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§ lo Introduction

Gentzen-style formulations of several fundamental modal logics like T9

S4, S5, etc. are well-known now. See, e.g., Ohnishi and Matsumoto [6], Sato

[9], Zeman [10], etc. Especially, Sato has established a close relationship

between Gentzen-style formulations of modal calculi and Kripke-type semantics

in a decisive way.

By the way, there is a strong analogy between classical tense logics and

modal logics, which is also well-known. Indeed many techniques originally

developed in modal calculi have been applied fruitfully to tense logics. For

example, Gabbay [1] has used the so-called Lemmon-Scott or Makinson method

to establish the completeness of many tense logics.

The main objective of the present paper is to present Gentzen-style formu-

lations of some fundamental tense logics, say, Kt and Kt4, and then to prove

the completeness of these logics with due regard to Gentzen-style formulations

after the manner of Sato. Since the completeness of Kt and Kt4 is well-known,

our main concern here rests in the relationship between our Gentzen-style

systems and the ordinal semantics of tense logics.

Roughly speaking, traditional tense logics may be regarded as modal logics

with two necessity-like operators, say, G and H. However, we will see that the

relationship of these two operators is much subtler than that of so-called bi-

modal logics.

§ 2. Hilbert-type Systems

Our formal language L consists of the following symbols:
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(1) a countable set P of prepositional variables: p, q, p',...

(2) classical connectives : ~i , D

(3) tense operators : G, H

(4) parentheses : ( , )

The notion of a well-formed formula (or simply, a wff) is defined induc-

tively as follows :

(1) Any propositional variable p is a wff.

(2) If a and P are wffs, so too are (~ia), (a=D/?), (Ga) and (Ha).

In the rest of this paper our usage of parentheses is very loose, in so far as

there is no danger of possible confusion.

For any wff a, we define Sub (a), the set of all subformulas of a, inductively

as follows :

(1)

(2) Sub (-1 a) = Sub (a) U { ~i a}

(3) Sub (a ID P) = Sub (a) U Sub (£) U {a => £}

(4) Sub(Ga) = Sub(a)U{Ga}

(5) Sub (Ha) = Sub (a) U {Ha}

Now we review the traditional tense logics Kt and Kt4. We begin with

the definition of Kt.

Axioms : (Al) a =3 (P => a)

(A2)

(A3)

(Gl)

(HI)

(G2)

(H2)

Rules: (MP)

(RG)
h-Goc

I ftr

(RH) h-Ha

Now Kf4 is defined to be the system obtained from Kt by adding the

following axioms.
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(G3)

(H3)

For more information on traditional tense logics in Hilbert style, see, e.g.,

Gabbay [1, 2], Prior [7] and Rescher and Urquhart [8].

§ 3. Gentzen-type Systems I

We now define Gentzen-type systems GKt and GKt4, which are equivalent

to Kt and Kt4 respectively. We denote the set of all wffs by WFF. Following

Sato [9], we define a sequent as an element in the set 2WFFx2WFF. Namely,

it is a pair of (possibly infinite) sets of wffs. In order to match with Gentzen's

original notation, we will denote a sequent F-+A rather than (F, A). Some

other notational conventions of Sato, which are almost self-explanatory, are

adopted here. For example, JT-> A, U stands for F— >A U U.

We will also use the following notation:

(i) r0^A0^r-+A i ffF0c
(2) r0 € F iff T0 c r and F0 is finite.

(3) r0-*A0(£r-+A iff F 0 €F and A0£ A.

We now give the definition of the system GKt.

Axioms: a->a
J-I A

Roles: ~* (extension)
ii , 1 — > Zl , Lt

, a a, , ,x(cut)

-ia7r-*A (^"^)

r^>A, -ia <^~>~1^

-v- (^-*)

F-»a, ffJ
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In the above rules GF = {Ga | a £ F} and HF = {Hoc | a £ F} for any F c WFF.

Now GKt4 is obtained from GKt by replacing the rules (-+G) and (-+H)
by the following rules respectively.

GF, F-»a, HA, HI ,
GF-»Ga, ,

HF, F—>a, G/J, GZ x y^-x
HF-+H&,, A9 GI

It is important to notice that (-»G) and (->H) are admissible rules in GKt4.

We call a sequent F->/d ̂ nife if both F and A are finite. Then it is easy to
prove the following lemma.

Lemma 3.1. // a finite sequent F-+A is provable in GKt (in GKt4, resp.),

then each sequent occurring in any proof of F-> A is finite.

Theorem 3.2. // h-F-»/d in GKt (in GKt4, resp.), then there exist some

FQ-+AQ €F-»/d such that HF0-»/d0 in GKt (in GKt4, resp.).

Proof. By induction on the number n of sequents occurring in the proof

It is easy to see the equivalence of Kt and GKt (Kt4 and GKt4, resp.).

