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On Parabolic Functions of One-Dimensional
Quasldiffusions

By

Uwe KUCHLER*

§1. Introduction and Definitions

In this paper we will deal with quasidiffusions X=(Xt)t^0 on [0, 1) assum-
ing that 0 is a reflecting regular boundary, 1 is an accessible or entrance bound-
ary and X is killed as soon as it hits the boundary 1. We shall give a Martin
representation of space-time-excessive functions for X. This includes in par-
ticular a representation of all parabolic functions f(x, t) satisfying a certain
integrability condition by minimal ones (see Theorem 2 below).

We shall show that the set of minimal points of space-time Martin boundary
is homeomorphic to (0, oo[; in particular the minimal parabolic functions
form a one-parameter family (kt) (re(0, oo]). If z<oo5 the function kt(x,s)

is the limit (in a weak sense) of the transition density p(t—s, x, y) or its derivative
with respect to j, where y converges to the boundary 1. In the limit circle
case we will give an uniformly convergent expansion of kt (t^(Q, °o]) in eigen-
functions of the infinitesimal operator of X.

Using these results we consider the problem which minimal parabolic

functions factorize (i.e. have the form kt(x, s) = 0*(XhMX)) and which fac-
torizing parabolic functions are minimal. (For some Markov chains and
diffusion processes this problem was studied in [9], [11].)

As another application we shall give a necessary and sufficient condition
in order that for a parabolic function/the process {f(Xt, s+t), t^[a, b]} is a
martingale. Parabolic functions which are martingales on the trajectories of X
are used to determine the probabilities that X ever hits some time-varying
boundaries (see e.g. [12]) and were studied e.g. in [2], [8].

The assumption that the boundary 1 is accessible or entrance is essential.
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If 1 is natural then the transition densities and their derivatives have a com-
plete other asymptotic behaviour and therefore the minimal parabolic
functions are of other type. This case will be studied in a further note (see
[6]).

In the following we will use the terminology and the results of [5] without
further explanation.

Let (m, p) be a canonical pair (see [5]) and X: =(Xt)t^0 the corresponding
quasidiffusion on E:=supp m\{l} C[0, 1) with the condition that 0 is reflecting
regular and (Xt) is killed as soon as it hits 1. The transition probabilities
Pt(x, A) of X have densities p(t, x, y) with respect to dm :

Pt(x,A) = \ p(t,x,y)m(dy).
JA

Let X: =(Xt)t^0 be the corresponding to X space-time process, i.e. a Markov
standard process on £:=Ex(Q, oo) with the transition probabilities Pt generated
by

Pt((x,s),Axr)=Pt(x,A)-zi<s+f) ((x,s)e=E, t>Q,

where xr denotes the indicator function of F and where S3G is the trace of
the a-algebra of Borel subsets of ^ on G (G£iy. Furthermore let X be
the Markov standard process on E with the transition probabilities Pt generat-
ed by

Pt((x, j), A XT) = Pt(x, A)xr(s-t}

X is called the coprocess of X. The operators ft and ft acting on positive
(and on bounded) measurable functions are defined by

Ttf(x):= y(y, s+t)P(t, x, dy) (x = (x,,

and

ftf(x):= J/(j, s-t)P(t, x, dy) (t<s\ = 0

In the following the elements of ̂ always are denoted by x, y etc. with x=(x, s),
y=(y, t) etc.

The resolvent kernels

e~XuPu(x, A)du
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and

Jlx(x, A) = P e-XttPu(x, A)du (x<=E, AEorel subset of E,

of X and X respectively are absolutely continuous with respect to dm:=dmdt on
E and have the densities

KX, 50 - e-^-'W-*
and

respectively. A nonnegative nearly Borel function / on E is called excessive

with respect to X (shortly said excessive) if

pointwise. An excessive function / with lim XR^f=Q is called purely excessive.
\+o

Let / be excessive. If for every x=(x, s)^E and every open subset ^Tof

E with compact closure in E we have

( 1 ) f(x) = EJ(X S-TTZ) (r3:= inf

then /is said to be a harmonic function for X or a parabolic function for X (shortly
said a parabolic function). The excessive (harmonic etc.) functions for Jf will
be called coexcessive (coharmonic etc.) for X or shortly coexcessive (coharmonic
etc.).

