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Some Asymptotic Properties of the Transition
Densities of One-Dimensional Quasidiffuslons

By

Uwe KUCHLER*

§1. Introduction and Preliminary Results

Let (Xt)t^0 be a quasidiffusion on [0,1) given by its speed measure m and
scale p. Suppose the boundary point 0 is reflecting regular. If the boundary
point 1 is regular we restrict ourselves to the case that (Xt) is killed as soon as
it hits 15 although the arguments hold equally well for all other locally bound-
ary conditions.

As m is not assumed to be strictly increasing besides the classical diffusions
birth- and death-processes are also included.

In this introducing chapter we consider semigroups of contractions gener-
ated by (Xt) in L2(m) and in a Banach space B of continuous m-integrable
functions. We construct a spectral expansion of the transition densities of
(Xt) making use of M.G. Krein's results on the spectral functions of a string
([10]) and study some of their properties. The results given below generalize
known facts for birth- and death-processes ([9]) and for some diffusion pro-
cesses ([3]3 [8]). They can be proved by using standard methods of the theory
of generalized differential operators ([2], [4], [10]) and therefore some of the
proofs are omitted.

In Chapter 2 we will show that the spectra of the infinitesimal operators
DmDp of (Xt) in L2(m) and B are identical assuming 1 is not a natural boundary.
This is used for studying some boundedness and integrability properties of
eigenfunctions of this operator.

The main results of this paper are contained in Chapters 3 and 4. In Chap-
ter 3 we define a transformation of the pair (m,p) using an eigenfunction of
DmDp. This transformation gives a far reaching duality between accessible
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and entrance boundaries and elucidates once more the connections between
limit circle and limit point cases on the one hand and Feller's boundary classifi-
cation on the other hand.

Chapter 4 is devoted to the investigation of asymptotic properties of the
transition densities p(t,x,y) of (Xt). Assuming 1 is an entrance or an accessible

boundary we will show that p(t,x,y) and ^ >x>y} respectively have strictly

positive limits for y-> I and/or /->oo in a certain space- and time-weak sense.
The asymptotic properties given below are not true in general if 1 is a natural
boundary. In this case the spectral properties of DmDp and the asymptotic be-
haviour of p(t,x9y) are of different type. This is known from the example of
Brownian motion.

The results of this paper will be used in [13] to study parabolic functions
of quasidiffusions. Let us mention that some asymptotic properties of transi-
tion densities of diffusions for a bounded time interval were investigated with
somewhat other methods in [19]. In this paper we shall use the theory of the
generalized differential operator DmDp and the terminology given in [10] (see
also [2]). Some necessary notions and properties are summarized in an appen-
dix.

We denote by R the set of real, by K the set of complex numbers and
define KQ:=K\(— oo,0]. A nondecreasing function m from

j: = [05 1] into [0, oo] with

0 -

is called a speed measure, a (strictly) increasing continuous function p from /
into [0, oo ] is called a scale, and a pair (m,p) of such functions is said to be a
canonical pair. With the same letter m and/? we denote the measures generated
by m and p. We put /:=/\{l}, .F:=supp m and ̂ -^{l}.

We will make use of Feller's boundary classification (see e.g. [7]9 [17]) i.e. with

the notation u(x): = \ mdp and v(x): = \ pdm (x^J) we shall call the boundary
Jo Jo

1 regular if w(l)< oo and v(l)< oo5 entrance if w(l)=oo and v(l)< oo, pure exit
if w(l)<oo and v(l)=°° and natural if w(l) = oo and ^(l)=oo. The natural
case is divided in pure natural boundary (/?(!) = 00) and inaccessible exit boundary
(/?(!)< °°) (shortly: La. exit boundary). Regular and pure exit boundaries
are called accessible, the other inaccessible. Here the boundary 0 is always
regular in an analogous classification.
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Let (m,p) be a canonical pair and # the set of all complex valued functions

f on I such that there exists an m-locally integrable function g=:DmDpf and

two numbers a,b€=K with

( 1 ) /(*) = a + bp(x~) +

For every X^K there exist the fundamental solutions

and K^) of DmDpg-Xg = 0 (get?) and

) - 0, ?(<U) - /

It is known that either both fundamental solutions belong to L2(m) for every

X e K or at least one of their linear combinations belongs to L2(m) for every /I e J£"0

depending on I p2dm<v° or \ p2dm=oo respectively. In the first case we speak
Jo Jo

of the limit circle case (Ice) and in the second of the limit point case (Ipc). In

the Ice the boundary 1 has to be regular or entrance. If 1 is regular we have

the Ice, if 1 is entrance both Ice or Ipc are possible.

To formulate the first proposition let us define

= 0} and

{/e#* |/>,/(!) = 0} if \1p2dm<oo and 1 is entrance,
Jo

{/ e#* | /(I) = 0} if (Ip2dm< oo and 1 is regular,
Jo

tf * if f/rfm - oo .
Jo

Proposition 1. The restriction DmDp of DmDp to A is a self adjoint non-

positive operator in L2(m) and its resolvent R^ is given by

(2) Rxf(x)

with

r*(x, y) = r^(y, x) = <p(x, X)x(y, X) (x, y e /, x ̂  y).

Here x(-,fy denotes the unique solution of DmDpg—Xg=Q belonging to L2(m)

S i
P2dm<oo) satisfying Djz(Q,Z) = — l and x(l,X)=Q if 1 is regular,

o
Dpz(l,X)=Q if 1 is entrance.

