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§ 1. Introduction

Let M be a simply connected complete Riemannian manifold with constant
sectional curvature, and consider a branching Brownian motion Y=(yt9Py)
having M as the underlying state space ([5]), In the case of M = Sd, the d-
dimensional sphere, one can apply the results of Watanabe [16], [17] and
Asmussen-Hering [1] to obtain a limit theorem on the number of particles in
a domain for the process Y. If M= Rd, then, although M is not compact, the
process F belongs to the class considered by Watanabe [17], and his argument
works well. But, if M has constant negative sectional curvature — fc, then Y
is not necessarily contained in the scheme of [17] and a new phenomenon appears.
In this case, the Laplace-Beltrami operator is given by

in polar coordinates, where A' is the Laplace-Beltrami operator on the sphere
Sr—{yeM: distance (y, 0) = r} ([4] p. 445). Hence the radial part process X
of the branching Brownian motion F on M is reduced to a branching diffusion
process on the underlying state space S=[0, oo), whose nonbranching part
diffusion has the generator

(1.1) L

The spectrum of L is the interval (-co, -fc(d-l)2/8] and there exist many
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bounded nonnegative martingales for X (Section 5). This enables us to show

that bounded domains may come to contain no particle in some cases, even

when the total number of particles diverges to infinity as time elapses.

Having the above situation in the background, we shall study in this paper

the branching diffusion process on the underlying state space S = [0, GO), whose

nonbranching part diffusion has the generator

(1.2) L = d2/2dx2 + b(x)d/dx.

Precise conditions on b(x) as well as boundary conditions will be given in Sec-

tion 2. The radial part process X mentioned above is contained in our class.

Our results are fully described in Section 2. We shall prepare some lemmas on

ordinary differential equations in Section 3 and some comparison theorems for

stochastic differential equations in Section 4. Sections 5 and 6 are devoted to

the proof of Theorems.

The authors would like to express their sincere gratitude to Professor N.

Ikeda, who drew their interest to this subject. They would also like to thank the

referee for correcting some errors and improving a lot of expressions.

§ 2. Notations and Results

Throughout this paper, we assume that b(x) is a function satisfying the

following conditions :

(2.1) b(x) is defined on S = [0, oo) and 6(0) = 0,

(2.2) b(x) is continuous and nonincreasing on (0, oo) ,

(2.3) b(x)^b0>Q on (0, oo),

S oo
x(b(x) - b0)dx < oo for every R > 0 .

R

Let

j(*)= (Xe~B^dy9 xeS,
Ji

Cx • .
where B(x) = 2\ b(y)dy and ^(5) "is the topological Borel field of S. Then

there exists a unique conservative diffusion process X = (xt9 Px) on [0, oo) with

scale s(x) and speed measure m(dx) satisfying

(2.5)

E

1) ax is the first hitting time of xt for the point x, and aQ+=\
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([8]). The boundary oo is natural in Feller's sense (ibid. p. 108). Further,

since X is conservative and w({0}) = 0, (2.3) and (2.5) ensure that the boundary

0 is reflecting if

(R) £?-*<*> T 2e*Mdy eL1 (0, 1).

The boundary 0 is entrance non-exit if

(E) e-B^

(ibid.). The generator of X coincides with L of (1.2) with the domain

(2.6) D(L}={uEC(S): LueC(S), lime*(*V(jc) = 0}
x-S-O

(ibid.). Note that the last relation in the braces of (2.6) is automatically satisfied

in the case of (E). We denote the transition density for the diffusion X with

respect to m(dx) by p(t, x, j/), and the semigroup by Tt.

Following [5], let S" be the /7-fold symmetric product of S (SQ = d, d is an
00

extra point), and set S = ̂ J S". Thus an element xeS belongs to some Sn,
n=0

and, if n^ l , we have a coordinate expression ac = [x1, x2,..., x"]. Define a

stochastic kernel n(x, E) (x e S, Ee0(S)) by n(x, E) = 1 if [x, x] eE, and =0

otherwise. Then, for a positive constant c, there exists a unique branching dif-

fusion process (BDP) X = (xt, PJ(xeS) on S corresponding to the funda-

mental system (X, c, TT). X is called the nonbranching part, c the branching

rate and n the branching law.

Let B be the set of all bounded Borel measurable functions on S. For

each g e B, set

>tn) , «=[x1, *2,..., xw]eS\{d} ,

0, x = d.

