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On the Green Functions of 1-DImensIona!
Diffusion Processes
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Yuji KASAHARA, Shin'ichi KOTANI and Hisao WATANABE

§0. Introduction

Let X= {Xt} be a Markov process with a measurable state S. The Green
operator Ga (a^O) of Xis usually defined by

ft f(x\ _ w r^/(X) A,l ^

= ( <?„(*, cfy)/(j)
Js

for every bounded measurable function/(x), where

G.(x, E) =

For every a>0, G# is always well-defined, but G0 does not exist in general, as is
seen in the case of 1- or 2-dimensional Brownian motions. However, in many
cases, G0/can be defined to be the limit of G^/as a-»0 if we restrict /to be in
a certain class of functions, called the domain of the potential operator. There
have been a lot of works on potential operators for Markov processes, e.g. G.
Hunt [1], J. Takeuch,i T. Yamada and S. Watanabe [2], G. Kemeny-J.L. Snell [3],
R. Kondo [4], K. Yosida [5], K. Sato [6] and T. Arakawa and J. Takeuchi [7].
An important class of recurrent Markov processes for which we can define
potential operators is the following: Suppose that Ga(x, dy) (a>0) has density
ga(x, y) with respect to a measure v(dy) of the following form:

(0.1) ga(x9 y) = h(a) + u(x9 y) + e(x,y; a) ,

where A(a)->oo and e(x, y\ a)->Q as a->Q. Then it is clear that for a reasona-

bly broad class of functions with ^-integral 0, i.e. \f(x)v(dx) = Q, we have
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lim GJ(x) = lim ( ga(x, y)f(y)»(dy)
a-+Q os->o Js

{ga(x, y)-h(a)}f(y)»(dy)

s

which suggests that we can define G0 as

(0.2) GQf(x) = \ u(x,
Js

For example, in the case of 1 -dimensional Brownian motion, we have

v(dy) = dy , h(a) = -= , u(x, y) = - \x-y\9

and

$
00

f(x)v(dx} = 0. We
-00

remark that the representation (0.1) is explicitly given for stable processes [2]
and Bessel processes [7]. This representation is useful in many cases; for ex-
ample, one of the authors [8] has recently obtained a limit theorem for occupa-
tion times based on the representation (0.1).

The purpose of this paper is to determine the class of all 1 -dimensional
diffusion processes having the representation (0.1). Incidentally, this class of
diffusions is also characterized by the same kind of conditions as "normality"
in [4]. We will see that this problem is closely related to a comparison theo-
rem of Green functions of one-sided diffusion processes, which itself is of
interest and has been studied by many authors (cf. [9]-[12]). In fact, charac-
terizing this class in terms of speed measures will turn out to be equivalent to
finding a necessary and sufficient condition for the Green functions of any two
one-sided diffusion processes to have the same asymptotic behavior when a-»0:
LetZ(r)bea diffusion process with state space (— oo5 oo) having the infini-

tesimal generator -- and X^t) [or X2(t)] the diffusion process with genera-
dm dx

tor -- restricted to (— oo,0] [or [0, oo) resp.] (0 is a reflecting barrier).
dm dx

Then, denoting by g^x, y) [or ga
(i)(x, y)] the Green kernel of X(i) [or
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i= 1, 2, resp.] we will see that ga(x, y) has the representation (0.1) if and only if

(0.3) li

exists (Theorem 1).
Next we show that the latter holds if and only if

(0.4) lim^ (^ + 00)

exists, where u^x) [or u2(x)] denotes the inverse function of xm(— x9 0)
[or xm[Q, x) resp.] (Theorem 2). We will also obtain the explicit formula of
u(x,y) for processes having the representation (0.1); if the process is null-
recurrent and if we take the scale s(x) = x as usual, we have

u(x9y) = -±.\x-y\+0(x+y)9

where 6 is a constant M 6 \ ̂  — J depending on the limit (0.4) .

In the last section we will give a Tauberian theorem for h(a), which is a
generalization of the result for one sided-diffusions obtained by Y. Kasahara

[9].

§1. 1-Dimensional Generalized Diffusion Processes

Let m(dx) be a Borel measure on jR=[— oo, oo] satisfying the following
conditions: There exists an interval [/_, l+]^R such that

m((x- , x+)) < oo for every (x- , x+) c [/_ , /+] ,

and
m({x}) = oo for every x&(l-9 /+) .

We shall call a measure m(dx) with the above property an inextensible measure.
Without loss of generality we may assume Oe[/_, /+]. Throughout this paper
we use the convention:

c- oo = oo c>0 and =0 if c = 0 , and — = 0 .
oo

We introduce a generalized diffusion process {Xt} with speed measure
m(dx) and scale s(x) = x as follows.

