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Some Simple C*-AIgebras Constructed As
Crossed Products with Discrete Outer

Automorphism Groups"

By

George A. ELLIOTT*

Abstract

An analogue for C*-algebras is given of the theorem of von Neumann (Theorem
VIII of [24]) that the crossed product of a commutative von Neumann algebra by a
discrete group acting freely and ergodically is a factor. The method of proof also
works for certain noncommutative C*-algebras, and so in these cases one obtains also
an analogue of Kallman's noncommutative generalization of von Neumann's theorem
(3.3 of [18]).

§ 1. Introduction

It seems to be a reasonable conjecture that the C*-algebra crossed product,
suitably defined, of a simple C*-algebra with unit by a group of outer automor-
phisms should be simple. For a finite group (and an arbitrary simple ring
with unit) this was proved by Azumaya in [2]. It follows from Azumaya's work
that for any group the algebraic crossed product is simple (see also 1.1 of [16]).

If the group is not amenable, then the largest pre-C*-algebra norm on
the algebraic crossed product does not in general yield a simple C*-algebra (see
5.2 of [25])9 but in [25] Zeller-Meier introduced a smaller norm, determining
what he called the reduced crossed product, and showed that if the automor-
phisms satisfy a condition which in general is rather more than being outer
(and if the C*-algebra is separable and the group of automorphisms countable)
then the reduced crossed product is simple.

Recently, Cuntz in [6], and Bratteli in [3] gave examples of simple crossed
products of simple C*-algebras by groups of outer automorphisms not satisfying
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Zeller-Meier's stronger condition. These examples, which involve commuta-
tive groups, were subsumed by work of Olesen and Pedersen in [19] (based on
work of Connes and Takesaki in [4]) which showed that the C*-algebra crossed
product of a simple C*-algebra by a commutative group of outer automorphisms
is simple. (Here, if there is no unit, outer means not determined by a multi-
plier.)

In the present paper, no restriction is placed on the group, but for technical
reasons the C*-algebra is assumed to be approximately finite-dimensional
(that is, every finite subset is assumed to be arbitrarily close to a subset of a
finite-dimensional sub-C*-algebra). Then it is shown that if the C*-algebra is
simple and the automorphisms outer then the reduced crossed product is simple
(3.2).

The proof is based on an analysis of outer automorphisms, which estab-
lishes (in 2.11) an approximate version of a property possessed exactly by the
automorphisms considered by Cuntz in [6] (which are shifts). This is enough
for Cuntz's proof of simplicity to be carried through essentially unchanged in
this general setting (see 3.3, 3.4).

A similar argument shows that the reduced crossed product of a com-
mutative C*-algebra by a group of automorphisms none of which (except the
identity) is equal to the identity on any nonzero ideal, and such that no nontrivial
closed ideal is invariant under all the automorphisms, is simple. Under the
stronger condition that no points in the spectrum are fixed by any of the au-
tomorphisms this was proved by Effros and Hahn in [9] and by Zeller-Meier
in [25] (assuming countability conditions). In the case of a commutative
group this also was proved by Olesen and Pedersen in [19].

With a suitable notion of properly outer automorphism (see 2.1), similar
arguments (now incorporating earlier work of the author in [11], [12] and [10])
also show that the reduced crossed product of any separable approximately
finite-dimensional C*-algebra or of any postliminary C*-algebra by a group
of properly outer automorphisms which leaves no nontrivial closed two-sided
ideal invariant is simple (3.2, 3.7).

§2. Properly Outer Automorphisms of £7*-Algebras

2.1. Definition. Let A be a C*-algebra and let a be an automorphism of
A. We shall say that a is properly outer if for every nonzero a-invariant closed
two-sided ideal / of A and every unitary multiplier u of /,
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2.2. Remark. Let A be a C*-algebra and let a be an automorphism of
A. If a is not properly outer then, by the Kadison-Ringrose theorem (7 of
[17]), on some nonzero invariant closed two-sided ideal / of A, a=(Ad u) (exp d)
where d is a derivation of / and u is a unitary multiplier of /. By [20], the
converse holds if A is separable. (For approximately finite-dimensional sepa-
rable C*-algebras this was established in [11].) The converse of course also
holds if A has an essential closed two-sided ideal all of whose derivations are
determined by multipliers (by [10], [21] and [22] this is true if A is postliminary,
a von Neumann algebra, or simple). In case A has such an ideal, that a is
properly outer just means that on no nonzero closed two-sided ideal is a de-
termined by a multiplier.

