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A Difference Scheme for Solving Two Phase
Stefan Problem of Heat Equation

By

Tatsuo NOGI*

§ 1. Introduction

We consider a one-dimensional two phase Stefan problem of heat equation

with some specified temperature on the boundary. It is to seak a pair of

unknown functions (u(x, t), y(t)) satisfying the following equations:

du d2u
dx2 (0<x<y(t),Q<t<tT),

c2^L = Jj^L (y(t)<x<l,0<t£T),

«(0,0 = ̂ i(0>0 (0</<T),

>0

<0

This is, for example, a mathematical model of a water-ice system being homo-

geneous on each cross section perpendicular to the x-axis. Here u is temperature

and y is width of the water region which, we assume, is left to the ice region.

We call the last two relations of (1.1) Stefan's condition as usual.

We assume, by the physical reason, that the boundary and initial data in

the water region are positive and those in the ice region are negative, and that

cl9 c2-> b and / are positive constants, / being in the interval (0, 1).

Communicated by S. Matsuura, October 21, 1977.
Department of Applied Mathematics and Physics, Faculty of Engineering, Kyoto Uni-
versity.
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The same and similar problems were considered by several authors ([!]-

[6]) and others ([7]-[ll]). In the former references cited solutions of problems

were constructed classically by using Green's functions of heat equations or by

the method of retarding the argument (see [4] and [5]) only for fairly smooth

data or small data. In the latter references weak solutions were constructed by

some ways for more general cases including several dimensional case, and it was

turned out that only for one dimensional cases weak solutions were classical

ones even for bounded and pieceweise continuous data. (See especially [11].)

We also consider the one dimensional problem (1.1) with bounded and

pieceweise data, and construct its solution directly by a finite difference method

which we can call a 'semi implicit method5. The method is simple and useful

for numerical computation.

One phase problem also can be solved by the method proposed in this paper

more easily than the 'fully implicit method' of [12]. (See [13].) Boundary

conditions of other types may be treated by the same way.

Acknowledgement. The author thanks sincerely Professor M. Yamaguti

for his constant encouragement, and also Professor S. Yotsutani for his point-

ing out some mistakes in his manuscript.

§ 2. Difference Scheme

We use a net of rectangular meshes with a uniform space width h and vari-

able time steps {kn} (n = l, 2, 3,...). The time steps {kn} are assumed to be

unknown a priori and to be determined in the process of computation by the
rule that h/kn might give gradient of a free boundary at each time t = tn9 so that

the free boundary might cross each line of ordinate x=x / just at each

corresponding mesh point.

Let us introduce discrete coordinates

tn=kp 01=1,2,3,...)
p=i

and net functions yn and u*\ which correspond to y(tn) and u(xj9 tn) respectively,

By the rule mentioned above we can put

yn=Jnh (Jn: integers, n=0, 1, 2,...; J0h = l),

Then we introduce usual divided differences :
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1 1

In our scheme heat equations are replaced by the pure implicit difference

equations

and Stefan's condition is once replaced by an explicit formula

(2.2) ±b-r = (urj )x-(uj )^ ( = the heat flow to the interface),
Kn+l

where sign + or — corresponds to the case of positive heat flow to the interface

or negative one at t = tn respectively. This equation is used for determining

kn+1. In the case of positive heat flow we admit for the interface to move to

the right by one space mesh a time interval, while in the case of negative heat

flow to the left. That is

(23) . + . n n i f («}„),-(«}„),>0,
Jn+1=Jn-l (yn+l = yn-K) if (HjJs-CttJU^O.

The boundary and initial conditions are put in the folio wings obviously;

(2.4) «g+1 = ̂ +1 = ih(/II+i), «Jf+1 = ̂ 5+1 = ̂ 2(/.+i), ^ = 0,

(2.5) «? = *, = *(*,), ^o = /-

In computation we start from the initial condition (2.5) and ask the first

time step k± from (2.2), and Jl from (2.3). Then we find {uj} from the differ-

ence equations (2.1) with the time step feA and the boundary conditions (2.4).

Again from (2.2) and (2.3) we get k2 and J2, and further {uj}, and so on.

Since this scheme is very simple, it has been used by many people. But,

as far as we know, there were no proof of its convergence. In the folio wings we

will give a revised scheme and prove its convergence.