The proof is omitted, see e.g. [1],[2],[4],[15] for similar results.
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Corollary. If \ p2dm=oo and I is not natural then all elements of A
Jo

also satisfy certain boundary conditions. Precisely, for any f GE A it holds

/(I) = 0 if I is a pure exit boundary,

Dpf(l) = Q i f l is an entrance boundary.

Proof. The first property follows from m(l)=°o in the pure exit case.
To prove the second we assume 1 is entrance and fix ^>0. Then every
can be represented by RKg with g=Zf—DmDpf^L2(m). Thus

Dpf(x) = (Dpz(x,t

The boundary 1 is entrance, therefore we have lim D^(^:3^)<oo(see [2], p.

166) and thus the second integral tends to zero for x\\. Using (A3) it
follows

Dpf(l)=lim<

(The limit exists and is finite because 9(.,/l) is increasing and
if 1 is entrance.) Thus we have

f(x)~p(x)Dpf(l) f o r x f l .

Now (1p2dm=oo and/eL2(m) imply Dpf(l)=Q. Q.E.D.
Jo

Let (m,p) be a canonical pair and T its main spectral function (see the
appendix). We define

( 3 ) p(t,x,y):= ^v(x,X)rty9X)T(dX) (t^K, Re
J-oo

By virtue of (Al-2) these integrals converge uniformly in x,y^[Q,c] and t^tQ

for every c<l and /0>0 (uniformly in x,y^[Q, 1] and t^tQ for every r0>0 if
1 is regular). Without proof we mention that t->p(t,x,y) is holomorphic in
t with Re t>0 for every x,y^I (x,y^J if 1 is regular).

Proposition 2. The formula

(4) TJ(x):= ^ p(t,x,y)f(y)m(dy)
o

defines a holomorphic semigroup {Tt\t^K, Re£>0} of self adjoint contractions
Tt on L2(m) being strongly continuous at t=Q with TQ:=I and having DmDp as its
infinitesimal operator. Furthermore we have
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(5) p(t,.,y)d, I}mDpP(t,xjy) = p(t,x,y)

and

(6) p(t,x,y) =p(t,y,x)>0 (t>05 x.y^T) .

Proof. It is known (see e.g. [2], [10]) that the generalized Fourier trans-

formation U from L2(m) given by

(Uf) (X) = [f(xWX,X)m(dx) (/eL2(m))
Jo

maps L2(m) isometrically onto L2(r) and that for the inverse mapping U"1

holds

(triP) (*) = f F(X)9(x,WT(X) (Fel^r)).
J-oo

The mapping Q: = UDmDpU'1 is the operator of multiplication acting in

(QF) (X) = ^F« (FS J:= (FeL2

By standard methods it can be shown that with the definition Tt: = U~leQtU

(t^K, Rer>0) the first part of the proposition holds.

From (Al-2) it follows that for every y^I and t with Re f >0 the function

X->eKt<p(y, X) belongs to 2. Therefore p(t9x,y) = U~~l(emt<p(y9.y)(x) as a func-

tion of x belongs to A and we get

BmDpp(t,x,y) = V-\Qe-*<p(y,% (x) =

Thus from the uniform convergence of the last integral in (t,x,y) with Re fZ>t0;

x,y& [0, c] for every t0> 03 c < 1 we obtain that this integral is equal to — p(t,x,y).
dt

Hence (5) is proved.

Now we shall show (6). The symmetry of p(t,x9y) is trivial by definition.

Let ;t>0. If /<EL2(w), /^O then R^f^Q by the positiveness of the kernel

r*(x,y). The Hille-Yosida-theorem (see e.g. [18]) implies that r,/^>0 for all

/eL2(m) with/^0 and every ?>0. Using the continuity of p(t9x9y) it is easy

to see that p(t9x9y)^0 (t>0, x9y^f). Suppose p(t09x09y^)=Q for a certain

tripel (t0,x0, yQ) with tQ>Q; x0,yQ^I. We can assume xQ,yQ are points of increas-

ing of m (because p(t, x, .) and p(t9.9y) depend linear in scale p on intervals

where m is constant).

Now from the semigroup property of (Tt) we have for every
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( 7 ) I p(t0 - h, x0, z)p(h, z, y0)m(dz) = p(t0, XQ, y0) = 0 .
Jo

Let /z'e(0,f0) be fixed. Using Th'=£Q it follows p(h',z',yQ)>0 for some z'
e /. By continuity we have p(h, z, y0) > 0 in some neighbourhood of (h', z'). Hence
(7) implies p(t0—h, x0, z) =0 for all (h, z) in some neighbourhood of (/*', z'). Thus
by the holomorphy of p(.,x0,z') it follows that p(s9x09z')=0 for every s>0.

$
00
e~Xsp(s,x0,z')ds=Q(A>0). But this integral is equal to rx(*0, z'),

0
because x0 is an increasing point of m (see (A6)). This contradicts r^(xyy)>0
(x,y<=I). Hence (6) holds. Q.E.D.

Remark. Without proof let us mention that Pt(x,A): = \ p(t,x,y)m(dy)
JA

are the transition probabilities of a strongly Fellerian stochastically continuous
Markov process with state space E. This process is reflected at the boundary
0 and killed as soon as it hits the boundary 1. It is called the quasidifFusion
corresponding to (m,p) and the boundary conditions mentioned above (see e.g.
[7], [16], [20]), or, because the boundary conditions are fixed here, shortly
corresponding to (m,/?). In this sense we call p(t,x,y) the transition densities
corresponding to (m,/?).

