossed product JL$l(<3lt, G, a, a>) of c_5K by
a and o> is the von Neumann subalgebra of -C(?£(<3M9 G)) generated by the

operators {*/(*): x^JC(3tt, G)}.

In order to show that 2.13 does indeed give an alternate definition of the
crossed product we need the following observations. From the comments
preceeding 2.13., 3C(i5tt, G) is an Hermitian c_5K-rigged C7-module. Thus if,
TIT is any representation of JA on a Hilbert space M, RieffePs construction
provides (i) a pre-inner-product structure on the algebraic tensor product on

3£(cSK, G}®M\ (ii) a representation p of -C(3£(JM, G)) on the completion
M of 3£(JH,G)®M9 determined by p(r)(r®f)=rr(g)f for re^(eSK, G)

T<=M3£(3tt, G)), S^M. We will denote the restriction of p to Jl$l(JI{, G,
a, o)) by {KS M}. Finally, if {x, M} is a faithful normal representation of
<3H on M, we may consider the p.c.s. {n(<5tt), G, no., noco} acting on L2(G; M),
where (no) =noago7i;~l.
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Theorem 2.14. Let {a, M} be a faithful normal representation of JM on

M, and {x, M} be as above. Then

i) n is a faithful normal representation on M,

ii) \n(JLSL(,3U., G, a, G>)), M} is unitarily equivalent with {Sl(n(<5tt), G,

na, Tuoa)), L\G,M)}.

Proof, i) For r€=3£!fc5K, G), t^M, we have ||r®e||2HW<r,

so for T<=-£(3£(JH, G)) we have

= \\n«Tr,

Thus p (and hence x) is faithful whenever n is. The normality of p (and so of
ft) follows directly from the identification of the predual of ~C(3£(tSH, GJ)
given in [17].

ii) To see the unitary equivalence we will need a preparatory result.

Lemma 2.15. t(JC(Jk, G))®M is dense in 3£(<SH9 G)®M.

Proof. From the construction of the inner product on 3£(JH, G) given
in [17], we see that for r, r'eSS^cSK, G), <r, r'> is in the a-weak closure of

<-M

«t(x\ ?'> '• x£EJ((<3tt, G)}. Thus if 2 Tj®£j^3£(3tt; G)®M is orthogo-
*3it j=i

nal to i(JC( <3M,\ G)®M we have, for each k=l, ••-, n

0 = (c(x)®£k, ± ;r,®fy) =±

for all A:ecX(JJf, G). But then by the above remark, we see that for each
n

£5 2 (7r(<\rjfe5 r/)> K*> f »)=0- Summing over all fc, we finally have

0 = (««T4, ry> V4, fy)
•-« y=i

and the assertion is established. Q.E.D.

Proo/ o/ 2.14 (ii). We define a map U: c(JC(<3H, G))®M-*L\G, M) by
We have

= fJG
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so that U is an isometry. By 2.14, and the fact that U clearly has dense range
in L2(G, M), we see there is a unitary mapping, also denoted U9 of M onto
L\G, M) extending the map defined above. Also, for x, y<=JC(<3tt, G),
we have

= *( aj\a>(gh,
G

and (denoting na by ft, now by v)

= \ »(g~l,JG

Thus

Since such integrals generate St(n(<jW), G, na, noo*) the proof is complete.
Q.E.D.

Remark. In case o) is continuous we may consider instead of JC(<3tt, G),
the space CC(<3M9 G) of a-strong continuous compactly supported functions
from G to <3& with the same product, involution and inner product. If we
topologize CC(^5H, G) by saying x^-^x if for all ^<=3tt* and all y^.Cc{M, G),
we have ^(^x^, y^ )-^^(<^x, y^ ). It is then easy to establish that with

respect to this topology {xy: x, y^Cc(<3tt, G)} is dense, and that x-*x* is
preclosed as a map on Cc(i5tt, G}. Thus Cc(Jtt, G) appears as an exact
analogue of a left Hilbert algebra in the module context. The "left ring"

of Cc(3tt, G) is nothing but the abstract crossed product. It is reasonable
to hope that at least a part of the Tomita-Takesaki theory of Hilbert algebras
might persist in this situation, and in case 3tt is abelian this has been worked
out, in a slightly different context, in [10]. This author has not investigated
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Tomita-Takesaki theory in this context. Nevertheless one might expect there
should be an "unbounded expectation" from jR(<^, G, a, to) to 3VL as a
generalization of a weight; the consequences of such an expectation can, to
a large extent, be imputed from the results of the next section.