The scheme mentioned above has a defect, which can be easily seen from

(2.2) or the formula

(2"2)' kn+1= \(u»Jn)x-(uU-x\ •

In fact, if, for a fixed ft, the denominator of the right hand side tend to zero,

the time step kn+1 might increase infinitely. This feature might take place at
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some turning points of the free boundary. It is disadvantageous for numerical
computation and also for the convergence of the scheme. Therefore we need
a device of 'regularization' (or a 'zero decision') in order to avoid the 'singularity5

of the algorithm. The device is the folio wings; if the heat flow to the interface

at t = tn is less than a prescribed small quantity, which we take ft^J h (f$ is a posi-

tive constant),

then (2.2) is not used but, instead of it, the formula

(2.6) k.+ ^byfhlP

is employed and the position of the free boundary is retained for the interval

(tn,tn+1):

Jn+i=Jn On+i =}>«)•

By this rule we have, in general

(2.7) kn+1<b^fh/p.

Hence {kn} are uniformly bounded and tend uniformly to zero as h-+Q. This
means avoidance of singularity.

We need one more device of prohibiting a sudden change of direction of the

free boundary in order to simplify proof of convergence. That is the followings;

if, by the algorithm mentioned above, Jn+1<Jn(Jn+1>Jn) in addition to
Jn>Jn-! (Jn<Jn-i) hold, then kn+i and Jn+l are revised so that

(2.8) kn+1 = bJTl(l, Jn+1=Jn (yn+i = yn)

and the main routine of the algorithm is again repeated.
The complete description of the scheme and algorithm is the following :

For n = 0, 1, 2,..., successively

2.1° if (unj^x-(u
n

Jt)x>f}^J~h, then Jn+l=Jn+l and kn+1 is determined

from (2.2)',

2.2° if (wjj, -(!!}„),< -Pjh, then Jn+1=JM-l and kn+1 is determined
from (2.2)',

2.3° if \(un
Jn)x-(u»Jn^\<^~h, then Jn+l=Jn and kn+1

3° un+i are found from (2.1) and (2.4), and
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4° if /„+!<</„>/„_! G/B+i>/„</„-!), then Jn+1 and feB+1 are revised

like Jn+i—Jn and kn+1 = b^/h/f}, and return again to the step 3°. (When

§ 3. Some Properties of the Solution of the Difference Scheme

We will show some a priori properties of the solution of our scheme under

some stringent conditions of data, that are the folio wings : assume that ij/^f) (i

= 1,2) and $(x) are bounded pieceweise continuous and

(3.1)

(3.2)

and that there is a positive constant K such that

(3.3)

and

(3.4) <^(x)>-K, 0(0 = 0.

First of all, it is easily shown that a maximum principle follows from

boundedness of data:

Lemma 3.1.

0<wJ<max { max f,-, max ^f} (0<;</n, /n<r)9
, , l<j^/o 1<P^«

min f,-, min i/^f} (Jn<j<M, tn<T).
Jo

Next we have

Lemma 3.2.

(3.6)

where d = min{//2, (l-J)/2, e/2K1},e= min {^(0, -^2(
t)}an^K1 is a positive

constant such that

max *), -rr max i
o<^</ J ^ " " * o<r<r

max (-^2(0)9 7- max (- <£(*)o^f<r * f^x^i

Proof. First of all it is clear from the assumption (3.1) that such a positive

constant e exists.
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Assume that yn (0<n<n0 + l) becomes most close to the boundary x = l

firstly at n = n0 + 1 . If yno < (1 + 0/2, yn < 1 - d (0 < n < n0 + 1) follows directly.
Consider the case of yno> (1 + 1)12. Introduce the function

wjxy, g = K£y^ - Xj) (Q<Xj<yn9Q<tn< tno) .

It satisfies the difference equation (wllo)jc^=(wno)f and the conditions

y ->^ i (O (0<n<n0)

and

Hence we get wno(xp tnQ)>unj° (Q<Xj<yno) by the maximum principle, or
especially for j = Jno - 1

- A

that is

(3.7) -^

Next we introduce the function

(yn<Xj<l,Q<tn<tno).o
1 y no

It satisfies the same difference equation (^Wo)x^=(zno)f and the conditions

and

= -8 + -—r(l-*j)

Now if 1 — - <JRO
 were to ^°M> we should have from the last equation

Then by the maximum principle, zno(xj:, ^0)>Mj° (yno<x}<T) and especially

for j = Jno+l, -e !_* >^o+i? and hence
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(3.s) <*y.*-i=h--
Since (M}° )x — (w}° )*>0 by the assumption of n0, we should have from (3.7)
and (3.8) °

F
This would be a contradiction to the hypothesis of 1—w~<yn^ Therefore theA!
inequality

and also

must hold for sufficiently small h. Since w0 is arbitrary among ones compatible
with the above definition, we have in conclusion

yn<l — d for all n.