2.3. Theorem (cf. 1.2.1 of [5]). Let A be an approximately finite-dimensional
C*-algebra "which is either separable or simple, and let a be a properly outer

automorphism of A. Then for every nonzero projection e^A and every e>0,
there exists a nonzero projection f ^eAe such that \\fa(f)\\<e.

2 A. Lemma. Let A be C* -algebra and let a be an automorphism of A.
Then

Proof. If the right side is equal to 2, so also is the left side. If the right
side is strictly less than 2, inspection of the argument of Kadison and Ringrose
in [17] shows that in the atomic representation, a is determined by a unitary
operator u with spectrum contained in the open right halfplane, so that for a
suitable X e C7, | \u— 1\ \< 1 . Then

l lc r -HI - \\Adu-l\\ = ||adW||<2||t/-^||<2 .

2.5. Corollary. Let A be a C*-algebra and let a be an automorphism of
A. Then

\\a-\\\ = 2supb^il|(«-l)GOI|.

Proof. By the Kaplansky density theorem, it is sufficient to prove the
conclusion with the bidual A** of A in place of A and with a** in place of a.

In particular, we may suppose that A has a unit. If — \<x<\ is as given by
2.4 with ||(a — l)(x)|| close to ||a— 1||, then y=(x+l)/2 satisfies 0<j<l and
2(a-l)GO=(«-l) (*), so also 2||(a-l) (j;)|| is close to ||a-l||.
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2.6* Lemma* Let A be an approximately finite-dimensional C*-algebra
and let a be an automorphism of A such that ||a— 1||=2. Then for every e>0
there exists a nonzero projection f^A such that \ \ /<*(/)! I <e.

Proof. By 2.5 there exists y<=A with 0<y<l such that ||a(j)— j|| is
arbitrarily close to 1. Since we may suppose that y is contained in a finite-
dimensional sub-C*-algebra, we may suppose that y is a projection. Then
by 1.6 of [14] there exists a finite-dimensional sub-C*-algebra B of A containing
both y and also a projection z arbitrarily close to a(y). Thus, inside B, \\y-z\\
is arbitrarily close to 1 ; this implies that either a nonzero subprojection / of y
in B is almost orthogonal to z, in which case 1 1 /«(/)! I is small, or else a nonzero
subprojection of z in B is almost orthogonal to y. Since z and a(y) are close
they are unitarily equivalent by a unitary close to 1 (1.8 of [14]), so in the latter
case there exists a nonzero subprojection, say «(/), of a(y) such that «(/) is
almost orthogonal to y — then/<j and so ||/a(/)|| is small.

20?0 Lemma (cf. 1.2 .4 of [5]). Let e and f be projections in a C*-algebra
A such that \\ef\\ <1. Then eVf&A, where eV f is the supremum of e and f
in A**, the bidual of A.

(a) Let 0<^<1, and assume that for any e'J'^A with Q<ef<e, 0<

f'<fand ||*'|| = ||/'|| = 1, one has \\e'f\\>^ \W\\>^ Then

(b) If the assumption in (a) holds for some 0</1<1, then the partial iso-
metry u of the polar decomposition of eV f— (e+f) belongs to A and satisfies

u = u*, u2 = eV f, ueu* =/, ufu* = e .

Proof. eVftEA follows from \\eV f—(e—f)2\\ = \\efe\\ <l (see bottom of
page 390 of [5]).

(a) By the Kaplansky density theorem, the hypothesis remains true with
A** in place of A. Hence by 1.2.4 (a) of [5], \e\/ f-(e+f)\ >^(eV/).

(b) u^A because eV f^A and (by (a)) eV f— (e+f) is invertible in
The other properties of u are just 1.2.4 (b) of [5].

2.8. Lemma. Let A be a C*~algebra, let a be a properly outer automor-
phism of A and let B be a nonzero hereditary sub-C* -algebra of A invariant for a.
Assume either that A is separable and approximately finite-dimensional, or that
B has a nonzero closed two-sided ideal all of whose derivations are determined
by multipliers (this holds if A has an essential closed two-sided ideal which is
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post-liminary , simple, or an ideal of a von Neumann algebra — cf. 2.2). Then a \ B
is a properly outer automorphism of B.