Theorem 3.3. For any vtff a, h-a in Kt (in Kt4, resp.) iff \ — »a in GKt

(in GKt4, resp.).

Corollary 3 A Let FeWFF and aeWFF. Then F|-a in Kt (in Kt4,

resp.) iff h-F-^a in GKt (in GKt4, resp.).

The following example shows that our sequential systems GKt and GKt4

are not cut-free.

x x
(CUt)p->G-iH-ip

Thus we conclude this section by the following theorem.

Theorem 3.5. The cut-elimination theorem does fail for GKt and GKt4.

§4. Completeness

First of all, we review the semantics for tense logic. By a T-structure, we
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mean a triple (S, R, D), where

(1) S is a set (called the "time").
(2) R is a binary relation on S (the earlier-later relation).

(3) D is a function from PxS to {0, 1}. That is, D assigns a truth-value to

each propositional variable at each moment (an element of S is called a

moment).

Given a T-structure (S, R, D), the truth-value F(a: t) of a wff a at a mo-

ment t is defined inductively as follows:

(VI) V(p: i) = D(p9 f) for any propositional variable p.

(V2) F(~ia: 0 = 1 iff K(a: 0 = 0-
(Y3) F(aiDj3: 0 = 1 iff V(a: 0 = 0 or 7(0: 0 = 1.

(V4) F(Ga: 0 = 1 iff for any s e S such that f£s, F(a: s) = 1.

(V5) F(Ha: 0 = 1 iff for any s 6 S such that s£r? F(a: s) = 1.

We also define V(F-+A: f)9 where F-+A is a sequent, as follows:

(V6) F(F-Mt: 0 = 1 iff F(«: 0 = 1 for any aeF and V($\ 0=0 for any j?e A

By a T-motfel, we mean a 4-tuple (S, R, D, o), where

(1) (S, £, D) is a T-structure.

(2) o is an element of S (called the "present moment").

A T-structure (5, R, D) (a T-model (S, £9 D, o), resp.) is called a T4-s*rwc-

fwre (T4-model, resp.) if .R is a transitive relation.

We say that:

(1) A T-model (S, R, D, o) realizes a sequent jT->4 if F(F-* J: o) = 1.

(2) A sequent F-+A is ^-realizable (^-realizable, resp.) if F-*A can be

realized by some T-model (T4-model, resp.).

(3) A sequent F-+A is 1-valid (T4-valid, resp.) if it is not T-realizable (T4-

realizable, resp.).

We say that:

(1) A sequent F-*A is G-provable (G4-provable, resp.) if it is provable in GKt

(in GKt4, resp.).

(2) A sequent F-+A is G-consistent (G4~consistent9 resp.) if it is not G-provable

(G4-provable? resp.).

With these definitional preparations, we can present the following theorem.
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Theorem 4.1 (Soundness Theorem). Any G-provable sequent (G4-

provable sequent, resp.) is T-valid (T4-valid, resp.).

Corollary 4.2. // h-a in Kt (in Kt4, resp.), then V(a:o) = l for any

T-model (14-model, resp.) (S9 R, D, o).

Proof. This is immediate from Theorem 3.3 and Theorem 4.1.

Corollary 4.3 (Consistency of GKt and GKt4). The empty sequent-*is

not provable in GKt (in GKt4, resp.).

We now deal with completeness theorems. It is easy to see that the fol-

lowing lemma holds.

Lemma 4.4 (Lindenbaum's Lemma). Let it be that ^F-*A in GKt (in

GKt4, resp.) and Q is a set of wjfs such that F U A^Q. Then there exist F,

A such that:

(1) W->1 in GKt (in GKt4, resp.).

(2) F->A=>F-»A.

(3) FUA=Q.

A set Q of wffs is said to be closed under subformulas if Sub (a) c: Q for any

aeO. Now take any such Q and fix it. A sequent F->A is said to be Q9 G-

complele (Q, G4-complete9 resp.) if T-+A is G-consistent (G4-consistent, resp.)

and F u A = Q. We define C(Q) and C4(Q) as follows:

(1) C(Q) = {F->A | r-*A is Q, G-complete} .

(2) C4(Q) = [r->A | F-*A is Q, G4-complete} .

It is easy to see that for any r-*AeC(Q)9 FnA=0 because F-+A is G-

consistent. Similarly for any F-*AeC4(Q), FnA=0. For any F^WFF,

we denote by FG and FH the sets {a | Ga e F} and {a | Ha e F} respectively. We

now define the universal T-structure U(Q) = (S, R, D) as follows:

(1) S = C(Q).

(2) (F->A)R(Ff-*A') iff FG<=T' and F'H^F.

(3) D(p, F^A) = l i f f p E F .

