On Parabolic Functions of One-Dimensional Quasidiffusions

By

Uwe Küchler*

§1. Introduction and Definitions

In this paper we will deal with quasidiffusions $X=(X_t)_{t\geq 0}$ on [0, 1) assuming that 0 is a reflecting regular boundary, 1 is an accessible or entrance boundary and X is killed as soon as it hits the boundary 1. We shall give a Martin representation of space-time-excessive functions for X. This includes in particular a representation of all parabolic functions f(x, t) satisfying a certain integrability condition by minimal ones (see Theorem 2 below).

We shall show that the set of minimal points of space-time Martin boundary is homeomorphic to $(0, \infty[$; in particular the minimal parabolic functions form a one-parameter family (k_t) $(t \in (0, \infty])$. If $t < \infty$, the function $k_t(x, s)$ is the limit (in a weak sense) of the transition density p(t-s, x, y) or its derivative with respect to y, where y converges to the boundary 1. In the limit circle case we will give an uniformly convergent expansion of k_t $(t \in (0, \infty])$ in eigenfunctions of the infinitesimal operator of X.

Using these results we consider the problem which minimal parabolic functions factorize (i.e. have the form $k_t(x, s) = \phi_t(x)\psi_t(s)$) and which factorizing parabolic functions are minimal. (For some Markov chains and diffusion processes this problem was studied in [9], [11].)

As another application we shall give a necessary and sufficient condition in order that for a parabolic function f the process $\{f(X_t, s+t), t \in [a, b]\}$ is a martingale. Parabolic functions which are martingales on the trajectories of X are used to determine the probabilities that X ever hits some time-varying boundaries (see e.g. [12]) and were studied e.g. in [2], [8].

The assumption that the boundary 1 is accessible or entrance is essential.

Communicated by K. Itô, March 17, 1978.

^{*} Sektion Mathematik, Technische Universität Dresden, Mommsenstrasse 13, DDR-8027 Dresden, German Democratic Republic.

If 1 is natural then the transition densities and their derivatives have a complete other asymptotic behaviour and therefore the minimal parabolic functions are of other type. This case will be studied in a further note (see [6]).

In the following we will use the terminology and the results of [5] without further explanation.

Let (m, p) be a canonical pair (see [5]) and $X := (X_t)_{t \ge 0}$ the corresponding quasidiffusion on $E := \sup m \setminus \{1\} \subseteq [0, 1)$ with the condition that 0 is reflecting regular and (X_t) is killed as soon as it hits 1. The transition probabilities $P_t(x, A)$ of X have densities p(t, x, y) with respect to dm:

$$P_t(x, A) = \int_A p(t, x, y) m(dy).$$

Let $\widetilde{X}:=(\widetilde{X}_t)_{t\geq 0}$ be the corresponding to X space-time process, i.e. a Markov standard process on $\widetilde{E}:=E\times(0,\infty)$ with the transition probabilities \widetilde{P}_t generated by

$$\widetilde{P}_t((x,s),A\times\Gamma)=P_t(x,A)\cdot\chi_{\Gamma}(s+t)$$
 $((x,s)\in\widetilde{E},t>0,A\in\mathfrak{B}_{F},\Gamma\in\mathfrak{B}_{(0,\infty)}),$

where χ_{Γ} denotes the indicator function of Γ and where \mathfrak{B}_{G} is the trace of the σ -algebra of Borel subsets of R_{1} on G ($G \subseteq R_{1}$). Furthermore let \widetilde{X} be the Markov standard process on \widetilde{E} with the transition probabilities \widetilde{P}_{t} generated by

$$\tilde{P}_{t}((x, s), A \times \Gamma) = P_{t}(x, A) \chi_{\Gamma}(s - t)
((x, s) \in \tilde{E}, t > 0, A \in \mathfrak{B}_{E}, \Gamma \in \mathfrak{B}_{(0,0)}).$$

 $\tilde{\tilde{X}}$ is called the *coprocess of* \tilde{X} . The operators $\tilde{\tilde{T}}_t$ and \tilde{T}_t acting on positive (and on bounded) measurable functions are defined by

$$\tilde{T}_t f(x) := \int f(y, s+t) P(t, x, dy) \qquad (\tilde{x} = (x, s) \in \tilde{E})$$

and

$$\widetilde{T}_t f(x) := \int f(y, s-t) P(t, x, dy) \quad (t < s), = 0 \quad (t \ge s) \quad (\widetilde{x} = (x, s) \in \widetilde{E}).$$

In the following the elements of \tilde{E} always are denoted by \tilde{x} , \tilde{y} etc. with $\tilde{x}=(x,s)$, $\tilde{y}=(y,t)$ etc.

The resolvent kernels

$$\widetilde{R}_{\lambda}(\widetilde{x},\widetilde{A}) = \int_{0}^{\infty} e^{-\lambda u} \widetilde{P}_{u}(\widetilde{x},\widetilde{A}) du$$

and

$$\tilde{\tilde{R}}_{\lambda}(\tilde{x}, \tilde{A}) = \int_{0}^{\infty} e^{-\lambda u} \tilde{\tilde{P}}_{u}(\tilde{x}, \tilde{A}) du \qquad (\tilde{x} \in \tilde{E}, \tilde{A} \text{ Borel subset of } \tilde{E}, \lambda > 0)$$

of \widetilde{X} and $\widetilde{\widetilde{X}}$ respectively are absolutely continuous with respect to $d\widetilde{m}$:=dmdt on \widetilde{E} and have the densities

$$\tilde{r}_{\lambda}(\tilde{x},\tilde{y})=e^{-\lambda(t-s)}p(t-s,x,y)\chi_{(0,\infty)}(t-s)$$

and

$$\tilde{r}_{\lambda}(\tilde{x}, \tilde{y}) = \tilde{r}_{\lambda}(\tilde{y}, \tilde{x})$$
 $(\tilde{x}, \tilde{y} \in \tilde{E}, \lambda > 0)$

respectively. A nonnegative nearly Borel function f on \tilde{E} is called *excessive* with respect to \tilde{X} (shortly said excessive) if

$$\lambda \tilde{R}_{\lambda} f \leq f$$
 $(\lambda > 0), \lim_{\lambda \to \infty} \lambda \tilde{R}_{\lambda} f = f$

pointwise. An excessive function f with $\lim_{\lambda \to 0} \lambda \tilde{R}_{\lambda} f = 0$ is called purely excessive.

Let f be excessive. If for every $\tilde{x}=(x,s)\in \tilde{E}$ and every open subset \tilde{A} of \tilde{E} with compact closure in \tilde{E} we have

$$(1) f(\tilde{x}) = E_x f(X_{\tau_{\widetilde{A}}}, s + \tau_{\widetilde{A}}) (\tau_{\widetilde{A}} := \inf \{t > 0 \mid \widetilde{X}_t \notin \widetilde{A}\})$$

then f is said to be a harmonic function for \tilde{X} or a parabolic function for X (shortly said a parabolic function). The excessive (harmonic etc.) functions for \tilde{X} will be called coexcessive (coharmonic etc.) for \tilde{X} or shortly coexcessive (coharmonic etc.).