One can show (see e.g. [8], [13]) that a continuous function h on E with

continuous derivatives — h and DmDph satisfying — h+DmDph=Q ( — h—

DmDph=Q] on E is parabolic (coparabolic). In particular if ^^^0 the func-

tion

is parabolic and the function

is coparabolic.
The process X starting in x=(x, s) is killed at time s. This implies

Proposition 1. .Every coexcessive function is purely coexcessive.

Proof. If /is coexcessive, we have for



272 UWE KUCHLER

= X. (T
Jo Jo

-t, y, x)f(y, t)m(dy)dt

(SceE)

by definition. Thus the integral I (Ps _;/(», t))(x)dt exists and hence we have
Jo

;t^/(Jc)->0 for ;i-»0.

Especially /^ is purely coexcessive for every #2>^0. But generally /^ is
not purely excessive e.g. if 1 is entrance then /AO= 1 and the identity ̂ /x0=A0

holds.
The application of the theory of Martin boundaries to X requires at first

to check that X satisfies some basic assumptions of this theory. These are
the so called conditions KW (see [10]) which can be formulated in our case as
follows :
( i ) R0( • , K) is bounded for every compact subset K of E9

(ii) limt&xf(x)=f(x) (x<=E) holds for every f^Ce(E): = {f\f real-valued
A.->~

continuous function on E having compact support} ,
(iii) Rxf is continuous and bounded for every bounded real-valued Borel-

function/ on E having compact support and for every A^>Q,

(iy) \~fR*gdm = \^gRxfdm (/l^O; /, g positive Borel-functions on E).
J E J E

Proposition 2e The space-time process X satisfies the condition KW.

Proof, (i): If K is compact there exist constants /, u, v with 0</<1;
0<u<v< oo such that K c [0, /] x [u, v]. Thus

(ii): Let/eCc(£). Using the uniform continuity of / it follows that for
every e>0 there exists a d>Q such that

\flx, t)-f(x, s)\<e (x^E, t€=(s-d, j), *>0) .

Because (Th)h^Q is a strongly continuous semigroup, for every e>0 there
exists a ^>0 such that

Summarizing these remarks it follows

f(x,s)\ <2e (x^E, s>d,
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and thus we have

lim *Sj(x) = lim J f~81 e-^-»(Ts,tf(«, t))(x}dt
X-*>*» A-*00 J 0

f(; t))(x)dt =/(*) .

(iii): It suffices to prove (iii) for/=;^n£> where ^=[0, l]x[u, v] is a compact

rectangle of Jx(05 oo). Let / be of such type and suppose (XQ, SQ), (*1?

Then

If v<,s0 the right side tends to zero for (xl9 s1)-^(x0f SQ) because p(h, x, y) is uni-

formly continuous on [hQ, /Zi]x[09 If (0</z0<^i<°°5 /<!)-

S sQ->7 (•/

I ..-

u Jo

J
5o f1

1 •••m(dy)dt for every ?? with 0<7]<sQ. The first integral
50-7J JO

tends to zero for (xl9 sl)-^(x09 s0) as we have shown above. The second is

bounded by 2rj. Thus (iii) is proved.

(iv) : Using the definition of Rx and Rx the proof follows by an easy calcula-

tion.

§2. A Martin Boundary for the Space-Time Process

At first let us define Martin boundaries for the space-time process X follow-

ing the general line of Meyer [9]. The boundary very depends on the so called

Martin kernel used for the construction, i.e. on a renormed resolvent kernel.

To construct a Martin boundary for X which describes sufficiently many ex-

cessive functions, e.g. the bounded ones, it is necessary to renorm the resolvent

kernels by a suitable purely coexessive function. Therefore we define

n(y) : = Xo(j) = <*f<p(y, ^ , dt(y) : =n(y)m(dy) ,

(* dy) : = kx(x, y)Z(dy) = Rx(x, dy) ,

(* dy):= kx(y, x)t(dy) = Rtf, dy) (^0, x,
n(x)
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We remark n(y)=l if the boundary 1 is entrance.
Let d0 be a metric on E generating the usual topology on B.

Definition ([9]). A compact metric space (F, d) is called a Martin compact
for fir

(a): E is a dense subset of F such that the injection from (B, dQ) into (F, d) is
continuous,
fb): for every f&Ce(B) the function J^/can be extended to a continuous func-

tion on F5 again denoted by KQf.
The set F':=F\E is called a Martin boundary ofX.