To obtain further informations about the function p(t,x,y) we shall study
corresponding semigroups in spaces of continuous and m-integrable functions.
To this purpose we take into consideration the Banach space (C, ||. ||) of
continuous functions from / into K being linear in scale p on intervals where
m is constant. The norm 11. 11 is given by 11/| |: =sup | \ f(x)\ | (/ e C). Moreover

X€=J fl

let C0(Ci) be the subset of all /eC such that /(1)=0 (I \f\dm<oo resp.)

Then (COS ||. ||) and (C19 ||. ID with H/Ur-maxdl/H, f \f \dm) (/eQ) are
Jo

also Banach spaces.

We will study the restrictions ofDmDp to QQ and Q and we will show that
some eigenfunctions of these restrictions are m-integrable. This is obvious if
1 is entrance or regular, because in this case m(l)<°o (i.e. CcL^m)) holds.
If 1 is pure exit we have m(l)=oo and thus we must apply another methods to
prove the m-integrability of the eigenfunctions. Let us define

f(C, ||*||) if 1 is inaccessible,

(5,|.p = j(C0,| |-| |)iflisregular,

\, ||-!li) if 1 is pure i
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For every ^>0 we define by

( 8 ) RJ(x) : = ^rK(x,y)f(y)m(dy)
Jo

a linear mapping RK on the set of functions / such that the integral in (8) exists.

Proposition 3. The formula

( 9 ) Stf(x): = \lp(t,x,y)f(y)m(dy), S0f:=f (f^B, t>0)
Jo

defines a strongly continuous semigroup {St 1 1^0} of contractions St on (B9 [. |).
The infinitesimal operator of (St) is the restriction of DmDp to
B\DmDpf^B}, and for A>0 the corresponding resolvent operator RK on Bis

given by (8).

The proof of this proposition can also be given by standard methods and

is omitted here.

§2e Spectral Properties of DMDP

In the following theorem we consider the spectra of the restrictions of
DmDp to JcL2(m) and to ABdB which are denoted by a and OB respectively.

Theorem 1. Let I be an accessible or an entrance boundary. Then the
spectra a and GB coincide and comist of a strictly decreasing sequence (Any

n^O) of nonpositive simple eigenvalues An(n^Q) having no finite accumulation
points. The eigenfuntion corresponding to An is ^(.,^J. We have

(10) 9(X<*0)>0 (x<=I)and

^0<0 if I is accessible,

AQ = Q i f l is entrance,

Proof. Let ^ >0. It is easy to see that Rx on L2(m) is a compact operator.
Indeed under the assumptions of the theorem we have

(11)

51
<p(x9Z)m(dx)<°°

o

if 1 is regular or entrance, r^(x,x)^ v(l*X)x(x,X) and ^(M)| x(x,X)tn(dx)<oo
Jo

if 1 is pure exit (see (A4) and [2], p. 166). Remarking

(11) implies II rldmdm^oo^ i.e. RK is compact in L2(m).
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The properties of its spectrum imply that a consists of a sequence (An,
«J>0) of eigenvalues having no finite accumulation point. The corresponding
eigenfunctions gn satisfy the condition Djgn(G)=Q. Thus gn=<p(.9 /O which
proves the simplicity of ln. From the nonpositivity of DmDp it follows AM<^0.
Let (*J be ordered: O^AO>^> •••>^ l l>"-. To continue the proof we shall
prove the following

Lemma 1. For every /l>0 the operator RK is compact on (£, |.p.

Proof. If 1 is regular, then r^., .) is continuous on [0, 1]2, and from m(l)<

oo as usual (see e.g. [8]) it follows the compactness of RK in (C, ||. ||) and
therefore in (Q, ||. ||). If 1 is entrance we have from m(l)<oo and from the

continuity of rx(., .) on [0, 1)2 that for every n the operator R^ generated by

r£°(., .)=min(rx(., .), ri) is compact in (C, ||. ||). By the Lagrange identity it
follows Dp(<p(x9X)x(x,fy)^=2x(x,X)Dp<p(x,X)— 1. Because 1 is entrance we have

*(M)>0 and Dpy(l9X)<oo (see [2], p.166). Furthermore x(l,X)Dp<p(l9X)=l

holds (see (A3)). Thus lim DJ<p(x9X)x(x9X))=l. Consequently the function
*ti p

<p(., /J)j(., ^) increases near 1 and converges to oo for x f 1. Thus there exists

a sequence (xn) f 1 such that <p(xn,X)x(xn,X) = n. Hence r(^(x,y)=rx(x,y) if x

or j^^w. Using Z)^(l,^)<oo it follows

-.Rjl = supx\\ri(x,y)-r™(x,y))m(dy)
Jo

Therefore JRX is compact in (C, ||. ||) if 1 is entrance.

Let 1 be pure exit. At first we will show that for S:= {/

the set JRXS is totally bounded. This implies that R^ is compact on (C,

Of course R^S is a bounded set. Using (A3) we have

(S*l) (x) = z(x,X)\*v(.9 X)dm+rtx,X)\lz(., X)dm
o

, X) (Dtx(\,X)-Dtx(x,
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Thus for every e>0 there exists a d=d(e) such that (Rxl)(x)<e for
every x with x^l~d. Therefore \Rxf(x)\<e for every f^S and every
x^l—d. Now it is easy to show that for every e>0 there exists a finite set
of points xt with 0<x^ —^xn<l—d(e) such that \RJ>(x)—Rxf(xi)\<€

for every x e fc_l3 xf-+1] (/ = 1 , • • • , n— 1) with *0 = 0 and xn+1 = 1— d(e). Thus the
total boundedness of Rx is proved.