One can show (see e.g. [8], [13]) that a continuous function h on \widetilde{E} with continuous derivatives $\frac{\partial}{\partial t}h$ and D_mD_ph satisfying $\frac{\partial}{\partial t}h+D_mD_ph=0$ $\left(\frac{\partial}{\partial t}h-D_mD_ph=0\right)$ on \widetilde{E} is parabolic (coparabolic). In particular if $\mu \geq \lambda_0$ the function

$$\tilde{f}_{\mu}(\tilde{x}) := e^{-\mu s} \varphi(x, \mu) \qquad (\tilde{x} \in \tilde{E})$$

is parabolic and the function

$$\tilde{f}_{\mu}(x) := e^{\mu s} \varphi(x, \mu) \qquad (\tilde{x} \in \tilde{E})$$

is coparabolic.

The process $\tilde{\tilde{X}}$ starting in $\tilde{x}=(x,s)$ is killed at time s. This implies

Proposition 1. Every coexcessive function is purely coexcessive.

Proof. If f is coexcessive, we have for $\lambda > 0$

$$\lambda \tilde{R}_{\lambda} f(\tilde{x}) = \lambda \int_{0}^{s} \int_{0}^{1} e^{-\lambda(s-t)} p(s-t, y, x) f(y, t) m(dy) dt$$

$$= \lambda \int_{0}^{s} e^{-\lambda(s-t)} (T_{s-t} f(\cdot, t)) (x) dt \leq f(\tilde{x}) \qquad (\tilde{x} \in \tilde{E})$$

by definition. Thus the integral $\int_0^s (P_{s-t}f(\cdot,t))(x)dt$ exists and hence we have $\lambda \tilde{R}_{\lambda}f(\tilde{x}) \rightarrow 0$ for $\lambda \rightarrow 0$.

Especially \tilde{f}_{μ} is purely coexcessive for every $\mu \geq \lambda_0$. But generally \tilde{f}_{μ} is not purely excessive e.g. if 1 is entrance then $\tilde{f}_{\lambda_0} \equiv 1$ and the identity $\lambda \tilde{R}_{\lambda} \tilde{f}_{\lambda_0} = \tilde{f}_{\lambda_0}$ holds.

The application of the theory of Martin boundaries to X requires at first to check that X satisfies some basic assumptions of this theory. These are the so called conditions KW (see [10]) which can be formulated in our case as follows:

- (i) $\tilde{R}_0(\cdot, \tilde{K})$ is bounded for every compact subset \tilde{K} of \tilde{E} ,
- (ii) $\lim_{\lambda \to \infty} \lambda \tilde{R}_{\lambda} f(\tilde{x}) = f(\tilde{x}) \quad (\tilde{x} \in \tilde{E}) \text{ holds for every } f \in C_c(\tilde{E}) := \{f | f \text{ real-valued continuous function on } \tilde{E} \text{ having compact support} \},$
- (iii) $\tilde{R}_{\lambda}f$ is continuous and bounded for every bounded real-valued Borel-function f on \tilde{E} having compact support and for every $\lambda \ge 0$,
- (iv) $\int_{\widetilde{E}} f \widetilde{R}_{\lambda} g \, d\widetilde{m} = \int_{\widetilde{E}} g \widetilde{\widetilde{R}}_{\lambda} f \, d\widetilde{m} \, (\lambda \geq 0; f, g \text{ positive Borel-functions on } \widetilde{E}).$

Proposition 2. The space-time process \tilde{X} satisfies the condition KW.

Proof. (i): If \tilde{K} is compact there exist constants l, u, v with 0 < l < 1; $0 < u < v < \infty$ such that $\tilde{K} \subset [0, l] \times [u, v]$. Thus

$$\widetilde{R}_0(\widetilde{x},\widetilde{K}) \leq v - u \qquad (\widetilde{x} \in \widetilde{E}).$$

(ii): Let $f \in C_c(\widetilde{E})$. Using the uniform continuity of f it follows that for every $\varepsilon > 0$ there exists $a \delta > 0$ such that

$$|f(x,t)-f(x,s)|<\varepsilon$$
 $(x\in E, t\in (s-\delta,s), s>0)$.

Because $(T_h)_{h\geq 0}$ is a strongly continuous semigroup, for every $\varepsilon>0$ there exists a $\delta_1>0$ such that

$$|(T_h f(\cdot, s))(x) - f(x, s)| < \varepsilon$$
 $(x \in E, s > 0, h < \delta_1)$.

Summarizing these remarks it follows

$$|(T_h f(\cdot, t))(x) - f(x, s)| < 2\varepsilon$$
 $(x \in E, s > \delta, t \in (s - \delta, s), h < \delta_1)$,

and thus we have

$$\begin{split} &\lim_{\lambda\to\infty}\lambda\widetilde{\widetilde{R}}_{\lambda}f(\widetilde{x}) = \lim_{\lambda\to\infty}\lambda\int_0^{s-\delta_1}e^{-\lambda(s-t)}(T_{s-t}f(\cdot,t))(x)dt \\ &+\lim_{\lambda\to\infty}\lambda\int_{s-\delta_1}^se^{-\lambda(s-t)}(T_{s-t}f(\cdot,t))(x)dt \\ &=\lim_{\lambda\to\infty}\lambda\int_{s-\delta_1}^se^{-\lambda(s-t)}(T_{s-t}f(\cdot,t))(x)dt = f(x) \; . \end{split}$$

(iii): It suffices to prove (iii) for $f = \chi_{\widetilde{A} \cap \widetilde{E}}$, where $\widetilde{A} = [0, l] \times [u, v]$ is a compact rectangle of $I \times (0, \infty)$. Let f be of such type and suppose (x_0, s_0) , $(x_1, s_1) \in \widetilde{E}$. Then

$$|\tilde{R}_{\lambda}f(x_0,s_0)-\tilde{R}_{\lambda}f(x_1,s_1)| \leq \iint_{\tilde{A}} |p(s_0-t,x_0,y)-p(s_1-t,x_1,y)| m(dy)dt.$$

If $v < s_0$ the right side tends to zero for $(x_1, s_1) \rightarrow (x_0, s_0)$ because p(h, x, y) is uniformly continuous on $[h_0, h_1] \times [0, I]^2$ $(0 < h_0 < h_1 < \infty, l < 1)$.

If $v < s_0$ the right side of the inequality can be written as $\int_u^{s_0-\eta} \int_0^l \cdots m(dy)dt + \int_{s_0-\eta}^{s_0} \int_0^l \cdots m(dy)dt$ for every η with $0 < \eta < s_0$. The first integral tends to zero for $(x_1, s_1) \rightarrow (x_0, s_0)$ as we have shown above. The second is bounded by 2η . Thus (iii) is proved.

(iv): Using the definition of \tilde{R}_{λ} and $\tilde{\tilde{R}}_{\lambda}$ the proof follows by an easy calculation.

§2. A Martin Boundary for the Space-Time Process

At first let us define Martin boundaries for the space-time process X following the general line of Meyer [9]. The boundary very depends on the so called Martin kernel used for the construction, i.e. on a renormed resolvent kernel. To construct a Martin boundary for X which describes sufficiently many excessive functions, e.g. the bounded ones, it is necessary to renorm the resolvent kernels by a suitable purely coexessive function. Therefore we define

$$\begin{split} n(\bar{y}) &:= \tilde{f}_{\lambda_0}(\tilde{y}) = e^{\lambda_0 t} \varphi(y, \lambda_0) \,, \qquad d\zeta(y) := n(\tilde{y}) m(d\tilde{y}) \,, \\ k_{\lambda}(\tilde{x}, \tilde{y}) &:= \frac{\tilde{g}_{\lambda}(\tilde{x}, \tilde{y})}{n(\tilde{y})} \,, \\ \tilde{K}_{\lambda}(\tilde{x}, d\tilde{y}) &:= k_{\lambda}(\tilde{x}, \tilde{y}) \zeta(d\tilde{y}) = \tilde{R}_{\lambda}(\tilde{x}, d\tilde{y}) \,, \\ \tilde{K}_{\lambda}(\tilde{x}, d\tilde{y}) &:= k_{\lambda}(\tilde{y}, \tilde{x}) \zeta(d\tilde{y}) = \frac{n(\tilde{y})}{n(\tilde{x})} \,\tilde{R}_{\lambda}(\tilde{x}, d\tilde{y}) \qquad (\lambda \geq 0, \, \tilde{x}, \, \tilde{y} \in \tilde{E}) \,. \end{split}$$

We remark $n(\tilde{y}) \equiv 1$ if the boundary 1 is entrance.