§3 Dual Weights on Crossed Products

Our object here is to produce, in a canonical way, for each p.c.s.
{Jfrt, G, a, o)} and each faithful normal semifinite (f.n.s.f) weight 0 on <3M,
a (f.n.s.f) weight 0 on 3l(JM9 G, a, CD) which is dual to 0. The duality is
expressed in terms of a formula (Proposition 3.5) giving the value of 0 on
certain elements of 3l(JM9 G, a, <y) in terms of 0, and the relation of the
modular objects of 0 to those of 0 (Proposition 3.7). The treatment we give
here differs from that of [7] only in that the cocycle o> must be introduced,
and that we are obliged to consider classes of Borel functions from Gto^i
rather than continuous functions. The construction is also the obvious
adaption of that of Section 2 to the situation where a particular f.n.s.f. weight
on <M is given. Because of the close similarity of what follows to the results
of [7] and to Section 2 we will limit ourselves to stating definitions and Theo-
rems, omitting proofs.

Throughout this section, {JM, G, a, co} will be a fixed p.c.s., and 0 a
fixed f.n.s.f. weight on <3tt. We will denote by {n^, M£$ the associated re-
presentation of <5M, and A$; n$= {x&tStt: $(X*X)<OQ}-><$t$ the canonical
injection. By {af, t &R}9 A$, J^, 5$ respectively, we mean the modular auto-
morphism group, modular operator, unitary involution, and sharp operation,
respectively, derived from 0; thus ^(p^(x))=A^7c^(x)^n

9 (x^<M) and S$
=J*Af=Afj$ (see [22]).

We set 0£=0°a^; the modular objects associated to 0^ will be denoted

{ng ^g}' ^g' ng> °8> ̂ g> Jg> $g respectively. We will also need to consider the
so-called relative modular objects i.e. Sgik=Jgih(^)1/2, uh

t'
8 = (D<f>kf D4>g)t; for

the definitions and properties of these operators, we refer to [1] and [7]. The
symbols {TT? M}, A, n etc., without subscript, will refer to the original weight
0 (the subscript should be e).

Definition 3»L 3M, is the linear space of equivalence classes of norm
bounded, compactly supported, Borel functions x: G-*<5& such that

i) x(g) e n J n n, g e G, where n = ne.

ii) the functions g->0(x(g)*x(g)) and g->$g(x(g)x(g)*) are integrable,
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where the equivalence is given by x^y if x(g)=y(g) a.e.

Remark. Since <3tt* is separable, there is a countable family

^<5tt# with 0=supi/v Thus for any Borel function g

Borel.

Definition 3.2. Define a product and an involution on <3& by

for x, y^<3tt. (As in Section 2, we confuse functions with function classes).

If, as in [7], we define a map A: JH-*L2(G; M) by (A(x))(g)

=iA(x(g)(o(g~l
9 gj), x^JM, and denote by 31 the image of JM, then 31 inherits

a product and involution from <_5K via ;?, and an inner product as a subspace

of L2(G; M}. It should be noted that, with the notations of Section 2, 3tt is a

subspace of JC(c5K, G), and the inner product on 31 satisfies

The following result is, in effect, an amalgamation of Propositions 3.2,
3.3 and Theorem 3.4 of [7].

Theorem 33. Let 31 /zave £/ze structure as defined above. Then

i) 3t is a left Hilbert algebra, and is a dense subspace of L2(G, M},

ii) the left ring 5l/(3l) of 31 coincides with the von Neumann algebra

), G, na, 7Toa>)? where n=7i:e, on L\G, M). Further, for x^.JH we have

Definition 3.4. The f.n.s.f. weight on <R(i3H9 G, a, a>) determined by
the isomorphism of this algebra with .Si/(3l) will be denoted 0 and referred

to as the dual weight of 0.

For each norm bounded, Borel, compactly supported map x: G—>JM, let

Jc<Ej2i(JK,G, a, a)) denote the operator f *a(g)I*(x(gj)dg. Noting that for
JG

such maps x and y, the product .TJ: G->c_5K is in fact continuous (cf. [7],
Proposition 3.2), the evaluation (xy)(e) is well defined. Part of the duality

between 0 and 0 is then expressed in terms of

Proposition 3.5. Let x, y: G-+<5H be Borel, norm-bounded and of compact
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support, and set x=\ X*(g)I*(x(gj)dg9 and define y in the analogous manner.
JG

Then we have

= <l>(y(h)*x(K))dh .
JG

Proof. Trivial from the definition of 0 and Theorem 3.3.