Then, for each continuous geB with ||0||;gl, the function u(t, x) = Ex[g(xt)]

satisfies the so-called S-equation

(2.7) ^

(cf. [5]). Let, fora, I e R,

2) More precisely, u(t, -)e.D(L) and (2. 7) is satisfied. In writing similar equations, the
condition that « belongs to D(L) is meant implicitly.
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Bi(a) = wB f(a,/)5 / = 0, 1.
leR

Thus, each g e Bt((x) belongs to Bf(a, 0 for some 1 e R, which we denote by

1(9).
Finally, set

Now we are ready to state our results.

Theorem 1. 1) For each O^A<A0 , there is a nonnegative integrable

random variable W^ such that for each g eB0(aA, /)

(2.8) lime^-c»g(xt) = lWri, <*•*•
t~-*<x>

2) There is a nonnegative integrable random variable W = W^0 such that

for eachgeB^a^ I)

(2.9) lim e^Q~c^g(xt) = lW, in probability.

Theorem 2. If 0 <; A ̂  A0 and a| ^ 2c,

(2.10) Px(0<PfA<oo) = l

Remark L Consider the case 0<c<A0 [c = A0], Theorem 1 says that

limeac*0(;e) = / [resp. lime&oX^(^:)/^: = /]
x-*oo jc-»oo

implies

lim g(xt ) =lWi, a.sB [ = / W, in probability] .
*-»00

Further, Theorems 1 and 2 say that

lim eac*#(;c) = oo [resp. lim eb°xg(x)/x = oo]
x-*oo x-*oo

implies

lim g(xt) = oo, a.s9 [resp. in probability] .
f-*oo

Indeed, for Og/l<A0 [A=/10], aA is the smaller [resp. unique] solution of

(2.11) t2~-2

Hence af <;2A, and (2.10) holds for A=e.
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§ 3. Lemmas on Ordinary Differential Equations

Lemma 1. 1) For each A, there is a unique solution (p^(x) of the equation

(3.1) Lq>i(x) = — A<p A(x) 9 <p A(0) = 1.

2) J/0< A^A0, t/ien <PA(X) is positive and decreasing. <po(x) = 1. Further,

(3.2) cpAGB0(aA), O^A<A 0 ,

(3.3) (p^eBj^bo), A=A0

wf^/i positive l((pi).

3) J/A>A0, ^e?i ^AW<^/or som^ xe(0, oo).

Proof. 1) First we shall show the uniqueness. Let cp^(x) be a solution

of (3.1), and put ^(x) = (p^(x) and rj(x) = (p'^(x)3\ Then (3.1) is equivalent to

(3.4)

and

(3.5)

Solving the second equation of (3.4), we have

for x, xt e(0, oo). Hence, by letting xt J, 0, we get

(3.6) !?(*)= -

This and (3.4) give

(3.7) { (x) = 1 - 2
Jo Jo

Hence the solution ^(x) of (3.7) is unique. This means the uniqueness of the

solution q>i(x) of (3.1).

The existence of the solution cp^(x) of (3.1) is obvious, because it is easy to

see that (3.7) has a solution £(*).

2) Clearly, q>0(x) = 1 . We divide the proof for the case 0 < A ̂  A0 into two

steps.

3) tf(*)-
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Step 1. We shall show that <p^(x) is positive and decreasing. It is enough

to see that £(x) = cp^(x) > 0 and rj(x) = cp^(x) < 0.

By (3.6) and (3.7),

(3.8) £(x)>0, *7(x)<0, 0<x<(5,

for some <5>0. Set T=inf {x>0: £(x) = 0}4) and £(*) = -??(x)/£(x), xe(0, T).

Then £(0 + ) = 0 and £(x) > 0 for 0 < x < (5. Further, by (3.4),

(3.9) rW = CW2-2fo(x)C(x) + 2A, X6(0 , T).

This implies

(3.10) C(x)>0, xe(0,T).

Indeed, if otherwise, contradiction occurs at the first zero point x0 e (0, T) of

C(x), because C'(*o) ̂  0 whereas £'(*o) = 2A > 0.
Now (3.9) and (3.10) yield

(3.11) a*)^C«2-2&0C« + 2A, xe(0, T).

Define a+ and a_ by

Note that a_ =aA and that (3.11) implies

(3.12) rW^(CW-a+)(C(x)-a_), xe(0, T).

If 0<A< A0, then this yields

(3.13) 0<C(x)<a_, xe(0, T).