First define a pair of functions {<i>(x, a), -fr(x9 a)} on R2 by the equations :
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(1.1) #(*, «)=!+« [\x-yWy, a)m(dy\ »
Jo

•vK*, a) = x+a\ (x—yyp(y9 a)m(dy) .
Joo

Here for x&(L9 /+) we define

0(x, a) = \ir(x9a)\ = oo .

{0, V} are, roughly speaking, the unique solutions of

, a) = 1 , 0'(0-, a) = Oi

For a>0, set

) and

Then /z±(a) are non-decreasing analytic functions with the following integral
representations :

(1-2) *±(«)=(
j R±<f>(x, a)

where R+ = [0, oo) and R_ = (—00, 0] .

Let

u±(x, a) = <f>(x, a)^——ir(x9 a) ,

and

(1-3)
h+(a)

Then, for <x>0, u+(x, a) [u_(x, a)] is a non-increasing [non-decreasing, resp.]
and non-negative function. Since their Wronskian equals h(a)~l

9 we can define
the Green function ga(x, y) of order a as follows :

ga(x, y) = g<»(y, x) = h(a)u+(x, a)u_(y, a) for x^y .

Let S be the support of the measure m(dx) on (/_, /+) and B(S) be the

1) \ = \ forj<;cs and = —I
' )x hy.x) h
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space of all bounded measurable functions on S. Define the Green operator
G* on B(S) by

Gaf(x) = \ g*(*> y)f(y)m(dy) .
Js

Then, unless S is empty, we can use stochastic time change to construct a

unique time homogeneous strong Markov process X = {Xt, C} on S satisfying

G */(*) = E,

for every f^E(S) and a>0. We call this process X a generalized diffusion

process with speed measure m(dx) and scale s(x) = x. Let a+ [a.] be the su-

premum [the infimum resp.] of S. If a± and m((a_, a+)) are finite, then 0(x) =

Gaf(x) (f^B(s), a>0) satisfies the boundary conditions:

(in case /+= oo [/_ = — oo], the above equality must be interpreted as (/>'(a+) = Q

[0/(a_) = 0 resp.]). Our diffusion process turns out to be an ordinary one if and
only if S is an interval.

§2» An Asymptotic Expression of g«(x9 y)

First note

/+ = A+(0+) and /_ = -A_(0+) .

This is easily seen from (1.2), and this fact will be frequently used later. More-

over the process is recurrent if and only if h(Q + )= oo, which is equivalent to
/ + = — / _ = oo (cf . [9]). Let S = S H (0- , a+) and define

C0(S) = {0; 0 is a continuous function with compact support in S} .

a(x) = \ (x-y)m(dy), T(X) = \ (x-y)ym(dy),
Jo Jo

Set

and

Then our first theorem is

Theorem 1. Suppose 5r^0. Then the following four statements are equi-

valent:
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( i ) g*(x, y) admits the following expression with a constant 0 M 0 1 <£ —
\ 2* •

g«(x, y) = gJV. Q)~\x-y\ + 0(
2 m(K)

where e(x, y; a) converges to zero as a—>0 uniformly in (x,y) on every compact
set ofSxS.
( ii ) The following limit exists ;

*->o h+(a)

(iii) Foranf<=C0(S)with (f(x)m(dx)=Q and (xf(x)m(dx)^Q, the function

G*f(x) converges to some function as a— >0 at every point xt=S.

(iv) For every /eC0(S) with (f(x)m(dx) = Q, Gaf(x) converges to GJ(x) uni-

formly on every compact set of S.

Here we have the relations',

and s^^)-h(a).

Furthermore, the limit function in (iv) is given by

Remark 1. Since h+(a)= oo if and only if m(R+) = Q, if at least one of the
boundary points of the state S is regular the condition (ii) is satisfied automa-
tically.

Remark 2. If the process is transient, which is equivalent to /z(0 + )<oo,
for every /eC0(S) Gaf(x) converges to GQf(x) uniformly on every compact set
of S, where

G0f(x) =

We remark that A(0+) can be written as
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In this case the term a(y)/m(K) will automatically disappear in the expression
G0? because /*(0+)<oo implies m(K)=oo.

Remark 3. We can also prove that sup | Gaf(x) | < oo in (iv).
0<05<1

*es

To prove the theorem, we need two lemmas.

Lemma 2.1. The following asymptotic expression holds:

(2.1) ah(a)= _- + 0(1) as
m(R)

Lemma 2.2. Suppose S3=0. Let 6(0)=^=^. Then g*(x,y) can be ex-
h+(a)

pressed as follows:

(2.2) s.(x, y) - gjft, 0)-±|jr-,,| -Ijy+.

where e(x, y\ a) converges to zero as <x->0 uniformly in (x, y) on every compact

subset of SxS.