Proof. Suppose that a\B is not properly outer. Then by 2.2, passing
to a closed two-sided ideal of B, we may suppose that a \B=(Adu) (exp d) where
d is a derivation of B and u is a unitary multiplier of B.

If A is separable and approximately finite-dimensional, then by (ii)'=^
(i)'e (e<2) of 4.2 of [12], a is not properly outer — a contradiction.

If, when B is replaced by a nonzero closed two-sided ideal of B, d is de-
termined by a multiplier of B, so that a\B=Adv\B where v is a unitary mul-
tiplier of B, then consider the closed two-sided ideal / of A generated by B. I
is a-invariant, and by 4.4 of [13], the automorphism (a|/)** of /** is inner,
determined by a unique unitary we/** such that we=ew=v where e is the
unit of jB**C/**. By 3.1 of [1] (modified for automorphisms), w is a multi-
plier of / (the argument: if a^A and b^B then wab=waw*wb=a(d)vb^I).
This shows that a \ I is not properly outer — a contradiction.

2.9. Proof of 2.3. Let e be a nonzero projection in A and set

We must show that A=0. As in 1.2.1 of [5] let us assume that -*>0 and
deduce a contradiction.

First, note that

Indeed, if Q<k<e and ||fc|| = l then, by assumption, for any r>0 there is a
nonzero projection f<k+r* Then in particular, /<e+r3 and so if r is small
/may be changed slightly so that/<e (one has (l—e)f(l—e)<r(l—e), whence

1 1/— efe\\<2r1/2> so if r is small, by 1.6 of [14] a function of efe is a projection
<e and close to/). Hf<k+r with r small, then ||/«(/)|| can be at most only
slightly larger than ||fca(fc)||.

If ^ = 1, then a\eAe is the identity. By 2.8 this contradicts the hypo-
thesis that a is properly outer.

If 0<^<1, then choose e>0 such that £(A+l)<Z and <*+£<!, and
choose a nonzero projection f<e such that | \fa(f)\ \ <A+e. Since ^ =

|fca(fc)||, trie hypotheses of 2.7 (a) are satisfied by /and «(/), so
, and, with g denoting / V «(/),
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Moreover, the partial isometry u of the polar decomposition of g— (/+«(/))
belongs to A, by 2.7 (b), and satisfies:

u = u*9 u
2 = g, ufu* = <*(/), ua(f)u* =f ;

The automorphism a'=(Adw)a|/^/of/^/is properly outer by 2.8, so by
2.6 (applied to fAfand a') there exists 0 =(=&</ such that ||fc||=l and ||fc
<e. Then

hence

But kga(k)-kfa(k)-ka(f)a(k)=~ka(k) since 0<fc</5 and so \\ka(k)\\<
^6+5<^. This contradicts the relation ^info^^j^ii^llfco^fc)!! established in
the second paragraph of this proof.

2.10, Remark. It follows from 2.3 that if A and a are as in 2.3 then
\\(a— l)\eAe\\>l for each nonzero projection e^A,

Thus (restricting to the separable case) one obtains a proof of (iii)' s=t>
(i) of 4.2 of [12] for all e<l; the proof in [12] is valid only for small e (small
enough that if ||a(e) — e\\<e then by 1.8 of [14] a(e) is equivalent to e by a
unitary suitably close to 1). Note that in the proof of 2.8 above we did use
(iii)'e==>(i) of 4.2 of [12], as this is needed to prove (ii)'=^>(i) of that theorem,
but we used it only for small e (inspection of 4.2 of [12] shows that this is
sufficient to prove (ii)'==>(i)).

This result is optimal; for (iii)'£=^>(i) of 4.2 of [12] to hold, e must be
<1, since it may happen that ea(e)=Q. On the other hand, for (iii)e=^(i) of
that theorem to hold, e need only be <2, since, for £<2, by the Kadison-Rin-
grose theorem (7 of [17]) we have (iii)£=^>(ii)'.