Now we have to show that Rx is compact in (Q, ||. ||i) if 1 is pure exit.
Let (/B) be a sequence in Q with ||/n||i^l. Then by the compactness of Rx

in C there exists a subsequence (//) converging with respect to the norm of C.
The elements of Q can be identified with elements of the dual C*:f-*Ff(g): =

o
The dual operator R$ of Rx in C* is also compact and from the symmetry of

rx(., .) it follows that R*Ff can be identified with Rxf if /eQ. Hence there
exists a subsequence (/„") of (//) converging in the sense of Li-norm and thus
in the sense of the norm ||. l^. Summarizing we have proved that Rx for ^>0

is a compact operator in (B, 1. 1). In particular the spectrum aB is a sequence

of eigenvalues having no finite accumulation point.

To continue the proof of Theorem 1 we have to show that OB and a are

identical. We remark that BC.L2(m) and that B is dense in L2(m). Moreover

there exists a constant C>0 such that

(12) ll/lli^Cl/l (/•€=*).

Obviously every eigenvalue of DmDp in B is an eigenvalue of DMDP in L2(m),

thus <75£<7. If JUL^L Rl not belongs to GB then J?^ is a bounded linear operator in

B which has by (12) and by the symmetry property of rx(x,y) a bounded ex-

tension Rp to L2(m) (see [8], [12]). Using the closeness of DmDp it is easy to

show that R'p is the inverse of (tJ.I—DmD^ i.e. ju&a and therefore it holds

Now we shall show the positiveness of <p(., ^0). If ^0=0 then 9(., ̂ 0)
 =

Let ^0<0 and ̂ >0. Then - >0 is the greatest eigenvalue of the compact
A AnAo

and positive linear operator Rx in the Banach lattice (B, |. j). Thus the

eigenfunction <p(.9 AO) is nonnegative. Suppose ^:0< 1 is the first zero of £>(., ^0).
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Then Dt<p(x0, *J=Za[\(s,*Jm(ds)<0 and thus 9>CMo)=( Dtcp(s,^p(ds~)<Q
Jo J*0

for some x in neighbourhood of ;c0. This contradicts 9(., /Q ̂ 0. Thus <p(x, <y >0

if x<=L If 1 is accessible we have J° ^1= ^ -±*-=r(Q)=p(l)<co. Thus

/10^0? i.e. ̂ 0<0. (See the appendix for notations.) If 1 is entrance we have
9(., 0)= 1 <=AB and therefore J0=0. Q.E.D.

Corollary. We have

<p(l, An) = 0, | Dp<p(\9l^ \ < oo ff I is accessible and

M«) I < °°> ̂ 9(1 » *n) =®ifl w entrance.

Proof, Theorem 1 implies 9?(.5 ^JeLjCm) if 1 is accessible or entrance.

Therefore \Dp<p(\,XJ\ = \l§v(x9^m(dx)\<<x> in both cases. The other
Jo

properties follow from <p(., ^JeJfM* and the corollary after Proposition 1.
U.KD.

Let 1 be accessible or entrance and (Ak) the sequence of eigenvalues of
DJDP. We know from (Al-2) that the series

(13) p(t, x,y) =

converge uniformly in (t,x,y) with t^tQ; x,y^c for every r0>0 and c<l. If
1 is accessible somewhat more holds. (See also the remark (ii) below.)

Proposition 4. Assume 1 is accessible. Then the series (13) converge uni-

formly in tgZtQ and x,j<l for every /0>0.

Proof. Let ^>0. Then by rK(x, .)eL2(m) for every ;ce/ it follows

in the sense of ^(^-convergence. Thus for the operator R^ generated by
the kernel

we have
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Therefore r^(x.,x,n)^Q for every x^E, i.e.

The accessibility of 1 implies that r^(x,x) is bounded in x. Therefore the
series on the right side converge uniformly in x^E and thus also in x<l.
From

(15) ^

and eVo<g for sufficiently large k the proposition follows. Q.E.D.
— &

By the same conclusions as in the preceding proof it can be shown that
(14) holds also if 1 is entrance. Thus from (11) it follows

Corollary. If 1 is accessible or entrance then

(16) fjJ-^oo.1 M*l
Remarks, (i) It can be shown that the (fc+l)-th eigenfunction <p(., 4)

has exactly k zeros in (0,1) if 1 is accessible or entrance. (See e.g. [3] for the
method).

Si
p2dm<oo. Then the series (13) also converge

0
uniformly in x,y<l and t^tQ for every ?0>0. The proof is included in the
proof of Theorem 3 below.

§3« A Transformation of the Canonical Pair

In this chapter we will show that there exists a far reaching connection
between accessible and entrance boundaries. By a relatively simple trans-
formation of (m,p) in a new canonical pair (m*9p*) the type of the boundary 1
changes, and under this transformation regular and entrance boundaries being
in Ice, pure exit and entrance boundaries being in Ipc correspond to another
(see Propositions 5 and 5' below).