Proof of Lemma 2. 1 . Since we have

(see (1.3)),
ah(a) ah+(a) ah -(a)

we need only to show

(2.3) ah+(a) = --- + o(l) as
m(R+)

In case h+(a) = oo (i.e. m(JR+) = 0), (2.3) is valid. If otherwise, by (1.2) we have

By a simple change of variables, we see

— , <x )
a /

from which it follows that 0 — , <x )->! +m(^+)^: as a-*Q and that
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2 VL la)

Hence, by the dominated convergence theorem, we have

dx I
~* Joo {l+m(R+)x}2 m(R+)

which completes the proof.

Proof of Lemma 2.2. Let

Then the solution of (1.1) can be represented as

*(*, «) = 2 «V*(*) ,
*=0

which implies

<l>(x, a) = 1 + aa(^) + O(a2) as a-^0 ,

uniformly on every compact set of S. Similarly we have

ir(x, a) = x + ar(x) + O(a2) as a -» 0 .

Therefore observing /^(a)"1 are bounded, we see

u±(x, a) = <f>(x, a) T _L-^(^ «)

A±(cr) A±(a)

The assumption 5^0 implies A(a)<cx>, hence

~ A±(a) ~

Consequently, applying (2.1), we have for x^ y

S*(x, y) = h(a)u+(x, a)u-(y, a)

= /,(«) - £&-x+ ̂ Ly + ah(a)ia(x)+ o(y)}
h+(a) h.(a)
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xy + O(a)
«) y ^ }

m(R)

^_ _ ^v i 7/ i ^v- - - / «^S *•£

which completes the proof.

Proof of Theorem 1. We can obtain the theorem immediately! from the
expression (2.2). Q.E.D.

We call a generalized diffusion process normal if it satisfies the condition
(iv) of Theorem 1 (and hence if it satisfies anyone of the conditions in Thorem

1.). Thus, if Xis normal there corresponds a constant d( |0| ^ — ] such that
^ £* '

(i) of Theorem 1 holds. We call then that X is normal with parameter 0. The
concept of normality for recurrent processes was originally introduced by

Kemeny-Snell in the case of Markov chain and our definition is similar to that
of R. Kondo [4].

§3o A Condition for the Process to Be Normal

It is of interest to give conditions for the process to be normal in terms of
the speed measure m(dx). By virtue of (ii) of Theorem 1, this problem can be
reduced to the following: Under what conditions on two inextensible measures
on [0, oo ] m^dx) and m2(dx) do their Green functions have the same asymptotic
behavior as a-»0? Our aim here is to find a necessary and sufficient condition.

Every inextensible measure m(dx) on [0, oo] can be identified with a non-
decreasing, right-continuous function m(x) = w([0, x]), 0^;c<oo. We will
denote the class of all such functions by JM. For every m^^H, using the
solution (1.1), we define

(3-D * (« )=( -**
Jo (f>(x, a)

For simplicity, we call this function h(a) the h-function of m. It should be
noted that h(a)=Q if m(x)= oo and h(a)= oo if m(x)=0. Let M be the set of
all functions h(a) such that

h(a) is holomorphic on C\(— oo3 0],
(Im a) (Im h(a)) <;0 for every a e C\R,
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and h(a):>Q for every aG(0, oo)
or h(a)=oo .

Then (3.1) gives a one-to-one correspondence between JM and M (M. G. Krein
[13]). We next define

u(x) = sup {y;

and call it the u-function ofm. Remark that u(x) is a non-decreasing continuous
function tending to oo as x-»oo if u(x)3=°°, or equivalently, if m(x)=£Q.
To study the asymptotic behavior of h(a), w-function is more convenient than
m(x) itself not only because w-functions are continuous but also because we can
prove that

(3.2) ±^

a

holds for every a>0 provided u^o°. However, we do not go into details of
(3.2) since we will not use (3.2) itself in this paper. We need only the follow-
ing two lemmas:

Lemma 3.1. Ifh(a)^M corresponds to u(x), then for every positive con-
stants a and b, ah(ba) corresponds to au(x/b).

Proof, The assertion can be easily proved by a simple change of variables
in (1.1) and (3.1). Q.E.D

Lemma 3.2- Let un and hn be the u-functions and h-functions of mn(x)^JM
(n=\,2, • B O ) respectively. Then

(3.3) lim un(x) = u0(x) for every x>Q
»->oo

if and only if

(3.4) lim hn(a) = h0(a) for every a>0 .
»-*•«>

Proof. It is easy to see that (3.3) is equivalent to

(3.5) limmn(x) = mQ(x)
»->-oo

at every continuity point of m0(x). On the other hand, (3.5) is equivalent to
(3.4) (see Theorem 1 in [9]).