Let d_0 be a metric on \tilde{E} generating the usual topology on \tilde{E} .

Definition ([9]). A compact metric space (\tilde{F}, \tilde{d}) is called a *Martin compact* for \tilde{X} if

- (a): \tilde{E} is a dense subset of \tilde{F} such that the injection from (\tilde{E}, d_0) into (\tilde{F}, \tilde{d}) is continuous,
- (b): for every $f \in C_c(\tilde{E})$ the function $\tilde{K}_0 f$ can be extended to a continuous function on \tilde{F} , again denoted by $\tilde{K}_0 f$.

The set $\tilde{F}' := \tilde{F} \setminus \tilde{E}$ is called a *Martin boundary of* \tilde{X} .

For any $\tilde{y} \in \tilde{F}$ by $f \to \tilde{K}_0 f(\tilde{y})$ $(f \in C_c(\tilde{E}))$ a Radon measure on \tilde{E} is given which is absolutely continuous with respect to $d\zeta$. The corresponding density for $\tilde{y} \in \tilde{E}$ coincides with $k_0(\cdot, \tilde{y}) =: k_{\tilde{y}}(\cdot)$ and is denoted for $\tilde{y} \in \tilde{F}'$ also by $k_{\tilde{y}}(\cdot)$. For every $\tilde{y} \in \tilde{F}$ the function $k_{\tilde{y}}(\cdot)$ is excessive ([10]). Let d_1 be a metric on \tilde{E} such that a sequence (\tilde{x}_n) of points $\tilde{x}_n \in \tilde{E}$ is a d_1 -Cauchy sequence if and only if either $|x_n - x_m| + |s_n - s_m| \to 0$ $(n, m \to \infty)$ or $s_n \to \infty$ $(n \to \infty)$ independent of x_n . It is clear that the completion of the metric space (\tilde{E}, d_1) is equal (up to isomorphism) to $\tilde{F} := (F \times [0, \infty)) \cup \{(1, \infty)\}$ with the extension \tilde{d}_1 of d_1 to \tilde{F} .

Theorem 1. Let 1 be an entrance or an accessible boundary. Then (F, d_1) is a Martin compact for the space-time process X.

Proof. It is clear that $(\tilde{F}, \tilde{d_1})$ is compact and that the point (a) of the definition above is satisfied. Thus we shall prove only (b).

Let $f \in C_c(\widetilde{E})$. Thus there exist numbers l, u, v with $0 < l < 1, 0 < u < v < \infty$ such that f vanishes outside of $[0, l] \times [u, v]$. We will prove that

$$\widetilde{\widetilde{K}}_0 f(\widetilde{y}) = \int_0^1 \int_0^t p(t-s, x, y) \frac{\varphi(x, \lambda_0)}{\varphi(y, \lambda_0)} e^{-\lambda_0(t-s)} f(x, s) m(dx) ds \qquad (\widetilde{y} \in \widetilde{E})$$

has a continuous extension to \tilde{F} and, moreover, we shall determine the densities $k_{\tilde{y}_0}(\cdot)$ for $\tilde{y}_0 \in \tilde{F}'$. To this purpose we consider three cases.

First Case: Let $\tilde{y}_0 = (y_0, 0)$ for some $y_0 \in F$. Then $\tilde{\tilde{K}}_0 f(\tilde{y}) = \tilde{\tilde{K}}_0 f(y, t) = 0$ in neighbourhood of \tilde{y}_0 (namely if t < u). Thus $\tilde{\tilde{K}}_0 f$ can be continuous extended to \tilde{y}_0 and it holds

(2)
$$k_{\widetilde{y}_0}(\widetilde{x}) = 0 \qquad (\widetilde{y}_0 = (y_0, 0), y_0 \in F; \, \widetilde{x} \in \widetilde{E}).$$

Second Case: Let $\tilde{y}_0 = (1, t_0)$ for some $t_0 \in (0, \infty)$. Firstly we suppose 1 is entrance. Then $\lambda_0 = 0$ and $\varphi(\cdot, \lambda_0) = 1$. From [5] Theorem 1 follows the

identity

(3)
$$\lim_{y\to 1}\int_0^1 p(t_0-s,x,y)f(x,s)m(dx) = \int_0^1 p(t_0-s,x,1)f(x,s)m(dx)$$

for every $s < t_0$, where p(h, x, 1) is an uniquely determined strictly positive continuous function of $(x, h) \in \widetilde{E}$.

The integrals on the left side of (3) are dominated by $C := \max |f(\tilde{z})| < \infty$. Integrating (3) with respect to s and using Fubini's theorem and Lebesgue's dominated convergence theorem it follows for t>0

$$\lim_{y\to 1} \tilde{\tilde{K}}_0 f(y, t) = \int_0^1 \int_0^t p(t-s, x, 1) f(x, s) m(dx) ds.$$

Now we shall estimate $\tilde{K}_0 f(y, t) - \tilde{K}_0 f(y, t_0)$. We can assume $t < t_0$. Then this difference is equal to

$$\int_{0}^{1} \int_{0}^{t} (p(t-s, x, y) - p(t_{0}-s, x, y)) f(x, s) ds m(dx) - \int_{0}^{1} \int_{t}^{t_{0}} p(t_{0}-s, x, y) f(x, s) ds m(dx).$$

The absolute value of the first integral can be estimated by $\int_0^t |(T_{t_0-t}f(\cdot,s))(y)-f(y,s)|ds$. The strong continuity of (T_h) implies $(T_{t_0-t}f(\cdot,s))(y)-f(y,s)$ $\xrightarrow{t\to t_0} 0$ uniformly in y for every s. Thus by Lebesgue's dominated convergence theorem the first integral tends to zero for $t\to t_0$.

The second integral vanishes for $t-t_0$ uniformly in y because $|\int_0^1 p(t_0-s, x, y)f(x, s)m(dx)| \le C < \infty$ uniformly in $x \in E$ and $s \le t_0$.