We can prove the other inequality yn>d by an analogous way. We assume
that {yn} (0<n<ni + l) becomes most close to the boundary x = 0 firstly at
n = nl + 1. In the case of yHi > 1/2, we have no problems. In the opposite case,
we introduce the auxiliary functions

and

and then we get by using these function for comparison similarly

yn>d for all n.

Lemma 33.

(3.9) (iig), and (u^^

where L is a positive constant such that

, max 2^0/
o^r^r

(c=max{25 cl9 c2}).
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Proof. Taking a number nQ (tno < T) arbitrarily, we consider the functions

and

(Jn<j<M,0 <t,,<tno).

The function £no satisfies the difference equation (Cno)xx=ci(Cno)f and the con-
ditions

and

Hence by the maximum principle we have

CJx; , tj < u(Xj , f J (0 < ; < J J

and especially for j = 1

h h
that is

By using the function £Mo we can get the inequality about (un^)^ similarly.

Since nQ is arbitrary, we get (3.9) in conclusion.

We go to the next lemma being essential to our discussion.

Lemma 3.4.

(3.10) (u%>-L ( l< /<

(3.11) 0>(*3n)*>-L, 0>(u«Jn)x>-L
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where L is the constant appeared in Lemma 3.3.

Proof, i) Assume first that the sequence {yn} is strictly monotone in-

creasing for some interval 0 < tn < tno :

yn<yn> for tn<tn,<tnQ.

Then by the same way used for (3.7) we get

Hence we have from the assumption of monotonicity of {yn} and the algorithm

(see the step 4° in § 2)

(3.12) 0<-(ul)x<-(u»Jr)x<L (Q<tn<tno).

The function (un^)x = Yf^ satisfies the same difference equations (775)^ =

Ci(^(0<j<J,,-l,0<r, I<rJ and (i?J)xjB = c2(iyJ)f (Jn

and the conditions

-??o> -«„-!> -nnJn* -nnM-i and -

(see (3.9), (3.12) and (3.4)). Hence by the maximum principle we have

(3.13) -(u$x<L (0<j<M-l, 0<^<O-

ii) Assume next that {yn} is strictly monotone decreasing for some interval

yn>yn, for tn<tn,<tnQ.

Then we get as above

0 < - ("3n)* < - (u'Dx <L (0 < tn < tj

and

iii) If, in addition to the assumption of i) or ii), Jno+1=Jno hold, we should

have, by applying the same discussion as that for (3.7) in the both right and left

regions for the interval (tno, ?,10+1),

0<-(urn
+

o^):c<L and 0< -(«?;£ ,

and hence again by the maximum principle

iv) It is not expected in general that {yn} is monotone. For the general cases,
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however, we can repeat the above discussion for each time interval of monoto-

nicity. Thus we get (3.10) and (3.11) in conclusion.

Directly from the last lemma we can obtain the following lemma;

Lemma 3.5.

(3.14) \(u»jJx-(u»Jn),\<L (0<tn<T),

(3.15) " ^ «><*„< n
(3.16) |(iijn)r| and |(iijn)f|£ (0<tm<T)

and

l(«Jn-i)**l<:^-*i if Jn>Jn-i or Jn+1<Jn9

(3J7) n,)xx\<-c2 if /„</„_! or Jn+l<Jn

Proof. The inequaUty (3.14) is obvious from (3.11). If Jn+1^ Jn9 by (3.14)
and (2.2)' we get h/kn+i<Llb. If J,l+1= JK, by (2.6) and (2.8) we have h/kn+1

<^/Ji/bp<L/b for small h. Thus we obtain (3.15) for all n.

By using the relations wjn=0 (for all ri), we find that

-

and

(«JB)i=0 if /„=/„-!•

Hence, by (3.11) and (3.15) we get (3.16). By applying (3.16) to the difference

equations (i<5n±i)x3B==ci(I|jn±i)f 0" = 1» 2) we obtain (3.17), too.