Theorem 2. Let h; and ui(i=lt2) be the h-functions and u-functions of

Then
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(3.6)
*->o ^ (a) x+°° H! (x)
[<*>] [Q]

as far as at least one side of (3.6) exists.

Proof. We first remark that, from any sequence {mn(x)}n=id<3tt, we can

choose a subsequence {mn, (x)} and m*(x)^JM such that

lim mn,(x) = m*(x)
n'+oo

holds at every continuity point of m*(x). Therefore, denoting by un(x) and
u*(x) the w-functions of mn(x) and m*(x) respectively, we see

lim un(x) = M*(JC) , x>0.
H-+OO

From this it easily follows that for any sequence {fljT-i of positive numbers
there exists a subsequence {&M} of {an} such that

(3.7) lim **fe) = M*(X) f

where w*(̂ :) is the w-function of some w*(^)ec3f/. However, by Lemmas 3.1
and 3.2, (3.7) is equivalent to

(3.7)' H

where h*(a) is the /z-function of m*(x). Now assume

(3.8) lim ^^ = ^ (0^^^ oo) .
»->«> Aj (a)
[°°]

Then, if aM->oo [or 0], from (3.7/ it follows

(3.9) ]i

Using Lemmas 3.1 and 3.2 again, we see that (3.9) is equivalent to

(3.10) U
n-»

Setting ^:= 1, we have

(3.11) li
»+°° id (6.)
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Since {an} is arbitrary, (3.11) implies

(3.11) nm^2&} = 0 .
«•»-»!(*)
[0]

We can prove the converse similary, so we omit the proof. Q.E.D.

As an easy corollary of the theorem above we have the following theorem
which answers the question we stated in the head of this section.

Theorem 2'B Let X be a generalized diffusion with speed measure m(dx).

Then X is normal with parameter 6 if and only if

(3.13) -+-«+(*) \ \+e >
where u+ and w_ are the inverse to xm([Q, x]) and to xm([—x, 0]), respectively.

Remark. It is not difficult to see that

(3.14)
m([Q, x])

implies (3.13) with 0 = 1. However, the converse is not necessarily true. For
example, set m([—x,Q]) = xe* and m([0, x]) = e*. Then, (3.14) fails to hold
though (3.13) with 0 = 1 is valid. In fact, (3.13) is equivalent to the following:

>49 for
m([0, x]) 0

and
,. m([—Ax9 01) ^ 1 rhmsup— - - - — ̂ <— , for
«+«- m([0, x]) ~ 0

§4 A Condition for h(a)=ga(®, 0) to Be Regularly Varying

One of the authors [8] showed the following limit theorem for normal pro-
cesses. Let X={Xt} be a recurrent normal process and let /eC0(S) with

\f(x)m(dx) = 0. For some non-negative increasing function u(t) we consider

the limiting distributions of random variables

(4.1)
u(t) Jo

If h(a) varies regularly at 0, then (4.1) converges in law to the bilateral Mittag-
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Leffler distribution for u(t) = h(l/t). Conversely, if (4.1) converges in law to
some non-degenerate distribution with some u(f), then h(a) varies regularly at 0.
Therefore it is important to give a condition in terms of the speed measure
m(dx) for h(a) to be regularly varying. In case m(R-) = Q, the following lemma
was proved in [9].

Lemma 4,1, Let m^JH. Then

lim^^F-1 far
*•*> m(x)

(equivalently lim ^)=^i] if and only if
\ *-»°° u(x) /

l imWaO-r" far
*-><> h(a)

where Q^]3^l and X00 means °° for <*>! and 0 for

In case m(J?_)>05 if the process is normal, we can show the following

Theorem 3. Suppose the process X corresponding to m is normal with para-

meter 0M 6 | ̂ — ) • Then for some / we

(4.2) l i m = r ^ fo r
*->o h(a)

if and only if

(4.3) iim«(^)=^ /br

holds, where w( :̂) =

Proof. First consider the case 0:50 5^ — and hence O^^l. Assume

(4.2) holds. From Theorem 2' it follows

(4.4) i i m*=(?L)= = i im«zW = 9.

This together with (1.3) implies

Therefore by (4.2) we have
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which implies by Lemma 4.1

Noting 0^0=51, we have by (4.4)

«(*)
We can discuss the case ——<!0<0 similarly as above. Since it is easy to

2 ~~
reverse the above argument, we can obtain the theorem. Q.E.D,
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