Definition 3.6. A pair (0, $) off.n.s.f. weights will be said to satisfy the

Plancherel property, if the conclusions of Proposition 3.5 for every pair of

Borel, norm-bounded, compactly supported maps x,y: G->JM i.e.

= <!>(y(g)*x(g)}dg .
G

We shall see, in [21], that the existence of a pair of weights satisfying the

Plancherel property is characteristic of crossed products (among all "extensions"

We now turn to the problem of identifying the modular objects associated

to 0, and consequently the commutant of Sl(n(<3tt\ G, xa, noo)). For the

first result, we need some additional terminology

i) for xen* fl n;,, set Sg>h(Ah(x))=Ag(x^

ii) for x£Xig, set Uhtg(Ag(x)) = Ah(ah-ig(x)),

iii) for g^G, let W(g) be the canonical cone-preserving unitary on

M=Me which implements ag in the representation 7u=xe (i.e. W(g)7u(x)W(g)*

=x(ag(x)) x^^f). (See [9] for the definition, and [7] for additional proper-

ties.) Note that Sgih above is a core of the relative modular object Sgtk

referred to previously.

Lemma 3.6. Let S, 2, J be the sharp operation, modular operator and

unitary involution associated to 0. Then, for S e3t we have

i)
ii)

Proof. See [7] (or compute directly).

Lemma 3.6 has two immediate consequences; the computation of the

action of the modular automorphism group {dt: reJ2} of 0, and the
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computation of the generators of the commutant of the crossed product. For
convenience we define an action ft of G on rc( JJf), and a 2-cocycle v by

0g = Tuoagon-1 , v(g, h) = n(a>(g, hj) .

Theorem 3,7, The action of {at: t^R} on the generators of the crossed
product Sl(n(JM), G, ft, v) is given by

Theorem 3.8. The commutant of SL(n(^i\ G, ft, v) on L\G,M) is
generated by the operators

For the proofs of these theorems, we refer to [7] ; the computation using
Lemma 3.6 is also rather easy.

The computation of the commutant of Sl(n(<3tt\ G, a, o>) above allows
us to exhibit the crossed product as the fixed point subalgebra of 3tt®-C(L\G))

under an appropriate action of G. In general, this action is not a tensor
product of actions of G.

Let {JM, G, a, &} be a p.c.s., with <3M. acting on M. Define, for

We note that when co takes scalar values, pw is the identity tensored with the
right regular projective ^-representation.

Theorem 3.9. The crossed product 3L(3li9 G, a, o>) on L2(G; M) coincides

with the fixed point subalgebra of 3tt®£(L\G)} under the action of

Proof. We may assume that JVi acts on the Hilbert space derived from
some f.n.s.f. weight on c5K, and that ah is implemented by W(h), as above,
on this space. Then (ag®l)°Ad pta(g) is implemented by (W(g)®l)p°(g)
=p°*(g) (notation as in 3.8). The indicated fixed point subalgebra is thus:
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- [SRJ(JH9 G, a, o>)T = SRJdSH., G, a, «) .

Since ff(g)ir(K)=(v(g9 A)*® l)p"fe*) (an easy computation) Ad p°(g)°Ad p"(h)

=AA P"(gh) on <3lt®-C(L2(G))9 and thus we do have a representation of G in

Aut (3tt®£(L\G)). Q.E.D.

From the remarks preceding Theorem 3.9 we have

Corollary 3.10. Suppose o> takes scalar values. Then the crossed product

3l(<5tt, G, a, o>) coincides with the fixed point subalgebra of J$f ® J?(L2((j))

under the action geG->a,®Adp"(g), where, for g<=G, <?<EL2(G% (pw(g)£)(h)
= a>(h, h-lg

§4. Automorphisms of Crossed Products

Throughout {JJf? G, a, o>} will denote a iSxed p.c.s, and <3l=3l(<3tt, G, a, o>).

Suppose /90eAut(c5Jf); we shall be concerned with the problem of determining

when there exists ^e Aut (3T) with £(/*(*))=/*(#)(*))• Such an automor-
phism /9 will be termed a lifting or extension of /?0 to 32. It is clear that

all inner automorphisms on <3M, admit extensions to 32; by Theorem 3.7 all

modular automorphism groups admit liftings which are themselves modular

automorphism groups; clearly the automorphisms ag (ge(j) admit liftings

Ad A#X although it is not necessarily true that these liftings form a group.

It will be convenient to distinguish the following special kind of liftings.

Definition 4.1. Let /90eAut (JK). A strong lifting ft of /?0 is an exten-

sion of J30 to 32 satisfying the additional property that /#(Ag))e/*(c-5K)Ag)
foraUgeG.