Summarizing we obtain under the assumption that 1 is entrance

$$\lim_{\widetilde{y}\to\widetilde{y}_0}\widetilde{\widetilde{K}}_0f(\widetilde{y}) = \int_0^1 \int_0^{t_0} p(t_0-s, x, 1) f(x, s) m(dx) ds$$

and

(4)
$$k_{\tilde{y}_0}(x) = p(t_0 - s, x, 1) \chi_{(0,\infty)}(t_0 - s))$$
$$(\tilde{x} = (x, s) \in \tilde{E}, y_0 = (1, t_0), t_0 \in (0, \infty)).$$

Now let 1 be accessible. Then by $dm^* = \varphi^2(\cdot, \lambda_0)dm$ and $dp^* = \varphi^{-2}(\cdot, \lambda_0)dp$ a new speed measure m^* and a new scale p^* on [0, 1) are given. The boundary 1 is entrance for (m^*, p^*) (see [5]) and the corresponding transition density is

$$p^*(h, x, y) = \frac{e^{-\lambda_0 h} p(h, x, y)}{\varphi(x, \lambda_0) \varphi(y, \lambda_0)} \qquad (x, y \in E, h > 0).$$

Applying the preceding results to (m^*, p^*) it follows

$$\lim_{y \to 1} \int_0^1 p(t-s, x, y) e^{-\lambda_0 (t-s)} \frac{\varphi(x, \lambda_0)}{\varphi(y, \lambda_0)} f(x, s) m(dx)$$

$$= \int_0^1 p^*(t-s, x, 1) \varphi^2(x, \lambda_0) f(x, s) m(dx) \qquad (0 < s < t).$$

We know from [5] that $D_p \varphi(1, \lambda_0) = \lim_{x \to 1} \frac{\varphi(x, \lambda_0)}{p(x) - p(1)}$ exists and is finite and negative. Defining

$$D_b p(h, x, 1) := p^*(h, x, 1)e^{\lambda_0 h} \varphi(x, \lambda_0) D_b \varphi(1, \lambda_0) \qquad (h > 0, x \in E),$$

the right side of (5) can be written as

$$\int_{0}^{1} e^{-\lambda_{0}(t-s)} \varphi(x, \lambda_{0}) D_{p} p(t-s, x, 1) f(x, s) m(dx) \cdot (D_{p} \varphi(1, \lambda_{0}))^{-1},$$

and on an analogous way as above it can be shown

$$\lim_{\tilde{y} \to \tilde{y}_0} \tilde{\tilde{K}}_0 f(y) = (D_p \varphi(1, \lambda_0))^{-1} \int_0^1 \int_0^{t_0} e^{-\lambda_0 t_0} D_p p(t_0 - s, x, 1) d\zeta(\tilde{x})$$

and

(6)
$$k_{\tilde{y}_{0}}(\tilde{x}) = e^{-\lambda_{0}t_{0}} \frac{D_{p}p(t_{0}-s, x, 1)}{D_{p}\varphi(1, \lambda_{0})} \chi_{(0 \, \infty)}(t_{0}-s)$$
$$(\tilde{x} = (x, s) \in \tilde{E}, \, \tilde{y}_{0} = (1, t_{0}), \, t_{0} \in (0, \, \infty))$$

under the assumption that 1 is accessible.

Third Case: $\tilde{y}_0 = (1, \infty)$. If 1 is entrance, from [5], Theorem 3 it follows the identity

$$\lim_{t\to\infty} \int_0^1 \int_0^t p(t-s, x, y) f(x, s) ds m(dx) = (m(1))^{-1} \int_0^1 \int_0^\infty f(x, s) ds m(dx).$$

This implies

(7)
$$k_{\widetilde{y}_0}(\widetilde{x}) = (m(1))^{-1} \qquad (\widetilde{x} \in \widetilde{E}).$$

If 1 is accessible by the same transformation and the same method as in the second case it follows

$$\lim_{t\to\infty} \widetilde{\widetilde{K}}_0 f(\widetilde{y}) = \left(\int_0^1 \varphi^2(x,\lambda_0) m(dx)\right)^{-1} \int_0^1 \int_0^\infty \varphi(x,\lambda_0) f(x,s) e^{-\lambda_0 s} d\zeta(\widetilde{x})$$

and

(8)
$$k_{\widetilde{y}_0}(x) = (\int_0^1 \varphi^2(x, \lambda_0) m(dx))^{-1} e^{-\lambda_0 s} \varphi(x, \lambda_0) \qquad (\widetilde{x} \in \widetilde{E}).$$

Thus Theorem 1 is proved.

Corollary. Let $\int_0^1 p^2 dm < \infty$, i.e. (m, p) is in the limit circle case (see e.g. [4], [5]). Then we have an uniformly converging spectral expansion for p(h, x, 1) (if 1 is intrance) and for $D_p p(h, x, 1)$ (if 1 is accessible) (see [5], Theorem 2). Hence we can give such an expansion for k_{y_0} :

$$(9) k_{\widetilde{y}_0}(\widetilde{x}) = \left(\frac{1}{m(1)} + \sum_{k=1}^{\infty} e^{\lambda_k (t_0 - s)} \varphi(x, \lambda_k) \varphi(1, \lambda_k) \tau_k\right) \chi_{(0, \infty)}(t_0 - s)$$

$$(\widetilde{x} \in \widetilde{E}, \widetilde{y}_0 = (1, t_0), t_0 \in (0, \infty))$$

if 1 is entrance with $\int_0^1 p^2 dm < \infty$ and

(10)
$$k_{\widetilde{\tau}_0}(\widetilde{x}) = (e^{-\lambda_0 s} \varphi(x, \lambda_0) \tau_0 + \sum_{k=1}^{\infty} e^{\lambda_k (t_0 - s)} \varphi(x, \lambda_k) \frac{D_p \varphi(1, \lambda_k)}{D_p \varphi(1, \lambda_0)} \cdot e^{-\lambda_0 t_0 \tau_k} \chi_{(0, \infty)}(t_0 - s)$$

 $(\tilde{x} \in \tilde{E}, \tilde{y}_0 = (1, t_0), t_0 \in (0, \infty))$ if 1 is accessible with $\int_0^1 p^2 dm < \infty$ (i.e. regular), where the series in (9) and (10) are uniformly converging in $t \ge t_0 > 0$ and $x \in [0, 1)$.

Theorem 2 below gives an integral representation of \tilde{X} -excessive and -parabolic functions. To formulate it we need some more notations and propositions from the theory of Martin boundaries which will now be given (see [10], also [7]).

Let f be excessive. From the mentioned theory it is known that the limit

$$L(f) := \lim_{\lambda \to \infty} \lambda \int_{\widetilde{E}} (1 - \widetilde{\widetilde{K}}_{\lambda} 1)(\widetilde{y}) f(\widetilde{y}) \zeta(d\widetilde{y})$$

exists (possibly infinite). A short calculation using the definition of $\tilde{\tilde{K}}_{\lambda}$ and ζ in our case implies

$$L(f) = \lim_{\lambda \to \infty} \lambda \int_0^\infty e^{-\lambda s} (\int_0^1 f(x, s) \varphi(x, \lambda_0) m(dx)) ds.$$

Because f is excessive we have

$$(T_h f(\cdot, t+h))(x) \leq f(x, t)$$
 $(h, t>0, x \in E)$.

