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Elastic-Plastic Vibration of a Rod

By

Tetsuhiko MIYOSHI*

Introduction

The following equation is a mathematical model to represent the elastic-

plastic vibration of a straight uniform rod submitted to longitudinal impact.

kitx in elastic region

(1 —£)kiix in plastic region,

where £, k are positive constants and 0<^<1 ([2]).

In this paper we prove that there is a unique weak solution to the initial-

boundary value problem of this equation and it is obtained as a limit of the finite

element solutions.

This kind of problems is treated by Duvaut-Lions [1]. They define an

initial value problem involving an inequality as a weak form of the original

problem and have obtained a solution by a penalization technique. However,

the relation between the original problem and their problem is not necessarily

clear in their formulation and, as the result, numerical method to solve the

problem is restricted within a certain class. The penalization technique is used

by Johnson [3] to get existence theorems in static problems with hardening.

We also derive a weak form including an inequality. However, the basic

idea to get the solution is not the penalization but a discretization, so that the

relation between the original problem and the derived one is quite clear.

We thus start from the vibration of a single masspoint system, then proceed

to a multiple masspoint system and to the continuous case.

§ 1. Elastic-Plastic Vibration of a Single Masspoint System

1.1. Equation of motion. Let us consider the vibration of a single
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masspoint system described by the following initial value problem.

(1.1) pw + <7 = 0 in T,

where p: positive constant, T=(0, T), w(0) = 0, u(0): given, and the yield dis-

placement w(0) (>0) is given.

The function a is a continuous function and satisfies :

( 1 . 1 ) fl d = ku if the system is elastic,

(1.1) & (7=(1 — g)ku if the system is plastic.

We define the states "elastic" and "plastic" as follows. First, put a = ku.

Assume that the solution of the equation (1.1) satisfies \u(f)\ = ii(0) at t = t0 for

the first time. Then we define that the system is elastic for the time interval

[0, t0). (Note that the definition of "elastic" is not independent of the solution

of the initial value problem. These are determined at the same time.) If

ti(f0)^0, then the system is defined to be plastic for t> t0. If w(r0)=05 the state

for t > tQ is determined by the following check. (ABC)-check:

(A) If u converges to 0 from above:

(1) if u(to) > 0 then plastic for t > t0 ,

(2) if u(to)<0 then elastic for t > t0 (case (A)).

(B) If u converges to 0 from below:

(1) if u(to) > 0 then elastic for t > t0 (case (B)),

(2) if u(to) < 0 then plastic for t > t0 .

(C) If u converges to 0 vibrating. Plastic for t > t0 .

Remark. If u(i) = u(i)=Q at t=t0 then all u (= -^pr) (fc^3) vanish at

f = r0 + 0 independently of the state for t>tQ9 so that w = w(£0), a = 0 is the only

possible solution for t>tQ. Observe that this (ABC)-check is a formal classi-

fication for logical consistency.

Subsequent state of the system is determined recursively as follows.

(I) The case when the present state is plastic. Assume that the present state

began at t=tm, and the solution of the equation (1.1) satisfies u(t)=Q at t=tm+1

( > fm) for the first time. Then we define the system is plastic for the time interval

[*m> *m+i)- Tne state for t>tm+1 is determined by the (ABC)-check.
(II) The case when the present state is elastic. Assume that the present

state began at t = tm after the (ABC)-check.

(1) Case (A). Assume that the solution u satisfies
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or

at t = tm+l (>tm) for the first time. Then we define the system is elastic for the

time interval [*m, tm+l).

(2) Case (B). Assume that the solution u satisfies

or

at t = tm+1 (>tm) for the first time. Then we define the system is elastic for the

time interval [*m, tm+1).
The state for t>tm+i is determined as

(II)a if u /O, the system is plastic for t> tm+ l9

(ll)b if w = 0, the state for t> tm+1 is determined by the (ABC)-check0

Our initial value problem is well posed by the above procedure and has a

unique C2-class solution. The hardening in the above rule corresponds to the

kinematic hardening.

1.2. Energy of the single masspoint system. Let u(J>) (j = 0, 1, 2,...) be the

displacement at which the (j + l)-th change of the state occurs. We say that

the system is at stage(m) if the change of the state occurred m 4- 1 times in the past.

The key to derive an energy equality for the present problem and also to

develop our theory in this paper is the following simple theorem which represents

the initial value problem by a single equation.

Theorem 1.1. The equation (1.1) is represented as follows, if the system

is at stage(m).