Our first result concerns strong liftings of the identity automorphism of

J$f, and characterizes them in terms of Z#(G9 ̂ (550^0)). The analogue of

this result for semi-direct products of groups is well known, [14]; see also

[24].

Theorem 4.2. i) For each p^Z\(G, V(Z(<5tt))) there is a strong lifting

rp of the identity automorphism of JM, satisfying rp(^
w(g))=/<*(jo(g))^"(g) for

all g^G. The map P->TP is a representation of Z\(G, <U(S(c5K))) ** Aut (32).
ii) Every strong liftiug of the identity is of the form TP for some
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iii) Pi, p2^Z]6(G,cU(Z(^M)y) are cohomologous if and only if
rPi-Ad r(u)oTp2for some u^^Jtt).

Proof, i) We may assume JU acts on M and 32 acts on L2(G; M).
For each peZi(G, ^(2(^30)), define a unitary Tp on L2(G; M} by
=P^"1)*f fe), t^L\G; M). Clearly T,T,2 = T^2 for />lf

and we may compute

1)* fe)
= (/*(*X)fe),

and

where we use the cocycle identity ag(p(K))p(gh)*p(g)=^-
ii) If y? is a strong lifting of the identity automorphism, define

Pfe) by Wfe)) = /"(/ofe)) ̂ fe), g e G. Since 7-(a, (*)) = ^(r(g)/a(x)r(g)*)
=-o(g)^(g)/a>W^fe)*pfe)*=pfe)/a(«^W)pfe)*, for all ^SJK and g^G, we
see ^e^SCcafO).

Clearly, p(e) = l, and we have;

so that p(g)ag(p(K))=p(gh). Since g-*p(g) is clearly Borel,

17(S(c50)) and /S=rp.
iii) If rPi=Ad/»orp2 for we'UCJK), then rPi(/

-(x))=/"(x)=^(
forces ue^UCSCc^O). But then we have I'(fl1(g)) = rfl(X'(g))X'(g)*
=/»/>2(g))r(g)/a(M)*r(g)* = />/o2(g)a,(M)*, and thus p2(g) = (du) (g)^)
for all g e G.

Conversely if P2fe)=(^")(&)'°ife)> f°r all geG, then a trivial computation
shows rpj=Ad Ia(u)°Tf2. Q.E.D.

Remark, i) The theorem identifies #«(G, <U(.2(J}0)) as the classes
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of strong extensions of the identity with respect to the canonical action of

^(SCJJO) on Aut(SfZ).
ii) If G is abelian, there is a canonical injection of the dual G of G in

Z«(G, ^(SCJK))). The restriction of the representation r to G is nothing
but the dual action of G defined in [23] (for the case co=t).

We now turn to the problem of finding the strong liftings of an arbitrary
/?0eAut(«J$0, or if indeed there are any. We use the standard notation for
group commutators [a, p]=a.pa~lp~l.

Theorem 4.3, An automorphism ftQ of <3tt admits a strong lifting to 37
if and only if there is a Borel map g->ugEicU(JM) such that

i) [ft0,ag]=Adug, ge(7,
ii) PJ&te, h)}=ugag(uh)u*ha>(g, h)=(du)(g, h)a>(g, h); g, h^G.

If the conditions are satisfied, then there is a strong lifting ft of ftQ with

Proof, i) Suppose ft0 admits a strong lifting ft, and we define ug

<U(c5K) by ft(F(gy)=I*(ug)F(g). Then we may compute

and

W) for

Thus [ftQ, ag]=Ad ug. Furthermore

A(/>fe A))

On the other hand we have

= I*(ugag(uh)a>(g,h))f(gh).

Thus the second condition is also satisfied, and the conditions are necessary
for the existence of a strong lifting.

ii) Suppose ^0eAut(Jff) satisfies (i) and (ii) for some family {ug, g&G}

Q'UG^Jf). We suppose <3Vl acts on the Hilbert space M, and that j30 is im-
plemented on M by some unitary b0. Regarding 32 as acting on L2(G; M),

we may define a unitary b by (b£)(g)=uf-ibQ£(g), S^L2(G; M), and compute:
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and

(by (ii))

The proof is complete. Q.E.D.

