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An Equlslngular Deformation Theory
via Embedded Resolution of Singularities

By

Yujiro KAWAMATA

In this paper we shall give a definition of equisingular deformations of
isolated singularities and prove some results about it such as the existence of
semi-universal deformations.

Roughly speaking, equisingularity means in this paper the existence of a
simultaneous embedded resolution. Of course, in the case of plane curve sin-
gularities the definition coincides with Zariski's classical one.

In Section 1 we shall define equisingular deformation and prove some ele-
mentary properties of it. In Section 2 we shall study the deformation of locally
product type of the pair obtained by the embedded resolution of singularity. In
Section 3 we shall prove the existence theorem of semi-universal deformations.

The author would like to express his heartfelt thanks to Professor S. litaka,
the conversations with whom were very fruitful and encouraging, and to Pf. M.
Merle who pointed out to the author Example 2.

§1. Definitions

Let (X, o) be a germ of reduced complex space which is non-singular out-
side of o. By abuse of language, we sometimes write only X instead of (X, o)

and mix up the concepts of a germ of complex space and a representative of it.
Since X is local, it admits a closed immersion i: X-*A into a non-singular

complex space A, where dim A = dimmXi0/mxf0 (A is also local). Denote N
= dim A and n=dim X. Note that N—nis not necessarily 1. Let us consider
the following commutative diagram (#):
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» A,

where /is a point modification of A at o obtained by succession of monoidal
transformations with non-singular centers, such that X= red f"\X) is normal
crossing in the sense of the following Definition 1. That is, (*) is an embedded
resolution of X in A. Denote g=f\ X, and let X= Y U E, where Y is the strict
transform of X and £=red/~1(o) is the exceptional locus. In particular,

A-E - >A-{o}.

Definition 1. Let A be a complex manifold and X a closed analytic subset
of A. Xis called an analytic subset of normal crossing if the following condi-
tions are satisfied:

(1) X— \JXi9 where the Xt(l^i^h) are complex submanifolds of A.
1=1

(2) For each jpeEyl, there exists a neighborhood U of p and a system of local
coordinates {zlf •••, zj on £/ such that X~ {zr._1+1=---=zri. = 0} for l^Ji^A,
where the rf are integers such that — l^r^n and r,-gry if ^j, and we un-
derstand that ZQ= 1.

We note that for any X there exists at least one such (*) by [5].

Definition 2. An equisingular deformation (in this paper) o/ X of type (*)
consists of the following data:

(1) complex spaces 3£, 3£ S, <JL and and a point ,$0 of S,
(2) morphisms p, q, /, /, F and G which make up the following com-

mutative diagram

S

where p is the projection, q is flat, /, and / are closed immersions and F is a
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modification of A X S along {0} X S. We put p=poF and q = qoG.
(3) an isomorphism ^ from (*) to the diagram obtained by the base

change of ((*)) by {s0}-»S,

(4) we claim that ((*)) is locally product in the sense of the following (such
a deformation will be called also to be logarithmic cf. [7]): for every x^JL there

is a neighborhood U (resp. V) of x in c^? (resp. of ;>=X*) in S) and an iso-

morphism a : u-»(u n^GO) x ̂  which sends u n 5f onto
X

Definition 3. A flat deformation (q, i/r) of X, where g: 3£-*S is a rnor-
phism of complex spaces and i/r: X—>3£x {s0} is an isomorphism, is said to be

S

equisingular (in this paper) if there is some embedded resolution (*) of X and
an equisingular deformation of type (*) which induces (q, ty).

Remark 1. (1) In case n=l and N=2, our definition coincides with
ZariskFs original one.

(2) Our definition is strictly stronger than the one defined by J. Wahl [15]
(see Example 1).

Remark 2. For any geometric fiber Xs of q, dimmXst0s/!nxSiOS = dimA.
(This fact justifies the Definition 2.)

Proof. Since q is flat, the dimension of the Zariski tangent space is upper
semi-continuous. Suppose that this is not constant. By a base change we
obtain the following situstion: (1) S is a smooth curve, (2) There is a point

SQ^S such that dim.mXjttQJmxSiQg is equal to A^ if S = SQ and to N2 if otherwise,
where Ni>N2 are integers.

Let L be the first infinitesimal neighborhood of the zero section o X S in
A X S, that is, the ideal of L is the square of that ofoxS. Put 3CL = 3Cr\L.
By assumption, 3£ L X (S — {s0} ) defines an (S—{,s0})-valued point a of the

s
Grassmanian variety G(Nl, N2). Since the latter is proper and seperated, there
is a unique $- valued point OL of G(Nl9 N^ inducing a. a defines a subspace V

of L inducing ?£LX(S-{sQ}) on Lx(&-{s0}). Then 3£L=V, which con-
s s

tradicts the assumption. Q.E.D.