If A = A0> then (3.12) is written as £'(*)^(C(x)-&o)2- On the other hand, there
is a (50 e(0, T) such that 0<C(x)<fc0 for xe(0, (50]. Take any x1 e(<50, T) and

fix it. If C(x) < bQ for <50 < x < x1 , then

This excludes the possibility that £(x) | 60 as x t xx. Hence (3.13) holds in this

case also.

Now we shall show T=oo. Suppose T<oo. Then rj(T) = Q by (3.13).

Since the solution of (3.4) for x^T with the initial condition £(T) = ?/(r) = 0 is

unique, we have £(x) = 77(x) = 0 for x^ T. Then, by (3.7),

4) We always consider that the infimum of the empty set is oo.



r o

This is a contradiction.
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ye-2frMdudzdy<Q9 x>T .

Step 2. We shall show the second assertion. By (3.4),

2Bn r
where A = ( ~: ~, ] and 5(x) = fr(x) — fo0. It follows that, for each x0>0,\ — z/i — 2#0/

Now suppose that 0</1<A0. Then

(315) exx=_J
-

Hence, noting £(0) = 1 and ^(0 + ) = 0 (by (3.6)), we have

', X 1(3.16) £(*) =
u,+ — u,_ \

- r(£?-«-<*-?) - e-*+<*-y))2B(y)ri(y)dy ,
Jo /

as well as convergence of the integral. On the other hand, (3.14) and (3.15)

imply

e*-*\n(x)\^K\ b(y)e«-y\ri(y)\dy+K2
J XQ

for some Kl9 K2>0. Hence, by Gron wall's inequality and (2.4), we have

b(y)dy\ ^
)

ex),

for some K3>Q. Now, using this and (2.4) again, we obtain (3.2) with

/(cpA)>Ofrom(3.16).

Turning to the case of A = /10, we have

(3.17)
-4tfa I- box

Hence (3.14) gives
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(3.18) £(x) = xe-b

(3.19) *»"*|i,(jc)|/;e£A:5f yB(y) ^"^ }l dyJxo y

By Gronwall's inequality, it follows from (3.19) and (2.4) that

Hence we have (3.3) with l((p^)>0 from (3.18) and (2.4).

3) Let 1>A0. Let Tand CM be as in 2) Step 1. First we shall show

T<oo. Suppose T=oo, and choose an e>0 such that 2A — (b0 + s)2 = a2 for

some a>0. Then there is an x0>Q satisfying

We note that (3.9) and (3.10) are valid also in this case. Hence,

Solving this, we have

Tan-1 [(CW-fco-e^al-Tan-1 [(C(x0) - b0 - e)/a] ̂  a(x - x0) , x^x0 ,

which is absurd. Hence T<oo. If ?;(r) = 0, then <^(T)=^(T)=0. This is

impossible by the last argument in 2) Step 1. Thus rj(T)<0 since f(x)>0 on

(0, T). This implies q>j[x) = £(x) < 0 for some x > T. q. e. d.

Remark 2. 77ie spectrum of L on the space L2(m(dx}) is contained in

(—00, — A0]. Further, — A0 belongs to the spectrum of L.

Proof. Lemma 1 implies

= 0(e-^)y t-»co,

for each g eB with compact support. This assures the first assertion.

If — A0 does not belong to the spectrum of L, then the spectrum is con-

tained in (-00, -A0--(5] for some <5>0, because it is closed. Hence p(t, x9 y)

= O(e-(Ao+d>0 as J-»oo, and the Green kernel

e**p(t, x, y)dt

is convergent for A0 < A < A0 + (5/2. This, combined with Dynkin's formula,

yields E0 + [eAffx]<0°- Hence (pi(x) = l/E0+[e*ffx] is positive. But <pA(x)

solves (3.1) (cf. [8] 4.6), which contradicts Lemma 1.
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Lemma 2. 1) Let 0<c^A0. Then, for each O^o^l, there is a unique

solution of the equation

(3.20)

Further, ifO<vQ<!9

(3.21) l-i<x)6B0(ac), 0<c<A 0 ?

(3.22) l-v(x)€Bl(b0)9 c = A0

with positive 1(1 — v).

2) J/c>A0 and 0<u0<l, then (3.20) admits no solution.

Proof. The outline of the proof is similar to that of Lemma 1.
1) Step 1 (Uniqueness). Set £(x) = 1 - v(x), q(x) = - v'(x), and

otherwise.

Then (3.20) is rewritten as

(3.23)

with (3.5). Then, as in the proof of Lemma 1, we have

(3.24)

(3.25)
" JoJo'

Now the uniqueness follows, since /(£) is Lipschitz continuous.