Remark. (3.15) produces the Lipshitz type inequality

(3.18) ly,n~)y ̂ - l ^ - U

§ 4. Convergence of the Difference Scheme

Here we will show convergence of our scheme under the conditions of data

given in Section 3.
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We take a sequence {hx} (a-»oo) tending to zero. Then the corresponding
sequences {knx} (n = l9 2, 3,...) also tend to zero uniformly (see (2.7)). We
define a pieceweise linear function yK(f) as follows :

l--t)yn]/kn+1 for tn<t<tn+1

(n = 0f 1,2,...)-

Then we have from (3.6)

and from (3.18)

They mean that the functions { yK(f)} are uniformly bounded and equicontinuous
in 0<£<T. Therefore there is a subsequence (which we denote again by
{ya(f)}) which converges to a continuous function y(f) uniformly in
Clearly the limit function y(f) itself satisfies

(4.1) d<y(f)<l-d

(4.2)

Let wa be the solution of the difference scheme corresponding to ha, and u
be the solution of the auxiliarly problems

u(y(f),t) = Q (0<t<T),

and

(y(i)<x<\,Q<t<T),

(0<t<T),
(0<t<T),

with the prescribed boundary x=y(t), y(f) being specified above.
We mention the following lemma;

Lemma 4.1. Uniform boundedness of the family {ux} in Q{0<x<L,
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Q<t<T} implies uniform boundedness of each family of any divided differ-

ence of the first or higher order constructed from {ux} in every region Q*

whose closure is contained in the boundary of Q and the moving boundary

x=XO(0<a<T).

From Lemmas 3.1, 4.1 and uniqueness of the solution (see [7] for example),

it is seen that the sequence {wa(xy, tn}}, a-+00 (or strictly speaking, {wa(x, t)}

defined by extending each net function for all (x, 0 in Q conveniently) converges

to u(x9 f) in Q and uniformly except some neighbourhoods of discontinuous

points of the boundary data. For the details and the proof of the last lemma

see the textbook [14] by I. G. Petrowsky.

What remains is to show that y(t) and u(x9 t) satisfies Stefan's condition.

Combining Petrowsky's technique and Lemmas 3.4 and 3.5 we also get

Lemma 4.2. In every region O* whose closure is contained in only the

boundary of Q, the families

{"«*}> KJ and {uxxx}9

only {uxxx(yn9 tn)}9 n = l9 2,..., being excluded from the families, are uniformly

bounded.

Now we get from uniform boundedness of {uxxx} mentioned above

|(Ma(x, ty)x-(uj[x'9 0)*I<C(<5, <r)|x-x'|

for any (x, t) and (x', f) in any region {0<<5<x, x'<ya(i)9 0<a<t< T} or {ya(0

<x, x'<l —(5<1, Q<G<t<T}9 where 6 and a are arbitrary small constants

and C((5, a) is some constant depending on 6 and a, but not on a. Hence we

also have

' <C(S9a)\x-x'\9 -

for {6<x, x'<y(t), a<t<T} or {y(t)<x, xf<l-d, a<t<T}. It follows

from these inequalities that there exist limits

(4.3) lim ux(x9t) = vx±(t)
x-+ya(t)±Q

and

(4.4) lim -j£-(x,t) = v±(t)
*->y(t)±0 VX

and convergence is uniform in any cr<t<T(a>0). Clearly the limit functions
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are continuous in 0 < t < T, and also bounded by Lemma 4.2. From conver-

gence of {ya(f)} and {wax(x, t)}, (4.3) and (4.4) we find that

uniformly in any cr<t<T(cr>0).
Taking arbitrary T and t (tm<i<tm+l<tn<t<tn+1L)y we have

Z1 sign (fa(fl))fc *
p=m+l tp^e<tp + i ^P+

This can be put in the form

1 n~ 1
V (t\ — v ('T} ~\- — X^' If |~*i

<4-5) " V-b p=m+1 ^+ \ y.(B)de+\ y.(
J-C Jtn

where Z' means summation except for the number p's such that j)a(
which occur at those times when \va+(tp + Q) — va-(tp + ̂ )\<^h hold or

t;a+(tp_1+0) — va,(tp_l +0)^ +P^J h and v+(

hold successively. By taking account of uniform convergence of vx±(t) and

uniform continuity of v±(i) in t<t<T, we find that (4.5) can be written in the
form

1 n-l
(4.6) y x(t)=y^a(T)+T~ Z ^p+lCya+(^p + 0)—y a_(^p + 0)]+O(1)

where the term 0(1) tends to zero as a-»oo (/i-»0). Taking a-»oo in the last

formula, we obtain

for any T and t (0<T<f < T). This means further that XO is differentiate and

which is not but Stefan's condition. Thus we have found that the pair of func-

tions {y(f)9 u(x, i)} is a solution of the problem (1.1), that is, the selected sub-

sequence {yj(f)9 wa(x, 0} converges to the desired solution. However, since it
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is unique as well known, the full sequence itself converges. Thus we have

proved

Theorem 4.1. For bounded pieceweise continuous data ij/^f) (i = l, 2) and

$(x) satisfying (3.1)~(3.4), the solution of the difference scheme mentioned in

Section 2 converges to the solution of (1.1).