Let (m,p) be a canonical pair, r the corresponding main spectral function

and V.= SUP SUPP T- We recall ^0^O.For every #^0
 we introduce a new

canonical pair (mw,pW) by

dp™: =<p~2(., v)dp . (cf. [22])
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Obviously dm(^=dm and dp(0}=dp.
Let 9(fX), ^(M>) and rw be the fundamental solutions and the main spectral

function of (mw,pw) respectively. (More generally, all symbols connected
with (mM,pM) get the superscript .w.)

Lemma 2. The following properties hold:

(i) 9<»(X, X) =
9>(*,/0

(ii) rW(^) = r(^ + /i) (J€=(-oo,oo))

(iii) ((/!!<«)<*

Pro0/. Using [10], p. 661, (2.23) and an analogous formula for <p(., ju)

and &(., *+&) it foUows (i). From rWffl=lim ^W^^=r(^+/<) we have
*ii 9(M)(x,^)

(ii). (iii) can be shown by an easy calculation. Q.E.D.

Now we study the character of the boundary point 1 with respect to (mw,
To this purpose we define

X S l dmdp a n d

The following lemma is useful for studying the given transformation but is
not needed in the sequel explicitely. Therefore we shall omit the proof.

Lemma 3. If p(l)<oo, #>^0 or p(l)=oo, ju=A0 then the character of
the boundary I with respect to (mw,pw) is the same as to (m,p).

Lemma 3 shows that a change of the character of 1 maybe only if /?(!)< °°
and ^«=^o or ifp(l)=°° and iu>A0.

In the first case the boundary 1 is an accessible or an i.a. exit boundary
with respect to (m,p), in the second it is an entrance or a natural boundary
with respect to (m,p).

Proposition 50 Let p(l)< °° and ju=A0. Then the boundary 1 is
(i) (mw, p^)-entrance (Ice) if 1 is (m,p)-regular,

(ii) (mw, pw)-entrance (Ipc) if 1 is (m,p)-pure exit,
(iii) (m^\ pw)-naturalf if 1 is (m,p)-i.a. exit.

Proof. Suppose Xl)<°°» ^=^0
 and let be at first u(l)<°oa Thus /10 is
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a point of discontinuity of r, and therefore

pw(i) = r(fi) = r(;g - (° ^> - oo holds.
J-~^0— ^

(i): If 1 is (m,/?)-reguIar we have I p2dm<oo. This implies
Jo

Therefore 1 is (m(fi), j?(f/l))-nonregular with Ice, this means (m(fl), /?(fi))-entrance

with Ice. Thus (i) is proved.

(ii): If 1 is (m,/?)-pure exit then v.=A0<® and thus

for all jc^l. It follows

fj.

From /><«(!) = 00 we have «W(l)=oo. Thus 1 has to be

entrance. Using the inequality

it follows that in this case 1 is in the (mw,pw)-lpc. Therefore (ii) is proved.
(iii): Let 1 be an (m?jp)-i.a. exit (in particular M(!) = OO). Let us assume

(otherwise we have AQ=Q and the conclusion is obvious). We have

= \\p(l) - p(x))m(dx)
wo

Thus 1 cannot be (m(/L), /?(M>))-accessible or -entrance because in this cases the

trace of R^> is finite ((see (16)). Therefore (iii) holds. Q.E.D.

Remark. In (iii) of Pproposition 5 the boundary 1 need not be (mw,pw)~

pure natural. For example let (m,p) be the canonical pair corresponding to

the spectral function r(#)=— min(#2,l) C«^0), which exists by the solution

So fa
— = 2<oo.

- ~ J M
Therefore 1 is an (m,p)- and (m^^^^-i.a. exit.

The following proposition is the converse of Proposition 5 in a certain

sense. We remark that p(l) = oo implies that 1 is (m,p)-entrance or -pure

natural.
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Proposition 5'. Let p(l) = oo and #>/l0. Then the boundary 1 is
(i') (m^,p(^)-regular, if I is (m,p)-entrance (Ice),

(ii') (mw,pw)-pure exit, if I is (m,p)-entrance (Ipc),
(in') (mw,pw)-i.a. exit, if 1 w (m,p)-pure natural

Proof. If XI) ^°° then ^0=0. From v>Z0 = 0 it follows
=r(#)<oo, i.e. 1 is (m(fi)

?jp
w)-accessible or-i.a. exit. Let m:=mw, p:=pw.

Then — # = ^0: = sup supp rw<0. We apply Proposition 5 to (m,p) and re-
mark m(~^=m, p(~^=p (see Lemma 1).

If 1 is (m,/?)-entrance with Ice then pw (l)<oo, i.e. 1 is (w,/?)-accessible
or (m,/?)-i.a. exit. From Proposition 5 it follows that 1 is (m,/?)-regular. Thus
(i') holds, (ii') and (iii') are proved analogously. Q.E.D.

§4 Asymptotic Properties of p(t,x9y)

Now we study the properties of p(t,x,y) for j— >1 or/and £-»°o under the
assumption that 1 is accessible or entrance. If 1 is natural such properties
as are proven below do not hold. For short formulation of the results we
introduce the following notation: Let h(t,x,y) and h(t,x, 1) (?>0; ^^^[0, 1))
be nonnegative measurable functions. We shall say that h(t,x,y) converges for
y->l in space-weak (shortly: s-weak) sense to h(t,x, 1) if

lim [Ih(t,x9y)f(x)m(dx) - ^h(t,x, l)f(x)m(dx)
y-*i Jo Jo

where Ce: = {feC\f(x)=Q for *e[a,l) and some a<l}.
We shall say that h(t,x,y) converges for j-»l in time-weak (shortly: Mveak)

sense to h(t,x, 1) if

lim { h(s, x, y)ds={ h(s, x, l)ds (x e [0, 1), t > 0) .
y-*i Jo Jo

If h(t,x,y) converges to h(t,x, 1) in s- and Mveak sense, we write st-lim h(t,x,y)
y->i

=h(t,X,l).