Step 2 (Existence). Since there is a trivial solution u(x) = 0 (resp. =1) in

the case of u0 = 0 (resp. =1), we assume 0<t;0<l. Further, (3.25) has a unique
solution £(x). So it is enough to show

(3.26) 0<£(x)<!5 x>0.

By (3.24) and (3.25), there exists a positive 8 such that

Set T= inf {x > 0: £(x) (1 - £(x)) = 0} and C(x) = - fj(x)^(x) for x e (0, T). Then

(3.23) gives
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(3.28) £'(*) = £(*)2 - 2b(x)C(x) + 2c(l - {(x)) , xe(0,T).

It follows from this and (3.27) that CM > 0 for x e (0, T). Hence,

(3.29) C'(*)£(C(*)-«+)(«x)-«-), xe(0 ,D,

where

Now, as in the proof of Lemma 1, we have

(3.30) 0<f(x)<a_, xe(0,T).

Suppose that T< oo. Then, since ^(x) = ?/(x)<0 for x e (0, T), it must hold that

£(T) = 7/(r) = 0. But this leads to contradiction by the same argument as in

the proof of Lemma 1. Hence T= oo.

Step 3 (Proof of the second assertion). First we shall show

(3.31) Iimf(x) = 0.
x-*oo

Since £(x) is decreasing, it tends to a limit £+. If £„, ^0, then, by (3.24),

This contradicts the fact £(:x)^0, x>0. Hence, £# = 0.

Now, since ??(0+) = 05 (3.23) is written as

(3.32)
' 7 / \ r,(0 + ) I \ 0

= (-2c -2Z,0)
and

(3.33) r = T

Let 0<c<A0 . Then as in the proof of Lemma 1, we have

(3.34) £(*)

and, for each x0 > 0,

(3.35) M

— a_ LJo
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Let X*) = «*) + to(*)l- Then (3.33)-(3.35) imply

JXQ

Hence, by Gronwall's inequality,

(3.36)

By (3.31) and by lim^^ 6(x) = 0, this gives

(3.37) n(x) = 0(e-i"--*)*)9 x _» oo

for each <5>0. Since %(x)^it(x), (3.36) combined with (3.37) and (2.4) assures

boundedness of e~*-x f.i(x). Hence (3.21) and the inequality 1(1 — u)>0 follow

from (3.34), (3.33) and (2.4).

In case c = A0, we have

(3.38)

(3.39)
J XQ

in place of (3.34) and (3.35). Hence, as above,

(3.40)
y

This implies (3.37) first, and then boundedness of ebox^(x)lx. Now (3.22) and

the inequality J(l-t>)>0 follow from (3.38), (3.33) and (2.4).

2) Suppose that c>A0, 0<t;0<l, and v(x) satisfies (3.20) except for 0:g

u(x)^l. Notice that the argument in 1) Step 1 is valid also in this case. Thus

(3.27) holds. Use Tand CW in 1) Step 2. Then (3.28) follows. Now we shall

show T<oo. Suppose that T=oo. Then we have (3.31) by the previous argu-

ment. Choose an s>0 satisfying 2c(l — e) — (50 + s)2>0. We can find an x0

>0 such that ^(x)<e and fo(x)gfe0 + e for X ^ X Q . This and (3.28) lead to a

contradiction in the same way as in the proof of Lemma 1 . Hence T< oo . Since

^(x)<0 on (0, T), £(T) must be 0. Thus it is enough to. show f?(T)<0. But

this is clear if we repeat the consideration in the proof of Lemma 1. q.e.d.

§ 4. Comparison Theorem for Stochastic Differential Equations

A comparison theorem for one-dimensional stochastic differential equations
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is found in [6] and [18]. Here we shall reformulate it in a form convenient for
our use.

Let (/?(£), &r> -P)5) be a one-dimensional Brownian motion and consider
a stochastic integral equation

(4.1) *(/) = *o + /KO+ f
JO

We say that (x(f), \l/(tj) is a solution of (4.1), if x(t) and \}/(f) are continuous and

^-adapted, x(t) is nonnegative, \l/(f) is nondecreasing, (4.1) holds and

(4.2)

Later we shall see that (E) implies i/f(r) = 0. It is well known that if (4.1) has a

unique solution (x(i), \l/(t)\ then (x(i), P) is a diffusion process corresponding

to the generator L of (1.2) with the domain D(L) of (2.6).

The next lemma is a variation of [13] and [19].