For any y^Fbyf-^KQf(y) (f^Cc(E)) a Radon measure on E is given which
is absolutely continuous with respect to rfC. The corresponding density for
y^E coincides with fc0(-, y)=: k$(°) and is denoted for y^f" also by ky(«}.
For every y&F the function &j(») is excessive ([10]). Let d1 be a metric on E

such that a sequence (xn) of points xn^E is a rfrCauchy sequence if and only
if either \xn—xm\ + \sn--sm\-*Q(nsm->oo) or V*00 fa-*00) independent of

xn. It is clear that the completion of the metric space (B9 4) is equal (up to

isomorphism) to F:=(Fx[Q, oo))U {(1. °°)} with the extension d1 of d^ to F.

Theorem 1. Let 1 be an entrance or an accessible boundary. Then (F, dj

is a Martin compact for the space-time process X.

Proof, It is clear that (F9 d^ is compact and that the point (a) of the de-
finition above is satisfied. Thus we shall prove only (b).

Let / e CC(E). Thus there exist numbers /, u, v with 0</<l 30<w<v<oo
such that / vanishes outside of [0? l]x[u, v]. We will prove that

- f ('X'-* x, y) ̂ ^ e-W-Wx, s)m(dx)ds (y^E)
Jo Jo <p(y, ^0)

has a continuous extension to F and, moreover, we shall determine the densities
kyQ(-) for yQ^Ff. To this purpose we consider three cases.

Case,6 Let yQ=(yQ, 0) for some yQ^F. Then %J(y)=%0f(y, t)=0 in
neighbourhood of y0 (namely if t<u). Thus ^0/can be continuous extended
to yQ and it holds

(2) kjQ(x) = 0 (?0 = (j0,0), jo^F; x&E).

Second Case: Let y0=(l910) for some tQ^(Q, oo). Firstly we suppose 1
is entrance. Then /10=0 and 9(e,^0)—1- From [5] Theorem 1 follows the
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Identity
ri fi

f 3 ) lim \ p(t0—s, x, y)f(x, s)m(dx) = \ p(tQ—s, x, l)f(x, s)m(dx)
v ' y-*i Jo Jo

for every s<tQ, where p(h, x, 1) is an uniquely determined strictly positive con-
tinuous function of (x, K)&£.

The integrals on the left side of (3) are dominated by C: = max | /(z) | < oo .
Integrating (3) with respect to s and using Fubini's theorem and Lebesgue's
dominated convergence theorem it follows for

lim %J(y, 0 - f ^ p(t~s, x, !)/(*, s)m(dx}ds .
y-*i Jo Jo

Now we shall estimate KQf(y, t)—KQf(y, f0). We can assume t<t0. Then this
difference is equal to

I \ (p(t—s,x,y)--p(t0--s,x,yy)f(x,s)dsm(dx)
Jo Jo

S
1 f'oI p(t0—s, x, y)f(x, s)dsm(dx) .
0 Jt

J t
\(Tf0-tf(°9 sj)

o
(y)-f(y, s)\ds. The strong continuity of (Th) implies (T?0_,/(% s))(y)-f(y, s)
-^f 0 uniformly in y for every s. Thus by Lebesgue's dominated convergence

theorem the first integral tends to zero for t-*t0.

The second integral vanishes for t — tQ uniformly in y because | \ p(tQ— s,
Jo

x,y)f(x,s)m(dx)\^C<°Q uniformly in x^E and s^t0.
Summarizing we obtain under the assumption that 1 is entrance

lim JO?) = fo-* x, l)f(x, s)m(dx)ds
Jo Jo

and

(4) kjQ(x) =p(t0-s,x,-

(x = (x, s)<=E, J0 = (1, t0),

Now let 1 be accessible. Then by Jm*=<p2(% l^dm and dp*=<p~\». K0)dp

a new speed measure m* and a new scale p* on [09 1) are given. The boundary
1 is entrance for (m*, p*) (see [5]) and the corresponding transition density is

W. X, y) =
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Applying the preceding results to (m*,p*) it follows

lim X*-* x, jOe-M*-') f(x, s)m(dx)
v^i Jo <p(y, ;0)

( 5 ) = f V('~* x, 1V(*, W(x, s)m(dx)
Jo

We know from [5] that D .<?(!, ^)=lim ?(*» ̂  exists and is finite and ne-

gative. Defining

Dpp(h, x, l): = p*(h, xf

the right side of (5) can be written as

- - 9 ^ ppt-s, x ,

and on an analogous way as above it can be shown

lim | Qf(y) = (Dp9(l, ^o))-1 f I'0 e-^«Dpp(t«-s, x, l)dC(x)
"y+y-Q JO JO

and

( 6 ) (jc) = ,-Vo

under the assumption that 1 is accessible.