(1.2) pu + ku-tk £(-l}/(ii-fiU>)=0.
0

Proof. Induction on m. The equation holds for m = 0. Assume that

(1.2) holds until m = r (>0).

(1) If stage(r) is elastic: Since stage(r+l) is plastic, a is given by (1.1)6.

Let tr+l be the time at which stage(r+l) starts. Integrating (l.l)bs we have

(1.3) o(0 = ̂ r+i) + (l-0fc[u-ii^i)].

On the other hand, by the assumption of the induction, the following equality

holds at stage(r).
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ff(0 = ku - ft t ( - lV(u
0

Therefore, by the continuity of a, it holds at r = f

(-iyiiU> (r: odd).
o

Substituting this into (1.3), we have

o
r+l

0

Therefore (1.2) holds for m = r+l.

(2) If stage(r) is plastic: The situation is completely the same as above.

From this equation we can easily derive a simple energy equality which

represents the non-conservation of energy.

Theorem 1.2. Let Em be defined by

(1.4) 1^(0=4- W2 + ^-^-±(-iy(u-u^)\
2 2 2 o

Then the following equality holds at stage(m).

Em(t) = E0,

where E0 is the initial energy.

Proof. Let tm be the time at which the stage(m) starts. Multiplying by u

to (1.2) and integrating from tm to t, we have

Em(t} = -f- (uY(tm) + -| («(->)* - &- mE ( - IW -n">)2

=^m-i(O.

This implies that the quantity defined by (1.4) is constant through all stages.

Therefore it is equal to the initial energy.

Remark. This theorem implies that the elastic-plastic vibration converges

to an elastic vibration as r-»oo. This is the case also for the multiple masspoint
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system considered later.

1.3. A weak form of the equation of motion. The initial value problem
formulated above can be represented simply as follows.

Theorem 1.3. The initial value problem of the single masspoint system

is equivalent to the following problem: Define

K = Ka = {TeC(T); |T — a|<(70 for any teT}; G0 = t

Seek v, a, a which are differentiable and satisfy, for all teT

(d-kv,T-(T)>Q for all 1EK

(1.5)

andaeK, a(0) = 0, a(0) = 0, v(0) = u(0).

Remark, (x, y) = xy in this case. This is for the generalization of our

method to more complicated problems.

Proof of the Theorem. Let v = u and a be the parameter representing the
movement of the center of the yield surface (two points, in this case). We then

show that the solution u, a of the equation (1.1) satisfy (1.5). If the system is

elastic, then d — fci; = 0, a = 0 and thus (1.5) holds well. If the system is plastic,
then <7 = (1 — £)kv, so that (a — kv, T —cr) = —£k(v, t — a). In this case,

if v = u>09 then 0- = a + cr0?

if v = u < 0, then a = a — a0 .

Therefore, in any cases we have

— %k(v, i — 0-)>0 for any t£K.

Also, a = f 1 — -j-}( — £kv) = (l — ̂ )kv = d, which is certainly the equation for a.

Therefore u and a satisfy (1.5).

The proof is complete if we can show the uniqueness of the solution for

(1.5). Substitute the second equation into the first inequality. We then have

(d, T — <7)<0 for any teK.

Let 9 be an arbitrary continuous function satisfying |0|<1. Then the function

of the form
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is included in K. Therefore we have

(1.6) (d, a + <700-0-)<0 for any such 0.

Assume that there is another solution (t;*, a*, a*). Obviously

(L7) (d*, a^ + cTofl — or^)<0 for any such 6.

Put 0 = (ff* — a#)/ffb in (1-6) and 0 = ((r — a)/cr0 in (1.7), and add the both ine-
qualities. Then we have

(d-d*, a-o^-O-

By using two equations of (1.5), we have

Hence we have

which implies a = a*, a=(r* and t? = u#. This completes the proof.

1.4. Energy inequality. A basic energy inequality is derived from (1.5).
We see the inequality in (1.5) implies

Here we can put r = a. Therefore we have

((7, - — -

which implies

(1.8) -l (a, a

§2. Elastic-Plastic Vibration of a Multiple Masspoint System

2.1. Equation of motion. All results obtained in the preceding section

are extended formally to the multiple system.