Lemma 3. There is a solution (x(i), \l/(t)) of (4.1), which is pathwise unique.

Proof. Step 1 (Uniqueness). Suppose that (4.1) has two solutions (x(1)(0,

^(1)(0) anc* (x(2)(0» ^(2)(0)« Choose a sequence {xj decreasing to 0 and
continuous nonnegative functions gn(x), n = l, 2,..., such that support [^(x)]

$00 r|x| ("y
gn(x)dx = L Let/n(x) = \ \ gn(z)dzdy. Then we have

o Jo Jo

(e.g. [7]). Now since b(x) is nonincreasing and (4.2) holds, we see that

x(1)(s)>x(2>(s)^0

implies

/^>(s)-x<2>(s))£0,

K^(1)(s))-^(2)(s))^09

5) We assume that grt contains all P-null sets, and the assertions in this section should be
read to hold almost surely (P).

6) /*(*) is the indicator function of a set A.
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for some s>0. Similarly, 0^x(1)(s)<x(2)(s) implies the opposite inequalities.

Hence E\JH(x^(t)-x^2\ty)']^0. In view of/„(*) t M as n t oo, we obtain
£[1x^(0-x<2)(0|] = 0. Noting that *<*>(*) is continuous, we have x<x>(0

= x<2>(0 as well as ip>(0 = ̂ (2)(0.
Step 2 (Existence in t/ie case o/(E)). Let {xj be a sequence decreasing to

0 and let b<w>(x) = &(xvxB)7) for xe(-oo, oo). Since b(w)(x) is bounded and

continuous, the equation

has a solution ([14] pp. 76-77). This is unique by the same reason as in Step 1.

Now let <jin)=inf {t>0: x<n)(0^x}. Then, by the uniqueness

x(m)(0 = x<">(0 s t^ 4??5 m ̂  n .

Hence ff£"* = ff£™* :g (j£*\ Letting a=limw_>00 aj^, we can define the inductive

limit (x(0: ?<cr} of the processes {x(n)(0: ^^x^}- ^ut cr=oo9 since
= £[6"^°"] (ju>0) is a solution of

and such a solution identically vanishes by virtue of (E). The process x(f) is

a solution of (4.1) with i/r(0=0.
Step 3 (Existence in the case o/(R)). Let {xj be a sequence decreasing to

0 and let y(w)(x), n = l, 2,..., be nonnegative continuous functions such that

7(«)(x) = l/x(0<x^xB+1), ^l/x(xw+1^x^xw), =0(xn^x) and 6(x) + y(->(jc)
is nonincreasing. Then, since the function fo(x) + y(w)(x) satisfies (2.1)-(2.4) as

well as (E), the equation

(4.3) JC00(f)=SJCo + j8(f)+ f'
Jo

admits a unique solution x(M)(f) by Step 2. Further, noting

fe(x) + y(re+1>(x)5 we see that x(w)(0^x(K+1)(0, ^0, by the standard comparison
theorem ([6]s [18]). Hence there exists a nonnegative limit x(0 =limre_»QO x(n)(0-

Since b(x) is nonincreasing and f fe(x(">(s)Xs^x(»>(0™x0-0(0 by (4.3)s it
Jo

follows that

(4.4) lim (* b(xW(s))ds= f b(x(s))ds9
w-»c» Jo JO

7) av&=max {a, b] and 0A&=mm {a,
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the both sides being finite. Now (4.3) and (4.4) imply existence of a finite limit

\l/(t) =lim T y^(x^(s))ds, /^O .
n-»oo Jo

Hence (x(t), \l/(f)) satisfies (4.1).

It is clear that x(f)^09 and x(i) and \l/(t) are ^-adapted. We shall show
they are continuous. Since x(f) is nonnegative and upper semicontinuous, it

is continuous at the time t for which x(f) = 0. Let x(tQ)>0. Take an JV>0
such that x(t0)^.xN. We can find a (5>0 such that

(4.5) x^(t)^xN+1, te(tQ-6, *0 + <5)n[0, oo), n^

If otherwise, then, by the continuity of x(ll)(0» there is a sequence {?„] such that
tn-»tQ, f f l^0, x^(tn) = xN+l and x^(t)^xN+1 for all l e^Af , , /0v*J. But
(4.3) gives

which is impossible. Hence, there exists a 8 satisfying (4.5). Also, equicon-

tinuity of {x™(t): n^N + l} on (t0-5, ^0 + <5) n [0, oo) follows from (4.3) and
(4.5). Hence x(t) is continuous at t0. Therefore, x(t) is continuous on [0, oo).
By (4.1), this assures the continuity of \l/(f).