An alternative proof of ||(a--l)|e/4e||>l for A separable and approxi-
mately finite-dimensional and a properly outer is as follows. By 4.2 of [11]
(which again uses (iii)'e=^(i) of 4.2 of [12] for small e), if a is properly outer
then for every nonzero closed two-sided ideal 7 of A there exists an irreducible
representation n of A such that 7u(I)=£Q and the representations n and na
are inequivalent. With / the closed two-sided ideal generated by the nonzero
projection e, we get inequivalent representations n\eAe and na\eAe with
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7c\eAe irreducible and not \ eAe either irreducible or 0. By 3 of [15] the

direct sum of the weak closures of eAe in these two representations is the weak

closure of eAe in the direct sum representation. In particular the unit of the

weak closure of n(eAe\ say p, belongs to the weak closure of eAe in the direct

sum representation, whence by the Kaplansky density theorem there exists h e

eAe, ®<h<l, with n(a(h))@n(h) strongly close to /?, so that n(h) is strongly

close to p and n(a(K)) to 0. Then n((a — 1) (ti)) is strongly close to p, which

implies that ||(a— 1)(/OI| is arbitrarily close to 1.

2.11. Corollary,, Let A and a be as in 2.9, let A1 be a finite-dimensional

sub-C* -algebra of A, let e be a nonzero projection in Al9 and let e>0. Then

there exists a nonzero projection f^eA{ such that \ |/a(/)| | < e. (Here A{ denotes

the relative commutant of A1 in A.)

Proof, Clearly it is enough to consider the case that A1 is simple and that
e is the unit of A±. We shall assume in addition that A1 is isomorphic to the

algebra M2 of 2x2 matrices over C — the proof for the case that Al is isomor-

phic to Mn for any other n=3,4, ••• is similar.

Suppose, then, that e=el+e2 with el and e2 projections in Al such that for

some we^4l9

u = u*9 u
2 = e, ue-LU* = e2, ue2u* = el ,

and A1 is generated by el9 e2 and u.

By 2.9, there exists a nonzero projection fl^elAel such that ii

e/4. Set ufa* =/2. Then also uf2u* =/i.

By 2.9, we may replace /i by a smaller projection (the transform by u of

a suitable subprojection of/2) so that also ||/2a(/2)||<£/4.
Now consider the automorphism a' of A defined by a'(a)=va(a)v*9 a^A,

where v=u+(l—e). By 2.9 we may replace /x by a smaller projection so that

l|/i«'(/i)ll^*/4, and again so that also i|/X(/2)||<£/4.
Since

and u*f2a'(f2)u =/1a(f2) ,

we have 1 1/̂ 031 |^e/4 and ||/X/i)ll<*/4. Hence, \Kf1+f2)a(f1+f2)\\<e.

Since f1+f2^eA{9 we may take./;+/2 for/.

2.12. Remark. Since by 1.2.1 of [5] the conclusion of 2.9 holds for a

properly outer automorphism a of a von Neumann algebra A (the hypothesis

that A is countably decomposable is unnecessary), also the conclusion of 2.11
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holds in this case. In this way one sees that the constant 1/35,000 in 2.1 of
[23] can be replaced by 1, at least if the subfactor of type / involved is finite.
Presumably the best possible constant would be 2.

2.13. Remark. Let A be a postliminary C*-algebra and let a be a properly
outer automorphism of A. Then the following much sharper property than
that of 2.11 holds. For every nonzero closed two-sided ideal / of A there
exists a nonzero closed two-sided ideal Jdl such that Ja(J)=Q.

To see this, note that if / and every closed two-sided ideal of / are a-invariant
then by the proof of 2 of [10], a is determined by a multiplier on some nonzero
closed two-sided ideal of /. If, on the other hand, a(I)=$=I for some closed
two-sided ideal / of A, then, with /0 a closed two-sided ideal of / such that Jfr
is Hausdorif and dense in / (4.4.5 of [7]), there exists t0^Jfr such that a(t0)=£t0

(otherwise, by continuity a(t)=t for all ?e/A, whence a(I)=I). Now consider
two cases. If a(£0)e/^\ then since Jfr is Hausdorff there exist disjoint open
neighbourhoods of tQ and oj(r0), and hence by continuity of a on ^4A, an open
neighbourhood V of t0 such that Fn«(F)=0. If a(t^&Jfr, and if, more-
over, there does not exist t^Jfr such that a(t1)^=t1 and a(t^^Jfr, then Jfr is
the union of two disjoint subsets— {t e Jfr \ a(t)=t} and {t e Jfr \ a(t) $ Jfr}.
Since a is continuous on A^ and A^\Jfr is closed, both these subsets are rela-
tively closed in Jfr. Since they are complementary they are also relatively
open, and hence open. Then with V the second subset, Fn«(F)=0. In
either case we may take / to be the ideal with /A== V.