Now we can formulate the following

Theorem 2. (i): Let 1 be entrance. Then

(19) lim^Y^O (jce[0,l),f>0)
^i p(y)

pointwise ^and there exists a strictly positive and continuous function p(t,x,l)
with
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(20) st-limp(t,x,y) = p(t,x, 1) (*e[0, 1), t>0) .
y-»i

(ii) : Let I be accessible. Then

(21) lxmp(t,x,y) = 0 (*6[0,1), f >0)
y-*i

pointwise and there exists a strictly negative and continuous function Dpp(t,x,l)
with

(22) st-lim

Proof: From Proposition 2 and the corollary after Proposition 1 the

properties (19) and (21) follow directly. Let 1 be entrance. By the theorem of

Riesz for every f >0 there exists a measure on [0,1] denoted by Pt(l9dy) such

that

From ^1 = 1 it follows Pf(l,[0, 1])=1. The semigroup property of (St)
implies

s,f(V = (sh(st-hf)) (i) = f/(z) (rp,(i,^)x^-A,^z)M^)
Jo Jo

(f >0, 0<A<0- Defining X^^l): = \ P*(l>^y)Xf— ̂ J^) we have
Jo

lim [f(x)p(t,X,y)m(dx) = [f(x)p(t,x, \}m(dx) (/eC)
y-*i Jo Jo

by continuity of Stf on [0, 1] for / e C. From the continuity of p(t — h, y, x) in

(t,x) with xe[0, 1) and ?>0 it follows that p(^ ̂  1) is continuous there.
Now we show that p(t, x, 1) is strictly positive. Suppose conversely p(t0, XG, 1)

=0 for some (*05 *0) with r0 > 0, x0 e [0, 1). Then PA(1 , [0, 1)) -0 for any h e (0, r0)

by definition and strong positiveness of the density p(t — h,y, x). Thus P&(1,{1})

=1 and therefore Shf(l)=f(l) for every A>0. This implies /Jx/[l)=— (^>0).

f1 f1

But if 1 is entrance we have Ofg <p(x,A) I fx(.9 X)dm^x(x9X)\ f<p(.9 X)dm-*Q in
Jx Jx x-»i

1 f1

virtue of the monodromy of <p and x and in virtue of Dp<p(l9 X)= — 1 <p(. ,
/I Jo

< oo and/e C. Thus Rxf(l)=x(l, xftyfdm, which contradicts RKj\\) =
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Hence we have proved the part (i) without the /-weak convergence in
(20). The part (ii) of the theorem (without /-weak convergence in (22) we
shall prove using (i) and the transformation studied in Chapter 3.

Let 1 be accessible. Then ^0:= sup supp r is an isolated eigenvalue of
DmDp (see theorem 1). We define a new canonical pair (m*3/?*) by dm* =
<p\. , X^dm and dp*=<p~2(. , ^dp. A simple calculation shows that

p*(t,x,y) = e-V

is the transition density corresponding to (m*9p*).
By Proposition 5 the boundary 1 is (m*5jp*)-entrance. Thus from (i) it

follows the existence of a strictly positive continuous function p*(t,x,l) (/>0,
)) such that

lim p*(t,x,y)f(x)m*(dx) = p*(t,x, l)f(x)m*(dx) (/eC, x<=[Q, 1), f >0) .
y->i Jo Jo

Thus we have

lim lp(t'X'y? e-^f(X)<p(X,X,)m(dx) = [p*(t,x,
Jo

Remarking that ^(., ^0) is continuous and strictly positive on [05 1) (see Theorem
1) and — cx)<JD/>9(l,^0)<0 (see Proposition 4) it follows for £=/'9(.,^0)

lim

Defining Dpp(t, x,l): =&>*Dp<p(\ , *o)<p(x, ^)p*(t, x, 1) for x e [0, 1), f >0 and using
that every g^C, has the representation g=f°<p(>, ^0) f°

r some/eCc it follows

, 1)) .

Thus (ii) without the r-weak convergence in (22) is proved.

Now we will show the /-weak convergence in (20) and (22). To this pur-
pose we will use a lemma which was proven for diffusion processes in [19].

Lemma 4. Let p(l)< °° . Then we have

(23) lim ['^'X'yW = I - (x* , *, z)m(dz) (t > 0)
*•>! J 0/7(1)— XjO J°

uniformly in x e [0, c] /or everj c < 1 .
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Proof. We assume that y is a point of increasing of m» Then (see (A6))

S
t fco foo

p(s,x,y)ds = r0(x,y)-\ p(s,x,y) = (p(l)-p(y))-\ p(s+t,x,y)ds
o Jt Jo

= (p(l)-p(y))~\1p(t,x,z)r0(z,y)m(dZ) (x£y)
Jo

and it follows

.
p(l)~p(y)

Remarking that the two integrals on the right side converge for every c<l
uniformly in x-^c if y-*l (the last integral to zero), (23) follows.