Let ti| (i=0, 1,..., N) be the displacement of the i-ih masspoint (we assume

w0=0). Let p^ kt and ^ be the mass, stiffness and plasticity factor of the z'-th

masspoint. We introduce the quantity Ui=ui—ui,1 which corresponds to the
strain at i-ih point. Then the equation of motion of this system is written as
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(2.1) Piui + vi(Ui)-ai+1(Ui+l) = Q i = l, 2,..., N,

where crj(Uj) (i = l, 2,..., JV+1) is a continuous function of f such that

(2. l)a (7i(l/c) = fc£#i if the i-th point is elastic,

(2. l)b (7^) = (1 - Qfc^ if the i-th point is plastic,

and <jjv+1=0. Definition of "elastic" and "plastic" is exactly the same as in
the single system, except the case when both Ut and Ut vanish at t = t0 and we
can not determine the state for t>t0. In the single system, we do not have to
bother about such problem since if it should happen, u(f)=u(t0)9 a=0 is the only
possible solution for t>t0. The situation is, however, almost the same in the
multiple system too. In fact, we have the following theorem.

Theorem 2.1. Let Ui9 at be the solution of the initial value problem for
(2.1), Assume that at t = tQ the points (Ut(f)9 at(f)) (i = il9...9 ir) lie on one of
the lines

(2.2) vAU^ktUi-ftkAUrtUW

in the (C7|5 o-|([/f)) plane respectively, where !7[0) (>0) denotes the yield strain
of the i-th masspoint, and moreover that

(i)
l/.00 + 0)=0 (l<I<fc) (k>2)

(fc+D
for i=zil9...9ir. Then 17,- (t0 + G) for such i is determined independently of
the form of at (i = ii9...9 ir) for t>tQ, provided that the other a^s are already
decided for t>t0.

Proof. Use an induction on k, considering the facts that a/
u-i)

= constant- Uj (^0+0)=0 if j is included in (z'l9..., ir) and

Ui ^~P~i
(fc)

and that the sign of the non» vanishing lowest Ui(tQ+0) can determine the
state of the j-th point for t>tQ9 since the point (Ut(f), a^t)) in the (Ui9

plane moves at t=t0 to a definite direction determined by this sign.

Applying this theorem repeatedly, we can determine the state of each point
(*)

for t>t0, except a very special case. If Ut should vanish for any k at t=tQ+®,
how should we determine the subsequent state? In this case we can define free
for t> t0 (we thus define that the point is plastic). The reason is this : The solu°
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tion {t/J is analytic until some point j (^0 changes its state. Therefore,
(k)
Ui(t0 + Q) = Q (for any k>l) implies that 17,. = constant until that time, which

implies the solution does not depend on if we define the i-th point to be plastic

or elastic.

Our problem is hence well posed and has a unique C2-class solution for any

2.20 Energy of the multiple masspoint system. To derive an energy form

for the multiple system, we define that the f-th masspoint is at stage(mf) as the

same way in the single system, replacing u and a by Ut and cfJJ^. (Remark:

There is a formal possibility that there exist infinitely many changes of the state

in finite time interval. In this case the points (U^J\ cr^L/^)) (j = l, 2,...) have

an accumulation point on the line defined (2.2), without making any hysteresis

loop. For the following discussion, however, we can assume without loss of

generality that the number of the state change is finite in finite time interval,

since, if such accumulation should happen, we can skip all stages near the ac-

cumulation point in numbering the stage. Note that these stages give no influ-

ence on both the equation and the energy form.)

We say that the system is at stage(m) (m = (m1,..., ??%)), if the i-th mass-

point is at stage(m^). Corresponding to Theorem 1.1 and Theorem 1.2, we

have the following two theorems.

Theorem 2.2. At stage(m\ the equation of motion of the multiple mass-

point system is represented as follows.

J=0

m, + 1

(2.3) -|>i+1t/i+1-£j + 1/ci+1 I
j=o

where V\^ denotes the displacement of the i-th point when it enters in stage

(/). Here we assume that fcN+1=0.

Theorem 2.3, Let Em(t) be defined by

Em(t)=\lL [p,(*,)2 + W-«,*, Z (-im-tfl2 i j=0

Then the following equality holds at stage(m).
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where E0 is the initial energy.

The first theorem will be evident. Also, it is easy to see
m t m i + iS (-im-w-e/f ifcK, s (-i

7=0 7=0

i

The quantity Em(t) is hence constant through all stages, so that it is equal to the

initial energy. The second theorem is thus proved.

2.3. A weak form of the equation of motion. Hereafter we assume that k^

cz- and l/|0) are independent of / and denote them by t, £ and L/(0), respectively.

As in the single system, the present problem can be represented by a weak form
including an inequality.

Let v, a and oc be AT-dimensional vector functions which are differentiable
in t >0. Let K be a set of AT-dimensional vector functions which are continuous
and within (^-neighborhood of a, that is,

K = Kx={reC(T)Ni Max |Tf-af |<<70 for any te T}; a0 = kU^.