Proposition 1. Let q: 3£-*S be an equisingular deformation of X where S is

reduced. Then there exists a homeomorphism h: Ax S-^A X S which sends 3£ to
XX S and q = prso/?.
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Proof. Using a partition of unity, we obtain a diffeomorphism hi <JL-*

AxS which sends each component of 3£ to the corresponding component of

Xx S and q=pTsoh. h is blown down to the desired h. Q.E.D.

Corollary 2. When N=n + l, i.e., in case of hypersurface singularities, any

equisingular deformation preserves the Milnor number y.

Let M be a general family of hypersurfaces in A parametrized by S. Let

He.A be the fiber of M over j0. Let 3£M (resp. XH) be the smallest closed

analytic subset of AxS (resp. A) which induces (3£CiS) — (oxS) (resp.

(XnH) — {o}) on (A— {o})xS (resp. A— {o}). They are called the strict

general hyperplane section of 3£ (resp. X) by c^ (resp. H).

Proposition 3. 3C^-^S is an equisingular deformation ofXH.

Proof. Trivial.

Corollary 4. When N = n+l, any equisingular deformation preserves &* of

Teissier, hence satisfies the Whitney condition (cf. [11] and [12]).

Example 1. (Briangon—Speder [12]) N = 3 and n=2.

A=Specan C{x, y, z}, S=Specan C{t} and 3£dA x S is defined by the

equation x5+y7z+z9+txy6=0.

Then q: 3£->S is (0) flat, (1) equisingular in the sense of /. Wahl [15],

(2) p. is constant, but (3) &* is not constant, hence (4) not equisingular in the

sense of this paper. Note that (5) 3£M is not equisingular.

Remark 3. In case TV =n+1, we do not know whether our definition is

stronger or weaker than the Z-equisingularity in the sense of J.-P. Speder [10].

For a fixed XczA, there can be various embedded resolutions. Let

g

X

JTJL

I/

be another embedded resolution of XdA. Suppose that there is a morphism

a: A-^A' such that f=f'°a. Then a induces ft: X-*X'.

Proposition §* Let 3£, Sf 3£, <Jl, p, q, etc. be an equisingular deformation

of type (*) of Xc:A. Then there exists a neighborhood S' ofsQ in S such that

there exists an equisingular deformation 3£f, S', 3£f, Jf, p', q1', etc. of type (*)x
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where X' = 9£ X S" and qf = q X S".
^ s

Proof. We regard ^4 as an open set of the projective space PN. The point

modifications / and F can be seen to be done for PN and PN X S, respectively.

Since / is blown down to /', F can also blown down to some F' in some neigh-

borhood S' of SQ in S by Theorem 3 of [7]. It is easy to check that F' induces

an equisingular deformation of type (*)/ Q.E.D.

Remark 4. There is no minimal embedded resolution even in case N = 3

(0,0,1)

(a)

(0,1,0)

(0,15OJ
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and n = 2. For example, let X be defined by an equation P =
Then there are two embedded resolutions corresponding to the two decomposi-
tions of positive cone of dimension 3 drawn in Figure 1. (See Example 2).
We can easily chech that there is no embedded resolution which factors through
both.

Example 2« (A. N. Varchenko [13]). Let Xbe a hypersurface singularity
defined by an equation P=0, and let F(P) be the Newton polygon associated
to P. P is said to be non-degenerate if for any facet reT^P), the polynomials

x1 — -, °°a,xN — ? have no common zero in {x^CN;xl9 -°,xN = Q}. In this
dx1 dxN

case Varcenhko shows using the theory of toroidal embeddings that there is a
modification /: X(r)-»CN depending only on F = r(P) such that red/^CT) is
normal crossing. Hence we know that any small deformation of P preserving
the Newton polygon is equisingular with respect to /. However, for arbitrary
complicated singularity which is usually degenerate, we should consider the geo-
metric process of resolution, to which corresponds a sequence of Newton
polygons.

§2. Logarithmic Deformations

Let us consider the situation (*) of Section 1. For some time we shall set
aside the lower half of (*) and investigate the logarithmic deformation of
J : X->A, that is, the deformation which is locally product in the sense of
Definition 2. We recall the definition of the logarithmic tangent sheaf (Defini-
tion 4 of [7]).

Definition 4. Let A be a complex manifold and X a closed analytic subset
of A. The logarithmic tangent sheaf TA(log X) is the subsheaf of the tangent
sheaf TA consisting of derivations which sends the ideal sheaf of X in A into
itself.

