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A Weak Equivalence and Topologicai Entropy

By

Taijiro OHNO

§1. Introduction

In this paper we will investigate the topological entropies of mutually
weakly equivalent topological flows. Roughly speaking, any two flows which
are weakly equivalent to each other have the same orbits. So the notion of
weak equivalence of flows is, in a sense, a generalization of time changes of
flows. In [5] Totold investigated time changes of flows from a measure theo-
retical point of view. Especially he showed that for metrical (=measure theo-
retical) flows time changes preserve the properties that the metrical entropy is
zero, positive, finite or infinite respectively. Here we will be rather concerned
with topological flows and their topological entropies.

First we will consider flows without fixed point. In this case we obtain a
result analogous to Totoki's one. Namely, the properties that the topological
entropy is zero, positive, finite or infinite respectively are invariant under weak
equivalence of flows without fixed point (Theorem 1 in §3). But this is not the
case if the flows have fixed points. Indeed, we will construct a pair of flows
with the same orbits and a fixed point one of which has a positive entropy and
the other has zero entropy (Theorem 2 in §4).

In the proof of these two theorems we will appeal to a measure theoretical
method. The point is that the topological entropy is the supremum of metrical
entopies with respect to all invariant Borel probability measures (Lemma 2 in

§3).
The idea of the construction of the example in Section 4 to prove Theorem

2 is as follows. Take a flow with a fixed point such that each orbit visits a neigh-
bourhood of the fixed point infinitely often and that the ratio of the sojourn
time in the neighbourhood is uniformly positive. One can construct such a
flow with a positive topological entropy. Then, lowering the speed of the flow
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near the fixed point so that the ratio of the sojourn time converges to 1, one can
obtain a flow which has no finite invariant measure except the point measure at
the fixed point. Thus this flow has zero entropy. We remark that in this ex-
ample the original flow has an invariant Borel probability measure with a posi-
tive metrical entropy and that the modified flow has only a trivial invariant Borel
probability measure.

In Section 2 we define the notion of weak equivalence of flows, explain the
relation of the weak equivalence to the time change and then establish a corre-
spondence between invariant ergodic probability measures of two flows with the
same orbits (Proposition 1) as a preparation for the proof of Theorem 1. Sec-
tions 3 and 4 are devoted to the proof of our main results mentioned above.

§2. Weak Equivalence and Time Change

Let X be a compact metric space. A (topological) flow 0 = {<pt ; — oo < t < 00}
on X is a one-parameter group of homeomorphisms of X which is continuous in
(t, x). Given 0 and W flows on X and Y respectively, we say that 0 and W are

weakly equivalent if there is a homeomorphism it of X onto Y such that 0 and

0={<Pt = Tc^oT/ffOTu; — oo < t < 00} have the same orbits i.e. {^(^); — °° < t < 00}

= {n~lo-i/rto7u(x)l— oo<£<oo} for all X^ X.

For a while let us assume further that 0 and 0 have the same orbits with

the same directions. Let X0 denote the set of all 0-fixed points. We can define

0(t,x), — oo <r < oo, x^X\X0, with the following properties (cf. [2]):

ii) 0(t + s,x) = 0(t, ?.(*)) + 0(s, x)

iii) 0(0, x) = 0 and 0(t,x) is strictly increasing in t,

iv) 0(t,x) is continuous in (t,x).

Thus we see that 0 is an additive functional of 0 and that 0 is a time changed

flow of 0 in the sense of [5]. Under the situation stated above, we will study

a relation of invariant measures. Let e(0) denote the family of all ^-invariant

ergodic Borel probability measures on X. Then we have

Proposition 1. Assume that the flows 0 and 0 have the same orbits with the

the same directions and they have no fixed point. Let 6 be the additive functional

of 0 obtained above. Then, for each m e e (0),
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1 f0(l,*)

^rV?.(Em(0(l,x)) Jo

defines an mee(0). Then map A : m^e(®)->m^e(0) is bijective and G(0sm)

= G(®, m) where G(®,m) = (x e X; lim— r/(^(x)X* =Em(f)for all continuous f\ .
I r->°° J"Jo JJ"J

In order to prove the proposition we prepare the following

Lemma 1. For any continuous function f, we have

1 ?9(n,x) 1 f«f 0(1, <p.(x»
(1) lim-M /(^(x))& = ltmi f®.°<p

»-»w « Jo »<~ /2 Jo Jo

Z/ owe o/ the limits exists.

!