Theorem 2.4. Introduce v by [7e = i^ — v^^ (t;0 = 0). The initial value

problem of the multiple masspoint system is equivalent to the following prob-

lem: Seek v, a, a which are differentiable and satisfy

(cr — kU, T —0-)E*>0 for any

(2.4)

and aeK, er(0) = 0, ffNTl=0, a(0) = 0,

Proof. Let {M,-} be the solution of the previous problem. Put v = u. At

time t, let the points (i l3..., /r) and (/ r+ ]3 . . . , iN) be elastic and plastic, respec-

tively, or equivalently,

<7i = kUi for 1 = ?^,,.., zr

^i=(l-^)kUi fox f = ir+1,..., fN.

If point i is elastic (resp. plastic), the equation for a£ is

d^ = 0 (resp. =d-£),

so that a is nothing but the parameter representing the center of the yield surface.

Also,
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(a-kU, T-<7)=-£fc
J

However, if point i is plastic, we have

if Ut>Q, then <7e=

if C/f<0, then 0^ = 0^ — cr05

which imply

and hence,

(6-kU, T-(r)>0 for any

Therefore i? = ii and <r satisfy (2.4). Since the uniqueness of the solution of (2.4)

can be proved by just the same way as in the single system, the proof is complete.

2.4. Energy inequality (1). To prove the existence of a solution for the

continuous problem, Duvaut-Lions [1] have used a penalization technique,

introducing an elasto-visco-plastic problem. In our problem, however, we can

directly get the required estimates from this discrete problem. First, a basic

estimate is obtained as follows.

Put T = a in the inequality of (2.4). Substituting the equation for a, we get

, a)

Since (17, er) = £ (>,., ff, - ff,+ 1) = - £ Pi(vt, vt)=- 1/2 £ p&tf, we have

2.5. Energy inequality (2). We shall estimate some higher "derivatives3'.

We differentiate the second equation in (2.4) :

Multiplying by vt and summing on i we have, taking into account Theorem 2.2,

Z ̂  (**)?+ y £0 ~« j! (
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We have to be careful in integrating this equation. Assume that the system is

now at stage(m) and this stage began at t = tQ. Let us also assume that the

points

i = i !,..., ip change from elastic to plastic,

i = ip+1i...,iq change from plastic to elastic

at this moment and other points remain unchanged. If the preceding stage is

stage(ra'), we see

Define

Then for any t' and t near t0 (t' <t0< f)9 we have

y (1 - € yo ( - I)'') # ?

Since vt is continuous at t = t0, the terms on this value cancelled. Also, the terms

on l/K^o) for iVi'i,-.., ip are cancelled. Therefore, the above quantity is the
sum of

Y a -« |o (-

for i = ils..., ip, which implies £m(f) < £m-(t') and hence

(2.5)

Once this estimate is obtained, other derivatives are easily estimated. The

result is as follows. Let E0 be the quantity of the right side of (2.5). Then we

have

(2.6)
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§ 3. Elastic-Plastic Vibration of a Rod

3.1. A weak form of the equation of motion. We introduce a weak form
of the original problem and show that this form is a natural extension of the

equation of motion of the multiple masspoint system considered in the
previous sections. Let O = (0, 1) and define

X = Ka={TeL°°(T; L2(Q)); a.e. T, |T-a|<o-0 a.e. Q}

for aeL°c(T; L2(O)). Then our problem is:
Find (y, cr, a) such that

v,ae L°°(r; W2(Q)), v, a, a, a e L°°(r; L2(Q)}

and a.e. T,
(<j-kvx, T-o-)L2(f i )>0 for any

/ i \
(3.1)

where asK, t;(0, x) = a(x): 0iuen, t?(f, 0) = 0, a(0, x) = 0, a(t9 1) = 0, a(0, x) = 0.

It is evident that if the original problem has a classical solution, then v = u

and a satisfy this equation, a being the parameter representing the center of
yield surface (two points, in this case too).

3.2. Finite element approximations. We use the finite element solutions
and pass to the limit to get the solution for (3.1).

We first divide the interval Q into Af elements of equal length h. Let i be
the point with coordinate ih (/ = 0, 1,...,JV) and et the element [(z~-l)/i, ih~],

We use three basis functions:

$i(x): piecewise linear basis,

. - (pi(x)-: characteristic function of \ ih - —-, ih -f ~- ,

Vi(x): characteristic function of element ez.