Similarly we define the universal T4-structure U4(Q) = (S'9 R', D') as

follows:

(1) S' = C4(Q).

(2) (r-+A)R'(r'-*Ai)iffrGsr, rG^rf
G9 r'H<^r and F'H^FH.

(3) D'(p,r-+A) =
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It is easy to see that U(Q) (U4(Q), resp.) is indeed a T-structure (T4-struc-

ture, resp.).

Theorem 4.5 (Fundamental Theorem of Universal Structure). For any

aeO and F^AeU(Q) (l/4(O), resp.), V(x\F-*A) = l i /aeF and V(ct: F->A)

= 0 ifaeA.

Proof. By induction on the construction of wffs.

(a) a is a propositional variable: Immediate from the definition of D (Df,

resp.).

(b) a=~i/?: Suppose aeF. It is sufficient to show that ^F-*A, ft, which

implies fie A because of the maximality of F-+A. In this case we can conclude

that V(a:F->A)=l by induction hypothesis. Suppose, for the sake of con-

tradiction, that \-F-+A, ft. Then we can show that \-F-*A as follows:

This is a contradiction. The case a e A can be treated in a similar manner.

(c) a = /]^>y: Suppose aeF. It is sufficient to show that *KF -»-/!, ft or

T^y, F-*A, which implies that 13 e A or yeF. In any case V(a:r-*A) = l by

induction hypothesis. Suppose, for the sake of contradiction, that \-F-*A, ft

and I— y, F^A. Then we can show that \-F->A as follows:

This is a contradiction. Suppose OLE A. It is sufficient to show that T^jS, F~-*A9

7, which implies ^eT and ye A, because of the maximality of T-+A. So we

can conclude V(%:F-*A) = Q by induction hypothesis. Suppose, for the sake

of contradiction, that \-ft, F->A, y. Then we can show that t-F-+A as follows:

This is a contradiction.

(d) a, = Gft: Suppose aeF. That 7(a:T->J) = l follows directly from the

definition of R or Rf,

Now suppose that a e J.

For C/(Q): We show that the sequent FG-*ft, {Hy \HyeQ and ye A} is G-

consistent. We assume, for the sake of contradiction, that f-FG--»/?, {Hy\

HyeQ and 7 e A}. Then we can show that \-F-*A as follows :
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FG-»j8, {Hy\HyeQandyeA}

This is a contradiction. So we can conclude that the sequent FG-»/J, {Hy\
HyeQ and y e A} is G-consistent. By Lemma 6.4 this sequent can be extended
to some O, G-complete sequent F'-^'. It is easy to see that (F-*A)R(r'-+Af)
and F(j8: F'-»,4')=0. Therefore F(a: F-»,d) = 0.
For [74(O): We show that the sequent FG, GFG-»& {Hy \HyeQ and yeJ}5

jfiyH is G4-consistent. We assume, for the sake of contradiction, that this
sequent is G4-provable. Then we see that F-»J is also G4-provable as the
following proof-figure shows :

, {Hy\HyeQandyeA},HAH
GrG-*Gp9 {y\HyEQandyeA},HAH

r-»A
This is a contradiction. So we can conclude that the sequent GFG9 FG-»/?5

{Hy \HyeQ and yeA}9 HAH is G4-consistent. By Lemma 6.4 this sequent
can be extended to some Q, G4-complete sequent F'-^A', It is easy to see
that (r->A)R'(r'-»A') and V(p: F/->J')=0. Therefore F(a: F-^J)=0.
(e) a=Hj3: Similar to the case (d).

Several results follow directly from this theorem.

Theorem 4.6 (Generalized Completeness Theorem). Any G-consistent
(G4~consistent, resp.) sequent is T-realizable (^-realizable, resp.).

Proof. Immediate from Lemma 4.4 and Theorem 4.5.

Theorem 4.7 (Compactness Theorem). For any sequent F-»A, F-»J is
T-realizable (T4-realizable, resp.) iff for any F0-»J0CF-»J is ^-realizable
(T4-realizable, resp.).

Theorem 4.8 (Completeness and Decidability Theorem). For any finite
sequent F-+A, F-*A is G-provable (G4-provable, resp.) iff T-*A holds in all
1-models (T4-models, resp.) whose cardinality <2", where n is the cardinality

§ 5. Gentzen-type Systems II

In Section 3 we have introduced Gentzen-type systems GKt and GKt4, which
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was shown to be deductively equivalent to traditional tense logics Kt and Kt4

in Hilbert style respectively in Section 4. However, strictly speaking, GKt

and GKt4 are somewhat crude since in the rules (-»G), (-+H), (-»G)4 and (-»If)4

some subformulas of the upper sequent may disappear in the lower sequent.