0(1,*)
f(<ps(x))ds is continuous, for any e>0 there is a

oJo
such that the distance d(x,y)<d implies

S e(i,x) rea.^)
/(#.(*))&-

o Jo

The continuity of <pt(x) and the compactness of X imply the existence of— such
P

that d(<pt(x), x)<d if 11 \ <— for any x(=X. We put

1 rnCB(i,
'n = — In JoJo

1 n*-1f('
= TSL J-fe=o Jk/p

which is approximated by

np k=o Jo

£. Since

S fl(l.*V(*»

fW.'Vr
0

we have

£„(/) =
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.
2
fc=o

Now it is easy to see

as n -> oo

Proof of Proposition 1. Take any x^G(®,m). The limit of the right hand

side of (1) exists and equals to

Em(\ f($s(x))ds) for this x. Thus we have
Jo
i fe(n,x) r0(i>x)

lim—I f(4>s(x))ds = Em(\ J
«^oo n Jo Jo

and putting/=1

lim— 6(n,x) = ^(^(l,^)) .
«->«» ft

Therefore we have

= EA(f)

For any T>0 define wr by

(wr, jc) ̂  r < 6(nT + 1 , ̂ )5 then lim nT = oo . Hence

1 p
limi
r->« T J

Thus xGG(Q,m) and so G(0,m)dG(0,m).
It is easy to see that m is a ^-invariant probability measure. Since

m(G(<D,m))>ih(G(<D,m)) = ^-

m is ergodic for <£. By the symmetry, there is a Pee(0) such that

? P). But this implies P = m and so G(®, m) = G(®, m).

Corollary 1. Under the same assumption as Proposition 1, let 0 be the addi-

tive functional of0 such that <pt(
x) = <Pe(t,x)(x)- Then
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= Em(f)

for any m^e(0) where m is defined in Proposition I.

Corollary 2. Any time changed flow of a strictly ergodic (Le. minimal and
uniquely ergodic) flow is also strictly ergodic.

§3. Weakly Equivalent Flows without Fixed Points

We will prove the following

Theorem 1. Let 0={<pt} and W={^t} be topological flows on compact
metric spaces X and Y respectively. If 0 and W are weakly equivalent and they
have no fixed point then we have

where h(0) and h(W) are topological entropy of 0 and W respectively, and CW is
a finite positive number.

Remark. The topological entropy h(<pt) of a single map <pt was introduced
in [1], and the following equality for a flow 0 = {<p t} was proved by Sh. Ito [3] ;

We define naturally the topological entropy of a flow 0= {<pt} by h(®) =

In order to prove the theorem we will apply a measure theoretical method.
For a single map ^ we also define e(<p-^ as the set of all ^-invariant ergodic
Borel probability measures on X.

Lemma 20 We have

( 2 ) A(Pi) = sup A^j) = sup hm(<p^
pesopp wes^)

where hp(<p^ denotes the metrical entropy of <pl with respect to the measure ju.

Proof. The first equality is well known (cf.[6j). We will prove the second
one. The ergodic decomposition theorem for entropy ([4]) implies hm(<p^^

sup hpfa) for any m^s(0). To prove the converse inequality, for each
fi

and t&R, we define jut(A) = v(<pt(A)) and m(A)= \ vt(A)dt. Then
Jo

and m^s(0). Since (X,v9<pi) and (X9^t99i) are isomorphic we have
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Aj*/9?i)^M^i). The concavity of the function — x log x implies

Proof of Theorem 1. Denoting 0 = {^ = ^~1o^o^;— oo <r<oo} we have
h(0) = h(W). Let X+ = {x e X; 0 and $ have the same direction at x} and X " =
{jceX; $ and $ have the oposite direction at x}. Then under the assumption
of the theorem, X+ and X" are both closed invariant sets, and so we have

= max {h(0\X+), h(®\X~)}

where 0 | Jif* are the restrictions of 0 to X~ respectively (cf.[lj). On the other
hand we have h(<pt) = h(<p_t). Therefore we may and do assume that 0 and 0
have the same orbits with the same directions. Then we obtain an additive

functional 0(t,x) of 0 such that <Pt(
x) = <fie(t,x')(x) as stated in Section 2. It is

proved in [5] that for any

where mSs($) is defined in Proposition 1. We have

h(0) = sup hm(<p,) = sup £ffl(0(l,
*»eec0;> »'esc0;>

and so putting c1 = min 0(1, x) and c2=max 0(1,*)
*€=Z x<=z

Clh(0) = q sup AA(#O = q sup A&(&)^
^es^) weec^5

^ c2 sup AA(#I) = ^(^) -
»esc0;)

So, we have the conclusion of Theorem 1.

§4. Weakly Equivalent Flows with Fixed Points

We will construct an example of a pair of flows which proves the following

Theorem 2. There exists a pair of weakly equivalent flows one of which has
a positive topological entropy and the other has zero entropy.

Construction. We will construct an example as a pair of flows under func-
tions.

Step 1. We will define a sequence ;c*<E {0, 1}Z such that (i) for all
and n ̂  1 we have x*(k)x*(k + 1) • • -x*(k + 4 - 3n)>In = 1 1 • • • 1 i.e. there are 2n — 1
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consecutive 1's in x*(k)x*(k+l)~°x*(k + 4»3n)9 and (ii) for all n^l there exist
2Pn different words (sequences) of length 2»3M~1 in x* where pn = (3n~1 + 1)/2.