Third Cases y0=(I, <*>). If 1 is entrance, from [5J, Theorem 3 it follows
the identity

lim I I p(t—s, x, y)f(x, s)dsm(dx) = (m^))"1 \ I f(x, s)dsm(dx) .
/•>*» Jo Jo Jo Jo

This implies

If 1 is accessible by the same transformation and the same method as in the
second case it follows

lim f o/00 = i
*-*«• Jo

and

8 y,(x) = (f 9\x,
Jo
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Thus Theorem 1 is proved.

S i
P2dm<oo9 i.e. (m,p) is in the limit circle case (see e.g.

o
[4]3 [5]). Then we have an uniformly converging spectral expansion for p(h, x, 1)
(if 1 is intrance) and for Dpp(h, x9 1) (if 1 is accessible) (see [5], Theorem 2).

Hence we can give such an expansion for kyQ:

( Q\ k~ (x\ — (\y ) Kyo\x) — \ ^77\m(l)

Jo = (1, f«),

J i
p2dm<oo and

o

(10)

(^e£,J?0=(l5 f0), r0e(05 oo )) i/ 1 /j accessible with \ p2dm<oo (i.e. regular),
Jo

where the series in (9) and (10) are uniformly converging in t^.tQ>Q and x€=[Q, I).
Theorem 2 below gives an integral representation of Jf-excessive and

-parabolic functions. To formulate it we need some more notations and
propositions from the theory of Martin boundaries which will now be given
(see [10], also [7]).

Let / be excessive. From the mentioned theory it is known that the limit

L(f):= lim J ( (I-
*.-?•<» JE

exists (possibly infinite). A short calculation using the definition of K^ and
C in our case implies

L(f) = lim
\->«» Jo

Because /is excessive we have

(r,/(% t+h))(x)^f(x, t) (h,
Thus

, t+h)<p(y, I0)m(dy) = [ fty, t+h)(Th<p(«,
Jo

(xf t)<p(x, *0)m(dx) (h, t>Q) .
o
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S i
e*ohf(v,t+h)<p(y, AQ)m(dy) decreases if t is fixed

° f1

and h increases. Hence the function h->e W \ f ( y , t—1i)<p(y, ^m(dy)
Jo

increases if h increases from 0 to t for every t > 0. Thus the limit

!

i
f(y-> ti)9(y> A0)m(dy) exists and by properties of the Laplace-transforma-

o
tion we have

(11) L(f) = Mm f fty, h)<p(y,

with L(/)e(0? oo] if / is excessive and non identical zero. In the theory of
Martin boundaries every excessive function / satisfying a certain condition
(e.g. L(/)<oo in our case) is represented by minimal excessive functions (see
below). An essential point is to choose the purely coexcessive function n in
the definition of K^ in such a way that as many as possible excessive functions /
satisfy the mentioned condition. Here we have taken n(y, t) = <p(y, /l0)e

+V.
This implies e.g. that the bounded excessive functions and the functions
fv.(x,s)=e~ILS(p(x, ju) C«^/y are included if 1 is entrance or accessible because
9>(-, ^0) is bounded and m-integrable and <p(-, ^0) is bounded (if 1 is accessible)
or m-integrable (if 1 is entrance) (see [5]).

An excessive function /=0 is called extreme if for every two excessive
functions /19 /2 with/=o/i+(l — a)f2 for some <zG(05 1) it follows f=f1=f2.

We say that the point y^F is a minimal point if y^E or y^F'm: —
{z^F'\L(k7)=l, kz is extreme and parabolic}. The set of minimal points of
F is a Borel set and we denote it by Fm. (Using the fact that for the process
X considered here the function kj for no y^E is harmonic (the proof is not
difficult and omitted here) one can show that the definition given above coincides
with the definition of minimal points given in [10]. See also [7].)

The functions kj(y^Fm) are also called minimal.