Thus

$$\int_0^1 e^{h\lambda_0} f(y, t+h) \varphi(y, \lambda_0) m(dy) = \int_0^1 f(y, t+h) (T_h \varphi(\cdot, \lambda_0))(y) m(dy)$$

$$= \int_0^1 (T_h f(\cdot, t+h))(x) \varphi(x, \lambda_0) m(dx) \leq \int_0^1 f(x, t) \varphi(x, \lambda_0) m(dx) \qquad (h, t > 0).$$

Therefore the function $h \to \int_0^1 e^{\lambda_0 h} f(y, t+h) \varphi(y, \lambda_0) m(dy)$ decreases if t is fixed and h increases. Hence the function $h \to e^{-\lambda_0 h} \int_0^1 f(y, t-h) \varphi(y, \lambda_0) m(dy)$ increases if h increases from 0 to t for every t > 0. Thus the limit $\lim_{h \downarrow 0} \int_0^1 f(y, h) \varphi(y, \lambda_0) m(dy)$ exists and by properties of the Laplace-transformation we have

(11)
$$L(f) = \lim_{h \downarrow 0} \int_0^1 f(y, h) \varphi(y, \lambda_0) m(dy)$$

with $L(f) \in (0, \infty]$ if f is excessive and non identical zero. In the theory of Martin boundaries every excessive function f satisfying a certain condition (e.g. $L(f) < \infty$ in our case) is represented by minimal excessive functions (see below). An essential point is to choose the purely coexcessive function n in the definition of \widetilde{K}_{λ} in such a way that as many as possible excessive functions f satisfy the mentioned condition. Here we have taken $n(y, t) = \varphi(y, \lambda_0)e^{+\lambda_0 t}$. This implies e.g. that the bounded excessive functions and the functions $\widetilde{f}_{\mu}(x, s) = e^{-\mu s}\varphi(x, \mu)$ ($\mu \ge \lambda_0$) are included if 1 is entrance or accessible because $\varphi(\cdot, \lambda_0)$ is bounded and m-integrable and $\varphi(\cdot, \lambda_0)$ is bounded (if 1 is accessible) or m-integrable (if 1 is entrance) (see [5]).

An excessive function f=0 is called *extreme* if for every two excessive functions f_1 , f_2 with $f=\alpha f_1+(1-\alpha)f_2$ for some $\alpha \in (0, 1)$ it follows $f=f_1=f_2$.

We say that the point $\tilde{y} \in \tilde{F}$ is a minimal point if $\tilde{y} \in \tilde{E}$ or $\tilde{y} \in \tilde{F}''_m := \{\tilde{z} \in \tilde{F}' \mid L(k_{\tilde{z}}) = 1, k_{\tilde{z}} \text{ is extreme and parabolic} \}$. The set of minimal points of \tilde{F} is a Borel set and we denote it by \tilde{F}_m . (Using the fact that for the process \tilde{X} considered here the function $k_{\tilde{y}}$ for no $\tilde{y} \in \tilde{E}$ is harmonic (the proof is not difficult and omitted here) one can show that the definition given above coincides with the definition of minimal points given in [10]. See also [7].)

The functions $k_{\tilde{x}}(\tilde{y} \in \tilde{F}_m)$ are also called *minimal*.

As already said, from the theory of Martin boundaries it follows that for any excessive function f with L(f)=1 there exists a Radon measure μ_f on $\widetilde{F}_1:=\{\widetilde{y}\in\widetilde{F}|L(k_{\widetilde{y}})=1\}$ with $\mu_f(\widetilde{F}_1)=1$ such that

(12)
$$f(\tilde{x}) = \int_{\tilde{F}} k_{\tilde{y}}(\tilde{x}) \mu_f(d\tilde{y}) \qquad (\tilde{x} \in \tilde{E})$$

(see [10]).

If the functions \widetilde{K}_0g $(g \in C_c(\widetilde{E}))$ separate the points of \widetilde{F}_m , then there exists an uniquely determined measure μ_f supported on \widetilde{F}_m such that (12) holds.

Now we are ready to formulate and prove a representation theorem for

quasidiffusion-space-time excessive functions f satisfying $L(f) < \infty$.

Theorem 2. Let 1 be an entrance or an accessible boundary.

Then we have:

(i): The set \tilde{F}_m of minimal points of \tilde{F} is equal to

$$\widetilde{E} \cup \{(1, t_0) | t_0 \in (0, \infty]\}$$
,

(ii): For every excessive function f with L(f)=1 there exists an uniquely determined measure μ_f on \tilde{F}_m such that

$$\mu_f(\tilde{F}_m) = 1$$
 and $f(\tilde{x}) = \int_{\tilde{E}} k_{\tilde{y}}(\tilde{x}) \mu_f(d\tilde{y})$ $(\tilde{x} \in \tilde{E})$,

(iii): For every parabolic function f with L(f)=1 there exists an uniquely determined measure μ_f on $(0, \infty]$ such that

(13)
$$\mu_f((0, \infty]) = 1, \quad f(\tilde{x}) = \int_{0+}^{\infty+} k_{(1,t)}(\tilde{x}) \mu_f(dt) \qquad (\tilde{x} \in \tilde{E})$$

and

(14)
$$\mu_{f}((0,s]) = -D_{p}\varphi(1,\lambda_{0}) \lim_{x \to 1} \int_{0}^{s} e^{\lambda_{0}t} f(x,t) dt \qquad (s \in (0,\infty))$$

if 1 is accessible,

(15)
$$\mu_f((0,s]) = \lim_{x \to 1} (p(x))^{-1} \int_0^x f(x,t)dt \qquad (s \in (0,\infty))$$

if 1 is entrance.

Proof. At first we remark that the points $(y_0, 0)$ not belong to \widetilde{F}_m because $k_{(y_0,0)}\equiv 0$ (see also (2)). Thus we have the part \subseteq of (i). To prove the \supseteq -part we have to show that every point $\widetilde{y}_0=(1,t_0)$ $(0< t_0 \le \infty)$ belongs to \widetilde{F}_m' . At first suppose $t_0 \in (0,\infty)$ and let $\widetilde{y}_0=(1,t_0)$ be fixed. Then $L(k_{\widetilde{y}_0})=\lim_{s\downarrow 0}\int_0^1 p(t_0-s,y,1)m(dy)=1$ if 1 is entrance and $L(k_{\widetilde{y}_0})=\lim_{s\downarrow 0}\frac{e^{-\lambda_0t_0}}{D_p\varphi(1,\lambda_0)}\int_0^1 D_pp(t_0-s,y,1)\varphi(x,\lambda_0)m(dx)=\lim_{s\downarrow 0}e^{-\lambda_0s}p^*(t_0-s,x,1)m^*(dx)=1$ if 1 is accessible. (For notations see the proof of Theorem 1.)

Now we shall show that $k_{\tilde{y}_0}$ is parabolic. We have already mentioned that $k_{\tilde{y}_0}$ is excessive. Thus only (1) is to prove. If $\tilde{x}=(x,s)\in \tilde{E}$ with $s\geq t_0$ we have by definition $k_{\tilde{y}_0}(\tilde{x})=0$ and therefore $k_{\tilde{y}_0}(X_t,s+t)=0$ a.e. with respect to P_x for every t>0. Thus (1) holds for such \tilde{x} .