Then the simplest finite element approximation to the original problem is

. ( M^. in elastic region
(7(W)=<

^ (1 — ̂ JAjfl^ in plastic region,
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where

and i^(0) = 0, iif(0) = a(i/i). (0(x) is assumed to be smooth and a(0) = 0.)

Since a is constant on each element, we put

to get

Then the finite element equation (3.2) is written as

f p iW| + <T,-f lr , + 1=0

/C ,.
(3.3) — w |_ t) for the elastic element

k(I — £) -=- (u i — u f_ 0 for the plastic element,

where pt = h for f ̂  N and = h/2 for i = N9 u0 = 0, which is just the same equation

considered in the previous sections.

3.3. Convergence of the finite element solutions. We shall show that a

limit of the finite element solutions is a solution of (3.1). Define

i=0

Then the energy inequalities for the multiple system imply

, ,
i;, ^, 6JC(t; = M) f remain in a bounded set of L™(T\

a, a

as /i-»0. Therefore we can select a sequence such that

<j, (6+)x -+ (j, or, weakly* in L°°(T; L2(O)) ,

a -» 0- strongly in L2(Tx Q) ,

(f, 1) = 0, (7(0, x) = 0,

b, 6X -> », f x weakly* in L°°(T; L2(fi)) ,

v-*v strongly in L2(Tx Q) ,
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and v(t, 0) = 0, <0, x) = a(x), and

a, 5 -* a, a weakly* in L°°(T; L2(O)).

(We used some elementary properties of the finite elements.) Let t be an arbi-

trary point in [0, T]. If ^ and /? are included in LX(T; L2(Q)) with £(0) = 0,

then fi(i) is well defined as a function of L2(0) and holds

where C is a constant independent of j8. Therefore, we can assume that

S(T) -* a(T) weakly in L2(O),

and also a(0)=0. According to Theorem 2.4, we can rewrite the system (3.3)

as follows.

' (J? — k6x, f-<j)L 2>0 forany feK,

where

K={r; Max|f-a|<cr0 forany ^eT}.

Let cp be an arbitrary function of C°°(Tx Q) with support in Tx Q. Let

^ and cp be the interpolating functions:

As well known, ||<jo — <p\\L2(Txn)-*Q> \\9~- 9\\wl
2(Txn)~*Q as A-^0. Therefore we

have

CT CT CT . _
\ (v-<rX9 <p)dt= \ (t)-i;, ^?)^+\ (v-v, q>-
Jo Jo Jo

Jo

from which we can conclude that

v-crx = Q a.e. T.

By the same way we have

A = M - -i- V(T - fctf a.e.
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To prove the inequality, take an arbitrary T 6 K. Then T is written general-

ly as

T

where 9 E L°°(T; L2(QJ) and satisfies a.e. T,

|0|<1 a.e. Q.

For this 0 we can find a function B on TxQ which is constructed by the system

of functions {<p J such that for given s,

l|fl-9|lLa(Txf l)<«, |9|<1 in TxO.

For example, take Friedrichs' mollifier pd and make the convolution

Then clearly |0,| < 1 in Tx J2, and

y for sufficiently small <5.

Let 9 be the interpolation of 6d by the coordinate functions {<p J, then clearly

|S| < 1 and for sufficiently small h

This 0 is hence the desired function.

Now in the inequality of (3.4) put

(if necessary, take a subsequence) and integrate on t. We then have

(3.5) o> \ pp(r) + a0 (
T (&, B)dt- \T (i, ff)A .

^ Jo Jo

When /z-»0 we have

(T . f^ .. fr . CT
\ (a, as)A=\ (a sa)^+\ (a, <r - a) rf/ -* \ (a, a)dt .
Jo Jo Jo Jo

Therefore (3.5) implies
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T < x , a)dt
0

)0

for arbitrary T e K. Take t e (0, T) and for arbitrary ?eK define

f in Te

a in T-T£ (s>0),

where T£ = [f - e/2, f + e/2]. Then clearly T e K and

> — \ (d, T - <r)rff = -1- \ (a, f-(8 Jo c JrE

Therefore letting e-»0 we have

(d, f-o-)<0 a.e. T,

for arbitrary T eK. Since or e K, the existence of a solution of (3.1) is proved.

Uniqueness of the solution of this problem is proved by just the same way for

the single system. Hence the whole sequence (v, a, a) converges to the exact

solution and we finally have

Theorem 3.1. There exists a unique solution (v, a, a) for (3.1), which is

the limit of the finite element solutions and, at the same time, regarded as the

limit of the solutions for the multiple masspoint systems.
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