That is, GKt and GKt4 can not necessarily enjoy the usual property of ordinal

Gentzen-type systems that the totality of subformulas of a sequent increase

as we proceed downward in a proof-figure without a cut. But this defect of

GKt and GKt4 is rather superficial than crucial, and the main purpose of this

section is to introduce more elaborated Gentzen-type systems GHKt and GHKt49

which are to be shown to be deductively equivalent to GKt and GKt4 (and so

to Kt and Kt4) respectively.

We now define GHKt. In GHKt, a sequent is defined to be an element

of the set 2WFF x 2WFF x 2WFF x 2WFF x 2WFF x 2WFF. Thus a sequent is of

the form (U19 F, U2s Zl9 A, Z2). However, we denote this as II I
m

9 F; n2-+2ii

A;Z2- Moreover we denote ;F; -+ \A\ (=(0, F, 0, 0, A, 0)) simply as

r->J. A sequent of this form will be called proper. Other sequents will be

called improper.

We define GHKt as follows:

Axioms i a-»a

«; ; -*«; ;
; ; a-» ; ; a

_ i ; 1 ; U2 "~»^i ', A', Z2

i, nx ; r, r : jii, Ji2->rl5 ^ ; 4' , A -, i'2,
, • r • n^z, ; A, «; r2 n; ; a. r' ; g^r
nlt n\ -,r,r; nz, n'2-+zlt z\ \A,A'\

ii', A, -\<x-,z2
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Now, GHKt4 is obtained from GH,Kr by replacing the rules (r-trans) and

(1-trans) by the following rules respectively.

;F; F->J,I ;q; ,
— - (r

F; r;-»; a; 4, I
F; ; ->a;J ;2

Now we should prove the equivalence of GKt and GHKt (GKt4 and

GHKt4, resp.).

Theorem 5.1. Le£ F->zl foe a proper sequent. Then h- F-*A in GKt (in

GKt4, resp.) iff h-r-»J in GHKt (in GHKt49 resp.).

Proof. We deal only with the equivalence of GKt4 and GHKt4.

If part: By induction on the construction of the proof, we prove that if

h-Ui ; F; n2-^I1 \A\I2 in GHKt4, then KHJIl5 T, Gn2-*HZl9 A, GI2 in

GKt4. The proof is almost straight, and so is left to the reader. But we com-

ment that (r-trans)4 and (l-trans)4 correspond to (-»G)4 and (-»H)4 respectively.

Only if part : For any F c= WFF, we denote the sets {a | Ga e F} and {a | Ha e F}

by FG and FH respectively. We denote F — FG LJ FH by Fj. By induction on the

construction of the proof, we prove that \-F-*A in GKt4, then f— FH; Fji FG

-+AH; Aji AG in GHKt4. Since the proof is almost direct, it is left to the reader.

As corollaries of this theorem,

Corollary 5.2. h-U^F; H^I^ A; 22 in GHKt (in GHKt4, resp.) iff

V-HH^ F, GI12-+HZ19 A, GI2 in GKt (in GKt4, resp.).

Corollary 5.3. A sequent II ̂  F; IJ2-^Z1i A; I2 is provable without a

cut in GHKt (in GHKt4, resp.) iff the sequent HII^ F, G772->HIl5 J, GI2 is

provable without a cut in GKt (in GKt4, resp.).

Corollary 5.4. The cut-elimination theorem does f a i l for GHKt and

GHKt4.
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Proof. Immediate from Corollary 5.3 and Theorem 3.5.

Acknowledgements

I would like to thank professors Satoru Takasu, Masahiko Sato and

Takeshi Hayashi.

References

[1] Gabbay, D. M., Model theory for tense logics, Annals of Math. Logic, 8(1975),
185-236.

[ 2 ] , Investigations in modal and tense logics with applications to problems in
philosophy and linguistics, D. Reidel, 1976.

[ 3 ] Gentzen, G., Untersuchungen iiber das logische SchJiessen I, II, Math. Z., 39 (1935),
176-210,405-431.

[4] Hughes, G. E. and Cresswell, M. J., An introduction to modal logic, Methuen, 1968.
[5] Matsumoto, K., Suri Ronrigaku (Mathematical logic}, (in Japanese), Kyoritsu, 1965.
[ 6 ] Ohnishi, M. and Matsumoto, K., Gentzen method in modal calculi, Osaka Math.

J., 9 (1957), 113-130, 11 (1959), 115-120.
[ 7 ] Prior, A. N., Past, present and future, Oxford, 1967.
[8] Rescher, N. and Urquhart, A., Temporal logic, Springer, 1971.
[ 9 ] Sato, M., A study of Kripke-type models for some modal logics by Gentzen's sequential

method, Publ. RIMS, Kyoto Univ., 13 (1977), 381-468.
[10] Zeman, J. J., Modal logic, Oxford, 1973.