Let $\tilde{x}=(x,s)$ with $s < t_0$ be fixed. To show (1) we can restrict ourselves to

rectangles of the form

$$\widetilde{A}_{\delta,h} := \{(z,u) \mid |x-z| < \delta, x \pm \delta \in E, 0 < u - s < h\}$$

$$(\max(\delta, 1 - \delta) \quad 1; \delta, h > 0).$$

Let 1 be entrance. Then $k_{\tilde{s}_0}(\tilde{x}) = p(t_0 - s, x, 1) = \int_0^1 P_h(1, dz) p(t_0 - s - h, x, z)$ $(s+h < t_0)$, by definition (see [5]), where $P_h(1, dz)$ is the transition function of X at the point 1. Suppose at first that $\tilde{A} := \tilde{A}_{\delta,h}$ is a rectangle of the mentioned form with $h < t_0 - s$. Then we have

$$E_{x}k_{\widetilde{y}_{0}}(X_{\tau_{\widetilde{A}}}, s+\tau_{\widetilde{A}}) = \int_{\partial\widetilde{A}} p(t_{0}-u, z, 1)P_{x}((X_{\tau_{\widetilde{A}}}, \tau_{\widetilde{A}}+s) \in d\widetilde{z})$$

$$= \int_{0}^{1} P_{t_{0}-s-h}(1, dy) \int_{\partial\widetilde{A}} p(s+h-u, z, y)P_{x}((X_{\tau_{\widetilde{A}}}, \tau_{\widetilde{A}}+s) \in d\widetilde{z})$$

$$(\widetilde{z} = (z, u)).$$

Remarking that for every (y, s+h) the function $k_{(y,s+h)}(z,u) := p(s+h-u,z,y)$ is parabolic in (z,u) with u < s+h by continuity and the Kolmogorov equations, it follows that the inner integral is equal to p(s+h-s,x,y) = p(h,x,y). Thus

$$E_{x}k_{\tilde{y}_{0}}(X_{\tau_{\tilde{A}}}, s+\tau_{\tilde{A}}) = \int_{0}^{1} P_{t_{0}-s-h}(1, dy)p(h, x, y) = p(t_{0}-s, x, 1)$$
$$= k_{\tilde{y}_{0}}(x, s) \qquad ((x, s) \in \tilde{E}).$$

Now let $\tilde{A}:=A_{\delta,h}$ be a rectangle as above with $h \ge t_0 - s$. Fixing h' with $0 < h' < t_0 - s$ and using the preceding step it follows with the notation $\tilde{A}' = \tilde{A}_{\delta,h'}$

(16)
$$p(t_0-s, x, 1) = \int_{\pi_{\widetilde{A}'}} p(t_0-u, z, 1) P_x(X_{\tau_{\widetilde{A}'}}, \tau_{\widetilde{A}}+s) \in dz).$$

The right hand side splits into three parts, namely the integral about the lines $(x+\delta,s)\cdots(x+\delta,s+h'), (x-\delta,s)\cdots(x-\delta,s+h')$ and $(x-\delta,s+h')\cdots(x+\delta,s+h')$. The integral along the third line tends to zero if $s+h'\to t_0$:

(17)
$$\lim_{h'\to t_0-s} \int_{x_0-\delta}^{x_0+\delta} p(t_0-s-h',z,1) P_z(\tau_{\widetilde{A}} > h', X_{h'} \in dz) = 0.$$

This is proved as follows. The integrals in (17) are less than $\int_{x-\delta}^{x+\delta} p(t_0-s-h',z,1)p(h',x,z)m(dz) = \int_{x-\delta}^{x+\delta} p(h',x,z)P_{t_0-s-h'}(1,dz)$ and this term converges to zero for $h' \to t_0 - s$ by continuity of the semigroup $(T_h)_{h \ge 0}$. Therefore from (16) and (17) it follows

$$p(t_0 - s, x, 1) = \int_s^{t_0} p(t_0 - u, x + \delta, 1) P_x(\tau_{\widetilde{A}} + s \in du, X_{\tau_{\widetilde{A}}} \ge x + \delta)$$

$$+ \int_s^{t_0} p(t_0 - u, x - \delta, 1) P_x(\tau_{\widetilde{A}} + s \in du, X_{\tau_{\widetilde{A}}} \le x - \delta)$$

$$= \int_{\partial \widetilde{A}} p(t_0 - u, z, 1) P_x((X_{\tau_{\widetilde{A}}}, \tau_{\widetilde{A}} + s) \in d\widetilde{z}).$$

Thus we have proved that $k_{\tilde{y}_0}(\cdot)$ is parabolic if 1 is entrance. If 1 is accessible, the proof follows by transformation of (m, p) as in the proof of Theorem 1 and applying the preceding result for the entrance boundary.

The proof that $k_{\tilde{y}_0}$ is extreme depends on the following lemmata.

Lemma 1. We have

(18)
$$\lim_{x \to 1} \int_0^s k_{(1,t_0)}(x,u) du = e^{-\lambda_0 t_0} (-D_p \varphi(1,\lambda_0))^{-1} \chi_{[0,s]}(t_0)$$

if 1 is accessible and

(19)
$$\lim_{x\to 1} (p(x))^{-1} \int_0^s k_{(1,t_0)}(x,u) du = \chi_{[0,s]}(t_0) \qquad (s\in(0,\infty))$$

if 1 is entrance.

Proof of Lemma 1. Let 1 be accessible. Then by Theorem 2 and Lemma 4 of [5] it follows

$$-D_{p}\varphi(1, \lambda_{0})e^{\lambda_{0}t_{0}}\int_{0}^{s}k_{(1,t_{0})}(x, u)du = \lim_{y \to 1}\int_{0}^{t_{0} \wedge s}\frac{p(t_{0}-u, x, y)}{p(1)-p(y)}$$

$$=\begin{cases} 1 - \int_{0}^{1}p(t_{0}, x, z)m(dz) & \text{if } s \geq t_{0}, \\ \int_{0}^{1}p(t_{0}-s, x, z)m(dz) - \int_{0}^{1}p(t_{0}, x, z)m(dz) & \text{if } s < t_{0}. \end{cases}$$

Also from the accessibility of 1 it follows $T_h 1(x) \rightarrow 0$ for every h > 0 if $x \rightarrow 1$. Thus we have (18).

Let 1 be entrance. We choose $\lambda > 0$ and consider the new speed measure $dm^{(\lambda)} = \varphi^2(\cdot, \lambda)dm$ and the new scale $dp^{(\lambda)} = \varphi^{-2}(\cdot, \lambda)dp$. One can show that 1 is accessible with respect to $(m^{(\lambda)}, p^{(\lambda)})$ and that the corresponding to $(m^{(\lambda)}, p^{(\lambda)})$ transition density is

$$p^{(\lambda)}(h, x, y) = \frac{p(h, x, y)e^{-h}}{\varphi(x, \lambda)\varphi(y, \lambda)} \qquad (x, y \in E, h > 0)$$

(see [5]). Moreover, we have

$$k_{(1,t_0)}^{(\lambda)}(x,s) = e^{\lambda t_0} \frac{D_p^{(\lambda)} p^{(\lambda)}(t_0 - s_1 x_1 1)}{D_p^{(\lambda)} \varphi^{(\lambda)}(1,-\lambda)} \chi_{(0,\infty)}(t_0 - s) \qquad ((x,s) \in \widetilde{E}).$$

Using (18) it follows

$$\lim_{x\to 1} (-1) \int_0^x D_p(\lambda) p(\lambda)(t_0-u, x, 1) du = \chi_{[0,u]}(t_0).$$

From Theorem 2 of [5] we have

$$-\int_{0}^{s} D_{p}^{(\lambda)} p^{(\lambda)}(t_{0}-u, x, 1) du = \lim_{y \to 1} \int_{0}^{s} \frac{p^{(\lambda)}(t_{0}-u, x, y)}{p^{(\lambda)}(1) - p^{(\lambda)}(y)} du$$

$$= \lim_{y \to 1} \int_{0}^{s} \frac{e^{-\lambda(t_{0}-u)} p(t_{0}-u, x, y)}{\varphi(x, \lambda) (\Gamma(\lambda)\varphi(y, \lambda) - \psi(y, \lambda))} du.$$

where $\psi(\cdot, \lambda)$ is the solution of $D_m D_p g = \lambda g$ satisfying $\psi(0, \lambda) = 0$, $D_p^- \psi(0, \lambda) = 1$, and $\Gamma(\lambda) = p^{(\lambda)}(1) = \lim_{x \neq 1} \frac{\psi(x, \lambda)}{\varphi(x, \lambda)}$. Using known properties of the function $\chi(\cdot, \lambda) := \Gamma(\lambda) \varphi(\cdot, \lambda) - \psi(\cdot, \lambda)$ (see also [5]) it follows that the last integral is equal to

$$e^{-\lambda t_0}(\varphi(x,\lambda)\chi(1,\lambda))^{-1}\int_0^s e^{\lambda u}p(t_0-u,x,1)du.$$