Remark. The convergence order all over the scheme might be subject to

the slowest term 0(1) in (4.6). However, from the well known fact that y(f) is

infinitely times differentiable in Q<t<T ([3]), we find that v+(t) — v.(f) also is

infinitely times differentiate and hence 0(1) can be replaced by 0(maxfcn)

at least.

§5. Existence Theorem

In the previous section we also proved the existence of the solution under

the slightly stringent conditions (3.1)~(3.4) on the way proving Theorem 4.1.

In this section we will show that the part of the conditions (3.3), (3.4) could be

dropped for the unique existence, that is,

Theorem 5.1. Suppose that i//£t) (i=l, 2) and (/)(x) are bounded, piece-

weise continuous and

(5.1)

(5.2)

Then there is one and only one solution 0/(l.l).

Since the uniqueness is well known, we consider only the existence.

Before the proof, we will prepare some more facts under the stringent

conditions.

Lemma 5.1. Assume, in addition to (3.1)~(3.4), that <j)(x) is continuously

differentiate in some small intervals [/ — s, /] and [/, / + e]. Then v+(t)

= lim -5^-(x, 0 are continuous also at 2 = 0, and
x->y(t)±0 dx

(5.3)

Proof. Introduce the following Green's functions :

gi(x, t' & T)=C71(x-4 r-T)- [/!(* + {, f-T),
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g2(x, t; {, T)=U2(x-& f-T)-U2(x + {-2, i— r)

and

G2(x, f; 5, T) = U2(x-{, f-T)+l72(x+£-2, f-r),
where

tf«(*. 0 = y V-^-e-^T1 (/=!, 2)

52 dare the fundamental solutions of the differential operators LCi=-^-T — ci-^-

(i = l, 2). #! and Gt are Green's functions of the first and second kind of
boundary value problems of Ll in the half plane x>0 respectively. g2 and G2

are those of L2 in the half plane x<l. By using Green's functions we can
represent the solution u of the problem (1.1) as follows;

(0<x<y(t),

in the respective regions. (Here ( )^ means differential in £.) Hence, by dif-
ferentiating both equations in x and taking limits x-+y(t)±Q, we obtain the well
known formula

»_(*)= -2 c?14(^(0, <; «, 0)0(0^+2 G l ff(jO), <; o,(5.4)
-2

and

= -2

+ 2

(for derivation, see [2]).
We consider first f_(0- Denote the three terms appearing in the right

hand side of (5.4) by /; (i = l, 2, 3) respectively. Since i;_(0 is bounded and
continuous in 0<f<:T(|i;_(/)|<;.L; see the previous section), I3 is estimated as
follows :
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(by (4.1) and (4.2)).

The last integral is

< /—, g"
ci^2 f°° _02 ,a J~n __£idi.

f \ e e dG= )— g r ,
Jo ci"

which decreases exponentially as £->0. Hence we find |J3| <0(L2
>/ f) (r-»0).

Next, denoting a bound of 1/^(0 by K0, we have

i/2i=

which also decreases exponentially as above.
Consider /j.

f
-

J

l ci(y(f)+?)2

~ - -
o

Clearly the last integral decreases exponentially as £-»0. Consider the former

integral. Taking a number afo<a<^r- j , we assume t so small that toc<s.

Then we devide the interval of the integral into two parts: (0, l — t") and (/ — £a,
I). By the mean value theorem, we have

(y(t)-t)e

(•/
= \

Jo
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for a | (0<|</-fa). By using l — £>t*9 XO + '-2?>0 (for sufficiently small

t) and 1X0 — /!<-£-*> we find that the last integral decreases as 0(e~^^) as

£-»0. On the other hand,

c i (y (r ) -£ ) 2

(y(t)-t)e- - 47

It

The first term on the right hand side decreases as fast as O(t-e 4^-2*) (t->0).

Consider the second term. We find that

4t 4t

and

and the last integral converges to ^^ as £-»0. Thus we get

Hence, from the estimates of J2 and 73 mentioned above, we obtain in

conclusion

limt;_(/) = 0'(/-0).
f~»0

By the similar way, we get also
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Thus we have proved Lemma 5.1.

Directly from Lemma 5.1, we find

Lemma 5.2. Under the same assumption as in Lemma 5.1, if

then

v+(t)^v.(t) and

for sufficiently small t>Q.

The next lemma is a so-called principle of monotonicity which holds even

for the general data as stated in Theorem 5.1.