Let 1 be accessible. The f-weak convergence in (22) is proved if we can

identify the limit in (23) with I Dpp(s,x,l)ds i.e. if for every /eCc
Jo

(24) T \'DpP(s, x, l)dSf(x)m(dx) = ('(limf P.(s'X>y^. ds}f(x)m(dx)
J O J O JO »-*•! Jo/?(j) — p(l)

Using /eCc the integrals on the left side of (24) can be changed. Furthermore
we have

f(x)m(dx) = p*(S,x,y}m*(dx)
^ V ^

with m* and p* as above. This integral is majorized by sup
X

(I Dp<p(l, /10) | +e)eV for y sufficiently near 1. Summarizing the above argument
we have the ,s-weak convergence in (22)

O
f s N /»£ ri / \
J^^yL.dsf(x)m(dx) -lim I J^i^Lf(x)m(dx)ds

0/>00—XI) ^iJoJoXj)-/"

= flim f P(s'X'y?f(x)m(dx)ds = ^DpP(s,xfV)f(x)m(dX)ds
Jo^^i Jop(y)—p(l) Jo Jo

= P *\Dtp(s, x, l)dsf(x}m(dx} (f e Q .
JoJo

The left hand side of (25) can be written as I lim \ • • • because of the uniform
Jo Jo

convergence in Lemma 4 and /eCc. Thus (24) holds, i.e. the £-weak conver-

gence in (22) is proved. Let 1 be entrance. We show the r-weak convergence

in (20) by using (22) and the methods of the transformation studied in Chapter
3.
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Assume #>0. Then 1 is (mw, pw)-accessible and from (22) we have

(26) lim T P™(s>x*y) ds = (Wv w(*x, \}ds .
y+i LpW(y)-pW(l) Jo p F ^

By definition and a short calculation it follows that the left hand side integrals
are equal to

l p(s,x,y)ds*(<p(x,i*)x(y,v)) 1 •
Jo

Remarking that z(l,/^)>0 and that the limit in (26) is uniformly in x^

(see Lemma 4), we have that lim \ p(s,x,y)ds exists uniformly in x^c for all
y+i Jo

c<l and all r>0.
As in the case of accessibility of 1 we can show that for every f^Cc the

equality lim I (\ p(s,x,y)ds)f(x)m(dx) = \ \ p(s,x,l)dsf(x) holds. (Thecalcula-
y->i Jo Jo JoJo

tions are left to the reader.) Thus lim I p(s,x,y)ds=\ p(s,x,l)ds as was to
y-*i Jo Jo

be shown. Therefore the proof of the Theorem 2 is finished.

If the boundary 1 is in the limit circle case the convergence character in
Theorem 2 can be improved. Moreover in this case a spectral expansion of
the limit functions holds. This is the contents of the following theorem. (We
remark that in Ice the boundary 1 has to be regular or entrance.)

Theorem $1
p2dm<oo (let 1 be regular). Then

o

lim p(t, x,y) = p(t, x, 1) (lim f^'*'^ = Dtp(t, x, 1))
*+i V ' - * - 1 '

uniformly in x^l and t^t0for any r0>0.
Moreover the following formula holds:

(27) p(t, x, 1) = fj Wrfx,
0

(28) (0^tfx^=^^

uniformly in x^[Q, 1], t^t0for any t0>Q.
Here (Ak) denote the eigenvalues of DmDp see Theorem 1).

51
p2dm<°°. Then for every ^>0 we

0
have 9(., X)^L2(m) and therefore by the monotonity of 9(.? X) and %(., X)
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Thus the function r^\x,x) is bounded in x<l.
From the Schwartz' inequality and the symmetry of rK(x,y) it follows

r(2\x,y)2^r(2\x,x)r(2\y,y). Hence r(2\x,y) is bounded and continuous on

[0,1]2.
We know that <p(., Ak) is the eigenfunction of DmDp corresponding to Ak.

Thus

— k

This and rx(x, .)eL2(m) for every x^I imply the eigenfunction expansion

(29) r?>(jcf . ) = R,r,(x, . ) = 2 9 f e " ^ r*2

for every %G/in L2(m)-sense.

As in the proof of Proposition 4 it follows that T] ^ ^%' fe^ rA is bounded
o o*-;y2

by r^\xfx) and converges uniformly in x^l. From an analogous estimation
as (14) and (15) it follows the absolute and uniform convergence of the series
in (29). In particular the series

P(t, x,y) = 2 <Wrtx, *k)<p(y, *drk (30)

are absolutely and uniformly convergent in x,y&I, t^tQ for every r0>0. We
know from Theorem 1 that <p(., *k)^C. Thus (27) holds.

Let 1 be regular. Then 1 is (ra(Ao>5 /?
(Xo>)-entrance with Ice. Thus we can

apply the already proved part of the Theorem 3, and after simple calculations
similarly to those in the proof of Theorem 2 we obtain (28). Q.E.D.

Now we study the properties of p(t,x,y) if f->oo. To this purpose we
prove the following

S i f
— — dm from C to

oni(l)
the subspace N of constant functions. Then lim \\St— P||=0.

*-><*>

Proof. In virtue of Theorem 1 and the spectral mapping theorem the
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number 1 is a simple eigenvalue of St(t>0) with the eigenspace N and with
\\St-P\\<l. Therefore St-P=St(I-P). This implies (Snt-P)=(St(I-P))n

=(St—P)n. Thus the lemma is proved.