Remarks, i) The Theorem above guarantees the existence of liftings of
modular automorphisms on ^H to 32 ; the conditions of the theorem are pre-
cisely the properties of g-*8G(g)ltue

t'
8~ which result from the properties of

the Radon derivative ue
t'

g~l in [7]. (Here notations are as in Section 3, and
we have taken ^0=o^ for some f.n.s.f. weight 0 on <3tt. Note ff?(cy(g, hj)

=a>(g, A) for alls, A <EG).
ii) The problem of determing in the general case when a strong lifting

is inner on 31 seems very difficult; the author has no satisfactory results in
this direction. The reader should however consult [24].

iii) If ve^UG^O, Ad7*(v) constitutes a strong lifting of Ad v, with
Ad/» (As))=J*(va,(v*));i"(g). Thus the map g->ug from 4.3 is a (non-
abelian) coboundary. The converse however is false; i.e., if g-*ug is a cobound-
ary and [/90? ag]=Adug it is not necessarily true that pQ is even inner.

The final result is concerned with finding necessary conditions for the
existence of some lifting of an arbitrary

Theorem 4 A Let /90eAut(c-5ff). If A) admits a lifting to 37, then there
is a Borel map g^G-^v^V^) such that

i) 7*o [fl,, ag]oI«-l=Advg on 7%5K), far g^G,

ii) /«U(o>fe, A)))=v^"(g)vArfe)*vft7Xgf A))
=(8v)fe, A)7>(g, A)),

The proof follows the pattern of the first part of Theorem 4.3; we leave
the details to the reader.

Remark. In case JM is abelian, and G is discrete and freely acting, the
conditions of Theorem 4.4 may be stated as follows (see [24]); if /90 admits
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a lifting, then [/?0, ag] is in the full group of G for all geG and (/^cy)^"1

cobounds in Z2(G, 17(37)).

§5. Removal of Cocycles

Throughout, {JM9 G, a, co} will denote a fixed /?.c.^. We shall be con-
cerned with finding conditions under which we may find another action
{ftg: geG} of G on JU such that <R(JM9 G, a, &) is isomorphic with
3l(c5K, G, /?, c)=<R(JH, G, £). This turns out to be possible whenever JK is a
properly infinite factor, or when G is amenable and <3tt is- the Ilj-hyperfinite-
factor. Our most general result covers other situations also.

Theorem 5.1. Let 3tt and & be factors, and {JM, G, a, &} a p.c.s. Suppose
i) <3tt®& is isomorphic with *3H9

ii) there is a projectile ^^-representation of G in £P.
Then there is an action {j3g: g^G} of G on JM with Sl(<3tt, G, a, o>)®£P iso-

morphic with 3t(JU9 G, ft).

Proof. First note that since <3tt, is a factor, CD has scalar values; thus if
it is the a>~1 representation of G in £P, pg=Ad n(g) defines an action of G on
<P. If K: <3tt-><3tt®& is the isomorphism in (i), we define an action ftg of
G on 3H by ftg = ic~~1o(ag®pg)oK; by Proposition 2.3, Si(Jli9G9ft) is iso-
morphic with Sl(<5tt®&, G, a ®p).

If we assume that JK acts on M, and ^ acts on JC, and that the genera-
tors of &,(3H®S>, G, a®p) on L2(G; c^® JC) are

1)^ fe) ,

Define a unitary C/ on L2(G: M®<K) by

(W)(g) - (l®^"1)*)^) , eeL2(G; ^® JC)

It is easy to see that U(I**?(x®y))U*=I*(x)®y(x&3li9yGi&)9 where
we have identified L2(G; M®<K) with L2(G; JH)®JC in the canonical manner,
and /* has its usual meaning. We may also compute

Thus, under the identification of the Hilbert spaces as above, U(l(h))U
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= ^(h)®7u(h), where <T is as usual. The generators of U(Si(<3tt®S, G,
a®p)V)U* on L2(G;^i)®JC are I*(x)®y, xt=JM, y<=S>, and X*(h)®n(h)9

h^G. Since n(h)&.9? for all h, these operators generated precisely Si(<3H9

G, a, a>)®5>, Q.E.D.

Corollary 5.2. Let {JM, G, a, o>} be a p.c.s., with JM a property infinite

factor. Then there is an action {/3g : g^ G} of G on <3tt such that Si(3tt, G, a, o>)
is isomorphic with &(<3H, G, /?).

Proof. Let F*, denote the /co-factor. Since <3A is properly infinite,
c_5K®Foo is isomorphic with J^f, and G automatically has a> "^representations
in Fee; we apply 5.1 with 3?=F00. Finally as 5i(c_5K, G, a, G>) is properly
infinite whenever <3tt is, we are done. Q.E.D.

For the statement of 5.3, Si denotes the hyperfinite IIrfactor.