Lemma 5.3. Denote the solutions of (1.1) corresponding to the two sets of

data (Ii9 ^11,^21* &) 0 = 1,2) by (yi9u-) 0 = 1,2) respectively. If 1^<129

and 0i^025 then

(5.6) j>i(0<j>2(0 0>0)
holds.

Proof. We will prove it by showing a contradiction derived from the

opposite case. Suppose that there were a time t =1 where

hold firstly. Then, since yi(t)<y2(t) for 0<t<A,

(5.7) yiW^hW

should hold. However, from the assumption of data, we get by the well known

strong maximum principle (see, for example, [2])

Uj(x, f)-u2(x, 0<0

and ^(0 < x < 1 , 0 < t<: L Hence and from u t( j>2(A), A)
— u2(j>2(/l), A)=0, we obtain by Friedman's lemma ([2])

0, Z)-*-(y2(X)-0, A)>0,
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This means j>i(/l)< y2W> which contradicts to (5.7). Thus we get (5.6).
In order to construct a desired solution for general data mentioned in

Theorem 5.1, we use a sequence of solutions (y\ u*) (i->0) of the following

auxiliary problem depending on the approximating parameter t:

(5.8)

where

(5.9)

-, ?*= inf ^(*), £T= sup
2 J-T«^*^J j^i^/+t«

(if

= inf 000 + jST"/2 , 0t= sup
l+T*

(if

and jffj , /?2 are arbitrarily fixed constants (j81>j82>0). Here we notice that, in

general,

(5.10) (W(l + 0)*Q, W(l-0)*0 and W(l + 0)#W(!-G).

The problem (5.6) differs from the original problem (1.1) only in the small

time interval [0, T], in which two ordinary initial and boundary value problems
with the initial data $T(x) are assigned for both regions (0, /) and (/, 1).

Lemma 5.4. Under the same conditions stated in Theorem 5.1, there is

one and only one solution (y*, MT) of the problem (5.8).

We will mention only an outline of its proof briefly. For construction of
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a solution we use again the difference scheme in Section 2, but we have to

change it slightly in (0, T). In fact we take the time steps {kn} appearing in (0, T)

arbitrarily but, at most, as much as O(^/li) and so as for both T and r/2 to be

equal to some discrete times respectively: T = £MO, T/2 = fn i . Using the given time

steps we solve the difference scheme (2.1), (2.4) and (2.5) (<j> being replaced by $T)

in two fixed region (0, I) and (/, 1) up to the time t — t (n<n^). After that, for

t > T (n > HQ) we use the same algorithm mentioned in Section 2. We denote the

solution obtained in such away by {(JT)", (WT)"}« It is clear that Lemmas 3.1,

3.2 and 4.1 hold also in this case. Hence it follows that {(tiT)J) and their

divided differences of any high order converge uniformly in any fixed closed

region strictly away from the fixed boundaries and the moving boundary and

hence the limit function ux(x, f) = lim(MT)/ is infinitely times differentiate in
fc-»0

such interior region and satisfies the heat equations.

From the fact stated above, we have especially for j=j1 and j2 such as

j1h = d/2 and j2h = l — d/2 (if necessary, by adjusting d so that both equalities

may hold)

(5.11) Ki/%,1, |(K*)J

where Lj is a positive constant depending on T and d, but not on h.

Next we will show that

(5.12) 0<-(u*)n
JoX and -(U^JQX<

where K2 and T are positive numbers such that

09 c2(l-l)M0}9 M0=sup \$(x)\9

l-l) \
7 - ; — v- f .
(-^2) J

For the purpose we first introduce the function

It satisfies the difference equation 07T)j«:=ci(>?t)r and the conditions
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and

Hence by the maximum principle we get

1T(xj9ta)

and especially for n = nQ, j = J0 —

as far as h<K2IM0c1 holds. By repeating above discussion for each interval

[0> 0"] ( -y < <7 < T J instead of the interval [0, T] considered above, we obtain

0<-(u*)n
Jox<- for any tn,^<tn<%.

By making the similar argument for (ur)]QX, we get (5.12) in conclusion.

From (5.12) and the uniform boundedness of {(wr)^}, we can derive

(5-13) l(«')JSl<^-

with another constant K3 not depending on h and T, by the modified method

from Petrowsky's one for deriving uniform boundedness of the high order

difference quotients.