Finally we shall show (4.2). By (4.5) it follows that

yW(
(to-d)VO

Hence \l/(t0 + 8)- \l/((t0 - 8) v 0) = 0. Therefore, for each JV, T ILxNi00)(x(s))d\l/(s)

= 0. Letting JV-»oo, we have (4.2). q.e.d.

Lemma 4. 1) Suppose that, for f = l , 2 , b^x) satisfies (2.1)-(2.4), and

(xt(t), \l/i(t)) is the solution of (4.1) with b(x) and XQ replaced by bt(x) and x(
0°.

//41}g42) and b1(x)^b2(x)9 then x1(t)^x2(t)9 t^Q.

2) Let (jc(0, ^(0) be the solution of (4.1) and (x(t)9 $(i)) be that of (4.1)
with E(x) = b(x) — h and x0 in place of b(x) and x0. If 0^h<b0 and 3c0gx0,
then

(4.6) x(t)-ht-x0^x(t)~x0, feO.

Proof. 1) Case 1. When both b^x) and b2(x) satisfy (E), the assertion is
none other than the standard comparison theorem ([6], [18]).



LIMIT THEOREM 369

Case 2. Suppose that 5t(x) satisfies (R) and b2(x) satisfies (E). Let {xn}

be a sequence decreasing to 0 and let y(n)(x), n = 1, 2,..., be nonnegative

continuous functions on (0, oo) such that y(n\x) = b2(x) — b^x) (0<x^x,I+1),

^=b2(x)-bl(x) (xn+l<x<x11\ = 0(xn^x) and b^ + y^x) is nonincreasing.

Then the function &1(x) + y(ll)(x) can play the role of b(x) + yW(x) in Step 3 of

the proof of Lemma 3. The corresponding solution x[n)(f) satisfies x[n\i)

^x2(r), t^Q, by the result of Case 1. Since x{n\t) tends to x,(t), this gives

Case 3. When both bt(x) and b2(
x) satisfy (R), we use the y (M)(x) in the

proof of Lemma 3. By the result of Case 1, the corresponding solutions satisfy

Xi^CO^xj^Cf), f^O. This gives x1(f)^x2(0-

2) Suppose that b(x) satisfies (E), Then i//(f)-(). Since x(f)^x(0,

and fo(x) is nonincreasing,

f (b(x(s)}-h)ds

In the case that b(x) satisfies (R), let x ( f l )(f) be the solution of (4.3) and

x^n\f) be that of (4.3) corresponding to b(x) and x0. Then x

and

o

' (b(x(n

Jo

We get the conclusion by letting /i->oo.

§ 5. Proof of Theorem 1

Using the <pA(x) given in Lemma 1, we define

Then this is a martingale ([17]). Further, if 0 ̂  :g ̂ 0, then this is a nonnegative

martingale, so that there is a nonnegative integrable limit

(5.1) WW = limWM(t), a.s.

Lemma 5. Let g eB have a compact support. Then,
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(5.2) lim^w *<*-">' £(*,) = <), a.s. for A < A 0 ,

(5.3) lim^ *<*o-c)t ^)=0 , m L1^) .

Proof. Suppose A<A0 . Using Lemma 1, we can easily show that there is

a positive constant Kt such that \g(x)\ ^K^^x). Hence,

o)^(;io-c)^Ao(^) = 09 a.s.,

which completes the proof of (5.2).

We shall show (5.3). Without loss of generality, we may assume that g(x)

is nonnegative and nonincreasing. By [17],

Let X* = (xf, P*) be a diffusion process given in Section 2 with b(x) = b0, and

denote the corresponding objects by p*(t, x, y)9 Tf etc. Then we have

Ex[g(xty]^E*[g(xfJ] by Lemma 4. Hence, it is enough to show that

It is easily seen that the transition density p*(t, x, y) of X* is represented as

p*(t, x, y) = \ e~At(p*(x)(p*(y)(T*(dl),> x, yeS, />0,

where

x+

Hence, using Fubini's theorem, we obtain

where

Jo

Now for ̂ ^0>0 and A^A0,

and

f °° e-*to cr*(^)==/?*^0j Oj
JAo
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Therefore, using Lebesgue's dominated convergence theorem, we have (5.4).