As already said, from the theory of Martin boundaries it follows that for
any excessive function / with L(f) = l there exists a Radon measure vf on

y) = l} with/*X^i)=1 such that

(12) /(*) = L k7
J F

(see [10]).
If the functions KQg (g^Cc(EJ) separate the points of Fm, then there exists

an uniquely determined measure yf supported on Fm such that (12) holds.
Now we are ready to formulate and prove a representation theorem for
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quasidiffusion-space-time excessive functions / satisfying L(f) < o

Theorem 2. Let I be an entrance or an accessible boundary.

Then we have:

(i): The set Fm of minimal points of F is equal to

(ii): For every excessive function f with L(/)— 1 there exists an uniquely deter-
mined measure ju.f on Fm such that

»f(Fm) = 1 and f(x) = Jg k;(x)juf(dy) (JEe JB) ,

(iii): For every parabolic function fwith L(/)=l there exists an uniquely deter-
mined measure juf on (0, oo] such that

(13)
Jo+

and

(14) /iX(0, s]) = -D#(\9 ^0) lim e^f(x, t)dt (je(0, oo))
*-*! JO

z/ 1 is accessible,

(15) jti/CO, j]) = Mm (p(x))-1 {'A*, f)dt (*e(0, oo))
*-M Jo

i/ 1 is entrance.

Proof. At first we remark that the points ( y09 0) not belong to Fm because
k(yQtQ) = 0 (see also (2)). Thus we have the part C of (i). To prove the 2-
part we have to show that every point yQ=(l, tQ) (0<O0^oo) belongs to F'm.

At first suppose t0^(Q, oo) and let yQ = (l,tQ) be fixed. Then L(kjQ) =

S i e~Vo ri
p(t0—s, j, l)m(Jj) = l if 1 is entrance and L(%n)=4im - 1 D^pit^

. o no Dp<p(\, ;i0)Jo

— lim e~^sp*(tQ — s, x, l)m*(dx) = l if 1 is accessible.

(For notations see the proof of Theorem 1.)
Now we shall show that kjQ is parabolic. We have already mentioned

that kjQ is excessive. Thus only (1) is to prove. If x=(x,s)^E with s*zt0

we have by definition ^0(^)=0 and therefore kjQ(Xt, s+t)=0 a.e. with respect
to Px for every t>®. Thus (1) holds for such x.

Let x=(x, s) with ^</0 be fixed. To show (1) we can restrict ourselves to
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rectangles of the form

, ®<u-s<h}

S i
Ph(l, dz)p(tv~s—h, x, z)

o
(s+h<tQ), by definition (see [5]), where Ph(l, dz) is the transition function of

X at the point 1. Suppose at first that A:=A&th is a rectangle of the mentioned

form with h<tQ~s. Then we have

Q-u, z,

= £ P,0-S-,X1, dy) \aP(s+h-u, z, y}Px((Xry

Remarking that for every (y,s+/i) the function k(ytt+h)(z, u):=p(s+h— u,

z, y) is parabolic in (z, u) with u<s+h by continuity and the Kolmogorov equa-

tions, it follows that the inner integral is equal to p(s+h—s, x, y)=p(h, x, y).

Thus

ExkjQ(XT2, S+TZ) = PtQ-,-k(l, dy)p(h, x, y) = p(t0-s, x, 1)

Now let A:=Aith be a rectangle as above with h^tQ—s. Fixing h' with

0<hr<tQ— s and using the preceding step it follows with the notation A'= ASih'

(16) p(tQ-s, x, 1) = 2/ p(tQ-u, z, l)Px(Xr~,,

The right hand side splits into three parts, namely the integral about the lines

(x+d9s)---(x+d,s+hf)9(x-d9s)»-(x-d9s+h^

The integral along the third line tends to zero if s+h'-*t0:

i*0+s
p(t0-s-h', z, l)Px(TZ>h', Xh> ̂ dz) = 0 .

.- .-u *0~S

5 x+S
p(tQ —

x-S5x+8
p(hf, x, z)Pto.M-h'(l9 dz) and this term converges

x— S
to zero for h'-*t0—s by continuity of the semigroup (TA)A&0. Therefore from

(16) and (17) it follows
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p(t0-s, x, 1) = f'° p(t0-u,x+d,
Js

'o-w, *-*, VP

Thus we have proved that kjQ(») is parabolic if 1 is entrance. If 1 is accessi-

ble, the proof follows by transformation of (m, p) as in the proof of Theorem

1 and applying the preceding result for the entrance boundary.

The proof that kjQ is extreme depends on the following lemmata.