First we define x+^{l,a}N as follows, where a is a symbol which will be
replaced by 0 or 1 later. We define xn inductively. Put xl=la and then x2 =
xi*ixi where ̂ =11. We define xn by changing one a in xn to 1 so that #„!>/„,
and xn+1 = xnxnxn. Let ;c+ = lim xn. Then there are infinitely many xn in x+ for

M^.00

all n ;> 1 . The number of a in *M is pn = (3*"1 + 1)/2.
Changing a's in ^B to 0 or 1 we can obtain 2pn different words of length

2-3*"1. We replace 2p*xn's to those words in turn from the top of x+,n= l ,2 , -«« ,
and put 0 or 1 arbitrarily into the remaining a's. Thus we obtain x+ in {0,1} .̂
We put x*(k)=x+(k) for k^ 1, x*(0)= 1 and x*(k) = x+(-k) for /c^ - 1. Then
it is easy to see that x* satisfies (i) and (ii).

20 Let Tbe the shift transformation of {0, 1}Z and X = the closure
of {Tnx*; n^Z} in {0, \}z which is endowed with the product of the discrete
topology. Then (X, T) is a subshift of ({03 \}

z, T). For any ti^e(X, T) there
exists x^X such that

for all n^l, where /„= {%eX; ^(A:)=l, —/7+l^A:^7i—1} and l}n is the in-
A

dicator function of In. Since x is an accumulating point of {T*x*; n^Z}, it
satisfies (i) in Step 1 and so we have

(3) x/j^-J-., for all n^ 1.

On the other hand we have an estimation of the topological entropy of T;

h(T) = lim — log Nn ^ lim —A_ log 2P» = — log 2>0 ,
»-^x, 77 «^«. 2-3 4

where JVW denotes the number of different cylinder sets on [0,«— 1].

Step 3o Let l<EJf denote the fixed point of T such that l(fc)=l for all
k^Z. Put X* = X\{1}, which is a locally compact space. Let r be a positive
continuous function on X*. We define the quotient space X$. of {(x,u);Q^u^

r(x), x^X*} by the equivalent relation (x,r(x))~~(Tx,Q). We also define a
flow {<py

t} by

<p"t(x, u) = (x, u +1), for —u^t< r(x) — u .
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Then X^ is a locally compact metric space and <p"l is a topological flow on X%.

Let X'y=X'k\J {^} be a one point compactification of X%. Then Xyis a

compact metric space. Notice that (xn, un) -+A in X* if and only if xn-+l in Jf.

Extending {9?} as <pl(A) = A for all — oo<r <oo, we obtain a topological flow
n ^- Then we have the following

Lemma 3. For all positive continuous r, & we weakly equivalent to each

other.

Indeed n(x,u) = ( x,ur ^x'\ , 0^w<r(#)5 gives a weak equivalence between
V r (x) i

W and ®y/.

Lemma 4. Assume ro=inf r(x)>Q. For any non-trivial £ee(®r) there
'ex*

exists a (unique, non-trivial) ju^e(T) such that

for all continuous function f on X^.

Proof. Although this lemma seems to be well known, we give here a proof

of it for the completeness. The proof is analogous to the one of Proposition 1

in Section 2. Let z=(a,Q) be a generic point of 11 i.e.

lim -i- f f(<ptz)dt = ErfJ)
nm+<*>n-\-m J-m

for all continuous /. Especially we have

4 ) £„(/) = lim
•*- 2

h = — n

= lim - - 2 \ f(T*a, f)dt .

{ 1 * 1

— 2 #r*«;ft>l r on2nk=-» )

X where ^ denotes the point measure at x. Take an increasing sequence of

continuous functions g{ on X^ with compact supports such that limgv=lzY:

Put
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Gfyc) = -

Since Gf is continuous, we have

SY(*>

0

,0 x = 1 .

« *=-»'Jo

«'-*M 2w *~»' Jo

for some sub-sequence {«'}, which implies together with (4) that

?,) = ]jm-- _! j

We put

then

On the other hand, for a closed set /!= {(x,t); x^Imf}X*, 0^t^r(x)} U (4
we have

2 r(2"*0)*=-»/

Hence we have

-̂̂ * ^ i *-.<v» ™~/ FV \ C —

and so Ep.(r) = E^r • 1 x^ — c. Therefore

= 0
To ""-*0" To
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The ergodicity of ju is easily proved.

Corollary 3. If E^fj) = °o for all non-trivial ju^e(T), then d^ is the only
^-invariant Borel probability measure.

Step 4. Now we will choose r and -r' so that they prove the theorem.
Take r'(x) — 1 on X* and

•4-3", for

, for

Then using Lemma 2 we have h(®i') = h(T)>0. On the other hand (3) implies
Ep(r)^n for all » and so £^=00 for all jtiGe(T), ju^. Therefore by
Corollary 3 we see that the only 0f-invariant probability measure is dj and so
by Lemma 2 in Section 3 h(Qt) = Q.

Remark. Similarly we can construct a pair of weakly equivalent flows one
of which has finite entropy and the other has infinite entropy. However it is
still unknown whether there exist such examples in the differentiate case.
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