Thus by using $D_p \varphi(1, \lambda) \cdot \chi(1, \lambda) = 1$ (this follows from [5] remarking $D_p \varphi(1, \lambda) < \infty$, $\chi(1, \lambda) > 0$) we have

$$e^{-\lambda t_0} \lim (p(x))^{-1} \int_0^s e^{\lambda u} p(t_0 - u, x, 1) du = -1$$

$$= -\lim_{x \to 1} \int_0^s D_p(\lambda) p(\lambda) (t_0 - u, x, 1) du = \chi_{[0,s]}(t_0) \quad \text{for every } \lambda > 0.$$

Hence (19) follows by letting $\lambda \rightarrow 0$. Thus Lemma 1 is proved.

Lemma 2. Let g be a parabolic function with L(g)=1 and $g(\tilde{x})=\int_{0+}^{\infty+}k_{(1,t)}(\tilde{x})\times \mu(dt)$ for some finite measure μ on $(0,\infty]$. Then

(21)
$$-D_{p}\varphi(1,\lambda_{0})\lim_{x\to 1}\int_{0}^{s}e^{\lambda_{0}u}g(x,u)du = \mu((0,s]) \qquad (s<\infty)$$

if 1 is accessible and

(22)
$$\lim_{x\to 1} (p(x))^{-1} \int_0^s g(x,u) du = \mu((0,s]) \qquad (s<\infty)$$

if 1 is entrance.

Proof of Lemma 2. Let 1 be accessible. Then by Fubini's theorem $\int_0^s g(x, u) du = \int_0^\infty \int_0^s k_{(1,t)}(x, u) du \mu(dt).$ If x converges to 1, the limitation and integration can be changed. This is seen as follows. From (20) we have

$$\int_{0}^{s} k_{(1,t)}(x,u) du \leq e^{-\lambda_{0}t} (-D_{p}\varphi(1,\lambda_{0}))^{-1} \int_{0}^{1} p(t-s,x,z) m(dz) \qquad (t > s, x \in E) .$$

We show that the continuous function $h \rightarrow e^{-\lambda_0 h} p(h, x, z) m(dz)$ is bounded for large h. This justifies the change in virtue of the Lebesgue's dominated convergence theorem. To this purpose we calculate the Laplace-transform (see [5]):

$$\lambda \int_0^\infty e^{-\lambda h} e^{-\lambda_0 h} dh \int_0^1 p(h, x, z) m(dz) = \frac{\lambda}{\lambda + \lambda_0} \left(1 - \frac{\varphi(x, \lambda + \lambda_0)}{\varphi(1, \lambda + \lambda_0)} \right) \qquad (\lambda > 0)$$

and let λ tend to zero. Then the right hand side converges to $-\frac{\varphi(x,\lambda_0)}{\lambda_0}$ $\times \left(\frac{\partial \varphi(1,\lambda_0+\lambda)}{\partial \lambda}\Big|_{\lambda=0}\right)^{-1}$. For every x<1 the function $\lambda \to \varphi(x,\lambda)$ is entire and has the representation

(23)
$$\varphi(x,\lambda) = \prod_{k=0}^{\infty} \left(1 - \frac{\lambda}{\lambda_k(x)}\right)$$

where $(\lambda_k(x))$ are the zeros of $\varphi(x, \cdot)$ (see [4]).

If x tends to 1, the numbers $\lambda_k(x)$ converge to the points λ_k of increasing of the main spectral function τ . Because $\sum_{k=1}^{\infty} \frac{1}{|\lambda_k|} < \infty$ the right hand side of (23) tends to the entire function $\prod_{k=1}^{\infty} \left(1 - \frac{\lambda}{\lambda_k}\right)$ and this limit is equal to $\varphi(1, \lambda)$. Therefore $\frac{\partial \varphi(1, \lambda_0 + \lambda)}{\partial \lambda} \Big|_{\lambda=0} = -\prod_{k=1}^{\infty} \left(1 - \frac{\lambda_0}{\lambda_k}\right)$ is finite and nonzero. Hence by $\varphi(x, \lambda_0) > 0$ ($x \in E$) it follows that $e^{-\lambda_0 h} \int_0^1 p(h, x, z) m(dz)$ converges to a finite limit if $h \to \infty$ Summarizing and using Lemma 1 we obtain

$$\lim_{x\to 1}\int_0^s g(x,u)du = -\int_0^\infty (D_p \varphi(1,\lambda_0))^{-1} \cdot e^{-\lambda_0 t} \chi_{(0,s]}(t) \mu(dt)$$

and hence (21) follows.

If 1 is entrance we can transform (m, p) as in the proof of Lemma 1 into a new pair $(m^{(\lambda)}, p^{(\lambda)})$ such that 1 is $(m^{(\lambda)}, p^{(\lambda)})$ -accessible. Applying (21) and transforming back we obtain (22).

Now we shall prove that $k_{\tilde{y}_0}$ is extreme. To this aim we remark that every parabolic function g with L(g)=1 has a representation $g=\int_{\tilde{F}_1}k_{\tilde{y}}\mu_g(dy)$ where the Radon-measure μ_g is supported on F_1' (see above). (That μ_g is supported on F_1' follows from the fact that no $k_{\tilde{y}}$ for $\tilde{y} \in \tilde{E}$ is parabolic (see [10]). The last point has to be shown, but this step is easy to see and omitted here.)

Suppose g_1 , g_2 are two excessive functions with $\alpha g_1 + (1-\alpha)g_2 = k_{\tilde{y}_0}$ for some $\alpha \in (0, 1)$. Then g_1 and g_2 have to be parabolic because k_{y_0} it is, and by the preceding remark they have the representation

$$g_i = \int_0^\infty k_{(1,t)} \mu_i(dt)$$

for some (finite) measure μ_i on $(0, \infty]$ (i=1, 2).

Using Lemmata 1 and 2 it follows that $k_{\tilde{y}_0}$ is extreme. Thus we have proved that every $\tilde{y}_0 = (1, t_0)$ with $0 < t_0 < \infty$ is a minimal point.

At least we consider $k_{(1,\infty)}(x)=e^{-\lambda_0 s}\varphi(x,\lambda_0)$ ($\tilde{x}\in\tilde{E}$). This function is parabolic and satisfies $L(k_{(1,\infty)})=1$ which is easy to see. Moreover $k_{(1,\infty)}$ is extreme, because $k_{(1,\infty)}(1,s)=0$ and thus $\mu_g((0,s])=0$ for every parabolic function g with $g\leq k_{(1,\infty)}$ and every $s<\infty$. Hence $(1,\infty)\in\tilde{F}_m'$. Thus (i) is proved.