Corollary 5,3. Let <3& be a IIrfactor, G a discrete amenable group, and

, G, a, a)} a p.c.s. Suppose that Jtt®$l is isomorphic with JM. Then
, G, a,o))®Sl is isomorphic with Sl(3tt, G, ft) for some action {/3g: g^G}

ofG on<3tt.

Proof. This follows from 5.1 provided we can guarantee that G has
projective o)"1 representation in Si. But by the work of Connes [5], the left
regular a)"1 representation of G is hyperfinite, and thus by direct integral theory,
G has o)~l representation which are either finite dimensional, or generate Si.
In either case we are done. Q.E.D.

Remarks, i) The condition t5tt®(R,~<3tt is equivalent to a number of
other properties e.g., non-commutativity of the algebra of central sequences
on <3tt, or noncommutativity of Int <5tt/Int 3tt. (See [4], [11].) Clearly Si

itself has this property; however for discrete amenable G the crossed product
Si(3tt9 G, a, G)) is already known to a hyperfinite IIralgebra (see [5]).

ii) The theorem and its corollaries admit obvious generalization to the

case where JM is not a factor, but {ag: g^G} acts trivially on the centre of
c5Jf ; reduction to the factor case is possible with the usual techniques of direct
integral theory. We omit details.

iii) Interest in crossed products with cocycles clearly reduces primarily to
the case where Jtt is abelian, or the group G is non-amenable. We are currently
investigating these situations.
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§ 6, Examples

We give non trivial examples of crossed products of abelian von Neumann
algebras with cocycles; in particular we show the analogy between this kind of
crossed product and the usual extension theory of abelian topological groups,
and show how various examples of factors not anti-isomorphic with themselves
may be constructed. Unfortunately, no proof of the non-anti-isomorphism via
cohomological methods exists (to the authors knowledge); Connes" techniques
seem essential here. Finally we give some comments on computing second
cohomology groups of various actions; as shown in [15], the techniques of di-
mension shifting and spectral sequences are available in our context, but these
are often insufficient for effective computation.

Theorem 6,1. Let l-*A->X-*G->l be an exact sequence oflocaUy compact
groups, with A abelian, and let <3tt(A), <3tt(X) denote the von Neumann algebras
generated by the left regular representations of A and X. Then for some action
{ag: g^G} of G on <3tt(A\ and some co^Zl(G, ^(^(A))} we have <3tt(X)
isomorphic with Sl(<3tt(A), G, a, a>).

Proof. From [15] there is an action {ag: g&G} of G on A and an
a5eZ|((j, A) such that, as Borel groups, X is identified with AxG under
the multiplication

(a, g)(b, h) - (aag(b)a>(g, h\ gh); (a, g\ (b, h)&AxG.

a and & are determined by a (Borel) lifting g^G-^xg^X via &g(a)=xgax^1 and
xgxk=&(g, h)xgh. Further, if dA and dG are right Haar measures on A and G,
then dAxdG=dx is a right Haar measure on X (viewed as AxG).

The algebra JM(X), on L2(G, dx) is generated by the operators

a, e)S)(b, h) = t(a-lb, h) ,

, h) =

To determine the crossed product, define unitaries ug on L2(A, dA) by
(ug£)(h) = £(ajl(hJ)dA(g)1/2, where $A(g) is the (constant) Radon derivative
dAosqljdA. We denote by ag the automorphism Ad ug of JH(A), — it is clear
that g-*ag gives an action of G on <3tt(A) and ag(^

A(a))=XA(ag(aj). Also define
o>(g, h)=ZA(a>(g, /0)GE^(c5KG4)); it is trivial that o>eZi(G, W(3lt(A))).

Using Lemma 2.5 we obtain generators on L2(G; L2(A))=L2(GxA)
=L2(G)®L\A) of the form
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g, g-VO^ffe-1*) , g(=G.

On L\GxA), the expression for T(g) is

(2W)(A, *) ^ W^jVfc r1*)-1*), S'1*)

Thus ^/(a, e) coincides with /(^"(a)) and Xx(e, g) coincides with Aw(g). Q.E.D.

Remarks, i) The assertion of the Theorem remains valid when A is
non-abelian, provided X is identified with ^4 x G with multiplication as defined
above, for some action &g of G on A and some &> with values in the centre of
A. In general, however, X need not be of this form.

ii) It can happen that co is non-trivial (in H~(G, AJ) while co is trivial in
Hl(G, °U(<5H(A)))'9 see the material following Proposition 6.2.

We turn now to the examples of Connes, [3], of factors Q\tptt not anti-
isomorphic with themselves; we present them as crossed products of abelian
algebras by discrete groups and cocycles.