If the solution of the difference scheme is considered only in a restricted

region

then the function {(WT)"} are subject to the conditions (5.11) and (5.13) on the

boundaries x = d/2, l — dj2 and the initial line f = r, and (wT)J° = 0 as we have

shown above. Therefore the conditions corresponding to (3.2)-(3.4) are

satisfied by (WT)" in OdjT. We remember that strict positiveness or negativeness

contained in (3.1) was used for making the free boundary strictly away from the

fixed boundary. In Odjt the corresponding condition is not necessary because

yn is always contained in (d, i — d) and it is clearly away from the boundary of

QdiX. Then we find that {yx
n} converges to a Lipshitz continuous function y*(i)

and {yT(t}, ur(x, t)} satisfies Stefan's condition for t>i (by the same way as in

Section 4). Thus the proof of Lemma 5.4 is completed.
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Remark. Directly from (5.11) and (5.13), the inequalities

(5.14)

(5.15)

and ur(l, T)=O hold. In reality, the corresponding inequalities hold for differen-

tiation instead of differentiation. Such facts admit us to apply Lemma 5.2 to

the problem (5.8) in the restricted region Od>T. In fact we shall use it for proving

the next lemma.

Lemma 5.5. For an arbitrarily fixed and sufficiently small A, the

function yT(i) is strictly monotone increasing or decreasing in [T, A].

Proof. Applying (5.4) and (5.5) to the present problem, we have

+ 2 <?!„(/, T;0, (rWiOOAr- 2
Jo Jo

-2

Just as in the proof of Lemma 5.1, we get the following asymptotical expression

where R± tend to zero exponentially and

as T-»0. Thus we find that, for sufiiciently small A, the sign of I?+(T) — t;l(t)

(t<A) is the same as that of ^t + ^t or $(Z+0) + 0(1—0) (or, if it is zero, the

sign of /?! — /?2 which is positive as we defined).

Now, as we mentioned in the above remark, we can apply Lemma 5.2 in the
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restricted region Qd>r. Then we find that for the small interval [T, A] y*(i) is
positive or negative according to that (/)(l + 0) + (/)(l — 0)>0 or <0. Thus we
have proved Lemma 5.5.

Proof of Theorem 5.1. Suppose that T tends to zero through a sequence
{T,}(f=l,2,3,...).

We find from Lemma 5.5 that

(T|) (1 = 1,2,3,...)

or

l=y^i)>y^(ri) (i = l, 2, 3,...)

according to 0(; + 0) + ̂ (l-0)>0 or <0. We consider only the former case?

for the latter case can be treated similarly. From the assumption of data, we
have

ttr'(*, *i) < wtf + '(x, ^ (0 < x

Then, by applying Lemma 5.3 to the solutions (yri, u*1) and Cyt|+1, u*1*1) for

|S we get

yri(t)<yr'+l(t) for

and hence

i(t) for all t > 0 .

Therefore the sequence of the functions yVi(t) is monotone increasing and
bounded above :

y*l(i)<yr2(i)<-~<y**(t)<-~<l-d for all t>Q,

hence we find existence of the limit

It can be easily seen from (5.14) and (5.15) that

\y(f*)-y(P)\£-j*-\fi-P\ forany ^^[T, T],

that is, XO is Lipshitz continuous in any interval [t, T] away from the origin
f=0.

Next we will show the continuity of XO at ^==0» F°r comparison we
consider the following one-phase problem:
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(5.16)

z(0, f)=M> 0>0),

. 0=0 (/>0).

where M0 is an upper bound of ^1(0(0<f<T) and 0(x)(0<x<0- The

problem (5.16), as well known, has one and only one solution (£(f), z(x, f)) and

f (j) = I + A^fT (A is a constant) .

(See, for example, [2].) Clearly we get

and hence

Since yTl(0 and £(0 are continuous at Z = 0, we find that y(t) is also continuous

there.

Thus we have shown that {yXi(f)} converges monotoneously to the con-

tinuous function y(f) on the closed interval [0, T]. Therefore, by Dini's

theorem, we find also that {yTi(f)} converges uniformly to y(f) on [0, T].

Now, by using y(f) defined above, we define u(x9 f) as the solution of the

following problems with the prescribed boundaries :

n(o, 0 = ^(0
u(y(t),t) = Q _ (0<t<T),

u(y(t),t)=0

Then we can see that {u*i(x9 f)} converges uniformly to w(x, t) in any time

interval [A, T] (A>0). In fact, it is clear that uri(x,
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and hence by the Dini's theorem {uTi(x, /I)} converges uniformly. Thus

we get

(5.17) \u(x, X)-u*i(x, X)\<B (0<x<l)

for sufficiently small -ct. And from uniform convergence of {yri(t)} above

mentioned and (5.15) we have for sufficiently small ti

(5.18) -~-<u^(x, /)<0 (yTi(t)<x<y(t), l<t<T)

and also from uniform continuity of u(x, f) in any vicinity of the curve x = y(t)

for

(5.19) 0< !/(*,/)< A (

From (5.17) and (5.18), we have by the maximum principle

(5.20) \u(x,t)-u*>(x,t)\<s

for y(i)<x<l, k<t<T, and from (5.17) and (5.19) we get again (5.20) for

Q<x<yTi(i), A<*<r, and further from (5.18) and (5.19) also for yTi(f)<x

<y(i), k<t<T. Thus we have proved that {wti(x, t)} converges to w(x, t)

uniformly in any time interval [A, T].