By the general theory of deformations of manifolds (Exp. Ill of [4]), the
infinitesimal deformation of <JLdJl is described by the cohomology groups of
TA(logX) as follows (cf. §1 of ,[?]): (1) H\A9 TA(logX)) is the set of iso-
morphism classes of all deformations over tS'=Specan C[x]/(x2), (2) The ob-
struction of extending the deformation lies in H \A, Ti(log XJ) (Note that since
Xis a germ, H'(A, TA(logX)) = Rif*TA(logX) for i>0.)

Let
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T

be a logarithmic deformation of f: X->A. Replacing neighborhood of ,y0 in S,

if necessary, Jl can be blown down to A X S. Denote by F: <JL->A X S the
canonical morphism. F induces an isomorphism Jl — 8-*(A— {o})x5f. Let
3£= 3£s be the smallest subspace of A X S inducing Tr\(Jl—G) in (A— {o})x 5.
!TS is called the strict image of 5f over 5.

Proposition 6. Under the situation above, there exists a germ T of closed

analytic subset of S at SQ satisfying the following conditions: If Z is a closed

subspace of S such that the strict image 3£z of3£x Z over Z is aflat deformation
s

of X over Z, then the germ of Z at SQ is contained in T.

We need the following

Lemma- 3£z is aflat deformation ofX over Z if and only if the geometric

fiber 3£z X {s0} of 3£z over SQ is reduced, hence isomorphic to X (we shall say
z

shortly that Z satisfies the property (H) in this case).

Proof. Put C=0z>So, D = 0AxZ, E=Ozz = D/I and m = mZiSQ. There is
an exact sequence

0 -> Torf (Clm, E) -> m®E -> E .

Let alt *•-, ah be elements of m which induces a basis of m/m2. Suppose that
h

an element /=2 Qi®[fA C/ie^) of m®£" is mapped to zero in E. Consider-
»=i

ing the values of the functions on <Jlz, we conclude that f{ is in (mD, I),
Therefore, replacing the representatives f{ of [/)•] by suitable ones, we may

h
suppose fi^mD, that is,/J=2 «yg»y f°r some give^« BY a similar argument,

we may suppose gtj is in m, and so on. Hence/is in the image of ( fl m*)®E9

and the latter is zero. Thus, Torf(C/m, E) = 05 which shows the lemma.
Q.E.D,

Proof of the Proposition 6. We have to show the following two claims:
(1) If Zl and Z2 satisfy (H), then Z1 U Z2 also satisfies (H).

(2) If an ascending chain of subspaces ZxcZ2C ••• satisfy (H) and Z is the
smallest closed subset of S containing all the Z,-, then Z satisfies (H).
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Proof of (I). As long as the germs are concerned, Z satisfies (H) if and
only if every function/0 in OA(—X) can be extended to some/ in O^z(—3£z),

where J?z = J?xZ and Tz = TxZ. Since 3£z X {s0} is reduced, a£ X
s s 1 z± l zl

(Z1r\Z2) has no function whose support is on the zero section. Therefore,

every function /12 in 0^Z^Z2(—3£ZlnZ,) can be extended to some / in Oj[^

(—3?Zl). Now, starting from/0 we find/12 over Zx n Z2, and then/ and/2 over
Zl and Z2, respectively. They patch together to the desired/.

Proof of (2). Let 7y be the ideal of Z, in Z for j = 1, 2, — and m=mZiSQ.
Since for any k^Z there is some j such that m*Z)/y, (2) is equivalent to the
following

(2 bis) If Z satisfies (H), then Z satisfies (//), where Z is the completion
of Z by the ideal m.

A

Proof of (2 bis). We have only to prove that the completion 3?z = proj-lim
3CzxZ/mk of 3£z with respect to the ideal mO^£z has no function whose

Z
A

support lies on the zero section. For, if this is shown, then 2£z is flat over Z
by the assumption and hence 3£ZX {s0} =2£ZX {SG} is reduced.

!? £Zi !o

By assumption, for any general hyperplane defined by the equation R=Q,

the multiplication R: 0^z-^0^z is injective. Since the completion is a flat
operation, R'O^-^O±Z is also injective, which shows (2 bis). Thus the
proof of Proposition 8 is completed. Q.E.D.

Proposition 7. IfX is normal, then the T in Proposition 6 is equal to S.