We shall need the following notations; ^e(0, 1), p^Z+ and r^T=

{z^C: |z|=l} are fixed with rp=l- Zp denotes the cyclic group with p
elements {0, 1, •••,;?— 1}, and F2 the free group on two generators. Let Xp

be the direct product, and xp the weak direct product, of infinitely many copies
of Zp O>2). Thus xp is a subgroup of Xp. For p>3, let mp be the Haar
measure on Xp\ for p=2 we consider the measure ^x on X2 which is the product

of measures rx on Z2, where rx({0})=^/l+^ ^\({1}) = 1/1 + ^- Finally, mx will
denote the measure on Z with mx({n})=/(n.

We wish to define actions of xp9 %2> F2 and Z on the space (Y9 v)
=(XpxX2xZ, mpxv\xmx). We denote elements of Y by triples (x, s, n).

(i) The action of %p is given by (x, s, n)-*(x—y, s, n) under y&xp-

(ii) X2 acts on X2 via s-*s— t (s^X2, t^X2); also if we view the index
set in the product defining X2 as being F29 then elements of X2 are sequences
{s(w): we F2} of zeros and ones. Thus F2 acts on X2 via (w1s)(w2)=s(wT1w2),
s^X2, w1? w2e J^. Since this action of F2 carries xz to x29 the actions of %2

and F2 on X2 generate an action of the semidirect product %2 X SF2 (with
F2 acting on J2) on X2. For g^^2Xs/5, let ^rg be the Radon derivative

dfJL^gfdfJLx\ since ^rg(s)^ {Xn: n^Z} for all 5, 0^=logxV
r
5- takes integer values.

The action of Z2XSF2 on Y which we are concerned with is
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(x, s, n) -* (x, gs, n - <f>g(sj) , g<E x2 X SF2 .

The action of *2 X SF2 on X2xZ involved here, is nothing but the skew product
of the action of X2XSF2 defined on X2 (see [13]).

It should be noted that the actions of zp and of %2 X SF2 on Y commute,,
and both preserve the measure v.

(iii) The action of Z on Y is generated by the transformation (X s, »)-*•
(x—l9 s, n— 1), where 1_ denotes the sequence (1, 1, •••)eJS^. We denote by
a the automorphism of L°°(Xp, mp) corresponding to the transformation

x—l (denoted 2 in [3])

It is trivial to see that the actions of xp and %2XSFS commute with that of
Z9 so that we obtain an action of G=Zxxpx(z2xsF2) on Y. The corre-
sponding action of G on L°°(Y9 v) will be denoted {ag: geG}; it is easy to
see that this action is free and ergodic.

Finally, let p^Z\xp,
cU(L°°(Xp,mp))} be the one-cocycle constructed in

[3] ; the action of zp here is that induced by translation on Xp. In what follows,
we regard cU(Loa(Xp9 mp)) as embedded in cl](Loa(Y9 v)) in the canonical manner.

Proposition 6e2. Let G = Zxxpx(x2XsF2) act on L°°(Y, v) as above.

Define a>: GxG-+cU(L-(Y, vj) by

a>((m, r, g), (n, s, h}) = if ^(p*)® 1 , n> 1 ,
/ = «! + !

= 1, «=0,

= fl

Then a)t=Z2(G, ^(L^Y, v)J), and 3l(L°°(Y, v\ G, a, o>) is isomorphic with

Cannes' factor Cx^.v-

Proof. The fact that o> is a two-cocycle is the result of a long, tedious,
but essentially trivial computation, which we leave to the reader.

We now examine the crossed product; it acts on the Hilbert space
/2(G; L2(F, *>)), and is generated by the operators, /*(*), xeL°°(y,j>), ;T(0, r, e),
r<=xp, ^"(0, 0, g), g<=z2X SF2, and ^(1, 09 e). It foUows from the form of the
cocycle cy, and Proposition 2.2 that /lw(0, 0, g) commutes with both ^w(0, r, e)

and rOUO,e)? while ;T(lf 0, e)r(0, r, e)F(\9 0, e)* = /<i(<j(pr)®l)AO, r, e) for
all re*,.

Writing these operators in the form given by Lemma 2.5, acting on the
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Hilbert space L\Xp9 mp)®L\X2, ^}®l\Z)®l\Z)®P(xp}®P(x2X SF2\ we ob-

tain generators (#),

a®b®c®l®l(r}®\ , a^L°°(Xp, mp\ b<=L°°(X2, vj,

U(g) =

U, corresponding to /T(l, 0, e)9

where U acts on /2(^x*2x(z2xsF2); L2(XP, mp)®L2(X2, vJ®P(Z)) via

(n, s, h) = Wl)p?®l®^(l))c(«-l3 s, h);

in each case above /l(-) denotes left translation by the appropriate element
on the appropriate space, and u (g) denotes the canonical unitary on L\X2 x Z,
#\xwx) arising from the action of %2XSF2 on X2xZ described above.