Up to now, we showed that the sequence of the solutions (J/TI, uXi) converges

to (y, u) which satisfies all the conditions of (1.1) except Stefan's condition.

Finally we will show that (y, u) itself satisfies it. Here we mention that, since

y(t) is Lipshitz continuous for 0<£< T, -^-(y(t)±Q, t) exist and are continuous

in 0<t< T. We use the following lemma (which was used also in [11]):

Lemma 5.6. If y(t) is Lipshitz continuous and -~ — (y(t)±Q, f) are continu-

ous in Q<t<T, then Stefan's condition is equivalent to that the following

relation holds for any A and t (0<A<f<T) and any positive number 6 (0<<5

r rCy(t) Cy(V ~]
(5.21) y(t)=y(l)—%-\\ u(x,t)dx-\ u(x, i)dx\

o LJo Jo J

y(t) JyU)

5-x)[_u(X< t)-u(x,
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Leaving its proof until later, we go to apply it for our last purpose. It

follows from Lemma 5.6 that the solutions of the problems (5.8) (yxi, wT0 (tf

<A) satisfy the relations

yMO ,-(A)

Here we take T£-^0, then we get the formula (5.21) directly by uniform con-

vergence of {yTi(t)} in 0<t<T and that of {MT<X, 0} in 5<x<l-5s l<t<T.

Therefore we find again by Lemma 5.6 that (y, u) satisfies Stefan's condition,

and hence that it is surely the solution of the original problem (1.1). Thus we

have proved Theorem 5.1.

Proof of Lemma 5.6. We devide the region {0<x<l, X<a<t] into four

regions

and

In each region we consider Green's formula

We take the solution of (1.1) for y(t) appearing in the above definition of D2>

D3 and u(x, f) in the formula, and take v and ct like as

v = x, ci = ci in Dl5 t? = l, q = cx in D25

y = l, c^ = c2 in D3 and v = l — x, cf = c2 in D4.

Then we get the following formula:
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- CM(^j f )<fo_Jo_\ xu(x,t)dx,
o Jo 0 Jo

f K
«/ A

+ Ci \ u(x, tjdx-ct \ u(x,
J d J 8

S t Ct f1"5

ux(y(a)+Q, (r)d(T = \ ux(l-5, ff)da-c2 \ u(x, f)d
A JA Jy(O

Sl-5
u(x9

y(A)

~irw(l--

x*» o^+- O Ji-s

ft ft
Eliminating \ ux(5, a)da and \ 11̂ (1 — 5, a)da from these formula, seaking an

J A. J A

expressions of \ ux(y(cr)±Q9 a)da and using the formula

derived by integrating Stefan's condition, we get (5.21) immediately.

Conversely we assume that (5.21) hold. Differentiating it by t and using

u(y(f), f)=zQ, we obtain

JQ

- -

Here we use the equations CjU,=uxx, then we get

-«(i-*, 0]
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Thus we have obtained Stefan's condition from the formula (5.21). Q. E. D.

§ 6. Numerical Examples

Here we show some numerical examples. The data are the folio wings:

0 (0<x<l/2),

1/2 -x (l/2<x<l).

The values of the parameters h and ft are taken like as

/z = 0.005, J? = 0.5, 0.1, 0.01, 0.001.

Figure 1 shows the result for the case of j8 = 0.01; the change of the free

boundary and the profile of u at the time £ = 0.6. As expected from the given

data, the ice region first grew and then the water region recovered and grew.

Even for the case of /? = 0.001, the position of the free boundary was scarcely

exposed to change in the figure. When ft was taken larger, it got slight change,

1.0

0.5

0.4

0.2

-0.2

-0.4

0 0.5 1.0

Figure 1. The change of the free boundary x=y(t) and the profile of
u(x, 0.6) at the time t=Q.6
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the convexity of the curve to the left became smaller and the accuracy of the

solution did worse.

The computation time needed was 1/38 of that needed in the computation

using Kamenomostskaya's explicit scheme [7].
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