Lemma I. We have

(18) lim k^x, u)du =
*•*! JO

(f 1 w accessible and

(19) lim (X*))-1 f *(i.,0)(^ wXw = Z[o,s]W Oe(0, oo))
*•>! JO

j/ 1 is entrance.

Proof of Lemma I , Let 1 be accessible. Then by Theorem 2 and Lemma 4

of [5] it follows

p fI X^o— J* ̂  z)w(rfz) - 1 X^o* ^
Jo Jo

Also from the accessibility of 1 it follows Thl(x)-*Q for every A>0 if x->l.

Thus we have (18).

Let 1 be entrance. We choose ^>0 and consider the new speed measure

dm<v=<p2(*9 X)dm and the new scale dp(K}=<p~\*,X)dp. One can show that

1 is accessible with respect to (m(X\ p(^) and that the corresponding to (w(X)
9

transition density is

p<»(h, x, y) = ^ '*'?*"* (x,yf=E, h>Q)
<p(x, *)<p(y, X)

(see [5]). Moreover, we have
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Using (18) it follows

lim (- 1) JQ Dp^pW(tQ-u, x, l)du = Zio.

From Theorem 2 of [5] we have

- \' Dt™P<»(t,-u, x,Jo p(\y)

where ^(-9 ^) is the solution of DmDpg=Zg satisfying

^ . Using known pro
X)

(see also [5]) it follows that the last integral is

and Pffl = /?(X)(1) = lim^"^9 ^ . Using known properties of the function
*ti <p(x, X)

equal to

l, AT1 f eKuP(t*-u, x, l)du .
Jo

Thus by using Dp<p(l , ̂ ) «j(l , ̂ ) = 1 (this follows from [5] remarking Z)^(l , ̂ ) < oo ,
we have

"1 ( ' eXup(tQ-u, x, l)du = -I
Jo

= — lim I Dfupw(t0—u, xf l}du = %[o s](t0) for every
*-*! Jo

Hence (19) follows by letting ^->0. Thus Lemma 1 is proved.
j*oo +

Lemma 2. Let g be a parabolic function with L(g) = 1 and g(x) = \ k^ t)(x)
Jo+

Xju(dt)for some finite measure ju on (0, oo]. Then

(21) -Dp<p

(^ 1 is accessible and

(22) lim (X*))'1
*•*"!

?/ 1 w entrance.
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Proof of Lemma 2. Let 1 be accessible. Then by Fubini's theorem

S g(x, u)du = \ \ k(l t)(x, u)duju(dt). If x converges to 1, the limitation and
o Jo Jo

integration can be changed. This is seen as follows. From (20) we have

(-D p<p(\9 -g)-1 [pV-s, x, z)m(dz) (t>s, x^E) .
o Jo

We show that the continuous function /i— »e~N>& p(hf x, z)m(dz) is bounded
for large h. This justifies the change in virtue of the Lebesgue's dominated
convergence theorem. To this purpose we calculate the Laplace-transform
(see [5]):

l(h, x, z)m(dz) =

and let X tend to zero. Then the right hand side converges to — ̂ ** °^
AQ

X
\ UA X=Q

For every x<l the function Z-*<p(x9 A) is entire and

has the representation

(23)

where (^^(x)) are the zeros of (̂̂ :, •) (see [4]).
If x tends to 19 the numbers lk(x) converge to the points lk of increasing

CO |

of the main spectral function T. Because ]>] - <oo the right hand side of
*=1M*I

00 / /i \(23) tends to the entire function II ( 1 -- ' and this limit is equal to 9>(1, /*).
k=i\ /

Therefore =—n(l -) is finite and nonzero. Hence by

S i
p(h, x, z)m(dz) converges to a finite

o
limit if h—> °° Summarizing and using Lemma 1 we obtain

lim g(x, u)du = - (Dp<p(l, ^r'-
^-»i Jo Jo

and hence (21) follows.
If 1 is entrance we can transform (m, p) as in the proof of Lemma 1 into

a new pair (m(X)
?j?

(X)) such that 1 is (m(X)
? j?

(X))-accessible. Applying (21) and
transforming back we obtain (22).
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Now we shall prove that k$Q is extreme. To this aim we remark that every

parabolic function g with L(g)=l* has a representation g= I k$jug(dy)
JFj

where the Radon-measure p.g is supported on F[ (see above). (That jug is

supported on F{ follows from the fact that no ky for y&E is parabolic (see

[10]). The last point has to be shown, but this step is easy to see and omitted
here.)