§3. Reduced Crossed Products by Properly Outer Automorphism Groups

3.1. Definition. Let A be a C*-algebra and let a be a representation of
the group G by automorphisms of A. By the crossed product C*(A,a) we
shall mean the C*-algebra generated by the universal covariant representation
of (A, a). In other words, C*(A9 a) is generated by A and the image of a uni-
tary representation u of G such that ugauf=ag(d) for a^A and g& G, and every
such C*-algebra is a quotient of C*(A, a).

By considering the covariant representation n on H#®12(G), where x is

a faithful representation of A, defined by *(fl)=(gH>waJ1(fl))e/°°(G!
fJ?(fl'J),

and n(g)=l®A(g) where ^ is the left regular representation of G, one sees that

there is a projection of norm one P from C*(A,a) to A such that P(ug)=0 for

all g4=l (the identity of G). Clearly this property determines P uniquely.
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By the reduced crossed product Cf(A,a) (see 4.6 of [25]) we shall mean
the quotient of C*(A,a) by the closed two-sided ideal IP={x&C*(A9a)\
P(xug)=Q for all g^G} (this is the largest closed two-sided ideal in the kernel
of P). Since P(Ip)=Q, P induces a projection of norm one from C?(A,a) =
C*(A,a)/IP to A, which we shall denote by P also.

Let / be a closed two-sided ideal of C*(A,a) such that Jf}A=Q. Since
P(J)aA, clearly P(J)cJ is equivalent to P(/)=0. On the other hand, since
Jug=J for g^G, P(/)—0 implies and hence is equivalent to /C/P. It follows
that Cf(A, a) is characterized among quotients of C*(A, a) by the existence of
the projection of norm one P from C?(A9a) to A such that P(ug)=Q for g=t=l
and such that P is not zero on any nonzero closed two-sided ideal of C?(A9a).

3.2e Theorem- Let A be an approximately finite-dimensional C*-algebra
which is either separable or simple, and let a be a representation of the group G as
automorphisms of A such that no closed two-sided ideal other than 0 or A is in-
variant under all ag, g^G9 and such that for each g&G with g3=l,ag is properly
outer. Then the reduced crossed product C*(/i, a) is simple.

33. Lemma9 Let A be an approximately finite-dimensional C*-algebra
which is either separable or simple, and let a be an element of A, 8 a finite subset
of A, T a finite set of properly outer automorphisms of A, and e>0. Then there
exists x^A with ||*|| = 1 such that:

\\xax\fe\\a\\-e;
\\xb-bx\\<e,

\\xa(x)\\<e,

Proof. We may suppose that a and S are contained in a finite-dimensional
sub-C*-algebra Al of A. Denote by e a minimal central projection in A1 such
that ||ffe|| = ||a||. Then by 2.11 there exists a nonzero projection f^eA{ such
that ||/i«i(/i)||<^ where a^ is the first element of T. Again by 2.11, with

in place of A1 and /i in place of e, there exists a nonzero projection /2e

'deA'i such that H/^C/?)!!^5 where a2 is the second element of T.
Since /2 < /15 also 11 /2<2i(/2) 11 < e - Continuing in this way, one obtains a nonzero
projection/in eA{ such that \\fa(f)\\<e for all a<=T. Then ||/fl/|| = ||ae|| =
||a||, andfb—bf=Q for all b^S, so we may take/for x.

3A Proof of 3.2. By 3.1, to show that Cf(A9oi) is simple it is sufficient
to show that P(/)=0 for any proper closed two-sided ideal of C?(A,a). If /
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is a proper closed two-sided ideal of C?(A,a) then JC\A=Q, since J f t A is an

a-invariant closed two-sided ideal of A. Since P(C?(A,aj)=A, to prove that

P(/)=0 it is then sufficient to prove that P(/)c/, that is, that P induces a pro-

jection of norm one onto A in the quotient of Cf(A9 a) by /.

In other words, given a pre-C*-algebra seminorm ||-|| on the subalgebra

of C?(A,a) generated by A and {ug\g^G}, which extends the norm of A,

we must show that for each a^A, each finite subset rc<j\{l} and each

family (ag)g^T in A,

Fix e>0. Then by 3.3 with S={ag\gt=T} and T={ag\g(ET}, there
exists x^A with ||jc||=l such that:

\\xax\fe\\a\\-* ;

\\xb—bx\\<£,

\\xag(x)\\<e, that is \\xUgX\\^e9 g(=T .