If we show that the functions $\tilde{K}_0 f(f \in C_c(\tilde{E}))$ separate the points of \tilde{F}_m then (ii) follows from [10] and (iii) is a consequence of (ii) and the preceding conclusions. Let $\tilde{y}_0 = (y_0, t_0)$ and $\tilde{y}_1 = (y_1, t_1) \in \tilde{F}_m$ and suppose at first $t_0 < t_1$. Let $f \in C_c(\tilde{E})$, f > 0 with support is bounded below by $\frac{t_0 + t_1}{2}$ and above by t_1 . Then $\tilde{K}_0 f(\tilde{y}_1) > 0$ and $\tilde{K}_0 f(\tilde{y}_0) = 0$. Suppose $t_0 = t_1$, $y_0 \neq y_1$ and $\tilde{K}_0 f(\tilde{y}_0) = \tilde{K}_0 f(\tilde{y}_1)$ for every $f \in C_c(\tilde{E})$. Then $k_{\tilde{y}_0} = k_{\tilde{y}_1}$. Let e.g. 1 be entrance. Then for $\delta < \frac{|y_0 - y_1|}{2}$ we have

$$\int_{|x-y_0|<\delta} k_{\widetilde{y}_i}(\widetilde{x}) m(dx) = \int_{|x-y_0|<\delta} p(t_0-s,x,y_i) m(dx) \xrightarrow{s \uparrow t_0} 1 \quad \text{or } 0$$

if i=0 or 1 respectively by the stochastical continuity of X. This contradicts $k_{\widetilde{\gamma}_0} = k_{\widetilde{\gamma}_1}$. If 1 is accessible by using the new pair (m^*, p^*) (see the proof of Theorem 1) on the same way it can be shown that $k_{\widetilde{\gamma}_0} \neq k_{\widetilde{\gamma}_1}$ for $y_0 \neq y_1$. Thus $\widetilde{K}_0 f(f \in C_c(\widetilde{E}))$ separate the points of \widetilde{F}_m . Hence the theorem is proved.

§3. Applications

We give two applications of the preceding results. Several authors have studied the problem if every extreme parabolic function factorizes, i.e. has a representation of the form $\phi(x)\psi(t)$, and if every factorizing parabolic function is extreme (see e.g. [9], [11]).

For quasidiffusions we have the following corollary from the results above.

Corollary 1. ——If 1 is entrance (accessible) the only factorizing minimal parabolic function is

$$k_{(1,\infty)}(x) = (m(1))^{-1} \qquad (=e^{-\lambda_0 s} \varphi(x, \lambda_0)).$$

—For every $\mu > \lambda_0$ the factorizing parabolic function $\tilde{h}_{\mu}(\tilde{x}) = e^{-\mu s} \varphi(x, \mu)$ has representation

$$e^{-\mu s}\varphi(x,\mu) = -D_p\varphi(1,\lambda)\int_s^\infty e^{-\mu u}p(u-s,x,1)du$$

if 1 is entrance and

$$e^{-\mu s}\varphi(x,\mu)=\varphi(1,\mu)\int_{s}^{\infty}e^{-\mu u}D_{p}p(u-s,x,1)du$$

if 1 is accessible.

Remark. The last but one formula can be proved elementary by using $\int_0^\infty e^{-\mu h} p(h, x, 1) dh = r_\mu(x, 1) = \varphi(x, \mu) \chi(1, \mu) = \varphi(x, \mu) (D_p \varphi(1, \mu))^{-1} \text{ where } r_\mu(x, y)$ denotes the resolvent kernel density of the corresponding to (m, p) semigroup (S_t) in C(E).

In [2], [8] and other papers were studied conditions under which for a given function h(x, t) and a given Markov process the composition $(h(X_t, s+t))_{t\geq 0}$ is a martingale. In this connection we can formulate the following

Corollary 2. Let 1 be entrance or accessible and f a parabolic function with $L(\dot{f}) < \infty$ and

$$f(\tilde{x}) = \int_0^\infty k_{(1,t)}(\tilde{x})\mu_f(dt) \qquad (\tilde{x} \in \tilde{E}).$$

Then

$$E_x(f(X_t, t+s) | \mathcal{F}_u) = f(X_u, u+s) - \int_{s+u}^{s+t} k_{(1,v)}(X_u, s+u) \mu_f(dv) \qquad (0 < u < t),$$

where \mathcal{F}_u denotes the σ -algebra generated by $\{X_r, r \leq u\}$. In particular $(f(X_t, t+s))_{t \in [a,b]}$ is a martingale with respect to every $P_x(x \in E)$ if and only if

$$\mu_f([a+s, b+s])=0.$$

Proof: By the Markov property it follows

$$\begin{split} E_x(f(X_t, t+s) | \mathcal{F}_u) &= E_{X_u}(f(X_{t-u}, t+s)) = \int_0^1 f(y, t+s) p(t-u, X_u, y) m(dy) \\ &= \int_0^1 \int_{t+s}^\infty k_{(1,v)}(y, t+s) \mu_f(dv) p(t-u, X_u, y) m(dy) \\ &= \int_{t+s}^\infty \int_0^1 k_{(1,v)}(y, t+s) p(t-u, X_u, y) m(dy) \mu_f(dv) \\ &= \int_{t+s}^\infty k_{(1,v)}(X_u, s+u) \mu_f(dv) \\ &= f(X_u, s+u) - \int_{t+u}^{s+t} k_{(1,v)}(X_u, s+u) \mu_f(dv) \;. \end{split}$$

Thereby we have used

$$\int_0^1 k_{(1,v)}(y,t) p(h,z,y) m(dy) = k_{(1,v)}(z,t-h) \qquad (h < t)$$

which follows from [5] Theorem 2 and the Chapman-Kolmogorov equation.

References

- [1] Doob, J. L., Snell, J. L. and Williamson, R. E., Applications of boundary theory to sums of independent random variables, in *Contributions to probability and statistics*, Stanford University Press 1960.
- [2] Doob, J. L., Martingales and one-dimensional diffusions, Trans. Amer. Math. Soc. 78 (1955), 168–208.
- [3] Ito, K. and McKean, H. P. Jr., Diffusion processes and their sample paths, New York, Academic Press 1964.
- [4] Kac, I. S. and Krein, M. G.: On the special functions of the string, Appendix to the Russian translation of Atkinson, *Discrete and continuous boundary problems*, Moscow 1968 (in Russian).
- [5] Küchler, U., Some asymptotic properties of the transition densities of quasidiffusions, Publ. RIMS, Kyoto Univ., 16 (1980), 245–268.
- [6] Küchler, U. and Lunze, U., On the tail σ-field and the minimal parabolic functions for one-dimensional quasidiffusions, Z. Wahrscheinlichkeitstheorie verw. Gebiete, to appear.
- [7] Kunita, H. and Watanabe, T, Markov processes and Martin boundaries I, *Illinois J. Math.* 9 (1965), 485–526.
- [8] Lai, T. L., Space-time processes, parabolic functions and one-dimensional diffusions, Trans. Amer. Math. Soc. 175 (1973), 409-438.
- [9] Lamperti, J. and Snell, J. L., Martin boundaries for certain Markov chains, J. Math. Soc. Japan, 15 (1963), 113-128.
- [10] Meyer, P. A., Processus de Markov, la frontiere de Martin, Lecture Notes in Mathematics 77, Berlin 1968.

- [11] Moltschanov, S. A., Martin boundaries for the direct product of Markov processes, Sibirski Mat. Žurnal, XI (1970), 370-380 (in Russian).
- [12] Robbins, H. and Siegmund, D., Boundary crossing probabilities for the Wiener process and sample sums, *Ann. Math. Stat.* 41 (1970), 1410–1429.
- [13] Sawyer, S., A Fatou theorem for the general one-dimensional parabolic equation, *Indiana University Math. Journal*, 24 (1974), 451-498.