Suppose gl9 g2 are two excessive functions with <*gi+(l—oL)g2=kjQ for

some ae(0, 1). Then & and g2 have to be parabolic because kyo it is, and by

the preceding remark they have the representation

Si = \Jo

for some (finite) measure #f- on (0, oo] (*=1, 2).
Using Lemmata 1 and 2 it follows that kj0 is extreme. Thus we have proved

that every y0=(!9 t0) with 0<?0<oo is a minimal point.
At least we consider k(lt^(x)=e~K*s<p(x9 -*0) (x^E). This function is para-

bolic and satisfies L(fc(lj00))=l which is easy to see. Moreover fc(lf«>) is extreme,

because fc(1>0o)(l,<s)=0 and thus ^((0, j])=0 for every parabolic function g

with g^fca,.*,) and every s< oo. Hence (1, oo)eF4. Thus (i) is proved.

If we show that the functions K0f (f^.Cc(E)) separate the points of Fm

then (ii) follows from [10] and (iii) is a consequence of (ii) and the preceding

conclusions. Let yQ=(y0, tQ) and yi=(yl9 t^)^Fm and suppose at first J0<*i-

with support is bounded below by and above by

Then 0/(^)>0 and 0/(J?0)=0. Suppose t0=tl9 y^-yl and
for every f^Cc(E). Then kjQ=kji. Let e.g. 1 be entrance. Then for

d<\y0-yi\ wehave
2

\ kj.(x)m(dx) = \ p(tQ—s)xtyi)m(dx)—-^ I or 0
J|*-yol<S J\x-y0\<8 s f r0

if / =o or 1 respectively by the stochastical continuity of X. This contradicts

kj^=kj^. If 1 is accessible by using the new pair (m*,/?*) (see the proof

of Theorem 1) on the same way it can be shown that kj^kj^ for y^y^

Thus KQf(f^Cc(E)) separate the points of Fm. Hence the theorem is proved.
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§3. Applications

We give two applications of the preceding results. Several authors have
studied the problem if every extreme parabolic function factorizes, i.e. has
a representation of the form ^(x)^(t), and if every factorizing parabolic
function is extreme (see e.g. [9], [11]).

For quasidiffusions we have the following corollary from the results above.

Corollary 1. - If I is entrance (accessible) the only factorizing minimal

parabolic function is

*<!.->(*) = Wl))'1 (= e-'Vtfx, 4,)) .

- For every ^>^0 the factorizing parabolic function hv.(x)=e~v*<p(x, ju) has

representation

e-"*<p(x, v) = -Dp<p(l9 X) f~ e-"*p(u-s, x, l)du
Js

if I is entrance and

e-»s<p(x, ») = 0<1, /i) T e-**Dpp(u-s, x, l)du
Js

if 1 is accessible.

Remark. The last but one formula can be proved elementary by using

e'Mp(h, x, l)dh=rp(x, l)=?(x, ju)z(l, v)=<p(x, /O (DM1, /O)'1 where r^x, y)

denotes the resolvent kernel density of the corresponding to (m, p) semigroup
(St) in C(E).

In [2], [8] and other papers were studied conditions under which for a
given function h(x, t) and a given Markov process the composition (h(Xt, s+t))t^0

is a martingale. In this connection we can formulate the following

Corollary 2. Let 1 be entrance or accessible and f a parabolic function

with L(f)<o° and

Then

!

s+t
*&..>(*.. Hs+u

where Efu denotes the o-algebra generated by {Xr, r^u}. In particular

(f(Xt, t+sj)^[aib] is a martingale with respect to every Px(x€=E) if and only if
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Proof: By the Markov property it follows

Ex(f(Xt, t+s)\SJ = EZf(J(Xt-.t t+s» = ̂ f(y, t+s)p(t-u, Xn,
Jo

= I I k(l^(y,t+s)fJ,f(dv)p(t-u,Xu,y)m(dy)
Jo Jt+s

= \ f fc(i..)(y, t+s)p(t-u, Xu, y)m(dy)»f(dv)
Jt+s Jo

5 s+t
k(1^(Xu

s+u

Thereby we have used

, z, y)m(dy) = fc(1§i)(zf t-K) (h<t)

which follows from [5] Theorem 2 and the Chapman-Kolmogorov equation.
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