Theorem 4. Let 1 be accessible or entrance. Then we have

(31) lim e-^i1 p(t'*'*J(y)m(dy) = ( >(*, ^m(dz)Yl f(y}m(dy)

uniformly in x^ 1 and f^Cc with ||/||<n. If I is in the limit circle case then
moreover

(32) lim e-W—

uniformly in x,y^[Q, I].

Remark. If 1 is entrance then ^0=0 and the formulas (31) and (32)
simplify to

(31') lim f P(t,x,y}f(y)m(dy) = (m(l)Y1^ f(y}m(dy)
*->°° Jo JQ

uniformly in x^l and/eCc with ||/||^1 and if 1 is moreover in the limit
circle case, then it follows

(327) limp(t,x, y) = (m(l))'1 uniformly in x,y^[Q, 1] .
f-»°«

Proof. Suppose 1 is entrance. From Lemma 5 it follows

lim sup sup | Stf(x)—Pf | = 0 .

Hence (31') i.e. (31) for the entrance case is proved. If 1 is accessible, by
transformation on (m,p) to (m*,/>*) (see the proof of Theorem 2) and using
(3T) it follows (31). The uniform and absolute convergence in (30) and rjT1

- ( V(z, tQ)m(dz) imply (32). Q.E.D.
Jo

As mentioned in the first chapter the theorems above are used in [13]
to study parabolic functions connected with quasidiffusions. To this aim we
formulate the following

Corollary. Let f be a continuous function on Ex(Q,°°) with compact
support. If 1 is accessible or entrance then
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(""f1

C-f1 n(t v v v) I ./X*.
(33) l im - p ( t s'y'x) - f ( x , s ) =

' " - J o J o e*°(t~s) * x -
-

92(z> ^m(dz)
Jo

uniformly in y^l.

Remarko If 1 is entrance we have AQ=Q and thus (33) means

(33') lim \~\1p(t-s,y,x)f(x,s)m(dx)ds = -±— ("I* f(x,s)m(dx)ds .
t-*** Jo Jo m(l) Jo Jo

Proof. Apply (31) to the family {/(.,s)} of continuous functions on E

given by the /, use the compactness of supp / and integrate with respect to ds.

Q.E.D.

Appendix

Here we will summarize some notions and facts from the theory of the

generalized differential operator DmDp which we have used above. They can be

found in [10] (see also [2], [7]9 [16]) or can be proved by standard methods of

ordinary differential operators. We will follow the terminology of [10] in a

slight changed manner.

Let (m, p) be a canonical pair and # the set of all complex-valued functions

/on /=[0, 1) such that there exist an m-locally integrable function g=:DmDpf

and two number a,b£zK with

/(*) = a + bp(x)+ (\P(x)-p(sj)g(s)m(ds) (*e/) .
Jo

Every / e # is linear in p on intervals where m is constant. Put Dpf(x) : =

b+ (XDmDpfdm and Djf(0)=b (/e#, xe/). If /w(0+)=0 the function DmDpf
Jo

is uniquely determined (modulo m) by /e# and it holds Dpf(0)=Djf(Q), if

w(0+)>0 it is uniquely determined by [b,f] with b^K9f^&. In this case

[b,f] is called an extended function. Especially we have

We shall speak about functions/ e# and mean extended functions if necessary.

If for a function / on / there exists the limit lim f(x) (finite or not) it is
x+I

denoted by /(I).
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Let <p and ^ be the fundamental solutions of DmDpg — Ag=Q (see Chapter
1). For any /I EE K and x €E / we have

(Al) | tf

For every *<=KQ: =K\(— oo , 0] there exists the finite limit F(X) : =lim ^^^ and

r° M ) *fl 9(*'^has a representation /XJ) = \ r , where r is a uniquely determined
J_oo jt— ̂

nondecreasing function on (— oo,0] with r(x)= — (T(X+)+T(X—J) (^<0)- Jt is

called the main spectral function of (m,p). Obviously r(.) has a holomorphic
extension to ^\supp r and r has the property

(A2) r -iv 7 J—H

Put /I0:=sup supp r. If /I is a point of discontinuity of r, we have r(/l + 0)

_r(^_0)=((V(.^Xm)-1. By jr(^^)=r(^(^^)-^^)(^e/, ̂ ^\suppr)
Jo

a new solution of DmDpg—Ag—Q is defined. We have #(. , ^)eL2(m) for every

^e^\supp r. For every /l>0 the function 9(.,/0 (^(-5^)) is positive and
strictly increasing (decreasing). For the behaviour of <p and x near 1 see e.g.
[2], p. 166. Moreover we have lim 9(x9X)Ditx(x9X) = — lf and if 1 is not regular

*-»!

(A3) limz(x,X)Dp<p(x,X)=l.
x+1 "

This can be proved similarly as was be done in [6] for diffusions. Let /l>0.
Then

(A4) O^Dpx(x9X)=-l + ^x(s9X)m(ds)9 i.e. \* x(s,Z)
Jo Jo

If 1 is accessible then /*0<0 (see Theorem 1) and

0<^0)<1, ^(-^o)<0

(This follows from <p(x, ^0)>0 (x^I) (see Theorem 1) and a comparison theorem

J o
<p(x, /I) and

, X) =
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From Proposition 2 it follows

for every measurable subset A of / and every *e/. If y is a point of increas-
ing of m then it implies

(A6) rx(*,j;)

The functions p(t9 . 9y)9 <p and x are linear in scale p on intervals where m is
constant. Thus (A6) holds for all x9y^I such that x and y are not in the same
interval where m is constant.
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