Consider the subalgebra generated by the a=a®l®l®l®l®l and the
£/(r); this is nothing but the hyperfinite IIrf actor 319 presented as the crossed
product of L°°(XP, mp) by xp, acting by translation (see [3]). On the other
hand, the subalgebra generated by b®c=l®b®c®l®l®l (b, c as above)
and U(g), g^X2><sF2 is the Iloo-f actor 37X arising in the discrete decomposition
of Pukansky's factor 5\ (notation of [3]). This is since the action of %2 x SF2

on (X2, /^x) gives rise to 5\ via the group measure space construction, while
the action of ^x^ we have described on (X2xZ9 j^\xm^) is the so-called
skew product of the one above, and hence gives rise to 37X via crossed product
(see [6]). Since these two subalgebras evidently commute and the Hilbert
space is already split as a tensor product, they generate

Furthermore, from above we easily see that

UaU* = 3(a) and UU(r)U* = a(pr)U(r)

for a^L°°(Xp9 mp) and r^xpl thus Ad U on 31 gives rise to the automorphism
Sp discussed in [3]. Further, by the definition of the action of G on Y9

UU(g)U* = U(g)9 ge^2xsF2, while l/(*®c)17*=6®^(c), where (%))(/i)
— c(n— 1) for ce/°°(Z). However this describes precisely the automorphism 6K

of Jlx such that 3t(3lK, Z9 6^ is isomorphic with ^ (see [6]). Thus Ad U on
31® ̂ ^ implements the automorphism s"l®6K.

Finally, if we identify the Hilbert space of the crossed product, as described
above, with L2(XpxX2xZxxp(x2XsF2J)®lz(Z)9 (it is the second copy of Z
which has been brought outside), it is clear from the formula above that U
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is of the form V®A(l) (<*(!) denoting translation by 1 as usual). But this

means that the operators (*) generate 5i(5i®37x, Z, s1®0d=Qi,P.v- Q.E.D.

Remark. All other known examples of factors not anti-isomorphic with
themselves (type III factors, given by Phillips [18], and examples of Ilj-f actors,
to appear in a paper by Connes, [3]) may be constructed as above i.e. by crossed
product of an abelian algebra by a discrete group and a cocycle. They are,
if anything, slightly more complicated than the examples Q\tpti presented
above.

In this paper, no attempt has been made at systematically computing the
groups Hl(G\ ̂ UCZC^fO)); to the authors knowledge, no effective method is
known for the general case. Here, however, we would like to collect brief
descriptions of some of the results which are known. Throughout the dis-
cussion, <JL denotes an abelian von Neumann algebra, and G a group acting
as automorphisms of JH\ we will also need to relaize <JL as L°°(F, /j) for some
standard measure space (F, ju); in this case we let (g, r)^GxF-*gr^F be
the point realization of G (see [12]; [19]).

If G is discrete, the whole machinery of algebraic cohomology theory is
available; in particular, arbitrary projective or injective resolutions may be
used to compute the cohomology (see [14]). Thus in particular Hn(Z, ^(JL))
= 0 for «>2, for any action. Suppose G is freely acting on JL\ then
C.C. Moore and J. Feldman (in a preprint) have shown how to define the
groups Hn(G^ ^(JL)) using only the equivalence relation on F arising from
the action of G; thus if the action of G on (F, JLI) is weakly equivalent to a
single transformation, Hn(G, cU(c^))=0, n>2. In particular, if G is abelian,
finitely generated, and acts on F so as to preserve a finite or <7-finite measure
in the class of #, then Hn(G, CU(JI))=0, n>2. The same technique shows
that if G acts freely and transitively on F (i.e. F=G), then Hn(G, cU(Jl))=Qy

n>\.
If G is not discrete, less is known; the techniques of spectral sequences

are available (as in the discrete case), but only in a somewhat limited form
(see [15]). However, if the action of G on F is the "closure of the range" of
a homomorphism from the action of a discrete group H on (X, v) (see [13]),
then H\H9V(L^(X9^ = H\G9V(Jt)) for all «>0. The proof of this
fact follows exactly the proof given in [6] in the case H=Z, G=M, In par-
ticular, by Ambrose's Theorem, [13], Hn(R, CU(JL))=Q for n>2, for any
action of R on <JL which is ergodic.
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