Proof of Theorem 1. 1) Take a g eB0(aA, I), and let

g ,(x : I?) - (g(x) -

g2(x : R) = (g(x) - (

for each £>(). Then we have

(5.5) g(x) = <Pi(x)lll(

Using (3.2), we can easily show that for each s,,>0 there exists a positive Rn

such that \g2(x • Rn)\ ̂  zn<Pi(x)- Hence,

e«-'»\g2(xt: R

Further, since g^x: Rn) has a compact support,

j7 !*,:*„ = (), a.s.,
f-*co

by Lemma 5. Hence (5.5) implies

Em \eU~c»g(xt)- W^I/I((p^\ ^ Iim \

+enlim W^(t) = EnWW, «=1, 2,..., a.s.

Now let sn I 0 and set PfA= PF(A)/^A)« Then (2.8) follows.
2) (2.9) will be proved by a similar way. But the conclusion holds in

probability since the assertion in (5.3) holds only in LX(O). q.e.d.

§6. Proof of Theorem 2

For the W^(f) and Ww in the previous section, we define

i//(x9 a) = ̂ [exp { - a TV™}] , a ̂  0.

Denote T? = e'cfTr

Lemma 6* Le^ 0 ̂  A ̂  A0 . T/iefi

(6.1) ^f(xf a) = T?/t( - , a) (x) + c T?^./ - , a e(^->^} (x)ds ,
Jo

w/iere /^x, a) = exp{-ae(A""c^^)A(x)}. Further, the function v(x)=
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= 0) satisfies (3.20) with some VQ.

Proof. For a fixed £0^0, i/st(x, a: to) = Ex[fto(xt, d)~] satisfies the 5-equa-

tion (2.7) with g(x)=fto(x, a). Hence

MX, a: /o)= r?/r0(-, a)(x) + c (' T*{E.lftQ(xt,s, a)Y} (x)ds.
JO

Since \l/t(x, a) = {j/t(x, a: t) and Ex\Jt(xt-s, «)] = ^t-s(x, ae(*~c)s), we obtain
(6.1).

To prove the second assertion, note that lim^^ i^r(x, a) = ^(x, a) and

(6.2)

where ||/"(-)!!= sup |/(x)| and ||T||= sup \\Tf\\. Then by letting t-+<x> in (6.1),
xeS 11/11=1

we have

Jo

Let a-*ao. It follows that v(x) = lima^ao \l/(x, a) satisfies

This completes the proof.

Lemma 7. // 0 < c ̂  A0,

(6.3) px(Wc = Q) = Q, xeS.

Proof. Fix 0<y 0 <l 5 and let v(x) be the solution of (3.20). Then u(t9 x)

= v(x) satisfies

(6.4) u(t, x) = T?v(x) + c(t T°s{u(t-s, -)2}(x)ds.
JO

On the other hand, setting A = c in (6.1), we have

(6.5) MX, a) = T?f(-\ a)(x) + c [ f«Wt,s(<9 a)2}(x)ds,

where /(x, a) = exp { — a<pc(x)}. But Lemmas 1 and 2 ensure that, for any suf-

ficiently large a,

v(x) ^/(x, a) , x e 5.

Hence, it follows from (6.4) and (6.5) that

\l/t(x, a) g u(t, x) = y(x) , x e S, r^ 0 .
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Now let r-KX> and then a-+co. We obtain ^(x^lim^^ \j/(x, a)^v(x), xeS.

Hence, using Lemmas 2 and 6, we complete the proof, because 0<i?0<l is

arbitrary.

Now let us make a convenient realization of the BDP X. Let j8e(f), /=!,
2,..., be one-dimensional Brownian motions, and Tf, i = l, 2,..., be random

variables with the exponential distribution of mean 1/c on a common probability

space (O, J5", F). Further suppose that {ftfc), T/: 1,7 = 1, 2,...} are mutually in-

dependent. Let also xt(t: x0) be the solution of (4.1) with &(0 in place of

We shall define xe(t) = (xl(t)9 x2(t),..., x**(t)) inductively. First, define

(6.6) c f =1, x\t) = X i ( l : x ) 9

where Tj =T!. Then define

where T2 = min {t2 H- Tl5 T3 + TJ. Suppose that we have obtained

where /c^, nf, and lt are some integers satisfying l^n^n — 1, l^ / i^n £ , Tn =

min{Tfc.+ rn.: lg/gn}, and /q^/Cj for i^j. If Tn = Tfc.o + Tn.o
9), then we de-

fine, as the next step,

(6.7)

where Tn+1=min {T fcf+Tn£: iVi0, l ^ f ^ w } A(T2 n+TM) A(T2 w + 1 + Tn). Since TM

is increasing in n and P(Tn^t) = (l — e~cf)", lini,,^ Tn=ao a.s. Thus we can
define xe(t) for all r^O. Finally denote by xt the equivalent class containing

xe(i) in the rc-fold (n = £t) symmetric product space Sn of S. Then the process

(xt9 F) is a realization of the BDP X ([5], [12]). {TJ is the sequence of

splitting times and ^ is the number of particles at time t .