Proof. By proposition 6, we may assume that S=Specan C[t]/(th) for
some integer h. Let/0 be any element of O^(—X). We shall denote by the
same letter the trivial extension along S. Since/0 = 0 on X, there is some/ in
07g such that / 0= t f i on 3£. Since X is normal, the restriction of / to X is also
a function on X. Let gl be a representative of it in 0A. Since gi = ̂  on Jf,
there is some /2 in 0^ such that /=g1 + tf2, hence /0—^ = ?2/2. Repeating the

same process as above, we shall at last obtain elements glt •••, gk_1 of OA (or

0^xs) such that /0-*gi-*2g2 ^"^-1 = 0 on T. The left hand side of
the equality gives the desired extension of/0. Q.E.D.

Corollary 8. When N=n+l,T=S.

Proof. When n is greater than one, X is normal. When n= 1, the Corollary

will be proved in Section 3 (see proof of Corollary 10.)
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Example 3. (F. Pham p. 190 of [3]). N= 2 and n = 1. A = Specan C{xlt x2}
and X= Specan C{xl} x2}/(xl+xl). By a minimal embedded resolution of X,
we obtain A, X, etc. Then, dimffx(^4, T^log Jf)) = 2. A semi-universal de-
formation is given by S = Specan C{tl} t2} and 36 = Specan C{xlf x2, tl912}/

(xi+xl + t&xl + t&xl) in AxS. For each t = (tl,t2) in S, timH\At9Tzt

(logJf,)) equals to 2 if t2 = Q, and to 1 if tz^Q. On the other hand, F. Pahm
has shown that the singularity along the line ^ = 0 is different from that along
ti ̂ 0 in connection with the versal flat deformations.

§3. Semi-Universal DeformationSo

In this section we shall prove the following

Theorem 1. Consider the situation (*). Then there exists a semi-universal
object for all equisingular deformations of type (*), that is, there exists an equi-
singular deformation 3£, S, 3£, Jl, p, q, etc. of type (#) such that for any equi-
singular deformation 3£', S', 3£*', JHr, pf, qr, etc. of type (*), when we replace S'

by a suitable neighborhood of SQ if necessary, there is a morphism a: S'-^S and 3F,

-£'> P*> $'> etc- are obtained by the pull-back of3C, 3£, p, q, etc. by a, and more-
over the tangent map Ta: Ts/)S/->rS)So is uniquely determined.

Proof. By Proposition 6, we have only to prove the existence of a semi-
universal logarithmic deformation of ?: X-*A.

As in the proof of Proposition 5, embed A in a point modification Z of a
projective space PN. By Theorem 1 of [7], there exists a semi-universal loga-
rithmic deformation

el—>&l

\ /
sl

T

of E-*Z. Over this we shall construct the desired deformation.
First, we shall prove the theorem under the condition that n is greater than

M

one. Let E= U E{ be the irreducible decomposition and a=(alf --, aM) a se-
i = l

quence of non-negative integers. Denote by Ea (resp. Ya, 81, tyl) the in-
finitesimal neighborhood of E (resp. Y H E, g\ ^ n 81} of order a{ along E{

(resp. Ei9 8\, 8}). Applying the relative Douady theorem (Theorem 2 of [9])
for S1, 61 and Qgi instead of S, X and Q there, respectively, we obtain a uni-
versal family ^1-^81 X Hsi(Qgi) over a complex space Hsi(Oe$. We consider
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a small enough neighborhood in Hs* (O&) of the point corresponding to
Ya n Ea. Then there is a closed analytic subset Va of Hs± (Og$ near that ponit
which represents the flat families of locally product type in the sense of Definition

2. On the other hand, the tangent space of the functor of the deformation of

locally product type is Hl
a = H\A, TA (log£J (log YJ) by Exp. Ill of [4], where

TTL (log£c) (log Ya) is the intersection of TZ (log £J and TZ (log Ya) in TZ.

Therfore, there is a canonical surjection TVa-*Hl
a. Let Ma be the kernel and

La some complementary space of it in TVa. We may suppose that Va is em-

bedded in a linear space Wa=TVaandLa is a linear subspace of Wa. Put

Sa=Vaf}La and let 3/flc<?flC<^ be the induced family over Sa, where Gtt

and J?fl = J?1x5fl.

Lemma. Q}aC.GaC.Jla over Sa gives a semi-universal deformation of locally

product type of

Proof. Let G be the automorphism group of an infinitesimal nieghborhood

of some order k of the origin of A. G acts on Va if k is large enough. Let

3/c£'c cJI' over J? be any deformation of locally product type of YaC.EaaA.