Then

\\a\\£\\xax\\+*

Since

we obtain

Since £>0 is arbitrary the desired inequality follows.

3.5. Remark. In 4.20 of [25], Zeller-Meier proved that C?(A, a) is simple

if A is any separable C*-algebra, G is a countable group, and a is a representa-

tion of G by automorphisms of A such that A has no nontrivial a-invariant
closed two-sided ideal, provided that a satisfies a considerably stronger condi-

tion than in 3.2 — for each g=t= 1 there should be no factor representation of A

which is quasi-invariant for ag. For a commutative separable C*-algebra

this was proved by Effros and Hahn in 5.16 of [9]. For some rather special

nonseparable commutative C*-algebras and uncountable (commutative) groups

this was proved by Douglas in [8] (also some earlier results of this kind are
referred to in [8]).
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With their strong form of the condition that the automorphisms should

be properly outer, Zeller-Meier and Effros and Hahn showed that, if A does

have nontrivial a-invariant closed two-sided ideals, then these ideals are in

bijective correspondence with the closed two-sided ideals of Cf(A,a). This need

not hold under the present assumption just that ag is properly outer, g=t=l.

For example, take the group Z2 acting by translation on the C*-algebra A of

functions on Z2 generated by the characteristic functions of half-open in-

tervals [a, b[ in Z2 with the lexicographical order. A has only one nontrivial

invariant closed two-sided ideal, but the reduced crossed product has many

closed two-sided ideals — it has a quotient with spectrum the circle.

3.6. Remark. In the case that the group G is commutative, 3.2 follows

from a theorem of Olesen and Pedersen (6.5 of [19]) adapting a different result

of Connes to C*-algebras. A consequence of 6.5 of [19] is that if G is com-

mutative and A is an arbitrary C*-algebra with no nontrivial a-invariant closed
two-sided ideals, and if for each g=t=l and each nonzero a-invariant hereditary

sub-C*-algebra B of A9 \\(ag—l)\B\\=2, then C*(A,a) is simple. This last

condition is satisfied by a properly outer automorphism of a C*-algebra which

is either postliminary, simple, a von Neumann algebra, or separable and approx-

imately finite-dimensional (see 2.8).

3.7. Remark. 3.3 and therefore also 3.2 hold for a postliminary C*-
algebra.

To show 3.3 when A is a postliminary C*-algebra, choose a nonzero closed

two-sided ideal I of A such that lki+f||>IM|-* for all *<E/A (3.3.2 of [7]),
and choose a nonzero closed two-sided ideal Jdl such that Ja(J)=Q, a^T

(2.13). Denote by e the unit of /** in A**. We have:

\\eae\\>\\a\\-* i

eb—be = 0, b<=S ;

ea(e) = 0, a<=T.

In fact e itself could be used in the proof of 3.2, but it is also possible to find x

in A with the properties stipulated in 3.3. By the Kaplansky density theorem

we may approximate e ultraweakly in /** by x^J. Of course for all such x9

exe=x, and so xa(x)=Q, a^T. For x sufficiently close to e ultraweakly,

||x0x||>||0||—e, because the set of x with ||xax;||<||<2||-—e is ultraweakly

closed. Since xb—bx converges ultraweakly to 0 in /**, that is, weakly to

0 in the Banach space /, taking convex combinations we may choose x so that
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xb—bx is close in norm to 0. Then x satisfies the conditions of 3.3.
In particular, as a consequence of 3.2 for a commutative C*-algebra, one

obtains an alternative (and easier) proof of the result of Cuntz in [6] that the
C*-algebra On generated by n isometrics whose range projections have sum 1
is simple (72=2,3, •••). Indeed, the tensor product of On and the elementary
C*-algebra M«, is just the crossed product of the commutative C*-algebra
generated by the projections in L2(K) corresponding to bounded intervals with
n-adic rational endpoints by the group of transformations of R of the form
x\-*ax-\-b where a is a power of n and b is an «-adic rational. It should be
noted that the hypothesis of 3.2 is satisfied here even though the hypothesis of
Effros and Hahn in [6] or Zeller-Meier in [25] is not.
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