Let b(x) = b(x)-h (0^fe<b0), and X i ( t : x 0 ) be the solution of (4.1) with

8) The probability that x*(Tj—)=Q is equal to zero. So we can exclude such a case.
9) The probability that more than two Tki

J
rTni attain the minimum simultaneously is

equal to zero. Hence i"0 is well-defined.
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and b(x) in place of j8(f) and b(x), respectively. Then, repeating the above

procedure, we can construct on the same probability space a process (xt, F),
a realization of the BDP X corresponding to the fundamental system (X, c, n)9

where X is a diffusion process with the generator L = d2/2dx2 + E(x)d/dx.

Note that the splitting times Tn are common to (xt9 F) and (xt, F), since the

common {tj is used.

Lemma 8. For each 0 £ h< &0,

(6.8) ^(O-kfgJc'CO^x'CO, * = °> »' = 1,2,..., &, «.s.

Proof. If 0^f<T1, then the assertion is clear from (6.6) and Lemma 4.

Suppose that the assertion is valid for all t< Tn. Then

(6.9) x^(Tni^^hTtti^x^(Tni^^x^(Tni-)

for all li and nt in (6.7). Let t e [Tn, TB+ J. By Lemma 4, it follows that

Hence (6.7) and (6.9) give

Similar observation applies to i = i'0 and n + 1. The proof is complete by

induction.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Case 1. 0<a|/2^c^A<A0. We may choose

^A(x)=exp{ — aAx} as # in Theorem 1. Let h = (h — c)/aA^0. Then fo0~-^

= aA/2 + c/aA>0, since aA solves (2.11). Now let X be the BDP for this h and

use the realizations (xt, F) and (xt, F) of X and X, respectively. Then, by
Lemma 8,

(6.10) e(A-c)f^(*r) = i; e-'*W-k')^g&$9 f ^ O , a.s.

Denote the quantities for X by putting a bar such as 10, 50, aA, and W^. Then,
using (2.11) and the inequality a^2c, we have

Lemma 7 applied to the BDP X says that F(FFC=0)=0. Hence, noting (6.10)9

we get (2.10).
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Case 2. 0<A<A 0 Ac. Since A xxjE/2 by Remark 1, x/2caA~a|/2>a|/2.

Hence we can choose a [i satisfying

(6.11)

For this #, set /?=(A — /j)/aA>0 and let X be the corresponding BDP. Then

(6.12) E0 = b0-h>Q9 n<Z09 aA = aM.

Now take the above realizations (xt, P) and (xt, P) of X and X, respectively.

Then, by Lemma 8,

e^-c»Qi(xt) ^ e^g,(xt) , a.s.

Hence it is enough to see v(x)=P(W^ = 0) = Q.

First note that, in the present case,

(6.13) c>!0.

By Lemma 6 applied to the BDP X, the function v(x) solves (3.20) with L re-

placed by L. It follows from Lemma 2 and (6.13) that v(x)=0 or = 1. So we

have only to show

(6.14)

By [17],

E

(x) + 2c

where Mt = ectTt. By Lemma 1 applied to L, we have (p^(x)2 g Ktp^x) for
some £>0. Hence, noting Mt(pll(x) = e^c~fl)t(pfJL(x)9 we have

EX[W™(*)2] ^Kle^-c» +2c(* e^-^dslcp^x).

But n<c by (6.12) and (6.13). Thus W^(t) is an L2-bounded martingale. So

Ex[WM~] = Urn
r->oo

This assures (6.14).

Case 3. A=A0. Since af0/2 = A0, it holds that c^A0 by the assumption.

If c = A0, then (2.10) is proved by Lemma 7. If c> A0, then the above argument

ensures that W^°\t) is an L2 -bounded martingale and the function v(x)

=PX(W^ = Q) must be =0 or =1. Hence, (2.10) follows as above.
Case 4. A = 0. In this case, we may take the constant function 1 as g in
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V

Theorem 1. Then e~ct l(xt) = e~ct £t is a martingale for the simple branching

process. Hence the assertion is obvious ([3] pp. 109-110).
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