By the universality of the relative Douady space, there is a canonical morphism
a: £x <7->Fflc Wa. If the order k is sufficiently large, oX TG is sent onto Ma

by Tv. Applying the implicit function theorem to the composite morphism

a
BxG-*Wa-*Wa/La = Ma, we obtain a morphism s: B-*G such that o(b, s(b))

falls into La for all b near the origin. This proves the Lemma. Q.E.D,

Note that Sa is an ^-complex space and if a^b, then there is a canonical

morphism Sa-*Sb. By the exact sequence of sheaves:

0->Tz (log*) -» 2* (log J5J (log Ym) -> ̂ r (- Ya) -> 0 ,

where JVy is the normal sheaf of Y in the sense of Proposition 1 of [7], we ob-

tain the following exact sequence :

H* (A, Tz (log Ea) (log 78)) -> H" (F, JVX- O - ^ff1 (^, ̂ (log *))

- /f1 (X, ̂ (log £.) (log 7a)) - ^l (Y, NY(- Y$.

We assume that a=(alt • • • , aM) is large enough and the af. have some appro-

priate ratioes each other. Then H\Y, NY(— Ya)) vanishes by Serre's theorem.

On the other hand, the image of the map H\A, ^(logEJOog Fc))->

H\Y,NY(-Y^) coincides with the intersection of H\Y, NY(- YaJ) and the

image of the map H\A, ri(log E))-*H\T, NY). Thus the former is surjective
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under the same kind of the conditions on the a{ as above. Therefore, under
the assumptions above, H\A, Ti(logZ)) is mapped bijectively onto Hl(A,
IXlog Ea)(log YJ). This implies that the canonical map Sa-*Sb is a closed im-
mersion (near the origin) for such a and b, a^b. Since the local ring of the
complex space is noetherian, we finally conclude that (the germ of) the spaces
Sa are stationary for large a and appropriate ratioes. Denote by S the space
thus obtained. Put 6=6l X S and Jl=J?1 X S.

si si
Summing up, we have obtained a complex space S over which a sequence

{Q}ad8ac:Jl} of semi-universal deformations stands. We have to construct
analytic spaces from the data given above. Let As be the completion of ̂ 4S

= AxS along oX S. Then, JL = <J, X As is isomorphic to the completion of JL
AS

along 8. We have a subspace 0} of JH corresponding to the sequence {<%}.
Note that there is a canonical isomorphism from Jl — 8 to As — (oxS). Let
3£ be the smallest subspace of As which induces ^—(50% m A — (oxS).
By Theorem 1.4 of [1] and using the technique of Chap er II of [2], for arbitrary
number c we obtain a complex subspace 3£ of As which induces the same thing
as 3£ on the oth infinitesimal neighborhood of o X S in As. Then by the main
theorem of [6], if c is large enough, the completion of 3£ along o X S is isomor-
phic to _£. We shall show that the space 2£ thus obained is the desired semi-
universal deformation.

Let ^!-^B (and .3?', etc.) be any other equisingular deformation of type (*).
For large c, the oth infinitesimal neighborhood 3?<J is isomorphic to the pull
back of 3£e by a morphism ac:B-*S. By [6] again, 3£' is isomorphic to the pull
back of 3? by a = ac. Thus, the proof of the Theorem 1 in case of n^2 is
completed.

In case n=l, there is nothing difficult. The movements of the curve seg-
ments 3? in Jl1 have no obstructions, since they are strictly local. We can
make all at once the semiuniversal family instead of the step-by-step construc-
tion above. Q.E.D.

Corollary 9, IfS=Tin the notation of Proposition 6 and H\A, Ti(log XJ)
= 0, then there exists a semi-universal equisingular deformation of type (*) whose
base space is non-singular.

Corollary 10. IfN=2 andn=l, then there exists a semi-universal equisin-
gular deformation whose base space is non-singular.

Proof. Let (*)w be the minimal embedded resolution of X. Since any
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equisingular deformation is obtained as of type (*)* by Proposition 5, we may

restrict our attension to the situation (*)*. Since the point blowing ups have

no obstructions, the base space Sm of the semi-universal logarithmic deforma-

tion of XmdAm is non-singular. Then the space 3£m = 3£m
sm obtained by a

bolwing down is a Cartier divisor in A X Sm. Therefore, the geometric fiber

3£m X {5-0} is also a Cartier divisor and hence reduced. Thus 3£m is flat over
sm

Sm. On the other hand, the cinsideration of dimensions shows that H\A,

Tz(log X)) = 0. Thus Corollary 10 is proved by Corollary 9. Q.E.D.

Proof of Corollary 8 continued. Since any 3£z (in the notation of Proposi-

tion 6) is obtained from 3£m by a pulling back, 3£z is flat. Q.E.D.

Remark 5. Corollary 10 was first obtained by J. Wahl [14].
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